TWI558375B - Ppg signal processing device and method thereof - Google Patents

Ppg signal processing device and method thereof Download PDF

Info

Publication number
TWI558375B
TWI558375B TW104125755A TW104125755A TWI558375B TW I558375 B TWI558375 B TW I558375B TW 104125755 A TW104125755 A TW 104125755A TW 104125755 A TW104125755 A TW 104125755A TW I558375 B TWI558375 B TW I558375B
Authority
TW
Taiwan
Prior art keywords
signal
ppg
ppg signal
digital filtering
filtering unit
Prior art date
Application number
TW104125755A
Other languages
Chinese (zh)
Other versions
TW201611776A (en
Inventor
莊政達
羅展鵬
潘德城
Original Assignee
義明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義明科技股份有限公司 filed Critical 義明科技股份有限公司
Priority to CN201510565554.0A priority Critical patent/CN105433931A/en
Publication of TW201611776A publication Critical patent/TW201611776A/en
Application granted granted Critical
Publication of TWI558375B publication Critical patent/TWI558375B/en

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

光體積變化描述波形的處理裝置及其方法Light volume change description waveform processing device and method thereof

本發明係關於一種光體積變化描述波形的處理裝置及其方法,尤指一種應用於穿戴式心跳檢測裝置的光體積變化描述波形的處理裝置及其方法。 The present invention relates to a processing apparatus and method for describing a waveform of a light volume change, and more particularly to a processing apparatus and method for describing a waveform of a light volume change of a wearable heartbeat detecting apparatus.

穿戴式電子裝置通常提供有監測使用者運動功能(如計步功能),或提供檢測及記錄人體生理特徵(如心跳、血壓或血氧)等功能,因此頗受消費者喜愛。然而,穿戴式電子裝置的心跳檢測結果仍較一般固定式血壓計檢測心跳結果差,主要原因在於該穿戴式電子裝置於擷取人體的生理特徵訊號時,使用者的肢體活動會對該生理特徵訊號產生干擾訊號。 Wearable electronic devices are often provided with the ability to monitor user motion (such as step counting) or to detect and record physiological characteristics of the human body (such as heartbeat, blood pressure or blood oxygen). However, the heartbeat detection result of the wearable electronic device is still worse than that of the general fixed sphygmomanometer. The main reason is that when the wearable electronic device captures the physiological characteristic signal of the human body, the physical activity of the user will affect the physiological characteristic. The signal produces an interference signal.

一般會將擷取到的生理特徵訊號自時域波形(如圖9A所示)轉換至頻域波形(如圖9B所示),再以頻域中的週期訊號作為量測心跳頻率的依據,如量測到正確心跳頻率即如圖9D所示。然而,但在頻域訊號中的除了心跳訊號Sheart外,如圖9B所示,還包含有因手部擺動與身體晃動造成的低頻訊號,或包含因手部快速擺動與身體快速晃動所造成的高頻訊號,當其中部份的低頻或高頻訊號的能量會高於心跳訊號的能量。由於頻率訊號中包含有運動干擾訊號Smotion(或稱運動偽影;Motion Artifact),會被誤測為心跳訊號,因此檢測出的心跳訊號轉Sheart換至時域訊號後,即會出現非心跳訊號Smotion,如圖9C所示。 Generally, the extracted physiological characteristic signal is converted from the time domain waveform (as shown in FIG. 9A) to the frequency domain waveform (as shown in FIG. 9B), and the periodic signal in the frequency domain is used as the basis for measuring the heartbeat frequency. If the correct heartbeat frequency is measured, it is as shown in Fig. 9D. However, in addition to the heartbeat signal S heart in the frequency domain signal, as shown in FIG. 9B, the low frequency signal caused by the hand swing and the body shake is included, or the rapid swing of the hand and the rapid shaking of the body are included. The high frequency signal, when some of the low frequency or high frequency signal energy will be higher than the energy of the heartbeat signal. Since the motion signal S motion (or Motion Artifact) is included in the frequency signal, it will be misdetected as a heartbeat signal. Therefore, after the detected heartbeat signal is switched to S heart to the time domain signal, a non- The heartbeat signal S motion is as shown in Fig. 9C.

因此,目前穿戴式電子裝置檢測心跳的準確度有必要進一步改善之。 Therefore, it is necessary to further improve the accuracy of the wearable electronic device to detect the heartbeat.

有鑑於穿戴式電子裝置檢測生理訊號易受到運動偽影的干擾降低其檢測準確度,本發明主要目的係提供一種光體積變化描述波形(PPG)的處理裝置及其方法,有助於提高生理訊號的量測準確度。 In view of the fact that the wearable electronic device is sensitive to motion artifacts and is less susceptible to motion artifacts, the main purpose of the present invention is to provide a light volume change description waveform (PPG) processing device and method thereof, which are useful for improving physiological signals. Measurement accuracy.

欲達上述目的所使用的主要技術手段係令該光體積變化描述波形(PPG)的處理裝置包含有:一光體積變化描述波形(PPG)訊號擷取單元,係用以擷取第一PPG訊號;一運動資訊擷取單元,係用以擷取一運動資訊;一第一可適性數位濾波單元,係連接至該PPG訊號擷取單元及該運動資訊擷取單元,以接收該第一PPG訊號及該運動資訊,並依據該運動資訊,將該第一PPG訊號所包含的運動偽影干擾訊號予以消除,並輸出第二PPG訊號;一第二可適性數位濾波單元,係連接至該第一可適性數位濾波單元,以接收該第二PPG訊號,並擷取該第二PPG訊號中的周期性訊號,並提高該周期性訊號的訊雜比後輸出一生理特徵訊號。 The main technical means used for the above purpose is that the processing device for the light volume change description waveform (PPG) comprises: a light volume change description waveform (PPG) signal acquisition unit for capturing the first PPG signal. a motion information acquisition unit for capturing motion information; a first adaptive digital filtering unit connected to the PPG signal acquisition unit and the motion information acquisition unit to receive the first PPG signal And the motion information, according to the motion information, the motion artifact interference signal included in the first PPG signal is eliminated, and the second PPG signal is output; and a second adaptive digital filtering unit is connected to the first The adaptive digital filtering unit receives the second PPG signal, captures the periodic signal in the second PPG signal, and increases the signal-to-noise ratio of the periodic signal to output a physiological characteristic signal.

欲達上述目的所使用的主要技術手段係令該光體積變化描述波形(PPG)的處理方法包含有:(a)獲得一第一光體積變化描述波形(PPG)訊號以及運動資訊;(b)依據該運動資訊,將該第一PPG訊號所包含運動偽影干擾訊號予以消除,並輸出一第二PPG訊號;以及(c)擷取該第二PPG訊號中的一周期性訊號,並提高該周期性訊號的訊雜比後輸出一該生理特徵訊號。 The main technical means used to achieve the above purpose is that the processing method of the light volume change description waveform (PPG) includes: (a) obtaining a first light volume change description waveform (PPG) signal and motion information; (b) And removing, according to the motion information, the motion artifact interference signal included in the first PPG signal, and outputting a second PPG signal; and (c) extracting a periodic signal in the second PPG signal, and increasing the The physiological characteristic signal is output after the signal-to-noise ratio of the periodic signal.

由上述說明可知,本發明主要於擷取PPG訊號期間,以一運算資訊擷取單元擷取運動資訊,由於自人體擷取到的PPG訊號會包含有運動偽影的干擾訊號,故該第一可適性數位濾波單元依據運動資訊,將大部份的運動偽影干擾訊號自該PPG訊號中濾除,再將濾除後的PPG訊號輸出至一第二可適性數位濾波單元,以擷取該第二PPG訊號中的周期性訊號並提高周期性訊號的訊雜比,作為讀出精確的心跳訊號的依據。因此,本發明的PPG訊號處理裝置可應用於穿戴式心跳檢測裝置上,提供正確的心跳資訊。 It can be seen from the above description that the present invention mainly captures motion information by an operation information acquisition unit during the capture of the PPG signal. Since the PPG signal extracted from the human body contains an interference signal of motion artifacts, the first The adaptive digital filtering unit filters out most of the motion artifact interference signals from the PPG signal according to the motion information, and outputs the filtered PPG signal to a second adaptive digital filtering unit to capture the The periodic signal in the second PPG signal increases the signal-to-noise ratio of the periodic signal as the basis for reading the accurate heartbeat signal. Therefore, the PPG signal processing apparatus of the present invention can be applied to a wearable heartbeat detecting apparatus to provide correct heartbeat information.

