TWI567400B - Method and apparatus for testing ic - Google Patents

Method and apparatus for testing ic Download PDF

Info

Publication number
TWI567400B
TWI567400B TW101106404A TW101106404A TWI567400B TW I567400 B TWI567400 B TW I567400B TW 101106404 A TW101106404 A TW 101106404A TW 101106404 A TW101106404 A TW 101106404A TW I567400 B TWI567400 B TW I567400B
Authority
TW
Taiwan
Prior art keywords
temperature
tested
test
model
electronic
Prior art date
Application number
TW101106404A
Other languages
Chinese (zh)
Other versions
TW201303329A (en
Inventor
奧佛 班傑明
伊果 薩得
納夕 拿思兒
Original Assignee
馬維爾以色列股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 馬維爾以色列股份有限公司 filed Critical 馬維爾以色列股份有限公司
Publication of TW201303329A publication Critical patent/TW201303329A/en
Application granted granted Critical
Publication of TWI567400B publication Critical patent/TWI567400B/en

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Description

積體電路測試方法及裝置 Integrated circuit test method and device

本發明係關於一種測試積體電路之方法及裝置。 The present invention relates to a method and apparatus for testing an integrated circuit.

此揭露主張於2011年2月23日申請之美國臨時申請案61/445,839號『積體電路測試中的變數溫度調整』以及申請於2011年7月14日之美國臨時申請案61/507,916號『因為溫度變動而調整原子測試儀器之頻率量測』並參考其全部而在此整合者之權益。 The disclosure of the U.S. Provisional Application No. 61/445,839, filed on Feb. 23, 2011, the "variational temperature adjustment in the integrated circuit test" and the US Provisional Application No. 61/507,916, filed on July 14, 2011. Because of the temperature fluctuations, the frequency measurement of the atomic test instrument is adjusted and reference is made to the integrator's interest.

在此提供的技術背景敘述係供一般性地表述此揭露的脈絡。目前已知名之發明人之工作、在此技術背景中描述的工作程度、以及可能被認為屬於先前技術之描述之觀點,不被明示或未暗示地承認為相對於本揭露的先前技術。 The technical background provided herein is for the general description of the context of this disclosure. The work of the presently known inventors, the degree of work described in this technical background, and the views that may be considered to be prior art descriptions are not explicitly or implicitly recognized as prior art with respect to the present disclosure.

電子電路之電子參數例如電流消耗、最大工作頻率等,被測試以決定基於量測值之電路之品質。電子參數可能對溫度敏感。因此,溫度變動可能影響量測值並改變量測結果。 Electronic parameters of the electronic circuit, such as current consumption, maximum operating frequency, etc., are tested to determine the quality of the circuit based on the measured value. Electronic parameters may be temperature sensitive. Therefore, temperature fluctuations may affect the measured value and change the measurement result.

本揭露多方面提供一種測試方法。此測試方法包含量測待測裝置之電子參數以及待測裝置之對應溫度一次或數次,決定基於複數個電子參數之量測所得值以及對應之量測所得溫度之預建構模型之係數以特定電子參數與溫度之關係,以及根據模型以及電子參數於指定溫度之限制值以決定待測裝置之品 質。模型藉由為待測裝置應變數之係數而預建構以特定電子參數與溫度之關係。 The disclosure provides a test method in various aspects. The test method comprises measuring the electronic parameters of the device to be tested and the corresponding temperature of the device to be tested one or several times, and determining a coefficient of the pre-constructed model based on the measured values of the plurality of electronic parameters and the corresponding measured temperature to be specific The relationship between the electronic parameters and the temperature, and the value of the model and the electronic parameters at the specified temperature to determine the product to be tested quality. The model is pre-constructed by the coefficient of the number of strains of the device to be tested with the relationship between specific electronic parameters and temperature.

欲決定待測裝置之品質,在一實施例中,方法包含根據模型決定在指定溫度之電子參數之一值,以及比較決定之值與限制值以決定待測裝置之品質。在另一實施例中,方法包含根據模型決定在待測物具有電子參數之限制值時之溫度值,以及比較決定之溫度值與指定溫度以決定待測裝置之品質。 To determine the quality of the device under test, in one embodiment, the method includes determining a value of the electronic parameter at the specified temperature based on the model, and comparing the determined value to the limit value to determine the quality of the device under test. In another embodiment, the method includes determining, according to the model, a temperature value when the object to be tested has a limit value of the electronic parameter, and comparing the determined temperature value to the specified temperature to determine the quality of the device to be tested.

根據此揭露之一方面,欲量測待測裝置之電子參數以及待測裝置之對應溫度,方法包括根據包含複數個插入於一系列其他測試之變數測試之測試流程測試待測裝置,以及量測回應於每一變數測試之待測裝置之電子參數以及對應溫度。 According to one aspect of the disclosure, the electronic parameter of the device to be tested and the corresponding temperature of the device to be tested are measured, and the method includes testing the device to be tested according to a test process including a plurality of variables tested in a series of other tests, and measuring Respond to the electronic parameters of the device under test for each variable test and the corresponding temperature.

本揭露多方面提供一種測試系統。測試系統包含一界面以及一控制器。界面係裝配以量測待測裝置之電子參數以及待測裝置之對應溫度。控制器係裝配以控制界面以量測待測裝置之電子參數以及待測裝置之對應溫度一次或數次,決定基於複數個電子參數之量測所得值以及對應之量測所得溫度之預建構模型之係數以特定電子參數與溫度之關係,以及根據模型以及電子參數於指定溫度之限制值以決定待測裝置之品質。模型藉由為待測裝置應變數之係數而預建構以特定電子參數與溫度之關係。 The disclosure provides a test system in various aspects. The test system includes an interface and a controller. The interface is assembled to measure the electronic parameters of the device under test and the corresponding temperature of the device to be tested. The controller is equipped with a control interface to measure the electronic parameters of the device to be tested and the corresponding temperature of the device to be tested one or several times, and determines a pre-constructed model based on the measured values of the plurality of electronic parameters and the corresponding measured temperature. The coefficients are determined by the relationship between the specific electronic parameters and the temperature, and the limits of the model and the electronic parameters at the specified temperature to determine the quality of the device under test. The model is pre-constructed by the coefficient of the number of strains of the device to be tested with the relationship between specific electronic parameters and temperature.

本揭露多方面提供另一種測試積體電路產品之方法。方法包含建構一模型供模擬隨溫度變化之裝置之電子參數。模型包含複數個為待測裝置應變數之係數。進一步地,方法包含決定電子參數及對應溫度之量測之整數,此整數提供裝置於未量測 之指定溫度滿足電子參數之一合適的指標。而後,此方法包含於待測裝置執行量測電子參數以及對應溫度之變數測試至少該整數次,以及確定待裝置之品質以滿足在基於模型及變數測試之不量測溫度之門檻。 The present disclosure provides various methods for testing integrated circuit products in various aspects. The method includes constructing a model for simulating electronic parameters of the device as a function of temperature. The model contains a plurality of coefficients that are the number of strains of the device under test. Further, the method includes determining an integer of the electronic parameter and the measured temperature of the corresponding temperature, the integer providing device is not measured The specified temperature satisfies an appropriate indicator of one of the electronic parameters. Then, the method is included in the device to be tested to perform the measurement electronic parameter and the corresponding temperature variable test at least the integer number of times, and determine the quality of the device to be satisfied to meet the threshold of the unmeasured temperature based on the model and the variable test.

圖1所示為根據此揭露之一實施例之測試系統範例100之方塊圖。測試系統100包含自動測試儀器(automatic test equipment,下稱ATE)150以及待測裝置(device under test,下稱DUT)110。ATE150以及DUT110恰當地耦接在一起,例如經由探針或處理機。ATE150根據測試流程160作用在DUT110上,並且接收測試結果。DUT110之品質,係其適合度符合指定表現需求,而後根據測試結果決定。 1 is a block diagram of an example 100 of a test system in accordance with an embodiment of the present disclosure. The test system 100 includes an automatic test equipment (hereinafter referred to as ATE) 150 and a device under test (hereinafter referred to as DUT) 110. The ATE 150 and DUT 110 are suitably coupled together, such as via a probe or processor. The ATE 150 acts on the DUT 110 in accordance with the test flow 160 and receives test results. The quality of the DUT110 is based on the specified performance requirements and is then determined based on the test results.

