TWI567826B - Fabricating method of semiconductor elements - Google Patents

Fabricating method of semiconductor elements Download PDF

Info

Publication number
TWI567826B
TWI567826B TW100134035A TW100134035A TWI567826B TW I567826 B TWI567826 B TW I567826B TW 100134035 A TW100134035 A TW 100134035A TW 100134035 A TW100134035 A TW 100134035A TW I567826 B TWI567826 B TW I567826B
Authority
TW
Taiwan
Prior art keywords
metal
semiconductor device
layer
source
drain structure
Prior art date
Application number
TW100134035A
Other languages
Chinese (zh)
Other versions
TW201314780A (en
Inventor
黃建中
何念葶
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100134035A priority Critical patent/TWI567826B/en
Publication of TW201314780A publication Critical patent/TW201314780A/en
Application granted granted Critical
Publication of TWI567826B publication Critical patent/TWI567826B/en

Links

Description

半導體元件製造方法 Semiconductor component manufacturing method

本案係為一種半導體元件製造方法,尤指應用於積體電路製程中之半導體元件製造方法。 The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of fabricating a semiconductor device in an integrated circuit process.

在積體電路中,金氧半電晶體是常使用的電路元件。而隨著半導體產業進入次微米製程後,高介電係數閘極介電層金屬閘極(High-K gate dielectric/Metal Gate,簡稱HK/MG)已成為金氧半電晶體中重要技術手段。而其中高介電係數介電層(high-k gate dielectric)與金屬閘極之製作時間點,通常都在源/汲極結構表面之金屬矽化物層(silicide)完成後才開始,但因以自行對準金屬矽化製程(Self-Aligned Silicidation,簡稱SALICIDE)所完成之金屬矽化物層(silicide)通常不耐高溫,因此很可能會因製作高介電係數介電層時之高溫而產生對金屬矽化物層(silicide)的破壞。為此,透孔接觸自行對準金屬矽化製程(Through contact SALICIDE)便被發展出來。 In an integrated circuit, a MOS transistor is a commonly used circuit component. After the semiconductor industry enters the sub-micron process, the high-k gate dielectric/metal gate (HK/MG) has become an important technical means in gold oxide semi-transistors. The manufacturing time of the high-k gate dielectric and the metal gate is usually started after the silicide of the source/drain structure surface is completed, but The silicide of the self-aligned Silicidation (SALICIDE) is usually not resistant to high temperatures, so it is likely to produce a metal due to the high temperature of the high dielectric constant dielectric layer. Destruction of the silicide. To this end, the through-hole contact self-alignment metal contact process (Through contact SALICIDE) was developed.

簡單來說,接觸孔自行對準金屬矽化製程就是將其時間點移到源/汲極結構上方之接觸孔完成後,再對接觸孔中露出之源/汲極結構表面來進行自行對準金屬矽化製程。但是,隨著元件尺寸日益縮小,接觸孔之孔徑也隨之縮小,因此非常不利後續金屬矽化製程的進行,造成元件性能無法提昇。而如何改善此類缺失,便是發展本案之主要目的。 In simple terms, the contact hole self-aligning metal tempering process is to move the time point to the contact hole above the source/drain structure, and then self-align the metal to the exposed source/drain structure surface in the contact hole. Deuteration process. However, as the size of the component is shrinking, the aperture of the contact hole is also reduced, so that the subsequent metal deuteration process is unfavorable, and the component performance cannot be improved. How to improve such a deficiency is the main purpose of the development of this case.

本發明之目的在於提供一種半導體元件製造方法,其在接觸 孔徑日益縮小之情形下仍然能順利完成金屬矽化製程。 It is an object of the present invention to provide a method of fabricating a semiconductor device that is in contact The metal deuteration process can still be successfully completed with a shrinking aperture.

為達成上述目的,提供一種半導體元件製造方法,包含下列步驟:提供一基板,其上方已形成有金屬閘極結構與源/汲極結構;對源/汲極結構進行非晶化製程而形成非晶化部份;於源/汲極結構之表面上方形成內層介電層,並於內層介電層中形成接觸孔;以及利用接觸孔對該源/汲極結構之非晶化部份進行金屬矽化製程,以形成金屬矽化物層。 To achieve the above object, a semiconductor device manufacturing method is provided, comprising the steps of: providing a substrate having a metal gate structure and a source/drain structure formed thereon; and amorphizing the source/drain structure to form a non- a crystallization portion; an inner dielectric layer is formed over the surface of the source/drain structure, and a contact hole is formed in the inner dielectric layer; and the amorphization portion of the source/drain structure is formed by the contact hole A metal deuteration process is performed to form a metal telluride layer.