10‧‧‧PPG訊號擷取單元 10‧‧‧PPG signal acquisition unit

11‧‧‧第一帶通濾波器 11‧‧‧First bandpass filter

12‧‧‧第一正規化器 12‧‧‧First Normalizer

20‧‧‧運動資訊擷取單元 20‧‧‧Sports Information Capture Unit

20a‧‧‧三軸動力感應器 20a‧‧‧Three-axis power sensor

21‧‧‧第二直流準位調整單元 21‧‧‧Second DC level adjustment unit

21a‧‧‧第二正規化器 21a‧‧‧Second normalizer

22‧‧‧延遲電路 22‧‧‧Delay circuit

30‧‧‧第一可適性數位濾波單元 30‧‧‧First adaptive digital filtering unit

301‧‧‧第一有限脈衝響應數位濾波單元 301‧‧‧First finite impulse response digital filtering unit

302‧‧‧減法器 302‧‧‧Subtractor

303‧‧‧權重調整單元 303‧‧‧weight adjustment unit

31‧‧‧第一誤差收斂係數自動調整單元 31‧‧‧First error convergence coefficient automatic adjustment unit

32‧‧‧去極端值單元 32‧‧‧Go to the extreme value unit

33‧‧‧第二帶通濾波器 33‧‧‧Second bandpass filter

34‧‧‧第三正規化器 34‧‧‧ Third Normalizer

40‧‧‧第二可適性數位濾波單元 40‧‧‧Second Adaptive Digital Filter Unit

401‧‧‧第二有限脈衝響應數位濾波單元 401‧‧‧Second finite impulse response digital filtering unit

402‧‧‧減法器 402‧‧‧Subtractor

403‧‧‧權重調整單元 403‧‧‧weight adjustment unit

41‧‧‧第二誤差收斂係數自動調整單元 41‧‧‧Second error convergence coefficient automatic adjustment unit

50‧‧‧手腕 50‧‧‧ wrist

51‧‧‧血管 51‧‧‧Vascular

60‧‧‧穿戴式電子裝置 60‧‧‧Wearing electronic devices

圖1:本發明PPG訊號處理裝置的第一較佳實施例的功能方塊圖。 Figure 1 is a functional block diagram of a first preferred embodiment of the PPG signal processing apparatus of the present invention.

圖2:本發明應用於一穿戴式電子裝置的使用示意圖。 Figure 2 is a schematic view showing the use of the present invention in a wearable electronic device.

圖3A至圖3G:圖1部份功能方塊的輸出訊號波形圖。 3A to 3G are diagrams showing output signal waveforms of some of the functional blocks of FIG. 1.

圖4A:本發明PPG訊號處理裝置的第二較佳實施例的一部份功能方塊圖。 4A is a partial functional block diagram of a second preferred embodiment of the PPG signal processing apparatus of the present invention.

圖4B:本發明PPG訊號處理裝置的第二較佳實施例的另一部份功能方塊圖。 FIG. 4B is another functional block diagram of a second preferred embodiment of the PPG signal processing apparatus of the present invention.

圖5A:本發明圖1的第一可適性數位濾波單元的一功能方塊圖。 FIG. 5A is a functional block diagram of the first adaptive digital filtering unit of FIG. 1 of the present invention.

圖5B:本發明圖4A的第一可適性數位濾波單元的一功能方塊圖。 FIG. 5B is a functional block diagram of the first adaptive digital filtering unit of FIG. 4A of the present invention.

圖6:本發明圖1的第二可適性數位濾波單元的一功能方塊圖。 Figure 6 is a functional block diagram of the second adaptive digital filtering unit of Figure 1 of the present invention.

圖7A:圖3A及圖3D轉換為一頻域波形圖。 FIG. 7A: FIG. 3A and FIG. 3D are converted into a frequency domain waveform diagram.

圖7B:圖3A及圖3G轉換為一頻域波形圖。 FIG. 7B: FIG. 3A and FIG. 3G are converted into a frequency domain waveform diagram.

圖7C:圖3A、圖3D及圖3G轉換為一頻域波形圖。 FIG. 7C: FIG. 3A, FIG. 3D and FIG. 3G are converted into a frequency domain waveform diagram.

圖8:依據圖7C中轉換圖3G的頻域波形圖,獲得心跳頻率的時域波形圖。 FIG. 8 is a time-domain waveform diagram of obtaining a heartbeat frequency according to the frequency domain waveform diagram of FIG. 7C.

圖9A:量測人體之一生理特徵訊號的時域波形圖。 Fig. 9A is a time-domain waveform diagram of measuring a physiological characteristic signal of a human body.

圖9B:圖9A轉換為一頻域波形圖。 Figure 9B: Figure 9A is converted to a frequency domain waveform diagram.

圖9C:依據圖9B獲得心跳頻率的時域波形圖。 Figure 9C: Time domain waveform diagram of the heartbeat frequency obtained in accordance with Figure 9B.

圖9D:正常心跳頻率的一時域波圖。 Figure 9D: A time domain waveform of the normal heartbeat frequency.

本發明係主要針對一種反應人體生理訊號的光體積變化描述波形(PPG)訊號,並對其進行的處理裝置及其方法,以下以實施例詳加說明本發明PPG訊號的處理裝置及方法的技術內容。 The present invention is mainly directed to a light volume change description waveform (PPG) signal reflecting a physiological signal of a human body, and a processing device and a method therefor. The following describes the technology of the processing device and method of the PPG signal of the present invention in detail by way of examples. content.

首先請參閱圖1所示,係為本發明PPG訊號處理裝置的一較佳實施例的功能方塊圖,其包含有一PPG訊號擷取單元10、一運動資訊擷取單元20、一第一可適性數位濾波單元30及一第二可適性數位濾波單元40;其中該第一可適性數位濾波單元30係電連接至該PPG訊號擷取單元10及該運動資訊擷取單元20,該第二可適性數位濾波單元40係電連接至該第一可適性數位濾波單元30。 FIG. 1 is a functional block diagram of a PPG signal processing apparatus according to a preferred embodiment of the present invention, which includes a PPG signal capturing unit 10, a motion information capturing unit 20, and a first suitability. The digital adaptive filtering unit 30 and the second adaptive digital filtering unit 40 are electrically connected to the PPG signal capturing unit 10 and the motion information capturing unit 20, and the second adaptability The digital filtering unit 40 is electrically connected to the first adaptive digital filtering unit 30.

請配合參閱圖2,上述PPG訊號擷取單元10若應用於一種如電子手錶的穿戴式電子裝置60,可採用紅外光元件、綠光元件、紅光元件或雷射光元件等發光元件,藉由照射手腕50的血管51獲得對應該血管51收縮的一第一PPG訊號PPG(如圖3A所示)。惟於檢測手腕同時人體活動非為靜態,故該第一PPG訊號PPG包含有運動偽影的干擾訊號,即如圖7A所示,當圖3A的第一PPG訊號PPG經快速傅立葉轉換(FFT)至一頻域波形圖,頻域波形中包含二個明顯波峰,即分別為心跳訊號Sheart以及運動偽影的干擾訊號SmotionReferring to FIG. 2, if the PPG signal capturing unit 10 is applied to a wearable electronic device 60 such as an electronic wristwatch, a light emitting component such as an infrared light component, a green light component, a red light component, or a laser light component may be used. The blood vessel 51 that illuminates the wrist 50 obtains a first PPG signal PPG (shown in FIG. 3A) corresponding to the contraction of the blood vessel 51. However, when the wrist is detected and the human body activity is not static, the first PPG signal PPG includes an interference signal of motion artifacts, that is, as shown in FIG. 7A, when the first PPG signal PPG of FIG. 3A is subjected to fast Fourier transform (FFT). To the frequency domain waveform, the frequency domain waveform contains two distinct peaks, namely the heartbeat signal S heart and the motion signal S motion of the motion artifact.