根據本揭露之一實施例,測試流程160包含複數個與其他測試分離之變數測試(parametric test,下稱PT)161,例如I/O測試、中央處理器測試、記憶體測試等等。每一PT161施行一個或更多的電子參數的量測,例如電流消耗、操作頻率等等。因為電子參數與溫度之相關性,溫度亦被量測。基於電子參數(例如P1、P2)的量測以及溫度(例如T1、T2)的對應量測,DUT110之品質以及更具體而言係其適合度符合指定表現規格者被決定。 According to an embodiment of the present disclosure, the test flow 160 includes a plurality of parametric tests (hereinafter referred to as PTs) 161 separated from other tests, such as I/O tests, central processor tests, memory tests, and the like. Each PT 161 performs measurements of one or more electronic parameters, such as current consumption, operating frequency, and the like. Temperature is also measured because of the dependence of the electronic parameters on temperature. Based on the measurement of electronic parameters (eg, P1, P2) and the corresponding measurements of temperature (eg, T1, T2), the quality of the DUT 110 and, more specifically, the suitability of the DUT 110 to meet the specified performance specifications is determined.

在一實施例中,DUT110之品質係根據電子參數於指定溫度(TSPEC)之限制值決定。在一實施例中,電子參數被量測時的對應溫度(例如T1、T2)與被列於產品資料表規格中的指定 溫度(TSPEC)並不相同。相反的,在一實施例中,ATE150基於電子參數(例如P1、P2)之量測計算在指定溫度(TSPEC)之電子參數之數值於一個或多個溫度(例如T1、T2)。而後,ATE150比較電子參數之計算值與限制值以決定DUT110之品質。 In one embodiment, the quality of the DUT 110 is determined based on the limits of the electronic parameters at a specified temperature (T SPEC ). In one embodiment, the corresponding temperature (e.g., T1, T2) at which the electronic parameter is measured is not the same as the specified temperature (T SPEC ) listed in the specification of the product data sheet. Conversely, in one embodiment, the ATE 150 calculates the value of the electronic parameter at the specified temperature (T SPEC ) at one or more temperatures (eg, T1, T2) based on the measurement of the electronic parameters (eg, P1, P2). The ATE 150 then compares the calculated and limited values of the electronic parameters to determine the quality of the DUT 110.

DUT110可以為任何適當的裝置。在一實施例中,DUT110係晶圓上複數個積體電路晶片的其中之一。在另一實施例中,DUT110係一包含積體電路晶片以及其他電路部件,例如球柵陣列機版或其他適合的電路界面封裝積體電路,以及一概括傳導物。 The DUT 110 can be any suitable device. In one embodiment, the DUT 110 is one of a plurality of integrated circuit wafers on a wafer. In another embodiment, DUT 110 is comprised of an integrated circuit die and other circuit components, such as a ball grid array machine or other suitable circuit interface package integrated circuit, and a generalized conductor.

根據此揭露之一實施例,DUT110包含一裝配以量測溫度之溫度感測器120。在一例中,溫度感測器120包含一電路部件,例如二極體或其他積體電路晶片上之合適的溫度感測電路以量測晶片上溫度。在一例中,二極體電流表明了接合溫度。在另一例中,美國專利7,726,877揭露了量測溫度的方法及設備,此揭露整合其全部作為參考。 In accordance with an embodiment of the present disclosure, the DUT 110 includes a temperature sensor 120 that is assembled to measure temperature. In one example, temperature sensor 120 includes a circuit component, such as a suitable temperature sensing circuit on a diode or other integrated circuit chip to measure the temperature on the wafer. In one example, the diode current indicates the junction temperature. In another example, a method and apparatus for measuring temperature is disclosed in U.S. Patent No. 7,726,877, the disclosure of which is incorporated herein by reference.

值得注意的是,在另一例中,溫度感測器120係一量測晶片溫度之晶片外部件。在一例中,溫度感測器120接觸於積體電路晶片。在另一例中,溫度感測器120極接近積體電路晶片以量測晶片溫度。在另一例中,溫度感測器120不必極接近積體電路晶片以量測晶片溫度。 It is worth noting that in another example, temperature sensor 120 is an off-chip component that measures the temperature of the wafer. In one example, temperature sensor 120 is in contact with an integrated circuit die. In another example, temperature sensor 120 is in close proximity to the integrated circuit wafer to measure the wafer temperature. In another example, temperature sensor 120 need not be in close proximity to the integrated circuit die to measure the wafer temperature.

根據本揭露之一實施例,DUT110之溫度輪廓因為多種因素改變,例如程序變異、處理機至處理機變異、處理機設定、裝置命令等等。在一例中,一第一DUT110開始測試於85℃且結束測試於140℃;一第二DUT110開始測試於95℃且結束測 試於80℃。 In accordance with an embodiment of the present disclosure, the temperature profile of the DUT 110 changes due to a variety of factors, such as program variations, processor-to-processor variations, processor settings, device commands, and the like. In one example, a first DUT 110 begins testing at 85 ° C and ends at 140 ° C; a second DUT 110 begins testing at 95 ° C and ends testing Try at 80 °C.

再者,電子參數對溫度敏感。例如,對於DUT100在相對高溫的靜態電流消耗的第一量測可大於對於DUT100在相對低溫的靜態電流消耗的第二量測。如此,在一實施例中,比較量測與限制值而不考慮DUT110在量測時之溫度可能導致不被期待的後果,例如產率高耗損或顧客退貨。 Furthermore, the electronic parameters are sensitive to temperature. For example, a first measurement of quiescent current consumption at a relatively high temperature for the DUT 100 can be greater than a second measurement of quiescent current consumption at a relatively low temperature for the DUT 100. As such, in one embodiment, comparing the measurement and limit values regardless of the temperature at which the DUT 110 is being measured may result in undesired consequences, such as high yield or customer returns.

然而,調整DUT110之溫度至指定溫度可能耗時且增加測試時間與花費。根據本揭露之一實施例,測試系統100係裝配以根據一預建構模型以及電子參數於指定溫度(TSPEC)外的其他溫度的變數量測來決定電子參數於指定溫度(TSPEC)的值。 However, adjusting the temperature of the DUT 110 to a specified temperature can be time consuming and increases test time and expense. Embodiment, the assembly 100 based test system to determine the number of the measured electrical parameters varying according to a pre-construction of other temperatures and electrical parameters in the model specified temperature (T SPEC) outside the specified temperature value (T SPEC) according to one embodiment of the present disclosure .

根據本揭露之一方面,ATE150包含控制器170以及界面151。界面151包含任何適合的部件,例如針腳電子元件、針腳驅動器、針腳感測器、變數量測單元(parametric measurement unit,下稱PMU)等可操作於DUT110以進行測試者。在一例中,一PMU係裝配以施加電壓於一針腳並量測電流於同一針腳。控制器170控制界面151以根據測試流程160操作於DUT110,由界面151接收測試結果,以及根據測試結果決定DUT110之品質。 According to one aspect of the disclosure, the ATE 150 includes a controller 170 and an interface 151. The interface 151 includes any suitable components, such as a pin electronic component, a pin driver, a pin sensor, a parametric measurement unit (hereinafter referred to as a PMU), etc., operable to the DUT 110 for testing. In one example, a PMU is assembled to apply a voltage to a pin and measure current to the same pin. The controller 170 controls the interface 151 to operate on the DUT 110 in accordance with the test flow 160, receive test results from the interface 151, and determine the quality of the DUT 110 based on the test results.

根據本揭露之一實施例,測試流程160包含插入於測試序列中不同位置之複數個變數測試161。根據本揭露之一方面,DUT110在測試中消耗能量,並可能使自己昇溫,如此DUT在不同位置的溫度在測試中可能不同,且在一實施例中DUT110之溫度不同於列在產品資料表說明的電子參數的限制值的溫度,在一例中,一個I/O測試消耗相對少的能量,且DUT110 在測試期間及測試結束當下的溫度是相對低的。中央處理器及記憶體測試消耗相對大的能量且DUT的溫度在中央處理器及記憶體測試期間明顯增加。複數個變數測試161在測試流程160中的位置可以被選擇於DUT110在複數個變數測試161的溫度具有相對大的變異。雖然溫度在DUT110之電子參數實際被測試者脫離於指定溫度,在一實施例中,DUT110在指定溫度的電子參數的值係基於電子參數確實的量測以及定性DUT表現的模型而被推導出來。 In accordance with an embodiment of the present disclosure, test flow 160 includes a plurality of variable tests 161 inserted at different locations in the test sequence. In accordance with one aspect of the present disclosure, the DUT 110 consumes energy during testing and may heat itself up, such that the temperature of the DUT at different locations may vary during testing, and in one embodiment the temperature of the DUT 110 is different from that listed in the product data sheet. The temperature of the limit value of the electronic parameter, in one example, an I/O test consumes relatively little energy, and the DUT 110 The temperature during the test and at the end of the test is relatively low. The central processor and memory tests consume relatively large amounts of energy and the temperature of the DUT increases significantly during central processor and memory testing. The position of the plurality of variable tests 161 in the test flow 160 can be selected by the DUT 110 to have a relatively large variation in the temperature of the plurality of variable tests 161. While the temperature at which the electronic parameters of the DUT 110 are actually being tested by the tester is removed from the specified temperature, in one embodiment, the value of the electronic parameter of the DUT 110 at the specified temperature is derived based on a model of the true measurement of the electronic parameter and a qualitative DUT representation.