於本發明另一實施例中,上述基板為矽基板,金屬閘極結構包含有金屬閘極與高介電係數介電層。 In another embodiment of the invention, the substrate is a germanium substrate, and the metal gate structure includes a metal gate and a high-k dielectric layer.

於本發明另一實施例中,上述源/汲極結構係為以磊晶方式完成之嵌入式源汲極結構,其材質為矽、矽化鍺或碳化矽中之一。 In another embodiment of the present invention, the source/drain structure is an embedded source drain structure completed in an epitaxial manner, and the material is one of germanium, germanium germanium or tantalum carbide.

於本發明另一實施例中,上述源/汲極結構進行之非晶化製程為非晶化前植入製程,其係利用粒子植入來對該源/汲極結構之晶體進行破壞。 In another embodiment of the present invention, the amorphization process performed by the source/drain structure is a pre-amorphization implantation process, which utilizes particle implantation to destroy the crystal of the source/drain structure.

於本發明另一實施例中,上述非晶化前植入製程中所使用之粒子為鍺或砷。 In another embodiment of the invention, the particles used in the pre-amorphization implantation process are germanium or arsenic.

於本發明另一實施例中,上述非晶化前植入製程中之粒子植入具有一傾斜角度。 In another embodiment of the invention, the particle implantation in the pre-amorphization implantation process has an oblique angle.

於本發明另一實施例中,先進行完非晶化製程後再形成內層介電層及該接觸孔。 In another embodiment of the present invention, the inner dielectric layer and the contact hole are formed after the amorphization process is completed.

於本發明另一實施例中,先形成該內層介電層及該接觸孔後再進行非晶化製程。 In another embodiment of the present invention, the inner dielectric layer and the contact hole are formed first, followed by an amorphization process.

於本發明另一實施例中,於該內層介電層完成之前以及在該接觸孔形成之後皆進行該非晶化製程。 In another embodiment of the invention, the amorphization process is performed before the completion of the inner dielectric layer and after the formation of the contact hole.

於本發明另一實施例中,上述金屬矽化製程包含下列步驟:形成一金屬層;以及進行一熱製程,用以使該金屬層與該非晶化 部份反應,進而形成該金屬矽化物層。 In another embodiment of the present invention, the metal deuteration process includes the steps of: forming a metal layer; and performing a thermal process to make the metal layer and the amorphization Part of the reaction further forms the metal halide layer.

於本發明另一實施例中,上述金屬層為鎳(Ni)、鈷(Co)或鈦(Ti),而金屬矽化物層為矽化鎳(NiSi)、矽化鈷(CoSi)或矽化鈦(TiSi)。 In another embodiment of the invention, the metal layer is nickel (Ni), cobalt (Co) or titanium (Ti), and the metal telluride layer is nickel (NiSi), cobalt (CoSi) or titanium telluride (TiSi). ).

於本發明另一實施例中,上述熱製程為一快速熱製程或一雷射尖峰退火。於本發明另一實施例中,上述半導體元件製造方法更包含下列步驟:將未形成金屬矽化物層之金屬予以剝除。 In another embodiment of the invention, the thermal process is a rapid thermal process or a laser spike anneal. In another embodiment of the invention, the semiconductor device manufacturing method further includes the step of stripping a metal that does not form a metal telluride layer.

於本發明另一實施例中,形成該金屬層之方法可為物理氣相沉積法、化學氣相沉積法或是無電鍍金屬沉積法。 In another embodiment of the present invention, the method of forming the metal layer may be physical vapor deposition, chemical vapor deposition, or electroless metal deposition.

本實施例的半導體元件製造方法中,利用非晶化植入搭配金屬層沈積以及熱處理,可於源/汲極上形成自對準金屬矽化物層,即使在接觸孔孔徑變小之情形下,仍然可順利完成金屬矽化物層之製作。 In the method for fabricating a semiconductor device of the present embodiment, by using amorphization implantation and metal layer deposition and heat treatment, a self-aligned metal telluride layer can be formed on the source/drain, even in the case where the contact hole diameter becomes small, The production of the metal telluride layer can be completed smoothly.