如圖1所示,當該第一PPG訊號PPG應用於檢測人體的特定生理訊號(如心跳)時,由於人類的心跳訊號有特定的頻率範圍,因此可先將該PPG訊號擷取單元10所輸出的第一PPG訊號PPG輸出至一第一帶通濾波器11,該第一帶通濾波器11會自該第一PPG訊號PPG中濾除心跳訊號的頻率範圍以外的雜訊,再將經帶通濾波過的第一PPG訊號PPG_F(如圖3B所示)再輸出至一第一正規化器 12,調整經帶通濾波過的該第一PPG訊號PPG_F的尺度範圍後的第一PPG訊號PPG_C(如圖3C所示),再輸出至該第一可適性數位濾波單元30。此外,該第一正規化器12亦可使用一第一直流準位調整單元等訊號調整元件,以調整經帶通濾波過的該第一PPG訊號PPG_F的直流準位。 As shown in FIG. 1 , when the first PPG signal PPG is applied to detect a specific physiological signal (such as a heartbeat) of a human body, since the human heartbeat signal has a specific frequency range, the PPG signal capturing unit 10 may be first used. The output first PPG signal PPG is output to a first band pass filter 11, and the first band pass filter 11 filters out noise outside the frequency range of the heartbeat signal from the first PPG signal PPG, and then passes the noise. The bandpass filtered first PPG signal PPG_F (shown in FIG. 3B) is output to a first normalizer 12. The first PPG signal PPG_C (shown in FIG. 3C) after the scale range of the first PPG signal PPG_F filtered by the band pass is adjusted, and then output to the first adaptive digital filtering unit 30. In addition, the first normalizer 12 can also use a signal adjustment component such as a first DC level adjustment unit to adjust the DC level of the bandpass filtered first PPG signal PPG_F.

如圖1示,上述運動資訊擷取單元20用以擷取該手腕的運動資訊,特別是於擷取上述第一PPG訊號PPG的期間內同時擷取該運動資訊M,該運動資訊擷取單元20輸出至一第二直流準位調整單元21及一延遲電路22,以調整直流準位並延遲一段時間後,再輸出至該第一可適性數位濾波單元30。在本實施例中,再配合圖4A所示,該運動資訊擷取單元20係採用一個三軸動力感應器20a,故該運動資訊M包含有第一軸、第二軸及第三軸運動資訊X、Y、Z。此外,該三軸動力感應器20a所輸出的第一軸、第二軸及第三軸運算資訊X、Y、Z可較佳地依序分別輸出至一第二直流準位調整單元21及一延遲電路22,以調整其尺度範圍直流準位並延遲一段時間後,再輸出至該第一可適性數位濾波單元30。此外,該第二直流準位調整單元21及一延遲電路22可以一第二正規化器21a取代之,即如圖4B所示,該三軸動力感應器20a所輸出的第一軸、第二軸及第三軸運算資訊X、Y、Z可較佳地依序分別輸出至該第二正規化器21a,以調整其尺度範圍,再輸出至該第一可適性數位濾波單元30。 As shown in FIG. 1 , the motion information capturing unit 20 is configured to capture motion information of the wrist, and in particular, capture the motion information M during the period of capturing the first PPG signal PPG, and the motion information capturing unit The output 20 is output to the second DC level adjusting unit 21 and a delay circuit 22 to adjust the DC level and delay the period of time, and then output to the first adaptive digital filtering unit 30. In this embodiment, as shown in FIG. 4A, the motion information capturing unit 20 adopts a three-axis power sensor 20a, so the motion information M includes the first axis, the second axis, and the third axis motion information. X, Y, Z. In addition, the first axis, the second axis, and the third axis operation information X, Y, and Z outputted by the three-axis power sensor 20a are preferably sequentially output to a second DC level adjustment unit 21 and one. The delay circuit 22 adjusts the scale range of the DC level and delays it for a period of time before outputting to the first adaptive digital filtering unit 30. In addition, the second DC level adjusting unit 21 and a delay circuit 22 can be replaced by a second normalizer 21a, that is, as shown in FIG. 4B, the first axis and the second output by the three-axis power sensor 20a. The axis and the third axis operation information X, Y, and Z are preferably sequentially output to the second normalizer 21a, respectively, to adjust the scale range thereof, and then output to the first adaptive digital level filtering unit 30.

如圖1所示的第一可適性數位濾波單元30獲得經帶通濾波過與直流準位或尺度範圍調整過的該第一PPG訊號PPG_C,以及經過直流準位或尺度範圍調整後的運動資訊M_C,該第一可適性數位濾波單元可依據該運動資訊M_C,將該第一PPG訊號PPG_C所包含的大部份運動偽影干擾訊號予以消除,並輸出一第二PPG訊號Error_C。在本實施例,該第一可適性數位濾波單元30可較佳地使用最小平方演算法,其成本函數為:Error_C(k)=PPG_C(k)-m(k);其中Error_C(k)為本次的誤差值;PPG_C(k)為目前第一PPG訊號;m(k)為目前運動資 訊經數位濾波後的數值。該最小平方演算法可將該第一可適性數位濾波單元的誤差值最小化,以消除該第一PPG訊號中的大部份運動偽影干擾訊號。 The first adaptive digital filtering unit 30 shown in FIG. 1 obtains the first PPG signal PPG_C that has been band-pass filtered and adjusted with a DC level or a scale range, and the motion information after being adjusted by a DC level or a scale range. The M_C, the first adaptive digital filtering unit can cancel the majority of the motion artifact interference signals included in the first PPG signal PPG_C according to the motion information M_C, and output a second PPG signal Error_C. In this embodiment, the first adaptive digital filtering unit 30 can preferably use a least squares algorithm whose cost function is: Error _ C ( k )= PPG _ C ( k )- m ( k ); where Error_C (k) is the current error value; PPG_C(k) is the current first PPG signal; m(k) is the digitally filtered value of the current motion information. The least squares algorithm may minimize the error value of the first adaptive digital filtering unit to eliminate most of the motion artifact interference signals in the first PPG signal.

又該第一可適性數位濾波單元30實現上述最小平方演算法的架構,如圖1及圖5A所示,其包含有一第一有限脈衝響應數位濾波單元301、一減法器302及一權重調整單元303。其中該第一有限脈衝響應數位濾波單元301係連接至該運動資訊擷取單元20,將依序所接收的該運動資訊m予以數位濾波後輸出至該減法器302,由該減法器302將該第一PPG訊號PPG_C與經數位濾波後的該運動資訊M_C予以相減,以獲得該誤差值Error_C。由於該權重調整單元303係連接至該第一有限脈衝響應數位濾波單元301及該減法器302,故可依據該第一PPG訊號PPG_C與經數位濾波後的該運動資訊M_C予以相減後的誤差值Error_C,來調整該第一有限脈衝響應數位濾波單元301於每次數位濾波的權重值W,直到誤差值最小化後輸出該第二PPG訊號Error_C,即如圖3D所示。再請配合參閱圖7A所示,為圖3D的第二PPG訊號Error_C轉換至頻域波形,與圖3A同樣轉換至頻域波形相比較後可知,運動偽影的干擾訊號Smotion(1)已有效被抑制,波形中的最高峰即為心跳訊號Sheart(1)。 The first adaptive digital filtering unit 30 implements the architecture of the least squares algorithm described above. As shown in FIG. 1 and FIG. 5A, the first adaptive digital response filtering unit 301 includes a first finite impulse response digital filtering unit 301, a subtractor 302, and a weight adjusting unit. 303. The first finite impulse response digital filtering unit 301 is connected to the motion information capturing unit 20, and digitally filters the motion information m received in sequence, and outputs the motion information m to the subtractor 302, which is used by the subtractor 302. The first PPG signal PPG_C is subtracted from the digitally filtered motion information M_C to obtain the error value Error_C. Since the weight adjustment unit 303 is connected to the first finite impulse response digital filtering unit 301 and the subtractor 302, the error can be subtracted according to the first PPG signal PPG_C and the digitally filtered motion information M_C. The value Error_C is used to adjust the weight value W of the first finite impulse response digital filtering unit 301 to be filtered every time, until the error value is minimized, and the second PPG signal Error_C is output, as shown in FIG. 3D. Referring to FIG. 7A, the second PPG signal Error_C of FIG. 3D is converted to the frequency domain waveform, and compared with the frequency domain waveform as shown in FIG. 3A, the interference signal S motion (1) of the motion artifact has been known. Effectively suppressed, the highest peak in the waveform is the heartbeat signal S heart (1).