在一例中,測試流程160係以一測試軟體程式的形式被實施。例如,每一測試係測試軟體程式中的模組或功能。控制器170被實施作為執行軟體程式的處理器。處理器執行測試軟體程式並控制界面151連續地作用於DUT110以實行一連串測試。作為回應變數測試161,界面151作用於DUT110以量測一個或更多電子參數並量測DUT110的溫度。 In one example, test flow 160 is implemented in the form of a test software program. For example, each test is a test of a module or function in a software program. The controller 170 is implemented as a processor that executes a software program. The processor executes the test software program and the control interface 151 acts continuously on the DUT 110 to perform a series of tests. As a back strain number test 161, interface 151 acts on DUT 110 to measure one or more electronic parameters and measure the temperature of DUT 110.

進一步,控制器170接收電子參數之量測所得值與對應溫度。在一例中,控制器170接收電子參數之第一量測值以及對應溫度(P1,T1)以回應第一變數測試161,並且接收電子參數之第二量測值以及對應溫度(P2,T2)以回應第二變數測試161。 Further, the controller 170 receives the measured value of the electronic parameter and the corresponding temperature. In one example, the controller 170 receives the first measured value of the electronic parameter and the corresponding temperature (P1, T1) in response to the first variable test 161, and receives the second measured value of the electronic parameter and the corresponding temperature (P2, T2) In response to the second variable test 161.

再者,在一實施例中,控制器170利用預建構模型特定電子參數與溫度的關係。預建構模型可能具有一個或更多的未知係數。在一例中,係數為DUT應變數,不同DUT可能具有不同係數。基於一個或更多電子參數量測值以及DUT110的對應溫度,控制器170決定DUT110之係數。 Still further, in an embodiment, the controller 170 utilizes the pre-constructed model to determine the relationship of electronic parameters to temperature. The pre-constructed model may have one or more unknown coefficients. In one example, the coefficients are the number of DUT strains, and different DUTs may have different coefficients. Based on one or more electronic parameter measurements and corresponding temperatures of the DUT 110, the controller 170 determines the coefficients of the DUT 110.

進一步,控制器170根據模型決定電子參數在指定溫度(TSPEC)的值,即使電子參數在不同於指定溫度之溫度被測試。例如,控制器170使用具有已解決的係數的模型計算DUT110之電子參數在指定溫度的值。而後,控制器170基於決定值決定DUT110的品質。在一例子中,控制器170基於決定值將DUT110分類成不同類,例如高速類、一般類、低速類等。在另一例子中,控制器170根據決定值決定通過或淘汰。 Further, the controller 170 determines the value of the electronic parameter at the specified temperature (T SPEC ) according to the model, even if the electronic parameter is tested at a temperature different from the specified temperature. For example, the controller 170 calculates a value of the electronic parameter of the DUT 110 at a specified temperature using a model having the resolved coefficients. Then, the controller 170 determines the quality of the DUT 110 based on the determined value. In an example, controller 170 classifies DUT 110 into different classes based on the decision value, such as a high speed class, a general class, a low speed class, and the like. In another example, controller 170 determines to pass or eliminate based on the determined value.

圖2所示為根據此揭露之一實施例以略述一供產生一測試流程之流程範例200之流程圖。此程序始於S201並進行至S210。 2 is a flow chart illustrating a flow example 200 for generating a test flow in accordance with an embodiment of the disclosure. This procedure starts at S201 and proceeds to S210.

在S210,模擬或特定電子參數為溫度之函數之原型模型被決定。在一例中,一多項式模型,例如線性模型、二次方程式模型等,被決定以模擬電子參數隨溫度之改變。在另一例中,一非多項式模型被決定以模擬電子參數隨溫度之改變。此模型可包含非DUT應變數之係數。 At S210, a prototype model of the simulated or specific electronic parameter as a function of temperature is determined. In one example, a polynomial model, such as a linear model, a quadratic model, etc., is determined to simulate changes in electronic parameters with temperature. In another example, a non-polynomial model is determined to simulate changes in electronic parameters with temperature. This model can contain coefficients for the number of non-DUT strains.

在一實施例中,多個DUT被選擇進行特定化程序以特定隨溫度改變之電子參數。在特定化程序中,對於每個DUT,電子參數係被量測於數種不同溫度。根據此特定化,原型模型被建構。 In an embodiment, a plurality of DUTs are selected to perform a specialization procedure to specify electronic parameters that vary with temperature. In a specific procedure, for each DUT, the electronic parameters are measured at several different temperatures. According to this specificization, the prototype model is constructed.

在S220,複數個在測試流程中的插入點被選擇。在一例中,對一線性模型,至少二個在測試流程中的插入點被選擇。例如,二個插入點其中之一係緊接在DUT預期具有相對低的溫度的I/O測試之後,a另一插入點在一個或更多高能量消耗測試之後,例如DUT預期具有相對高的溫度的記憶體測試及/ 或中央處理器測試。如此,這兩個插入點具有相對大的溫度差。 At S220, a plurality of insertion points in the test flow are selected. In one example, for a linear model, at least two insertion points in the test flow are selected. For example, one of the two insertion points is immediately after the DUT is expected to have a relatively low temperature I/O test, a another insertion point after one or more high energy consumption tests, such as the DUT is expected to have a relatively high Temperature memory test and / Or central processor test. As such, the two insertion points have a relatively large temperature difference.

在另一例中,對於一二次方程式模型,至少三個在測試流程中的插入點被選擇。例如,三個插入點中的第一個係緊接在DUT預期具有相對低的溫度的I/O測試之後,三個插入點中的第二個係緊接在DUT預期具有比I/O測試還高的溫度之高能量消耗測試其中之一之後,三個插入點中的第三個係緊接在DUT預期具有更高溫度之所有高能量消耗測試完成之後。 In another example, for a quadratic equation model, at least three insertion points in the test flow are selected. For example, the first of the three insertion points is immediately after the DUT is expected to have a relatively low temperature I/O test, and the second of the three insertion points is expected to have a better than the I/O test immediately after the DUT After testing one of the high temperature energy consumption tests, the third of the three insertion points is immediately after all the high energy consumption tests for which the DUT is expected to have a higher temperature.

在S230,變數測試被插入於測試流程中的被選定插入點以形成新的測試流程。而後,新的測試流程被用於測試DUT。此程序而後進行至S229並終結。 At S230, the variable test is inserted into the selected insertion point in the test flow to form a new test flow. The new test process is then used to test the DUT. This procedure then proceeds to S229 and ends.

根據本揭露之一實施例,程序200係由一處理器實行以自動產生新測試流程。 In accordance with an embodiment of the present disclosure, the program 200 is executed by a processor to automatically generate a new test flow.

圖3所示為根據此揭露之一實施例以略述一供測試例如ATE150之設備之流程範例300之流程圖。此程序始於S301並進行至S310。 3 is a flow chart illustrating a flow example 300 of a device for testing, for example, ATE 150, in accordance with an embodiment of the disclosure. This procedure starts at S301 and proceeds to S310.

在S310,ATE150根據測試流程160測試DUT110。在一實施例中,測試流程160包含一系列測試,此系列測試包含一個或更多變數測試161。根據本揭露之一實施例,插入一個或更多變數測試161的位置可以可以被選擇於DUT在複數個變數測試161的溫度具有相對大的變異。在一例中,為回應變數測試161,界面151作用於DUT110以量測一個或更多的電子參數並量測DUT110之溫度當電子參數被量測時。 At S310, ATE 150 tests DUT 110 according to test flow 160. In an embodiment, test flow 160 includes a series of tests that include one or more variable tests 161. In accordance with an embodiment of the present disclosure, the location at which one or more of the variable tests 161 are inserted may be selected to have a relatively large variation in the temperature of the DUT at the plurality of variable tests 161. In one example, to return strain number test 161, interface 151 acts on DUT 110 to measure one or more electronic parameters and measure the temperature of DUT 110 when electronic parameters are measured.

在S320,ATE150接收電子參數量測所得值與對應溫度。在一例中,ATE150接收電子參數之第一量測值與對應溫度(P1, T1)以回應第一變數測試161,接收電子參數之第二量測值與對應溫度(P2,T2)以回應第二變數測試161。 At S320, the ATE 150 receives the measured value of the electronic parameter and the corresponding temperature. In one example, the ATE 150 receives the first measured value of the electronic parameter and the corresponding temperature (P1, In response to the first variable test 161, T1) receives the second measured value of the electronic parameter and the corresponding temperature (P2, T2) in response to the second variable test 161.