請參見圖1A~圖1G,其係本案為改善習用手段所發展出來之半導體元件製造方法,首先,如圖1A所示,提供一基板1,該基板1上方已形成有金屬閘極結構10、源/汲極結構11以及內層介電層(Inter Layer Dielectric,簡稱ILD)12。其中該基板可為矽基板,而金屬閘極結構10中包含有金屬閘極與高介電係數介電層(high-k gate dielectric)等多層材料,於此不予贅述。至於源/汲極結構11,本圖中係以磊晶(epitaxy)方式完成之嵌入式源汲極結構為例,其材質可為矽、矽化鍺或碳化矽等,但本案實不限於此種結構。 1A to FIG. 1G, which is a semiconductor device manufacturing method developed by the present invention. First, as shown in FIG. 1A, a substrate 1 is formed. A metal gate structure 10 is formed on the substrate 1. The source/drain structure 11 and the inner layer dielectric (ILD) 12. The substrate may be a germanium substrate, and the metal gate structure 10 includes a plurality of materials such as a metal gate and a high-k gate dielectric, which are not described herein. As for the source/drain structure 11, in the figure, an embedded source drain structure completed by an epitaxy method is taken as an example, and the material thereof may be tantalum, niobium or tantalum, but the case is not limited to this. structure.

再請參見圖1B,其係於源/汲極結構11表面上方之內層介電 層12中利用蝕刻製程來形成接觸孔13之示意圖。而因元件尺寸日益縮小,造成接觸孔13之孔徑也隨之縮小,因此非常不利金屬矽化製程的進行。故如圖1C所示,本案便利用接觸孔13完成時,利用其開口來對露出之源/汲極結構11進行一非晶化製程,進而使部份之源/汲極結構11形成非晶化部份110。該非晶化製程可為一非晶化前植入製程(Pre-Amorphization Implant,簡稱PAI),主要是利用四價粒子(例如矽或鍺)、惰性粒子(例如氬)、N型粒子(例如砷)等較大原子來對源/汲極結構11之晶體進行破壞轟擊而完成非晶化,但不會影響材料之電性,而且非晶化前植入製程之植入深度可控制在金屬矽化物的形成範圍內,如此將不易有副作用。由於該植入製程通常可具有傾斜角度,因此可造成比源/汲極結構11露出面積更大之非晶化部份110。亦即,非晶化部份110會部分被內層介電層12所覆蓋,但如此可有利金屬矽化物之側向生長。 Referring again to FIG. 1B, the inner layer dielectric is over the surface of the source/drain structure 11. A schematic view of the contact hole 13 is formed in the layer 12 by an etching process. As the size of the component is increasingly reduced, the aperture of the contact hole 13 is also reduced, which is very unfavorable for the metal deuteration process. Therefore, as shown in FIG. 1C, when the contact hole 13 is completed, the opening/depositing source/drain structure 11 is amorphized by the opening, and the source/drain structure 11 is amorphous. Part 110. The amorphization process may be a pre-Amorphization Implant (PAI), mainly using tetravalent particles (such as ruthenium or osmium), inert particles (such as argon), and N-type particles (such as arsenic). The larger atom is used to destroy the crystal of the source/drain structure 11 to complete the amorphization, but does not affect the electrical properties of the material, and the implantation depth of the pre-amorphization implantation process can be controlled in the metal deuteration. Within the range of formation of the substance, it will be less likely to have side effects. Since the implantation process can generally have an oblique angle, an amorphized portion 110 that is larger than the exposed area of the source/drain structure 11 can be caused. That is, the amorphized portion 110 is partially covered by the inner dielectric layer 12, but this may facilitate lateral growth of the metal telluride.