上述第一有限脈衝響應數位濾波器301的更新函數為:m(k+1)=m(k)+w(kM_C(k);其中m(k+1)為下一次擷取的該運動資訊經數位濾波後的數值,w(k)為該第一有限脈衝響應數位濾波單元的本次權重值,M_C(k)為目前運動資訊。該權重值係由以下公式計算:w(k+1)=w(k)+2×μ×Error_C(kX_C(k);其中w(k+1)為該第一有限脈衝響應數位濾波單元的下一次權重值,μ為誤差收斂係數。 The update function of the first finite impulse response digital filter 301 is: m ( k +1)= m ( k )+ w ( kM _ C ( k ); where m(k+1) is the next time The digitally filtered value of the motion information is taken, w(k) is the current weight value of the first finite impulse response digital filtering unit, and M_C(k) is the current motion information. The weight value is calculated by the following formula: w ( k +1)= w ( k )+2× μ × Error _ C ( kX _ C ( k ); where w(k+1) is the first The next weight value of the finite impulse response digital filtering unit, μ is the error convergence coefficient.

再請參閱圖4A及圖5B所示,本實施例為配合使用三軸動力感應器20a的運動資訊擷取單元,該三軸動力感應器20a連接有三個第一有限脈衝響應數位濾波單元301,且該第一可適性數位濾波單元30a的本次誤差值為: Error_C(k)=PPG_C(k)-y_0(k)-y_1(k)-y_2(k),而各該第一有限脈衝響應數位濾波單元301的更新函數分別如下:y_0(k+1)=y_0(k)+w_0(kX_C(k);y_1(k+1)=y_1(k)+w_1(kY_C(k);y_2(k+1)=y_2(k)+w_2(kZ_C(k);其中:X_C(k)為目前第一軸運動資訊;y_0(k+1)為下一次該第一軸運動資訊經數位濾波後的數值;Y_C(k)為目前第二軸運動資訊;y_1(k+1)為下一次該第二軸運動資訊經數位濾波後的數值;Z_C(k)為目前第三軸運動資訊;y_2(k+1)為下一筆該第三軸運動資訊經數位濾波後的數值。 Referring to FIG. 4A and FIG. 5B, the embodiment is a motion information capturing unit that cooperates with the three-axis power sensor 20a. The three-axis power sensor 20a is connected with three first finite impulse response digital filtering units 301. And the current error value of the first adaptive digital filtering unit 30a is: Error _ C ( k )= PPG _ C ( k )- y _0( k )- y _1( k )- y _2( k ), and The update functions of each of the first finite impulse response digital filtering units 301 are as follows: y _0( k +1)= y _0( k )+ w _0( kX _ C ( k ); y _1( k +1 )= y _1( k )+ w _1( kY _ C ( k ); y _2( k +1)= y _2( k )+ w _2( kZ _ C ( k ); X_C(k) is the current first axis motion information; y_0(k+1) is the digitally filtered value of the first axis motion information; Y_C(k) is the current second axis motion information; y_1(k+ 1) for the next time the second axis motion information is digitally filtered; Z_C(k) is the current third axis motion information; y_2(k+1) is the next third axis motion information digitally filtered Value.

此外,為使得該第一可適性數位濾波單元30具的誤差收斂係數可動態調整,加快誤差最小化的速度,如圖1所示,可進一步包含有一第一誤差收斂係數自動調整單元31,其包含以下動態產生該誤差收斂係數的步驟:(a)由該第一PPG訊號獲得其向量值;(b)將該第一PPG訊號轉換為矩陣,並取得該矩陣與轉置矩陣的內積,以獲得該第一PPG訊號的強度;(c)設定一先進先出型緩衝區;(d)自該先進先出型緩衝區中連續獲得步驟(b)的乘積;以及(e)選擇大於0且於緩衝區內的最大值的倒數的數值為該誤差收斂係數;其中該最大值為該先進先出型緩衝區內的最大乘積。 In addition, in order to make the error convergence coefficient of the first adaptive digital filtering unit 30 dynamically adjust, and speed up the error minimization, as shown in FIG. 1 , a first error convergence coefficient automatic adjusting unit 31 may be further included. The method includes the following steps: dynamically generating the error convergence coefficient: (a) obtaining the vector value from the first PPG signal; (b) converting the first PPG signal into a matrix, and obtaining an inner product of the matrix and the transposed matrix, Obtaining the intensity of the first PPG signal; (c) setting a first in first out buffer; (d) continuously obtaining the product of step (b) from the first in first out buffer; and (e) selecting greater than 0 And the value of the reciprocal of the maximum value in the buffer is the error convergence coefficient; wherein the maximum value is the largest product in the FIFO buffer.

再如圖1所示,上述第一可適性數位濾波單元20所輸出一第二PPG訊號Error_C雖然可濾除大部份運動偽影的干擾訊號,但仍有其它的干擾訊號,故可進一步將該第二PPG訊號Error_C依序輸出至一去極端值單元32、一第 二帶通濾波器33及一第三正規化器34,由該去極端值單元32設定一臨界值,將時域下的第二PPG訊號Error_C中能量大於臨界值的異常值消除,再由該第二帶通濾波器33濾除心跳訊號的頻率範圍以外的雜訊(如圖3E所示),最後經第三正規化器34將該第二PPG訊號的能量予以正規化,使其能量分佈於1及-1之間,如圖3E所示,以增加系統的工作動態範圍,如圖3F所示。 As shown in FIG. 1 , the first adaptive digital signal filtering unit 20 outputs a second PPG signal Error_C, which can filter out interference signals of most motion artifacts, but still has other interference signals, so it can be further The second PPG signal Error_C is sequentially outputted to a de-extreme value unit 32, a first The second band pass filter 33 and a third normalizer 34 are configured to set a threshold value by the extremum value unit 32, and eliminate the abnormal value of the second PPG signal Error_C in the time domain that is greater than the critical value, and then The second band pass filter 33 filters out noise outside the frequency range of the heartbeat signal (as shown in FIG. 3E), and finally normalizes the energy of the second PPG signal through the third normalizer 34 to make its energy distribution. Between 1 and -1, as shown in Figure 3E, to increase the operating dynamic range of the system, as shown in Figure 3F.

接著,將正規化後的第二PPG訊號PPG_N輸出至該第二可適性數位濾波單元40,將其中的周期性訊號的訊雜比(SNR)提高之後輸出一生理特徵訊號。請配合參閱圖1及圖6所示,在本實施例中該第二可適性數位濾波單元40包含有一第二有限脈衝響應數位濾波單元401、一減法器402及一權重調整單元403;其中該第二有限脈衝響應數位濾波單元401係透過一時間延遲單元404接收正規化後的第二PPG訊號PPG_N,以接收到延遲後的第二PPG訊號,並將該第二PPG訊號予以數位濾波後輸出至該減法器402,該減法器402則將本次接收到正規化後的第二PPG訊號PPG_N,與在本次之前△次的正規化第二PPG訊號PPG_N相減,以輸出一誤差值Error_P。該誤差值Error_P輸入至該權重調整單元403,以依據該誤差值調整該第二有限脈衝響應數位濾波單元401下次數位濾波的權重值W_P;當Error_P趨近於0時,經該第二有限脈衝響應數位濾波單元401數位濾波後輸出訊號,即為該周期性訊號;即如圖7B所示,圖3G的周期性訊號轉換為頻域波形,波形最高峰仍是心跳訊號Sheart(2),再參閱圖7C所示,將圖7A的圖3D轉換的頻域波形兩相比較後發現,圖3G周期性訊號Sheart(2)於頻域波形的峰值較圖3D第二PPG訊號Error_C於頻域波形的峰值高出Sd;是以,正規化後的第二PPG訊號Error_C經過第二可適性數位濾波單元40處理後,確實可將周期性訊號Sheart(2)的訊雜比(SNR)提高。 Then, the normalized second PPG signal PPG_N is output to the second adaptive digital filtering unit 40, and the signal-to-noise ratio (SNR) of the periodic signal is increased to output a physiological characteristic signal. Referring to FIG. 1 and FIG. 6 , in the embodiment, the second adaptive digital filtering unit 40 includes a second finite impulse response digital filtering unit 401 , a subtractor 402 and a weight adjusting unit 403 ; The second finite impulse response digital filtering unit 401 receives the normalized second PPG signal PPG_N through a time delay unit 404 to receive the delayed second PPG signal, and digitally filters the second PPG signal and outputs the second PPG signal. To the subtractor 402, the subtractor 402 subtracts the normalized second PPG signal PPG_N from the current normalized second PPG signal PPG_N before the current time to output an error value Error_P. . The error value Error_P is input to the weight adjustment unit 403 to adjust the weight value W_P of the bit-bit filtering of the second finite impulse response digital filtering unit 401 according to the error value; when the Error_P approaches 0, the second limited The digital signal filtered by the impulse response digital filtering unit 401 is the periodic signal; that is, as shown in FIG. 7B, the periodic signal of FIG. 3G is converted into a frequency domain waveform, and the highest peak of the waveform is still the heartbeat signal S heart (2) Referring to FIG. 7C, comparing the frequency domain waveforms of FIG. 7A and FIG. 3D, it is found that the peak value of the periodic signal S heart (2) in FIG. 3G is higher than that of the second PPG signal Error_C in FIG. 3D. The peak of the frequency domain waveform is higher than S d ; that is, after the normalized second PPG signal Error_C is processed by the second adaptive digital filtering unit 40, the signal to noise ratio of the periodic signal S heart (2) can be surely SNR) is improved.