在S330,ATE150決定DUT對應之電路類型預建構模型中的係數。根據本揭露之一實施例,預建構模型特定電子參數與溫度的關係。預建構模型包含未知的係數。在一例中。此係數為DUT應變數。 At S330, ATE 150 determines the coefficients in the circuit type pre-constructed model corresponding to the DUT. According to one embodiment of the present disclosure, the relationship between the model specific electronic parameters and temperature is pre-constructed. The pre-constructed model contains unknown coefficients. In an example. This coefficient is the number of DUT strains.

在一實施例中,多項式模型係預建構將電子參數改變之行為模擬為在一溫度範圍內之溫度函數。多項式模型包含未知的係數。根據接收到的電子參數的值與對應溫度,未知係數被解開。 In one embodiment, the polynomial model is pre-constructed to simulate the behavior of electronic parameter changes as a function of temperature over a range of temperatures. The polynomial model contains unknown coefficients. The unknown coefficient is unlocked based on the value of the received electronic parameter and the corresponding temperature.

在一例中,當多項式模型為線性模型,線性模型具有兩未知的係數。在一例中,此二係數可以被解開基於兩變數測試之量測,使用任何合適的技術,例如代數技術、向量計算等。在其他例中,此二係數可以被解開基於兩個以上的變數測試的量測,例如使用曲線套用。 In one example, when the polynomial model is a linear model, the linear model has two unknown coefficients. In one example, the two coefficients can be unwrapped based on the measurements of the two variables test using any suitable technique, such as algebraic techniques, vector calculations, and the like. In other examples, the two coefficients can be unwrapped based on measurements of more than two variable tests, such as using a curve.

在S340,ATE150根據模型決定電子參數在指定溫度的值。在一例中,DUT110的品質係利用電子參數在指定溫度的限制值來決定。在一例中,產品資料表規格列出電子參數在指定溫度的較低限制值。而後,當DUT在指定溫度的電子參數比較低限制值高時,DUT符合產品資料表規格;當DUT在指定溫度的電子參數比較低限制值低時,DUT不符產品資料表規格。ATE150使用模型為DUT110推導在指定溫度的電子參數的值。如此,當變數測試161非執行於指定溫度時,電子參數與對應溫度之量測值可用以預測DUT110在指定溫度之電子參數。 At S340, ATE 150 determines the value of the electronic parameter at the specified temperature based on the model. In one example, the quality of the DUT 110 is determined by the electronic parameter at a specified temperature limit. In one example, the product data sheet specification lists the lower limit of the electronic parameter at the specified temperature. Then, when the electronic parameter of the DUT at the specified temperature is lower than the low limit value, the DUT conforms to the specification of the product data sheet; when the electronic parameter of the DUT at the specified temperature is lower than the low limit value, the DUT does not conform to the specification of the product data sheet. The ATE 150 uses the model to derive the value of the electronic parameter at the specified temperature for the DUT 110. As such, when the variable test 161 is not executed at the specified temperature, the measured values of the electronic parameters and the corresponding temperatures can be used to predict the electronic parameters of the DUT 110 at the specified temperature.

在S350,ATE150根據推導值決定DUT110的品質。在一實施例中,ATE150根據推導值做出DUT110通過或不通過的決定。在一例中,STE150比較推導值與限制值以做出決定。在另一例中,ATE150根據推導值將DUT110分成不同類,例如高速或快類、一般或標準類、低素或慢類等。此程序而後進行至S399並終結。 At S350, ATE 150 determines the quality of DUT 110 based on the derived value. In an embodiment, the ATE 150 makes a decision as to whether the DUT 110 passes or fails based on the derived value. In one example, STE 150 compares the derived and restricted values to make a decision. In another example, ATE 150 classifies DUTs 110 into different classes based on derived values, such as high speed or fast classes, general or standard classes, low prime or slow classes, and the like. This procedure then proceeds to S399 and ends.

圖4A所示為根據此揭露之一實施例之電子參數(PARA-1)特定之400A圖。在圖4A中,X軸表示溫度,Y軸表示電子參數(PARA-1)之量測值。400A圖包含第一曲線410A、第二曲線420A以及第三曲線430A。在一例中,第一曲線410A對應於第一裝置在特定程序中的量測,第二曲線420A對應於第二裝置在特定程序中的量測,第三曲線430A對應於第三裝置在特定程序中的量測。 4A is a 400A diagram of an electronic parameter (PARA-1) specific in accordance with an embodiment of the disclosure. In Fig. 4A, the X axis represents temperature and the Y axis represents the measured value of the electronic parameter (PARA-1). The 400A map includes a first curve 410A, a second curve 420A, and a third curve 430A. In one example, the first curve 410A corresponds to the measurement of the first device in a particular program, the second curve 420A corresponds to the measurement of the second device in a particular program, and the third curve 430A corresponds to the third device in a particular program. Measurement in the middle.

在特定程序中,於一實施例,複數個裝置,例如第一、第二及第三裝置,被選擇及特定以決定適合的模型用於模擬PARA-1隨溫度變化。在一例中,第一、第二及第三裝置對應於快、一般及慢裝置。而後,一熱能來源、例如熱源、散熱器等被控制以改變裝置上的溫度。進一步,裝置的PARA-1與裝置的對應溫度被量測在多種溫度,例如一範圍內的溫度。根據量測,410A-430A的曲線可以被繪製,且模型可以被建構。在圖4A的例中,二次方程式模型可以被選擇以模擬PARA-1在溫度範圍內隨溫度的改變,如式1所示的二次方程式模型。 In a particular procedure, in one embodiment, a plurality of devices, such as first, second, and third devices, are selected and specified to determine a suitable model for simulating PARA-1 as a function of temperature. In one example, the first, second, and third devices correspond to fast, normal, and slow devices. A source of thermal energy, such as a heat source, a heat sink, etc., is then controlled to change the temperature on the device. Further, the corresponding temperature of the device's PARA-1 and device is measured at various temperatures, such as a range of temperatures. According to the measurement, the curve of 410A-430A can be drawn, and the model can be constructed. In the example of FIG. 4A, the quadratic equation model can be selected to simulate the change in temperature of PARA-1 over temperature, as in the quadratic equation model shown in Equation 1.

PARA-1=a 0+a 1×T+a 2×T 2 式1 PARA -1= a 0 + a 1 × T + a 2 × T 2

在一例中,二次方程式模型包含三個為裝置應變數的變數 係數,例如式1中的a 0 ,、a 1 a 2 In one example, the quadratic equation model contains three variable coefficients that are the number of strains of the device, such as a 0 , a 1 , and a 2 in Equation 1.

圖4A所示為根據此揭露之一實施例之電子參數(PARA-2)特定之400A圖。X軸表示溫度,Y軸表示電子參數(PARA-2)之量測值。400B圖包含第一曲線410B、第二曲線420B以及第三曲線430B。在圖4B的例中,線性模型可以被選擇以模擬PARA-2在溫度範圍內隨溫度的改變,如式2所示的線性模型。 4A is a diagram showing a specific 400A of an electronic parameter (PARA-2) in accordance with an embodiment of the disclosure. The X axis represents temperature and the Y axis represents the measured value of the electronic parameter (PARA-2). The 400B map includes a first curve 410B, a second curve 420B, and a third curve 430B. In the example of Figure 4B, the linear model can be selected to simulate the change in temperature of PARA-2 over temperature, as shown by the linear model of Equation 2.

PARA-2=b 0+b 1×T 式2 PARA -2= b 0 + b 1 × T type 2

在一例中,線性模型包含二個為裝置應變數的變數係數,例如式2中的b 0 b 1 In one example, the linear model contains two variable coefficients that are the number of strains of the device, such as b 0 and b 1 in Equation 2.

圖5A及所示為根據此揭露之一實施例之測試流程中溫度變異圖500A圖。測試流程包含一系列各種測試。在圖5A例中,測試流程始自I/O測試。I/O測試後接著是中央處理器測試以及記憶體測試。 FIG. 5A is a diagram showing a temperature variation diagram 500A in a test flow in accordance with an embodiment of the disclosure. The testing process consists of a series of tests. In the example of Figure 5A, the test flow begins with an I/O test. The I/O test is followed by a central processor test and a memory test.

根據本揭露之一實施例,測試期間,DUT消耗能量,且部分的能量被轉換成熱能並加熱DUT。在一例中,I/O測試消耗相對低的能量,且DUT在I/O測試期間的溫度增加相對較低。中央處理器測試及記憶體測試消耗較大的能量且DUT的溫度在中央處理器測試及記憶體測試期間明顯增加。 According to one embodiment of the present disclosure, during testing, the DUT consumes energy and a portion of the energy is converted to thermal energy and heats the DUT. In one example, the I/O test consumes relatively low energy and the temperature increase of the DUT during the I/O test is relatively low. Central processor testing and memory testing consumes a significant amount of energy and the temperature of the DUT increases significantly during central processor testing and memory testing.