接著,利用接觸孔13與非晶化部份110來進行金屬矽化製程,用以形成如圖1F所示之金屬矽化物層112,例如常見的矽化鎳(NiSi)、矽化鈷(CoSi)或矽化鈦(TiSi)等。至於金屬矽化製程可包含下列步驟,首先,如圖1D所示,利用物理氣相沉積法(Physical Vapor Deposition,簡稱PVD)、化學氣相沉積法(Chemical Vapor Deposition,簡稱CVD)或是無電鍍金屬沉積(Electroless Metal Deposition)之方法,於元件表面,尤其是接觸孔13中露出之非晶化部份110表面來沈積金屬層111,金屬層111例如可為鎳、鈷或鈦;接著,如圖1E所示,進行熱製程,例如快速熱製程(Rapid Thermal Processing,簡稱RTP)或雷射尖峰退火(Laser-Spike Annealing,簡稱LSA),用以使金屬層111與非晶化部份110可充分進行反應,進而完成如圖1E所示之金屬矽化物層112。然後,如圖1F所示,便可將其他元件表面上未形成該金屬矽化物層112 之金屬層111a予以剝除,進而完成接觸孔自行對準金屬矽化製程。此外,在圖1D-1F所示的方式之中,金屬層111與非晶化部份110進行了充分反應,即完成之後的元件中並無非晶化部分110。然而在另一實施例中,如圖1G所示,非晶化部110的底部還可能保留一薄層未與金屬層111反應,亦即金屬矽化物層112a之底部具有非晶化薄層110a。 Next, a metal deuteration process is performed using the contact hole 13 and the amorphization portion 110 to form a metal telluride layer 112 as shown in FIG. 1F, such as common nickel (NiSi), cobalt (CoSi) or germanium. Titanium (TiSi) and the like. As for the metal deuteration process, the following steps may be included. First, as shown in FIG. 1D, physical Vapor Deposition (PVD), Chemical Vapor Deposition (CVD) or electroless metal plating is used. The method of depositing (Electroless Metal Deposition) deposits a metal layer 111 on the surface of the element, particularly the surface of the amorphized portion 110 exposed in the contact hole 13, and the metal layer 111 may be, for example, nickel, cobalt or titanium; As shown in FIG. 1E, a thermal process such as Rapid Thermal Processing (RTP) or Laser-Spike Annealing (LSA) is performed to make the metal layer 111 and the amorphized portion 110 sufficiently The reaction is carried out to complete the metal telluride layer 112 as shown in FIG. 1E. Then, as shown in FIG. 1F, the metal telluride layer 112 is not formed on the surface of other elements. The metal layer 111a is stripped, thereby completing the contact hole self-alignment metal rafting process. Further, in the mode shown in FIGS. 1D-1F, the metal layer 111 is sufficiently reacted with the amorphized portion 110, that is, there is no amorphized portion 110 in the element after completion. However, in another embodiment, as shown in FIG. 1G, the bottom of the amorphization portion 110 may also retain a thin layer that does not react with the metal layer 111, that is, the bottom of the metal telluride layer 112a has an amorphized thin layer 110a. .

另外,對源/汲極結構11進行之非晶化製程,也可改於其它時間點進行,例如內層介電層12尚未完成時便可先進行,同樣可使部份之源/汲極結構11形成非晶化部份110,又或者是在內層介電層12完成之前以及在接觸孔13形成之後皆進行非晶化製程,進而達到改善習用手段缺失之發明目的。 In addition, the amorphization process of the source/drain structure 11 can also be performed at other time points. For example, when the inner dielectric layer 12 is not completed, the source/drain can also be partially performed. The structure 11 forms the amorphized portion 110, or the amorphization process is performed before the completion of the inner dielectric layer 12 and after the formation of the contact holes 13, thereby achieving the object of improving the conventional means.

本實施例的半導體元件製造方法中,利用非晶化植入搭配金屬層沈積以及熱處理,可於源/汲極11上形成自對準金屬矽化物層112,即使在接觸孔13孔徑變小之情形下,仍然可順利完成金屬矽化物層之製作。 In the semiconductor device manufacturing method of the present embodiment, the self-aligned metal telluride layer 112 can be formed on the source/drain 11 by amorphization implantation and metal layer deposition and heat treatment, even if the hole diameter of the contact hole 13 becomes small. In this case, the production of the metal telluride layer can still be completed smoothly.

綜上所述,在本發明對技術進行改良後,已可有效改善習用手段的問題。雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, after the technology of the present invention is improved, the problem of the conventional means can be effectively improved. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

1‧‧‧基板 1‧‧‧Substrate

10‧‧‧金屬閘極結構 10‧‧‧Metal gate structure

11‧‧‧源/汲極結構 11‧‧‧Source/drain structure

12‧‧‧內層介電層 12‧‧‧ Inner dielectric layer

13‧‧‧接觸孔 13‧‧‧Contact hole

110‧‧‧非晶化部份 110‧‧‧Amorphized part

110a‧‧‧非晶化薄層 110a‧‧‧Amorphous thin layer

111、111a‧‧‧金屬層 111, 111a‧‧‧ metal layer

112、112a‧‧‧金屬矽化物層 112, 112a‧‧‧ metal telluride layer

圖1A~圖1G,其係本案為改善習用手段所發展出來之半導體元件製造方法。 FIG. 1A to FIG. 1G are the semiconductor component manufacturing methods developed in the present invention for improving the conventional means.