在本實施例中,上述該第二有限脈衝響應數位濾波單元401輸出的該周期性訊號為:PPG_P(k+1)=PPG_P(k)+w_P(kPPG_N(k-△);其中: PPG_P(k+1)為下一次該周期性訊號經數位濾波後的數值;PPG_P(k)為目前周期性訊號經數位濾波後的數值;w_P(k)為本次該有限脈衝響應數位濾波單元的權重值;PPG_N(k-△)為本次之前△次的第二PPG訊號。而該第二可適性數位濾波單元的權重值為:w_P(k+1)=w_P(k)+2×μ×Error_P(kPPG_N(k-△);其中w_P(k+1)為下次該有限脈衝響應數位濾波單元的權重值;μ為該誤差收斂係數;及Error_P(k)為本次誤差值。該第二可適性數位濾波單元的誤差值為:Error_P(k)=PPG_N(k)-PPG_P(k);其中PPG_N(k)為目前第二PPG訊號。是以,當誤差接近為0,則該第二有限脈衝響應數位濾波單元輸出的該周期性訊號即接近實際的生理特徵訊號(心跳次數),故可依據周期性訊號計算心跳次數。 In this embodiment, the periodic signal output by the second finite impulse response digital filtering unit 401 is: PPG _ P ( k +1) = PPG _ P ( k ) + w _ P ( k ) × PPG _ N ( k -△); where: PPG_P(k+1) is the digitally filtered value of the next periodic signal; PPG_P(k) is the digitally filtered value of the current periodic signal; w_P(k) is The weight value of the finite impulse response digital filtering unit; PPG _ N ( k - △) is the second PPG signal of the previous Δ times. And the weight value of the second adaptive digital filtering unit is: w _ P ( k +1)= w _ P ( k )+2× μ × Error _ P ( kPPG _ N ( k −Δ); Where w_P(k+1) is the weight value of the next finite impulse response digital filtering unit; μ is the error convergence coefficient; and Error_P(k) is the current error value. The error value of the second adaptive digital filtering unit is: Error _ P ( k )= PPG _ N ( k )- PPG _ P ( k ); wherein PPG_N(k) is the current second PPG signal. Therefore, when the error is close to 0, the periodic signal output by the second finite impulse response digital filtering unit is close to the actual physiological characteristic signal (heartbeat number), so the heartbeat number can be calculated according to the periodic signal.

如圖1所示,為使得該第二可適性數位濾波單元30具的誤差收斂係數可動態調整,以加快誤差最小化的速度,同樣可進一步包含有一第二誤差收斂係數自動調整單元41,其包含以下步驟:(a)由該第二PPG訊號獲得其向量值;(b)將該第二PPG訊號轉換為矩陣,並對該矩陣與一轉置矩陣的內積,以獲得該第二PPG訊號的強度;(c)設定一先進先出型緩衝區;(d)自該先進先出型緩衝區中連續獲得步驟(b)的乘積;(e)選擇大於0且於緩衝區內最大值的倒數數值為該誤差收斂係數;其中該最大值為該先進先出型緩衝區內的最大乘積。 As shown in FIG. 1 , in order to make the error convergence coefficient of the second adaptive digital filtering unit 30 dynamically adjust to speed up the error minimization, a second error convergence coefficient automatic adjusting unit 41 may be further included. The method includes the following steps: (a) obtaining a vector value from the second PPG signal; (b) converting the second PPG signal into a matrix, and inner product of the matrix and a transposed matrix to obtain the second PPG (c) setting a first-in first-out buffer; (d) continuously obtaining the product of step (b) from the FIFO buffer; (e) selecting greater than 0 and max in the buffer The reciprocal value is the error convergence coefficient; wherein the maximum value is the largest product in the FIFO buffer.

欲使用圖3G的周期性訊號計算心跳次數,則經快速傳立葉轉換(FFT)後即如圖7B所示的頻域波形(X軸以指數(index)表示之,Y軸則是經過FFT後的能量頻譜),依據頻域波形計算每分鐘的心跳次數F heart =index×(fs/n)×60,其中fs為取樣頻率,n為FFT點數。請配合圖8所示,即為所計算出的該心跳頻率於 時域下波形圖,相較圖9C受運動偽影干擾的心跳波形圖可知,本發明的心跳頻率量測即不再受到運動偽影的干擾。 To calculate the heartbeat number using the periodic signal of FIG. 3G, the frequency domain waveform is shown in FIG. 7B after the fast Fourier transform (FFT) (the X axis is represented by an index, and the Y axis is after the FFT). The energy spectrum), the heartbeat number per minute is calculated according to the frequency domain waveform F heart = index × ( fs / n ) × 60, where fs is the sampling frequency and n is the FFT point number. Please refer to FIG. 8 , which is the waveform diagram of the calculated heartbeat frequency in the time domain. Compared with the heartbeat waveform diagram of the motion artifact interference in FIG. 9C , the heartbeat frequency measurement of the present invention is no longer subject to motion. The interference of artifacts.

由上述說明可知,本發明主要於擷取PPG訊號期間,以一運算資訊擷取單元擷取運動資訊,由於自人體擷取到的PPG訊號會包含有運動偽影的干擾訊號,故該第一可適性數位濾波單元依據運動資訊,將大部份的運動偽影干擾訊號自該PPG訊號中濾除,再將濾除後的PPG訊號輸出至一第二可適性數位濾波單元,以擷取該第二PPG訊號中的周期性訊號並提高周期性訊號的訊雜比,作為讀出精確的心跳訊號的依據。因此,本發明的PPG訊號處理裝置可應用於穿戴式心跳檢測裝置上,提供正確的心跳資訊。 It can be seen from the above description that the present invention mainly captures motion information by an operation information acquisition unit during the capture of the PPG signal. Since the PPG signal extracted from the human body contains an interference signal of motion artifacts, the first The adaptive digital filtering unit filters out most of the motion artifact interference signals from the PPG signal according to the motion information, and outputs the filtered PPG signal to a second adaptive digital filtering unit to capture the The periodic signal in the second PPG signal increases the signal-to-noise ratio of the periodic signal as the basis for reading the accurate heartbeat signal. Therefore, the PPG signal processing apparatus of the present invention can be applied to a wearable heartbeat detecting apparatus to provide correct heartbeat information.

以上所述僅是本發明的較佳實施例而已,並非對本發明做任何形式上的限制,雖然本發明已以較佳實施例揭露如上,然而並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明技術方案的範圍內,當可利用上述揭示的技術內容作出些許更動或修飾為等同變化的等效實施例,但凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化與修飾,均仍屬於本發明技術方案的範圍內。 The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and A person skilled in the art can make some modifications or modifications to equivalent embodiments by using the above-disclosed technical contents without departing from the technical scope of the present invention. The present invention is not limited to any simple modifications, equivalent changes and modifications of the above embodiments.