根據本揭露之一實施例,DUT根據測試流程被測試,DUT的溫度在測試期間被觀測。在圖5A例中,曲線520顯示DUT在測試期間的溫度輪廓。 According to one embodiment of the present disclosure, the DUT is tested according to a test flow, and the temperature of the DUT is observed during the test. In the example of Figure 5A, curve 520 shows the temperature profile of the DUT during testing.

進一步,根據本揭露的一實施例,溫度輪廓可能因為例如處理機至處理機變異、處理機設定、裝置命令、啟動溫度等因素改變。在一實施例中,複數個DUT根據測試流程被測試,且 複數個DUT在測試期間的溫度被觀測。在一例中,複數個DUT可以為選自晶圓上不同位置的晶粒、來自不同晶圓的晶粒、及來自不同批的晶粒。進一步,複數個DUT可使用不同測試設備測試。 Further, in accordance with an embodiment of the present disclosure, the temperature profile may vary due to factors such as processor to processor variation, processor settings, device commands, startup temperatures, and the like. In an embodiment, a plurality of DUTs are tested according to a test flow, and The temperature of a plurality of DUTs during the test is observed. In one example, the plurality of DUTs can be selected from grains at different locations on the wafer, grains from different wafers, and grains from different batches. Further, multiple DUTs can be tested using different test equipment.

在圖5A例中,複數個DUT的溫度在上曲線510及下曲線530間改變。 In the example of FIG. 5A, the temperature of the plurality of DUTs varies between the upper curve 510 and the lower curve 530.

在一實施例中,根據溫度輪廓,測試流程中的複數個插入點可以被選擇以插入變數測試。例如,為解出圖4A中模擬PARA-1之二次方程式模型的三個係數,三個插入點被選擇以插入變數測試(PARA-1_TEST)550。每一變數測試550量測在變數測試550時間的DUT的PARA-1與DUT的對應溫度。在一實施例中,舉例而言,一個或更多的DUT的頻率參數及電流消耗參數被測量在每個變數測試550。 In an embodiment, a plurality of insertion points in the test flow can be selected to insert a variable test based on the temperature profile. For example, to solve the three coefficients of the quadratic equation model of PARA-1 in Figure 4A, three insertion points are selected to insert the variable test (PARA-1_TEST) 550. Each variable test 550 measures the corresponding temperature of the PARA-1 and DUT of the DUT at variable time 550. In an embodiment, for example, one or more DUT frequency parameters and current consumption parameters are measured at each variable test 550.

注意到三個以上的插入點可以被選擇以在測試流程中插入變數測試。然而,變數測試亦會消耗測試時間,大量的變數測試也可能增加測試花費並增加晶片或裝置花費。 Note that more than three insertion points can be selected to insert a variable test in the test flow. However, variable testing also consumes test time, and a large number of variable tests can also increase test costs and increase wafer or device cost.

圖5B與圖5A相似。為了解出圖4B中供模擬PARA-2的線性模型的兩個係數,兩個插入點被選擇以插入變數測試(PARA-2_TEST)560。每一變數測試560量測在變數測試時間的DUT的PARA-2與DUT的對應溫度。在一實施例中,舉例而言,一個或更多的DUT的頻率參數及電流消耗參數被測量在每個變數測試560。 Figure 5B is similar to Figure 5A. To understand the two coefficients of the linear model for the simulated PARA-2 in Figure 4B, two insertion points were selected to insert the variable test (PARA-2_TEST) 560. Each variable test 560 measures the corresponding temperature of the PARA-2 and DUT of the DUT at the variable test time. In an embodiment, for example, one or more DUT frequency parameters and current consumption parameters are measured at each variable test 560.

注意到三個以上的插入點可以被選擇以在測試流程中插入變數測試。然而,變數測試亦會消耗測試時間,大量的變數 測試也可能增加測試花費並增加晶片或裝置花費。 Note that more than three insertion points can be selected to insert a variable test in the test flow. However, variable tests also consume test time, a large number of variables Testing can also increase test costs and increase wafer or device cost.

根據本揭露之一實施例,減數目的變數測試被插入測試流程中以減少測試花費。在一實施例中,在指定溫度模擬最大工作頻率的模型被決定。在一實施例中,參數的單一量測,例如最大工作頻率,係在任何合適的溫度進行。此單一量測所得參數被用於特定DUT的模型以預測在指定溫度的參數,指定溫度與參數被量測之溫度不同。 In accordance with an embodiment of the present disclosure, a reduced number of variable tests are inserted into the test flow to reduce test costs. In an embodiment, a model that simulates the maximum operating frequency at a specified temperature is determined. In one embodiment, a single measurement of the parameter, such as the maximum operating frequency, is performed at any suitable temperature. This single measured parameter is used in a model of a particular DUT to predict a parameter at a specified temperature that is different from the temperature at which the parameter was measured.

如此,在此實施例中單一個頻率測試是需要的而且可以被插入於測試流程的任意位置。因為僅有一個頻率測試被需要且此頻率測試可在任何溫度進行,測試時間及花費可以縮減。 As such, a single frequency test is required in this embodiment and can be inserted anywhere in the test flow. Since only one frequency test is required and this frequency test can be performed at any temperature, the test time and cost can be reduced.

圖6A所示為根據此揭露之一實施例之最大頻率(FREQ)特定之圖600A。X軸為溫度(T),Y軸為參數之量測值,在此例中是積體電路可工作之最大頻率(FREQ)。圖600A包含第一曲線610、第二曲線620以及第三曲線630。在一例中,第一曲線610對應於第一裝置在特定化程序中最大頻率的量測,第二曲線620對應於第二裝置在特定化程序中最大頻率的量測,第三曲線630對應於第三裝置在特定化程序中最大頻率的量測。 FIG. 6A illustrates a maximum frequency (FREQ) specific map 600A in accordance with an embodiment of the disclosure. The X-axis is the temperature (T), and the Y-axis is the measured value of the parameter. In this example, it is the maximum frequency at which the integrated circuit can operate (FREQ). Graph 600A includes a first curve 610, a second curve 620, and a third curve 630. In one example, the first curve 610 corresponds to the measurement of the maximum frequency of the first device in the specialization procedure, the second curve 620 corresponds to the measurement of the maximum frequency of the second device in the specificization procedure, and the third curve 630 corresponds to The measurement of the maximum frequency of the third device in the specificization procedure.

在特定化程序中,在一實施例,複數個裝置,例如第一、第二及第三裝置,被選擇及特定以決定適合的模型以特定最大頻率隨溫度之改變。在一例中,第一、第二及第三裝置對應於快、一般、及慢裝置。而後,一熱能來源、例如熱源、散熱器等被控制以改變裝置上的溫度。在另一例中,第一、第二及第三裝置被隨機選擇自不同晶圓、不同批等或被自一跨越多個 DUT測試時間而包含所有程序變化的資料庫中收集。進一步,最大頻率與對應溫度被量測在多種溫度,例如一範圍內的溫度。根據此量測,曲線610-630可以被繪製,且模型可以被決定。在圖6A例中,線性模型,如式3所示,可用以模擬最大頻率隨溫度之改變。 In a particular procedure, in one embodiment, a plurality of devices, such as first, second, and third devices, are selected and specified to determine a suitable model to vary with temperature at a particular maximum frequency. In one example, the first, second, and third devices correspond to fast, normal, and slow devices. A source of thermal energy, such as a heat source, a heat sink, etc., is then controlled to change the temperature on the device. In another example, the first, second, and third devices are randomly selected from different wafers, different batches, etc. or are spanned from multiple The DUT test time is collected in a database containing all program changes. Further, the maximum frequency and the corresponding temperature are measured at a plurality of temperatures, such as a range of temperatures. Based on this measurement, curves 610-630 can be drawn and the model can be determined. In the example of Figure 6A, a linear model, as shown in Equation 3, can be used to simulate the change in maximum frequency with temperature.

FREQ(T)=Slope×T+B 式3 FREQ ( T )= Slope × T + B

其中SlopeB為係數。Slope視線性模型的斜率,B是線性模型的截距。 Where Slope and B are coefficients. Slope depends on the slope of the linear model, and B is the intercept of the linear model.