1‧‧‧基板 1‧‧‧Substrate

10‧‧‧金屬閘極結構 10‧‧‧Metal gate structure

11‧‧‧源/汲極結構 11‧‧‧Source/drain structure

12‧‧‧內層介電層 12‧‧‧ Inner dielectric layer

13‧‧‧接觸孔 13‧‧‧Contact hole

110‧‧‧非晶化部份 110‧‧‧Amorphized part

111‧‧‧金屬層 111‧‧‧metal layer

Claims (12)

一種半導體元件製造方法,包含下列步驟:提供一基板,該基板上方已形成有一金屬閘極結構與一源/汲極結構;對該源/汲極結構進行一非晶化前植入製程,利用粒子植入來對該源/汲極結構之晶體進行破壞,而形成一非晶化部份,其中該非晶化前植入製程中之粒子植入具有一傾斜角度;於該源/汲極結構之表面上方形成一內層介電層,並於該內層介電層中形成一接觸孔;以及利用該接觸孔對該源/汲極結構之該非晶化部份進行一金屬矽化製程,以形成一金屬矽化物層。 A semiconductor device manufacturing method comprising the steps of: providing a substrate having a metal gate structure and a source/drain structure formed thereon; and performing an amorphization pre-implantation process on the source/drain structure The particles are implanted to destroy the crystal of the source/drain structure to form an amorphized portion, wherein the seed implantation in the pre-amorphization implantation process has an oblique angle; and the source/drain structure Forming an inner dielectric layer over the surface and forming a contact hole in the inner dielectric layer; and performing a metal deuteration process on the amorphized portion of the source/drain structure by using the contact hole to A metal halide layer is formed. 如申請專利範圍第1項所述之半導體元件製造方法,其中該基板為一矽基板,該金屬閘極結構中包含有一金屬閘極與一高介電係數介電層。 The method of fabricating a semiconductor device according to claim 1, wherein the substrate is a germanium substrate, and the metal gate structure comprises a metal gate and a high-k dielectric layer. 如申請專利範圍第1項所述之半導體元件製造方法,其中該源/汲極結構係為以磊晶方式完成之一嵌入式源汲極結構,其材質為矽、矽化鍺或碳化矽中之一。 The method of manufacturing a semiconductor device according to the first aspect of the invention, wherein the source/drain structure is an embedded source drain structure in an epitaxial manner, and the material is germanium, germanium germanium or tantalum carbide. One. 如申請專利範圍第1項所述之半導體元件製造方法,其中該非晶化前植入製程中所使用之粒子為鍺或砷。 The method of manufacturing a semiconductor device according to claim 1, wherein the particles used in the pre-amorphization implantation process are germanium or arsenic. 如申請專利範圍第1項所述之半導體元件製造方法,其中先進行完該非晶化前植入製程後再形成該內層介電層及該接觸孔。 The method of fabricating a semiconductor device according to claim 1, wherein the inner dielectric layer and the contact hole are formed after the pre-amorphization implantation process is performed. 如申請專利範圍第1項所述之半導體元件製造方法,其中先形成該內層介電層及該接觸孔後再進行該非晶化前植入製程。 The method of fabricating a semiconductor device according to claim 1, wherein the inner dielectric layer and the contact hole are formed first, and then the pre-amorphization implantation process is performed. 如申請專利範圍第1項所述之半導體元件製造方法,其中於該內層介電層完成之前以及在該接觸孔形成之後皆進行該非晶化前植入製程。 The method of fabricating a semiconductor device according to claim 1, wherein the pre-amorphization implantation process is performed before the completion of the inner dielectric layer and after the formation of the contact hole. 如申請專利範圍第1項所述之半導體元件製造方法,其中該金屬矽化製程包含下列步驟:形成一金屬層;以及進行一熱製程,用以使該金屬層與該非晶化部份反應,進而形成一金屬矽化物層。 The method of fabricating a semiconductor device according to claim 1, wherein the metal deuteration process comprises the steps of: forming a metal layer; and performing a thermal process for reacting the metal layer with the amorphized portion, thereby A metal halide layer is formed. 如申請專利範圍第8項所述之半導體元件製造方法,其中該金屬層為鎳(Ni)、鈷(Co)或鈦(Ti),而該金屬矽化物層為矽化鎳(NiSi)、矽化鈷(CoSi)或矽化鈦(TiSi)。 The method of manufacturing a semiconductor device according to claim 8, wherein the metal layer is nickel (Ni), cobalt (Co) or titanium (Ti), and the metal telluride layer is nickel neodymium (NiSi) or cobalt telluride. (CoSi) or titanium telluride (TiSi). 如申請專利範圍第8項所述之半導體元件製造方法,其中該熱製程為一快速熱製程或一雷射尖峰退火。 The method of fabricating a semiconductor device according to claim 8, wherein the thermal process is a rapid thermal process or a laser spike annealing. 如申請專利範圍第8項所述之半導體元件製造方法,其中更包含下列步驟:將未形成該金屬矽化物層之金屬予以剝除。 The method of manufacturing a semiconductor device according to claim 8, further comprising the step of: stripping a metal not forming the metal telluride layer. 如申請專利範圍第8項所述之半導體元件製造方法,其中形成該金屬層之方法為物理氣相沉積法、化學氣相沉積法或是無電鍍金屬沉積法。 The method of manufacturing a semiconductor device according to claim 8, wherein the method of forming the metal layer is physical vapor deposition, chemical vapor deposition, or electroless metal deposition.
TW100134035A 2011-09-21 2011-09-21 Fabricating method of semiconductor elements TWI567826B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100134035A TWI567826B (en) 2011-09-21 2011-09-21 Fabricating method of semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100134035A TWI567826B (en) 2011-09-21 2011-09-21 Fabricating method of semiconductor elements