10‧‧‧PPG訊號擷取單元 10‧‧‧PPG signal acquisition unit

11‧‧‧第一帶通濾波器 11‧‧‧First bandpass filter

12‧‧‧第一正規化器 12‧‧‧First Normalizer

20‧‧‧運動資訊擷取單元 20‧‧‧Sports Information Capture Unit

21‧‧‧第二直流準位調整單元 21‧‧‧Second DC level adjustment unit

22‧‧‧延遲電路 22‧‧‧Delay circuit

30‧‧‧第一可適性數位濾波單元 30‧‧‧First adaptive digital filtering unit

31‧‧‧第一誤差收斂係數自動調整單元 31‧‧‧First error convergence coefficient automatic adjustment unit

32‧‧‧去極端值單元 32‧‧‧Go to the extreme value unit

33‧‧‧第二帶通濾波器 33‧‧‧Second bandpass filter

34‧‧‧第三正規化器 34‧‧‧ Third Normalizer

40‧‧‧第二可適性數位濾波單元 40‧‧‧Second Adaptive Digital Filter Unit

41‧‧‧第二誤差收斂係數自動調整單元 41‧‧‧Second error convergence coefficient automatic adjustment unit

Claims (21)

一種光體積變化描述波形的處理裝置,包括:一光體積變化描述波形(PPG)訊號擷取單元,係用以擷取第一PPG訊號;一運動資訊擷取單元,係用以擷取一運動資訊;一第一可適性數位濾波單元,係電連接至該PPG訊號擷取單元及該運動資訊擷取單元,以接收該第一PPG訊號及該運動資訊,並依據該運動資訊,將該第一PPG訊號所包含的運動偽影干擾訊號予以消除,並輸出第二PPG訊號;一第二可適性數位濾波單元,係電連接至該第一可適性數位濾波單元,以接收該第二PPG訊號,並擷取該第二PPG訊號中的周期性訊號,並提高該周期性訊號的訊雜比後輸出一生理特徵訊號。 A processing device for describing a waveform of a light volume change, comprising: a light volume change description waveform (PPG) signal acquisition unit for capturing a first PPG signal; and a motion information acquisition unit for capturing a motion a first adaptive digital filtering unit electrically connected to the PPG signal capturing unit and the motion information capturing unit to receive the first PPG signal and the motion information, and according to the motion information, the first The motion artifact interference signal included in a PPG signal is eliminated, and the second PPG signal is output; a second adaptive digital filtering unit is electrically connected to the first adaptive digital filtering unit to receive the second PPG signal And extracting the periodic signal in the second PPG signal, and increasing the signal-to-noise ratio of the periodic signal to output a physiological characteristic signal. 如請求項1所述之光體積變化描述波形的處理裝置,該第一可適性數位濾波單元係包含有:一第一有限脈衝響應數位濾波單元,係電連接至該運動資訊擷取單元,將依序接收的該運動資訊予以數位濾波後輸出;一減法器,係連接該PPG訊號擷取單元及該第一有限脈衝響應數位濾波單元,將該第一PPG訊號與經數位濾波後的該運動資訊予以相減,以輸出該第二PPG訊號;及一權重調整單元,係連接至該第一有限脈衝響應數位濾波單元及該減法器,依據該第一PPG訊號與經數位濾波後的該運動資訊予以相減後的誤差值,調整該第一有限脈衝響應數位濾波單元於每次數位濾波的權重值。 The processing apparatus for describing a waveform of a light volume change according to claim 1, wherein the first adaptive digital filtering unit comprises: a first finite impulse response digital filtering unit electrically connected to the motion information capturing unit, The motion information received in sequence is digitally filtered and output; a subtractor is connected to the PPG signal acquisition unit and the first finite impulse response digital filtering unit, and the first PPG signal and the digitally filtered motion are The information is subtracted to output the second PPG signal; and a weight adjustment unit is coupled to the first finite impulse response digital filtering unit and the subtractor, according to the first PPG signal and the digitally filtered motion The information is subtracted from the error value, and the weight value of the first finite impulse response digital filtering unit is filtered for each bit. 如請求項2所述之光體積變化描述波形的處理裝置,該第一可適性數位濾波單元使用最小平方演算法,其成本函數為:E[Error_C(k)2],其中Error_C(k)=PPG_C(k)-m(k);其中:Error_C(k)為本次的誤差值; PPG_C(k)為目前第一PPG訊號;及m(k)為目前運動資訊經數位濾波後的數值。 A processing device for describing a waveform of a light volume change according to claim 2, wherein the first adaptive digital filtering unit uses a least squares algorithm whose cost function is: E [ Error _ C ( k ) 2 ], wherein Error _ C ( k )= PPG _ C ( k )- m ( k ); where: Error_C(k) is the current error value; PPG_C(k) is the current first PPG signal; and m(k) is the current motion information Digitally filtered value. 如請求項3所述之光體積變化描述波形的處理裝置,該第一有限脈衝響應數位濾波器的更新函數為:m(k+1)=m(k)+w(kM_C(k);其中:m(k+1)為下一次擷取的該運動資訊經數位濾波後的數值;w(k)為該第一有限脈衝響應數位濾波單元的本次權重值;及M_C(k)為目前運動資訊。 A processing device for describing a waveform of a light volume change according to claim 3, wherein the update function of the first finite impulse response digital filter is: m ( k +1)= m ( k )+ w ( kM _ C ( k ); wherein: m(k+1) is a digitally filtered value of the motion information captured next time; w(k) is the current weight value of the first finite impulse response digital filtering unit; and M_C (k) is the current sports information. 如請求項4所述之光體積變化描述波形的處理裝置,該運動資訊擷取單元係為一個三軸動力感應器,該運動資訊包含有第一軸、第二軸及第三軸運動資訊,該三軸動力感應器連接有三個第一有限脈衝響應數位濾波單元;其中:該第一可適性數位濾波單元的本次誤差值為:Error_C(k)=PPG_C(k)-y_0(k)-y_1(k)-y_2(k);各該第一有限脈衝響應數位濾波器的更新函數分別為:y_0(k+1)=y_0(k)+w_0(kX_C(k);y_1(k+1)=y_1(k)+w_1(kY_C(k);y_2(k+1)=y_2(k)+w_2(kZ_C(k);其中:X_C(k)為目前第一軸運動資訊;y_0(k+1)為下一次該第一軸運動資訊經數位濾波後的數值;Y_C(k)為目前第二軸運動資訊;y_1(k+1)為下一次該第二軸運動資訊經數位濾波後的數值;Z_C(k)為目前第三軸運動資訊;y_2(k+1)為下一筆該第三軸運動資訊經數位濾波後的數值。 The processing device for describing a waveform according to the light volume change described in claim 4, wherein the motion information capturing unit is a three-axis power sensor, and the motion information includes first axis, second axis, and third axis motion information. The three-axis dynamic inductor is connected with three first finite impulse response digital filtering units; wherein: the current error value of the first adaptive digital filtering unit is: Error _ C ( k )= PPG _ C ( k )- y _0( k )- y _1( k )- y _2( k ); the update functions of each of the first finite impulse response digital filters are: y _0( k +1)= y _0( k )+ w _0( kX _ C ( k ); y _1( k +1)= y _1( k )+ w _1( kY _ C ( k ); y _2( k +1)= y _2( k ) + w _2( kZ _ C ( k ); where: X_C(k) is the current first axis motion information; y_0(k+1) is the value of the next time the first axis motion information is digitally filtered; Y_C(k) is the current second axis motion information; y_1(k+1) is the digitally filtered value of the next second axis motion information; Z_C(k) is the current third axis motion information; y_2(k+ 1) The numerically filtered value of the next third axis motion information. 如請求項4所述之光體積變化描述波形的處理裝置,該權重值係由以下公式計算:w(k+1)=w(k)+2×μ×Error_C(kX_C(k);其中:w(k+1)為該第一有限脈衝響應數位濾波單元的下一次權重值;及μ為誤差收斂係數。 A processing device for describing a waveform of a light volume change as described in claim 4, wherein the weight value is calculated by the following formula: w ( k +1) = w ( k ) + 2 × μ × Error _ C ( k ) × X _ C ( k ); wherein: w(k+1) is the next weight value of the first finite impulse response digital filtering unit; and μ is the error convergence coefficient. 如請求項6所述之光體積變化描述波形的處理裝置,該第一可適性數位濾波單元進一步包含有一第一誤差收斂係數自動調整單元,其包含以下動態產生該誤差收斂係數的步驟:(a)由該第一PPG訊號獲得其向量值;(b)將該第一PPG訊號轉換為矩陣,並取得該矩陣與轉置矩陣的內積,以獲得該第一PPG訊號的強度;(c)設定一先進先出型緩衝區;(d)自該先進先出型緩衝區中連續獲得步驟(b)的乘積;(e)選擇大於0且於緩衝區中最大值的倒數數值為該誤差收斂係數;其中該最大值為該先進先出型緩衝區內的最大乘積。 The processing apparatus for describing a waveform of a light volume change according to claim 6, wherein the first adaptive digital filtering unit further comprises a first error convergence coefficient automatic adjusting unit, comprising: the following step of dynamically generating the error convergence coefficient: (a Obtaining a vector value from the first PPG signal; (b) converting the first PPG signal into a matrix, and obtaining an inner product of the matrix and the transposed matrix to obtain an intensity of the first PPG signal; (c) Setting a first-in first-out buffer; (d) continuously obtaining the product of step (b) from the FIFO buffer; (e) selecting a reciprocal value greater than 0 and the maximum value in the buffer as the error converges Coefficient; where the maximum is the largest product within the FIFO buffer. 如請求項1所述之光體積變化描述波形的處理裝置,其中該第二可適性數位濾波單元係包含有:一第二有限脈衝響應數位濾波單元,係透過一時間延遲單元連接至該第一可適性數位濾波單元,以接收該第二PPG訊號,並將該第二PPG訊號予以數位濾波後輸出該生理特徵訊號;一減法器,係連接該第一可適性數位濾波單元及該第二有限脈衝響應數位濾波單元,依序將該第一PPG訊號與對應的經數位濾波的第二PPG訊號予以相減,以輸出一誤差值;及 一權重調整單元,係連接至該第二有限脈衝響應數位濾波單元及該減法器,依據該第二PPG訊號與在此之前所接收的其中一次第二PPG訊號予以相減後的誤差值,調整該第二有限脈衝響應數位濾波單元每次數位濾波的權重值。 The processing device for describing a waveform of a light volume change according to claim 1, wherein the second adaptive digital filtering unit comprises: a second finite impulse response digital filtering unit connected to the first through a time delay unit The adaptive digital filtering unit receives the second PPG signal and digitally filters the second PPG signal to output the physiological characteristic signal; a subtractor is connected to the first adaptive digital filtering unit and the second limited The impulse response digital filtering unit sequentially subtracts the first PPG signal and the corresponding digitally filtered second PPG signal to output an error value; and a weight adjustment unit is connected to the second finite impulse response digital filtering unit and the subtractor, and is adjusted according to the error value of the second PPG signal and the second PPG signal received beforehand. The second finite impulse response digital filter unit weights the number of bits per bit. 