進一步,根據本揭露之一實施例,在指定溫度(TSPEC)之最大頻率係線性模型斜率的函數。圖6B示出600B圖供特定斜率 ()以及在指定溫度之最大頻率(FREQ@ TSPEC)。在一實 施例中,斜率是最大頻率在指定溫度的函數,如式4所示:Slope=Func(FREQ(T SPEC )) 式4 Further, in accordance with an embodiment of the present disclosure, the maximum frequency at the specified temperature (T SPEC ) is a function of the slope of the linear model. Figure 6B shows a 600B plot for a specific slope ( ) and the maximum frequency at the specified temperature (FREQ@ T SPEC ). In one embodiment, the slope is a function of the maximum frequency at a specified temperature, as shown in Equation 4: Slope = Func ( FREQ ( T SPEC )) Equation 4

在一例中,線性模型被用於模擬斜率以及在指定溫度的最大頻率,如式5所示:Slope=α×FREQ(T SPEC )+β 式5 In one example, the linear model is used to simulate the slope and the maximum frequency at the specified temperature, as shown in Equation 5: Slope = α × FREQ ( T SPEC ) + β Equation 5

其中α及β是可以根據圖6B之定性決定之係數。 Wherein α and β are coefficients which can be determined qualitatively according to Fig. 6B.

進一步,在一實施例中,當DUT之最大頻率(FREQ(TTEST))被量測於一溫度(TTEST),被量測頻率與最大工作頻率在指定溫度(TSPEC)之關係可以根據式3的線性模型以式6表示:FREQ(T SPEC )-FREQ(T TEST )=Slope×(T SPEC -T TEST ) 式6 Further, in an embodiment, when the maximum frequency of the DUT (FREQ(T TEST )) is measured at a temperature (T TEST ), the relationship between the measured frequency and the maximum operating frequency at a specified temperature (T SPEC ) may be The linear model of Equation 3 is expressed by Equation 6: FREQ ( T SPEC ) - FREQ ( T TEST ) = Slope × ( T SPEC - T TEST ) Equation 6

進一步,藉由以式5置換式6中的Slope,在指定溫度之最大工作頻率可以由式7計算: Further, by replacing Slope in Equation 6 with Equation 5, the maximum operating frequency at the specified temperature can be calculated by Equation 7:

如此,根據一實施例,僅有單一個在適合溫度的頻率量測,其可與指定溫度不同,被需要用以決定在指定溫度的最大工作頻率。 Thus, according to an embodiment, only a single frequency measurement at a suitable temperature, which may be different from the specified temperature, is required to determine the maximum operating frequency at the specified temperature.

圖7所示為根據此揭露之一實施例以略述一供如ATE150支測試儀器測試一如DUT110之電路之流程範例700之流程圖。在此實施例中,測試流程160包含一單一變數測試161,例如記憶體測試之後者,供測試最大工作頻率。此程序始於S710,並進行至S710。 FIG. 7 is a flow chart showing a flow example 700 of a circuit for testing a test instrument such as DUT 110, such as an ATE 150 test instrument, in accordance with an embodiment of the present disclosure. In this embodiment, test flow 160 includes a single variable test 161, such as after a memory test, for testing the maximum operating frequency. This process starts at S710 and proceeds to S710.

在S710,為回應單一變數測試161,ATE150量測DUT110之最大頻率。 At S710, in response to a single variable test 161, the ATE 150 measures the maximum frequency of the DUT 110.

在S720,為回應單一變數測試161,ATE150亦量測DUT110在變數測試時間之溫度。 At S720, in response to a single variable test 161, the ATE 150 also measures the temperature of the DUT 110 at the variable test time.

在S730,ATE150為DUT決定量測所得溫度是否大於指定溫度,以及量測所得最大工作頻率是否大於限制頻率。當兩個條件都滿足時,程序進行至S770;否則,程序進行至S740。 At S730, the ATE 150 determines whether the measured temperature is greater than a specified temperature for the DUT, and whether the measured maximum operating frequency is greater than the limit frequency. When both conditions are satisfied, the program proceeds to S770; otherwise, the program proceeds to S740.

在S740,ATE150推導出在指定溫度的預測最大工作頻率,例如根據式7。 At S740, ATE 150 derives the predicted maximum operating frequency at the specified temperature, for example according to Equation 7.

在S750,ATE150決定在指定溫度的預測最大工作頻率是否大於限制頻率。當在指定溫度的預測最大工作頻率大於限制頻率,程序進行至S770;否則,程序進行至S760。 At S750, ATE 150 determines if the predicted maximum operating frequency at the specified temperature is greater than the limiting frequency. When the predicted maximum operating frequency at the specified temperature is greater than the limit frequency, the process proceeds to S770; otherwise, the process proceeds to S760.

在S760,ATE決定DUT未通過最大頻率測試。程序進行至 S799並終結。 At S760, the ATE determines that the DUT has not passed the maximum frequency test. The program proceeds to S799 and ended.

在S770,ATE決定DUT有通過最大頻率測試。程序進行至S799並終結。 At S770, ATE determines that the DUT has passed the maximum frequency test. The program proceeds to S799 and ends.

需注意的是程序700可以被適當的調整。在一例中,在S760,ATE150進一步決定DUT是否滿足另一限制,例如慢限制,供最大頻率測試以及將DUT分類為慢裝置當DUT滿足慢限制時。 It should be noted that the program 700 can be appropriately adjusted. In one example, at S760, ATE 150 further determines whether the DUT meets another limit, such as a slow limit, for maximum frequency testing, and classifying the DUT as a slow device when the DUT meets the slow limit.

根據本揭露之一實施例,DUT110包含一晶片上環狀震盪器,此環狀震盪器的頻率可以指出DUT110的最大工作頻率。在最大頻率測試中,ATE150量測環形震盪器之頻率。 In accordance with an embodiment of the present disclosure, the DUT 110 includes a ring-shaped oscillator on the wafer, the frequency of which can indicate the maximum operating frequency of the DUT 110. In the maximum frequency test, the ATE150 measures the frequency of the ring oscillator.

根據本揭露之另一實施例,ATE150提供鐘點訊號給DUT110。在最大頻率測試中,ATE150加快鐘點訊號的頻率。在每次加快中,ATE150在DUT110上執行功能測試以決定DUT110是否運作正常。當DUT110通過功能測試,鐘點訊號加快;否則,DUT110通過功能測試之最後的鐘點頻率被決定是最大頻率。 According to another embodiment of the present disclosure, the ATE 150 provides a clock signal to the DUT 110. In the maximum frequency test, the ATE150 speeds up the clock signal. In each acceleration, the ATE 150 performs a functional test on the DUT 110 to determine if the DUT 110 is functioning properly. When the DUT 110 passes the function test, the hour signal is accelerated; otherwise, the DUT 110 is determined to be the maximum frequency through the last hour frequency of the function test.

雖然前述的描述及圖式已揭示本發明之較佳實施例,必須瞭解到各種增添、許多修改和取代可能使用於本發明較佳實施例,而不會脫離如所附申請專利範圍所界定的本發明原理之精神及範圍。熟悉本發明所屬技術領域之一般技藝者將可體會,本發明可使用於許多形式、結構、佈置、比例、材料、元件和組件的修改。因此,本文於此所揭示的實施例應被視為用以說明本發明,而非用以限制本發明。本發明的範圍應由後附申請專利範圍所界定,並涵蓋其合法均等物,並不限於先前的描述。 While the foregoing description of the preferred embodiments of the invention, the embodiments of the invention The spirit and scope of the principles of the invention. Modifications of many forms, structures, arrangements, ratios, materials, components and components can be made by those skilled in the art to which the invention pertains. Therefore, the embodiments disclosed herein are to be considered as illustrative and not restrictive. The scope of the present invention is defined by the scope of the appended claims, and the legal equivalents thereof are not limited to the foregoing description.

100‧‧‧測試系統 100‧‧‧Test system

110‧‧‧待測裝置 110‧‧‧Device under test

120‧‧‧溫度感測器 120‧‧‧temperature sensor

150‧‧‧自動測試儀器 150‧‧‧Automatic test equipment

151‧‧‧界面 151‧‧‧ interface

160‧‧‧測試流程 160‧‧‧Test procedure

161‧‧‧變數測試 161‧‧‧variation test

170‧‧‧控制器 170‧‧‧ Controller

本揭露中被提出作為範例的多種實施例將以下列圖式詳述,其中如示數參考如元件,其中:圖1所示為根據此揭露之一實施例之測試系統範例100之方塊圖;圖2所示為根據此揭露之一實施例以略述一供產生一測試流程之流程範例200之流程圖;圖3所示為根據此揭露之一實施例以略述一供測試一電路之流程範例300之流程圖;圖4A及4B所示為根據此揭露之一實施例之參數與溫度對應圖;圖5A及5B所示為根據此揭露之一實施例之測試流程中溫度變異圖;圖6A及6B所示為根據此揭露之一實施例之頻率與溫度模型對應圖;以及圖7所示為根據此揭露之一實施例以略述一供測試一電路之流程範例700之流程圖。 The various embodiments of the present invention, which are set forth as examples, will be described in the following drawings, in which: FIG. 1 is a block diagram of a test system example 100 in accordance with an embodiment of the disclosure; 2 is a flow chart illustrating a process example 200 for generating a test flow in accordance with an embodiment of the disclosure; FIG. 3 is a schematic diagram of a circuit for testing a circuit according to an embodiment of the disclosure FIG. 4A and FIG. 4B are diagrams showing a parameter and temperature correspondence according to an embodiment of the disclosure; FIGS. 5A and 5B are diagrams showing temperature variation in a test flow according to an embodiment of the disclosure; 6A and 6B are diagrams showing a frequency versus temperature model according to an embodiment of the disclosure; and FIG. 7 is a flow chart illustrating a flow example 700 for testing a circuit in accordance with an embodiment of the disclosure. .