Publications (2)

Publication Number Publication Date
TW201314780A TW201314780A (en) 2013-04-01
TWI567826B true TWI567826B (en) 2017-01-21

Family

ID=48802607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100134035A TWI567826B (en) 2011-09-21 2011-09-21 Fabricating method of semiconductor elements

Country Status (1)

Country Link
TW (1) TWI567826B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001371A1 (en) * 2007-06-29 2009-01-01 Anthony Mowry Blocking pre-amorphization of a gate electrode of a transistor
US20100109046A1 (en) * 2008-11-03 2010-05-06 Rishabh Mehandru Methods of forming low interface resistance contacts and structures formed thereby
US20110201165A1 (en) * 2008-06-30 2011-08-18 Advanced Micro Devices, Inc. Cmos device comprising mos transistors with recessed drain and source areas and non-conformal metal silicide regions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090001371A1 (en) * 2007-06-29 2009-01-01 Anthony Mowry Blocking pre-amorphization of a gate electrode of a transistor
US20110201165A1 (en) * 2008-06-30 2011-08-18 Advanced Micro Devices, Inc. Cmos device comprising mos transistors with recessed drain and source areas and non-conformal metal silicide regions
US20100109046A1 (en) * 2008-11-03 2010-05-06 Rishabh Mehandru Methods of forming low interface resistance contacts and structures formed thereby

Also Published As

Publication number Publication date
TW201314780A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
US8507350B2 (en) Fabricating method of semiconductor elements
US7553763B2 (en) Salicide process utilizing a cluster ion implantation process
US20100109046A1 (en) Methods of forming low interface resistance contacts and structures formed thereby
JPH11251591A (en) Partial silicification method for forming shallow source-drain junction
US7378323B2 (en) Silicide process utilizing pre-amorphization implant and second spacer
US8344465B2 (en) Semiconductor device
US6255214B1 (en) Method of forming junction-leakage free metal silicide in a semiconductor wafer by amorphization of source and drain regions
US20100164001A1 (en) Implant process for blocked salicide poly resistor and structures formed thereby
US8546259B2 (en) Nickel silicide formation for semiconductor components
US7572722B2 (en) Method of fabricating nickel silicide
WO2006041837A1 (en) Pre-silicidation amorphization in semiconductor device nickel sili cide
TWI567826B (en) Fabricating method of semiconductor elements
JP2009111214A (en) Semiconductor device and manufacturing method of same
CN111128704A (en) Method for manufacturing metal silicide
US8470703B2 (en) Semiconductor device and method of fabricating the same
US11177172B2 (en) Semiconductor structure
JP2008078559A (en) Semiconductor device and method of manufacturing the same
JPH10199829A (en) Manufacture of semiconductor device
US7285491B2 (en) Salicide process
TWI297178B (en) Salicide process
KR100628219B1 (en) method for forming silicide of semiconductor device
KR100587609B1 (en) Method for manufacturing transistor of semiconductor device
JP2009094395A (en) Semiconductor device and its manufacturing method
US20090029549A1 (en) Method of silicide formation for nano structures
US20060240666A1 (en) Method of forming silicide