如請求項8所述之光體積變化描述波形的處理裝置,其中該第二有限脈衝響應數位濾波單元輸出的該周期性訊號為:PPG_P(k+1)=PPG_P(k)+w_P(kPPG_N(k-△);其中:PPG_P(k+1)為下一次該周期性訊號經數位濾波後的數值;PPG_P(k)為目前周期性訊號經數位濾波後的數值;w_P(k)為本次該有限脈衝響應數位濾波單元的權重值;及PPG_N(k-△)為本次之前△次的第二PPG訊號。 The processing device for describing a waveform according to the optical volume change described in claim 8, wherein the periodic signal output by the second finite impulse response digital filtering unit is: PPG _ P ( k +1)= PPG _ P ( k )+ w _ P ( kPPG _ N ( k −Δ); where: PPG_P(k+1) is the digitally filtered value of the next periodic signal; PPG_P(k) is digitally filtered by the current periodic signal The latter value; w_P(k) is the weight value of the finite impulse response digital filtering unit; and PPG _ N ( k - Δ) is the second PPG signal of the previous Δ times. 如請求項9所述之光體積變化描述波形的處理裝置,該第二可適性數位濾波單元的權重值為:w_P(k+1)=w_P(k)+2×μ×Error_P(kPPG_N(k-△);其中w_P(k+1)為下次該有限脈衝響應數位濾波單元的權重值;μ為該誤差收斂係數;及Error_P(k)為本次誤差值。 A processing device for describing a waveform of a light volume change according to claim 9, wherein the weight value of the second adaptive digital filtering unit is: w _ P ( k +1)= w _ P ( k )+2× μ × Error _ P ( kPPG _ N ( k −Δ); where w_P(k+1) is the weight value of the next finite impulse response digital filtering unit; μ is the error convergence coefficient; and Error_P(k) is Secondary error value. 如請求項10所述之光體積變化描述波形的處理裝置,該第二可適性數位濾波單元的誤差值為:Error_P(k)=PPG_N(k)-PPG_P(k);其中:PPG_N(k)為目前第二PPG訊號。 The processing device for describing the waveform of the optical volume change according to claim 10, wherein the error value of the second adaptive digital filtering unit is: Error _ P ( k ) = PPG _ N ( k ) - PPG _ P ( k ); Where: PPG_N(k) is the current second PPG signal. 如請求項11所述之光體積變化描述波形的處理裝置,該第一可適性數位濾波單元進一步包含有一第一誤差收斂係數自動調整單元,其包含以下步驟產生動態誤差收斂係數:(a)由該第一PPG訊號獲得其向量值; (b)將該第一PPG訊號轉換為矩陣,並對該矩陣與一轉置矩陣的內積,以獲得該第一PPG訊號的強度;(c)設定一先進先出型緩衝區(d)自該先進先出型緩衝區中連續獲得步驟(b)的乘積;(e)選擇大於0且於緩衝區內的最大值的倒數的數值為該誤差收斂係數;其中該最大值為該先進先出型緩衝區內的最大乘積。 The processing apparatus for describing a waveform of a light volume change according to claim 11, wherein the first adaptive digital filtering unit further comprises a first error convergence coefficient automatic adjusting unit, comprising the following steps: generating a dynamic error convergence coefficient: (a) The first PPG signal obtains its vector value; (b) converting the first PPG signal into a matrix, and inner product of the matrix and a transposed matrix to obtain the intensity of the first PPG signal; (c) setting a first-in first-out buffer (d) The product of step (b) is successively obtained from the FIFO buffer; (e) the value of the reciprocal of the maximum value greater than 0 and within the buffer is selected as the error convergence coefficient; wherein the maximum value is the advanced first The largest product in the outgoing buffer. 如請求項11所述之光體積變化描述波形的處理裝置,該第二可適性數位濾波單元進一步包含有一第二誤差收斂係數自動調整單元,其包含以下步驟產生動態誤差收斂係數:(a)由該第二PPG訊號獲得其向量值;(b)將該第二PPG訊號轉換為矩陣,並對該矩陣與一轉置矩陣的內積,以獲得該第二PPG訊號的強度;(c)設定一先進先出型緩衝區(d)自該先進先出型緩衝區中連續獲得步驟(b)的乘積;(e)選擇大於0且於緩衝區內最大值的倒數的數值為該誤差收斂係數;其中該最大值為該先進先出型緩衝區內的最大乘積。 A processing device for describing a waveform of a light volume change according to claim 11, wherein the second adaptive digital filtering unit further comprises a second error convergence coefficient automatic adjusting unit, comprising the following steps: generating a dynamic error convergence coefficient: (a) The second PPG signal obtains its vector value; (b) converts the second PPG signal into a matrix, and the inner product of the matrix and a transposed matrix to obtain the strength of the second PPG signal; (c) setting a first-in first-out buffer (d) continuously obtains the product of step (b) from the FIFO buffer; (e) selects a value greater than 0 and a reciprocal of the maximum value in the buffer as the error convergence coefficient Where the maximum value is the largest product within the FIFO buffer. 如請求項1至13中任一項所述之光體積變化描述波形的處理裝置,該PPG訊號擷取單元進一步依序透過一第一帶通濾波器及一第一直流準位調整單元連接至該第一可適性數位濾波單元,或進一步依序透過該第一帶通濾波器及一第一正規化連接至該第一可適性數位濾波單元。 The apparatus for processing a light volume change description waveform according to any one of claims 1 to 13, wherein the PPG signal acquisition unit is further connected through a first band pass filter and a first DC level adjustment unit. Up to the first adaptive digital filtering unit, or further connected to the first adaptive digital filtering unit through the first band pass filter and a first normalization. 如請求項1至13中任一項所述之光體積變化描述波形的處理裝置,該運動資訊擷取單元進一步透過一第二直流準位調整單元及一延遲電路連接至該第一可適性數位濾波單元,或進一步透過一第二正規化器連接至該第一可適性數位濾波單元。 The processing device for describing a waveform of a light volume change according to any one of claims 1 to 13, wherein the motion information capturing unit is further connected to the first adaptive digit through a second DC level adjusting unit and a delay circuit. The filtering unit is further connected to the first adaptive digital filtering unit via a second normalizer. 如請求項1至13中任一項所述之光體積變化描述波形的處理裝置,該第一可適性數位濾波單元進一步依序透過一去極端值單元、一第二帶通濾波器及一第三正規化器連接至該第二可適性數位濾波單元。 The processing device for describing a waveform of a light volume change according to any one of claims 1 to 13, wherein the first adaptive digital filtering unit further sequentially transmits a de-extreme value unit, a second band-pass filter, and a first A triple normalizer is coupled to the second adaptive digital filtering unit. 一種光體積變化描述波形的處理方法,包括以下步驟:(a)獲得一第一光體積變化描述波形(PPG)訊號以及運動資訊;(b)依據該運動資訊,將該第一PPG訊號所包含運動偽影干擾訊號予以消除,並輸出一第二PPG訊號;(c)擷取該第二PPG訊號中的一周期性訊號,並提高該周期性訊號的訊雜比後輸出一生理特徵訊號。 A method for processing a light volume change description waveform, comprising the steps of: (a) obtaining a first light volume change description waveform (PPG) signal and motion information; and (b) including the first PPG signal according to the motion information. The motion artifact interference signal is cancelled, and a second PPG signal is output; (c) capturing a periodic signal in the second PPG signal, and increasing the signal-to-noise ratio of the periodic signal to output a physiological characteristic signal. 如請求項17所述之光體積變化描述波形的處理方法,於該步驟(b)中,係使用一第一可適性數位濾波器消除該第一PPG訊號的運動偽影干擾訊號。 The processing method of the optical volume change description waveform according to claim 17, wherein in the step (b), the first adaptive digital interference filter is used to cancel the motion artifact interference signal of the first PPG signal. 如請求項18所述之光體積變化描述波形的處理方法,於該步驟(b)中使用該第一可適性數位濾波器消除該第一PPG訊號的運動偽影干擾訊號,係包含以下步驟:(b1)將該運動資訊予以數位濾波後輸出;(b2)將該第一PPG訊號與對應的經數位濾波的運動資訊予以相減,以輸出該第二PPG訊號;及(b3)依據該第一PPG訊號與對應的經數位濾波的運動資訊予以相減後的誤差值,調整該第一可適性數位濾波器於每次數位濾波的權重值。 The processing method of the optical volume change description waveform according to claim 18, wherein the first adaptive digital signal filter is used to cancel the motion artifact interference signal of the first PPG signal in the step (b), which comprises the following steps: (b1) digitally filtering and outputting the motion information; (b2) subtracting the first PPG signal from the corresponding digitally filtered motion information to output the second PPG signal; and (b3) according to the The error value of the PPG signal and the corresponding digitally filtered motion information is subtracted, and the weight value of the first adaptive digital filter filtered by each bit is adjusted. 如請求項17至19中任一項所述之光體積變化描述波形的處理方法,於該步驟(c)中使用該第二可適性數位濾波器數位濾除該第二PPG訊號所包含的雜訊,以擷取該第二PPG訊號中的該周期性訊號,係包含以下步驟:(c1)將該第二PPG訊號予以數位濾波後輸出該生理特徵訊號; (c2)將該第一PPG訊號與對應的經數位濾波的第二PPG訊號予以相減,以輸出一誤差值;及(c3)依據該第二PPG訊號與在此之前所接收的其中一第二PPG訊號予以相減後的誤差值,調整該第二可適性數位濾波器於每次數位濾波的權重值。 The method for processing a light volume change description waveform according to any one of claims 17 to 19, wherein the second adaptive digital filter digit is used in the step (c) to filter out impurities included in the second PPG signal. The method for extracting the periodic signal in the second PPG signal comprises the following steps: (c1) digitally filtering the second PPG signal to output the physiological characteristic signal; (c2) subtracting the first PPG signal from the corresponding digitally filtered second PPG signal to output an error value; and (c3) according to the second PPG signal and one of the first received before The error value of the second PPG signal is subtracted, and the weight value of the second adaptive digital filter filtered by each bit is adjusted. 如請求項20所述之光體積變化描述波形的處理方法,各該第一及第二可適性數位濾波器的一誤差收斂係數為動態誤差收斂係數。 The processing method of the optical volume change description waveform described in claim 20, wherein an error convergence coefficient of each of the first and second adaptive digital filters is a dynamic error convergence coefficient.
TW104125755A 2014-09-18 2015-08-07 Ppg signal processing device and method thereof TWI558375B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510565554.0A CN105433931A (en) 2014-09-18 2015-09-08 Processing device and method for describing waveform by light volume change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462051957P 2014-09-18 2014-09-18

Publications (2)

Publication Number Publication Date
TW201611776A TW201611776A (en) 2016-04-01
TWI558375B true TWI558375B (en) 2016-11-21

Family

ID=56360622

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104125755A TWI558375B (en) 2014-09-18 2015-08-07 Ppg signal processing device and method thereof

Country Status (1)

Country Link
TW (1) TWI558375B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113558596A (en) * 2017-04-27 2021-10-29 原相科技股份有限公司 Method for measuring physiological characteristics
TWI747057B (en) * 2019-10-07 2021-11-21 宏碁智醫股份有限公司 Heart rhythm processing method, electronic device, and computer program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058456A1 (en) * 2003-07-07 2005-03-17 Yoo Sun Kook Photoplethysmography (PPG) device and the method thereof
US20120197137A1 (en) * 2009-10-06 2012-08-02 Koninklijke Philips Electronics N.V. Method and system for carrying out photoplethysmography
TWM451943U (en) * 2012-11-28 2013-05-01 中原大學 Audio and optical pressure multi-parameter arterial measurement device
US20130342670A1 (en) * 2012-06-20 2013-12-26 Xerox Corporation Continuous cardiac pulse rate estimation from multi-channel source video data with mid-point stitching

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058456A1 (en) * 2003-07-07 2005-03-17 Yoo Sun Kook Photoplethysmography (PPG) device and the method thereof
US20120197137A1 (en) * 2009-10-06 2012-08-02 Koninklijke Philips Electronics N.V. Method and system for carrying out photoplethysmography
US20130342670A1 (en) * 2012-06-20 2013-12-26 Xerox Corporation Continuous cardiac pulse rate estimation from multi-channel source video data with mid-point stitching
TWM451943U (en) * 2012-11-28 2013-05-01 中原大學 Audio and optical pressure multi-parameter arterial measurement device

Also Published As

Publication number Publication date
TW201611776A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
TWI481196B (en) Bioelectricity signal sensing apparatus and device for canceling baseline drift in bioelectricity signal
KR102532764B1 (en) Apparatus and method for estimating biophysiological rates
Pandia et al. Motion artifact cancellation to obtain heart sounds from a single chest-worn accelerometer
CN105433931A (en) Processing device and method for describing waveform by light volume change
CN112220471A (en) Temporal interference removal and improved heart rate measurement tracking mechanism
CN103596492A (en) Ear wearable vital sign monitor
WO2013165740A1 (en) Systems and methods for identifying portions of a physilogical signal usable for determining physiiological information
TWI466657B (en) Method for measuring physiological parameters
US9949695B2 (en) Photoelectric type pulse signal measuring method and apparatus
WO2011063092A1 (en) Apparatus and methods for monitoring heart rate and respiration
WO2014176819A2 (en) Non-invasive blood pressure detection method
TWI558375B (en) Ppg signal processing device and method thereof
JP6323809B2 (en) Biological information estimation apparatus and biological information estimation method
JP2021509853A (en) Equipment used in wearable cuffs
WO2017091819A1 (en) Heart rate estimation apparatus using digital automatic gain control
CN110292372B (en) Detection device
CN105939657B (en) A kind of exercise heart rate measurement method and its wearable device
CN114424034A (en) Front-end circuit and calibration method of transmission signal
US10980485B2 (en) Measuring apparatus, measuring method and non-transitory computer readable medium
CN102579023B (en) Method and device for processing pulse wave signal and electronic blood pressure measuring device
JP2013106837A (en) Heart rate detection method, heart rate detector, and mental stress measuring apparatus
CN203828915U (en) Device for measuring blood pressure
TW201801671A (en) Method of heart rate detection
US20200069201A1 (en) Heart rate detection system and wearable device using the same
Wu et al. An ECG extraction and reconstruction system with dynamic EMG filtering implemented on an ARM chip