100‧‧‧測試系統 100‧‧‧Test system

110‧‧‧待測裝置 110‧‧‧Device under test

120‧‧‧溫度感測器 120‧‧‧temperature sensor

150‧‧‧自動測試儀器 150‧‧‧Automatic test equipment

151‧‧‧界面 151‧‧‧ interface

160‧‧‧測試流程 160‧‧‧Test procedure

161‧‧‧變數測試 161‧‧‧variation test

170‧‧‧控制器 170‧‧‧ Controller

Claims (20)

一種測試積體電路的方法,包含:量測一待測裝置之一電子參數以及該待測裝置之一對應溫度一次或數次;決定一係數,在一基於複數個該電子參數之量測所得值以及對應之量測所得溫度之預建構模型中,以特定該待測裝置之該電子參數與該待測裝置之溫度之關係,其中該預建構模型特定該電子參數與對應該待測裝置之一電路類型之溫度之關係;且該係數為待測裝置之待測裝置應變數;以及根據該預建構模型以及該電子參數於一指定溫度之一限制值以決定該待測裝置之一適合度符合一指定表現規格。 A method for testing an integrated circuit, comprising: measuring an electronic parameter of a device to be tested and a temperature corresponding to one of the devices to be tested once or several times; determining a coefficient, measured based on a plurality of the electronic parameters And a pre-constructed model of the measured temperature, the relationship between the electronic parameter of the device under test and the temperature of the device to be tested, wherein the pre-construction model specifies the electronic parameter and the corresponding device to be tested The relationship between the temperature of a circuit type; and the coefficient is the number of strains of the device to be tested of the device to be tested; and determining the fitness of the device to be tested according to the pre-construction model and a limit value of the electronic parameter at a specified temperature Meets a specified performance specification. 如請求項1所述之方法,其中根據該預建構模型以及該電子參數於該指定溫度之該限制值以決定該待測裝置之適合度之步驟進一步包含:根據該預建構模型決定在該指定溫度之該電子參數之一值;以及比較該決定之值與該限制值以決定該待測裝置之適合度。 The method of claim 1, wherein the step of determining the fitness of the device under test according to the pre-construction model and the limit value of the electronic parameter at the specified temperature further comprises: determining the designation according to the pre-construction model a value of the electronic parameter of the temperature; and comparing the determined value with the limit value to determine the suitability of the device under test. 如請求項1所述之方法,其中根據該預建構模型以及該電子參數於該指定溫度之該限制值以決定該待測裝置之適合度之步驟進一步包含: 根據該預建構模型決定在該待測物具有該電子參數之該限制值時之一溫度值;以及比較該決定之溫度值與該指定溫度以決定該待測裝置之適合度。 The method of claim 1, wherein the step of determining the fitness of the device under test according to the pre-construction model and the limit value of the electronic parameter at the specified temperature further comprises: Determining, according to the pre-construction model, a temperature value when the object to be tested has the limit value of the electronic parameter; and comparing the determined temperature value with the specified temperature to determine a suitability of the device to be tested. 如請求項1所述之方法,其中量測該待測裝置之該電子參數以及該待測裝置之該對應溫度數次之步驟進一步包含:根據一包含複數個插入於一系列其他測試之變數測試之測試流程測試該待測裝置;以及量測回應於每一變數測試之該待測裝置之該電子參數以及該對應溫度。 The method of claim 1, wherein the step of measuring the electronic parameter of the device under test and the corresponding temperature of the device to be tested further comprises: testing according to a variable comprising a plurality of other tests The test process tests the device under test; and measures the electronic parameter of the device under test in response to each variable test and the corresponding temperature. 如請求項1所述之方法,其中決定基於複數個該電子參數之量測所得值以及對應溫度之該預建構模型之係數之步驟進一步包含:決定基於複數個該電子參數之量測所得值以及對應溫度之一預建構多項式模型之係數。 The method of claim 1, wherein the determining the coefficient based on the plurality of the electronic parameters and the coefficient of the pre-constructed model of the corresponding temperature further comprises: determining a measured value based on the plurality of the electronic parameters and One of the coefficients of the pre-constructed polynomial model corresponding to one of the temperatures. 如請求項1所述之方法,其中量測該待測裝置之該電子參數以及該待測裝置之該對應溫度一次或數次之步驟進一步包含:量測該待測裝置之該電子參數以及該待測裝置之一對應接合溫度。 The method of claim 1, wherein the step of measuring the electronic parameter of the device under test and the corresponding temperature of the device to be tested once or several times further comprises: measuring the electronic parameter of the device to be tested and the One of the devices to be tested corresponds to the junction temperature. 如請求項1所述之方法,其中量測該待測裝置之該電子參數以及該待測裝置之該對應溫度一次或數次之步驟進一步包 含:量測一操作頻率、一電流消耗以及一震盪頻率中的至少一個以及該待測裝置之該對應溫度。 The method of claim 1, wherein the step of measuring the electronic parameter of the device under test and the corresponding temperature of the device to be tested is further performed one or several times And measuring: measuring at least one of an operating frequency, a current consumption, and an oscillation frequency, and the corresponding temperature of the device under test. 如請求項1所述之方法,其中量測該待測裝置之該電子參數以及該待測裝置之該對應溫度一次或數次之步驟進一步包含:量測一該待測裝置之操作頻率以及該待測裝置之該對應溫度一次。 The method of claim 1, wherein the step of measuring the electronic parameter of the device under test and the corresponding temperature of the device to be tested once or several times further comprises: measuring an operating frequency of the device to be tested and the The corresponding temperature of the device to be tested is once. 如請求項8所述之方法,進一步包含:決定基於操作頻率之單一量測所得值以及對應單一量測所得溫度之該預建構模型之係數。 The method of claim 8, further comprising: determining a single measured value based on the operating frequency and a coefficient of the pre-constructed model corresponding to the measured temperature of the single measured amount. 一種積體電路晶片,其係根據一種測試積體電路的方法測試過,該方法包含:量測一待測裝置之一電子參數以及該待測裝置之一對應溫度一次或數次;決定一係數,在一基於複數個該電子參數之量測所得值以及對應之量測所得溫度之預建構模型中,以特定該待測裝置之該電子參數與該待測裝置之溫度之關係,其中該預建構模型特定該電子參數與對應該待測裝置之一電路類型之溫度之關係;且該係數為待測裝置之待測裝置應變數;以及根據該預建構模型以及該電子參數於一指定溫度之一 限制值以決定該待測裝置之一適合度符合一指定表現規格。 An integrated circuit chip, which is tested according to a method for testing an integrated circuit, the method comprising: measuring an electronic parameter of a device to be tested and a temperature corresponding to one of the devices to be tested once or several times; determining a coefficient And in a pre-constructed model based on the plurality of measured values of the electronic parameter and the corresponding measured temperature, the relationship between the electronic parameter of the device to be tested and the temperature of the device to be tested is specified, wherein the pre- Constructing a model-specific relationship between the electronic parameter and a temperature corresponding to a circuit type of the device to be tested; and the coefficient is the number of strains of the device to be tested of the device to be tested; and according to the pre-construction model and the electronic parameter at a specified temperature One The limit value is used to determine that one of the devices to be tested conforms to a specified performance specification. 一種測試系統,包含:一種裝配以量測一待測裝置之一電子參數以及該待測裝置之一對應溫度之界面;以及一種控制器裝配以控制該界面以量測該待測裝置之該電子參數以及該待測裝置之該對應溫度一次或數次,決定係數,在一基於該電子參數之量測所得值以及對應之量測所得溫度之預建構模型中,以特定該預建構模型之該電子參數與該預建構模型之溫度之關係,以及根據該預建構模型以及該電子參數於一指定溫度之一限制值以決定該待測裝置之一適合度符合一指定表現規格,其中該預建構模型特定該電子參數與對應該待測裝置之一電路類型之溫度之關係,且該係數為待測裝置之待測裝置應變數。 A test system comprising: an interface configured to measure an electronic parameter of a device to be tested and a temperature corresponding to one of the devices to be tested; and a controller assembly to control the interface to measure the electron of the device to be tested The parameter and the corresponding temperature of the device to be tested are determined once or several times, and the coefficient is determined. In a pre-constructed model based on the measured value of the electronic parameter and the corresponding measured temperature, the pre-constructed model is specified a relationship between an electronic parameter and a temperature of the pre-constructed model, and a limit value according to the pre-construction model and the electronic parameter at a specified temperature to determine a suitability of the device to be tested conforms to a specified performance specification, wherein the pre-construction The model specifies the relationship between the electronic parameter and the temperature of the circuit type corresponding to one of the devices to be tested, and the coefficient is the number of strains of the device under test of the device to be tested. 如請求項11所述之測試系統,其中該控制器係裝配以根據該預建構模型決定在該指定溫度之該電子參數之一值,以及比較該決定之值與該限制值以決定該待測裝置之適合度。 The test system of claim 11, wherein the controller is configured to determine a value of the electronic parameter at the specified temperature according to the pre-construction model, and compare the determined value with the limit value to determine the test The suitability of the device. 如請求項11所述之測試系統,其中該控制器係裝配以根據該預建構模型決定在該待測物具有該電子參數之該限制值時之一溫度值,以及比較該決定之溫度值與該指定溫度以決定該待 測裝置之適合度。 The test system of claim 11, wherein the controller is configured to determine, according to the pre-construction model, a temperature value when the object to be tested has the limit value of the electronic parameter, and compare the determined temperature value with The specified temperature to determine the waiting The suitability of the device. 如請求項11所述之測試系統,其中該控制器係裝配以根據一包含複數個插入於一系列其他測試之變數測試之測試流程控制該界面,該界面係裝配以量測回應於每一變數測試之該待測裝置之該電子參數以及該對應溫度。 The test system of claim 11, wherein the controller is configured to control the interface according to a test flow comprising a plurality of variable tests inserted in a series of other tests, the interface being assembled to measure in response to each variable The electronic parameter of the device under test is tested and the corresponding temperature. 如請求項11所述之測試系統,其中該控制器係裝配以決定基於複數個該電子參數之量測所得值以及對應溫度之一預建構多項式模型之係數。 The test system of claim 11, wherein the controller is configured to determine a coefficient of the pre-constructed polynomial model based on the measured values of the plurality of electronic parameters and the corresponding temperature. 如請求項11所述之測試系統,其中該界面係裝配以接收自該待測裝置之一溫度感測器感測所得之一接合溫度。 The test system of claim 11, wherein the interface is assembled to receive one of the junction temperatures sensed by a temperature sensor of the device under test. 如請求項11所述之測試系統,其中該界面係裝配以量測一操作頻率、一電流消耗以及一震盪頻率中的至少一個。 The test system of claim 11, wherein the interface is configured to measure at least one of an operating frequency, a current consumption, and an oscillating frequency. 如請求項11所述之測試系統,其中該界面係裝配以量測一該待測裝置之操作頻率以及該待測裝置之該對應溫度一次並決定基於複數個該電子參數之量測所得值以及對應量測所得溫度之該預建構模型之係數。 The test system of claim 11, wherein the interface is configured to measure an operating frequency of the device to be tested and the corresponding temperature of the device to be tested, and determine a value based on the plurality of electronic parameters and The coefficient of the pre-constructed model corresponding to the measured temperature. 如請求項11所述之測試系統係裝配以測試一由一積體電路裝置定義之待測裝置。 The test system of claim 11 is assembled to test a device under test defined by an integrated circuit device. 一種測試積體電路的方法,包含:建構一模型供模擬隨一溫度變化之一裝置之一電子參數,其中該模型包含複數個為待測裝置應變數之係數;決定該電子參數及該對應溫度之量測之一整數,該整數 提供該裝置滿足該電子參數之一合適的指標,於一未量測之指定溫度,使用該模型;執行一量測該電子參數以及該對應溫度之變數測試至少該整數次於一對應該裝置的電路類型的待測裝置;以及確定該待裝置之一適合度以符合一指定表現規格在一基於該模型及該變數測試之不量測溫度。 A method for testing an integrated circuit, comprising: constructing a model for simulating an electronic parameter of a device that varies with temperature, wherein the model includes a plurality of coefficients that are strain numbers of the device to be tested; determining the electronic parameter and the corresponding temperature Measure one of the integers, the integer Providing that the device satisfies an appropriate index of one of the electronic parameters, using the model at an unmeasured specified temperature; performing a measurement of the electronic parameter and the variable of the corresponding temperature is tested at least the integer number of times corresponding to a pair of devices a circuit type of device to be tested; and determining a suitability of the device to conform to a specified performance specification based on the model and the unmeasured temperature of the variable test.
TW101106404A 2011-07-14 2012-02-24 Method and apparatus for testing ic TWI567400B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161507916P 2011-07-14 2011-07-14

Publications (2)

Publication Number Publication Date
TW201303329A TW201303329A (en) 2013-01-16
TWI567400B true TWI567400B (en) 2017-01-21

Family

ID=48138024

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101106404A TWI567400B (en) 2011-07-14 2012-02-24 Method and apparatus for testing ic

Country Status (1)

Country Link
TW (1) TWI567400B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11327866B2 (en) 2019-07-17 2022-05-10 One Test Systems Memory test method
TWI823507B (en) * 2021-09-30 2023-11-21 日商愛德萬測試股份有限公司 Control devices for controlling an automated test equipment (ate), ate, methods for controlling an ate, methods for operating an ate and computer programs for performing such methods, comprising a temperature estimation or determination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI794102B (en) * 2022-05-20 2023-02-21 欣銓科技股份有限公司 Multi-stage warm-up probe method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625288A (en) * 1993-10-22 1997-04-29 Sandia Corporation On-clip high frequency reliability and failure test structures
US7233163B2 (en) * 2004-05-21 2007-06-19 Intel Corporation Mapping variations in local temperature and local power supply voltage that are present during operation of an integrated circuit
US7734444B2 (en) * 2005-05-19 2010-06-08 International Business Machines Corporation Systems and arrangements to assess thermal performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625288A (en) * 1993-10-22 1997-04-29 Sandia Corporation On-clip high frequency reliability and failure test structures
US7233163B2 (en) * 2004-05-21 2007-06-19 Intel Corporation Mapping variations in local temperature and local power supply voltage that are present during operation of an integrated circuit
US7734444B2 (en) * 2005-05-19 2010-06-08 International Business Machines Corporation Systems and arrangements to assess thermal performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11327866B2 (en) 2019-07-17 2022-05-10 One Test Systems Memory test method
TWI823507B (en) * 2021-09-30 2023-11-21 日商愛德萬測試股份有限公司 Control devices for controlling an automated test equipment (ate), ate, methods for controlling an ate, methods for operating an ate and computer programs for performing such methods, comprising a temperature estimation or determination

Also Published As

Publication number Publication date
TW201303329A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
US9618569B2 (en) Method and apparatus for testing IC
CN102478603B (en) Method and system for measuring power consumption in an integrated circuit
US7539893B1 (en) Systems and methods for speed binning of integrated circuits
JP3940718B2 (en) Test device, pass / fail criteria setting device, test method and test program
US20060186910A1 (en) Mapping variations in local temperature and local power supply voltage that are present during operation of an integrated circuit
CN105702595B (en) The yield judgment method of wafer and the changeable quantity measuring method of wafer conformity testing
TWI570654B (en) Use the test data for quality control
TWI567400B (en) Method and apparatus for testing ic
TW201533456A (en) Wafer test data analysis method
CN112945418B (en) Temperature measuring device and temperature measuring method of integrated chip
US7788065B2 (en) Method and apparatus for correlating test equipment health and test results
US9217771B2 (en) Method for breaking down hardware power into sub-components
Schindler-Saefkow et al. Stress impact of moisture diffusion measured with the stress chip
JP2022028082A (en) Analysis device, analysis method, and program
CN109270480A (en) The method of detection source monitoring unit
US7716004B2 (en) Method and apparatus for matching test equipment calibration
US9285418B2 (en) Method and apparatus for characterizing thermal marginality in an integrated circuit
US9007079B2 (en) System and method for compensating measured IDDQ values
US7058531B2 (en) Temperature compensation in maximum frequency measurement and speed sort
Blackmore et al. Automated structure function object mapping
Bahukudumbi et al. Test-pattern ordering for wafer-level test-during-burn-in
CN112014710B (en) Acupressure adaptation method, acupressure adaptation device, acupressure equipment and readable storage medium
CN113435048B (en) Method and device for evaluating service life of semiconductor device and temperature detection platform
US8832634B2 (en) Integrated circuit characterization based on measured and static apparent resistances
Ramamoorthy et al. Measurement and characterization of die temperature sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees