TWI557916B - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
TWI557916B
TWI557916B TW103114930A TW103114930A TWI557916B TW I557916 B TWI557916 B TW I557916B TW 103114930 A TW103114930 A TW 103114930A TW 103114930 A TW103114930 A TW 103114930A TW I557916 B TWI557916 B TW I557916B
Authority
TW
Taiwan
Prior art keywords
layer
trench
oxide
semiconductor device
nitride
Prior art date
Application number
TW103114930A
Other languages
Chinese (zh)
Other versions
TW201541643A (en
Inventor
拉胡爾 庫馬
馬洛宜 庫馬
許健
楊紹明
路迪 施
李家豪
杜尙暉
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW103114930A priority Critical patent/TWI557916B/en
Publication of TW201541643A publication Critical patent/TW201541643A/en
Application granted granted Critical
Publication of TWI557916B publication Critical patent/TWI557916B/en

Links

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing same

本揭露係有關於半導體裝置,且特別係有關於一種超接面(super junction)半導體裝置及其製造方法。 The present disclosure relates to semiconductor devices, and more particularly to a super junction semiconductor device and a method of fabricating the same.

近年來由於對環保產品及綠色科技的提倡,業界對省電電子裝置有著大量的需求。為了滿足此日益增加的需求,半導體產業對於能源的部分更加地關注。因此,可提供較佳能源效率的超接面金氧半場效電晶體被開發出來。相較於傳統平面金氧半場效電晶體結構,超接面金氧半場效電晶體可在不影響裝置之電壓容差(voltage tolerance)的情況下將導通電阻降至非常低的程度。因此,可得到每單位面積具有低導通電阻的金氧半場效電晶體。 In recent years, due to the promotion of environmentally friendly products and green technology, the industry has a large demand for power-saving electronic devices. To meet this growing demand, the semiconductor industry is paying more attention to the energy sector. Therefore, a super junction gold oxide half field effect transistor which can provide better energy efficiency has been developed. Compared with the traditional planar gold oxide half field effect transistor structure, the super junction gold oxide half field effect transistor can reduce the on-resistance to a very low level without affecting the voltage tolerance of the device. Therefore, a gold oxide half field effect transistor having a low on-resistance per unit area can be obtained.

典型的超接面金氧半場效電晶體裝置包括兩個區域:主動區(或稱為晶胞區(cell region))及終端區(termination region)。此超接面金氧半場效電晶體裝置的終端區係設計用來承受(sustain)裝置的橫向(transverse)電壓。當此終端區所承受的電壓較小時,在裝置的垂直及水平方向會產生極大的電場。故此裝置的終端區容易崩潰。 A typical super junction gold oxide half field effect transistor device includes two regions: an active region (also referred to as a cell region) and a termination region. The terminal area of the super junction gold oxide half field effect transistor device is designed to sustain the transverse voltage of the device. When the voltage applied to the terminal area is small, a large electric field is generated in the vertical and horizontal directions of the device. Therefore, the terminal area of the device is prone to collapse.

因此,業界亟須一種改良之超接面金氧半場效電晶體裝置。 Therefore, there is a need in the industry for an improved super junction gold oxide half field effect transistor device.

本揭露提供一種半導體裝置,包括:基底,具有第一導電型,且具有主動區及終端區(termination region);磊晶層,設於基底上且具有第一導電型;多個第一溝槽,設於主動區之磊晶層中;多個第二溝槽,設於終端區之磊晶層中;佈植阻擋層,形成於第一溝槽與第二溝槽之底部;襯層,具有第二導電型,且沿著第一溝槽與第二溝槽之側壁順應性形成,其中第一導電型與第二導電型相異;介電材料,填入第一溝槽與第二溝槽,且分別定義多個第一柱及多個第二柱;閘極介電層,設於磊晶層上;兩個浮置閘極(floating gate),形成於閘極介電層上,且設於距離終端區最遠的第一柱的相反側上;源極區,形成於浮置閘極之間;層間介電層,覆蓋閘極介電層與浮置閘極;及接觸插塞,形成於源極區上且穿過層間介電層。 The present disclosure provides a semiconductor device including: a substrate having a first conductivity type and having an active region and a termination region; an epitaxial layer disposed on the substrate and having a first conductivity type; and a plurality of first trenches Provided in the epitaxial layer of the active region; a plurality of second trenches disposed in the epitaxial layer of the termination region; a implant barrier layer formed at the bottom of the first trench and the second trench; the liner layer, Having a second conductivity type and conforming along sidewalls of the first trench and the second trench, wherein the first conductivity type is different from the second conductivity type; the dielectric material is filled in the first trench and the second a trench, and respectively defining a plurality of first pillars and a plurality of second pillars; a gate dielectric layer disposed on the epitaxial layer; and two floating gates formed on the gate dielectric layer And disposed on the opposite side of the first pillar farthest from the terminal region; the source region is formed between the floating gates; the interlayer dielectric layer covers the gate dielectric layer and the floating gate; and contacts A plug is formed over the source region and through the interlayer dielectric layer.

本揭露更提供一種半導體裝置之製造方法,包括:提供基底,具有第一導電型,其中基底具有主動區及終端區(termination region);形成磊晶層於基底上,磊晶層具有第一導電型;形成多個第一溝槽於主動區之磊晶層中;形成多個第二溝槽於終端區之磊晶層中;形成佈植阻擋層於第一溝槽與第二溝槽之底部;順應性形成襯層於第一溝槽與第二溝槽之側壁;將第二導電型摻質佈植進入襯層,其中第一導電型與第二導電型相異,且佈植阻擋層阻擋摻質,防止摻質進入第一溝槽與第二溝槽之底部;將介電材料填入第一溝槽與第二溝槽以分別形成多個第一柱及多個第二柱;形成閘極介電層於磊晶層上;形成兩個浮置閘極(floating gate)於閘極介電層上,且上述 兩個浮置閘極設於距離終端區最遠的第一柱的相反側上;形成源極區於浮置閘極之間;形成層間介電層覆蓋閘極介電層與浮置閘極;及形成接觸插塞於源極區上且穿過層間介電層。 The present disclosure further provides a method of fabricating a semiconductor device, comprising: providing a substrate having a first conductivity type, wherein the substrate has an active region and a termination region; forming an epitaxial layer on the substrate, the epitaxial layer having a first conductivity Forming a plurality of first trenches in the epitaxial layer of the active region; forming a plurality of second trenches in the epitaxial layer of the termination region; forming a implant barrier layer on the first trench and the second trench a bottom portion; a lining is formed on the sidewalls of the first trench and the second trench; and the second conductive type dopant is implanted into the liner, wherein the first conductive type is different from the second conductive type, and the implant is blocked The layer blocks the dopant to prevent the dopant from entering the bottom of the first trench and the second trench; filling the dielectric material into the first trench and the second trench to form a plurality of first pillars and a plurality of second pillars, respectively Forming a gate dielectric layer on the epitaxial layer; forming two floating gates on the gate dielectric layer, and Two floating gates are disposed on opposite sides of the first pillar farthest from the termination region; a source region is formed between the floating gates; and an interlayer dielectric layer is formed to cover the gate dielectric layer and the floating gate And forming a contact plug on the source region and passing through the interlayer dielectric layer.

為讓本揭露之特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the features and advantages of the present disclosure more comprehensible, the preferred embodiments are described below, and are described in detail below with reference to the accompanying drawings.

100‧‧‧基底 100‧‧‧Base

100a‧‧‧主動區 100a‧‧‧active area

100b‧‧‧終端區 100b‧‧‧terminal area

102‧‧‧磊晶層 102‧‧‧ epitaxial layer

104‧‧‧第一溝槽 104‧‧‧First groove

106‧‧‧第二溝槽 106‧‧‧Second trench

108‧‧‧佈植阻擋層 108‧‧‧ implant barrier

108A‧‧‧第一氧化物層 108A‧‧‧First oxide layer

108B‧‧‧氮化物層 108B‧‧‧ nitride layer

108C‧‧‧第二氧化物層 108C‧‧‧Second oxide layer

108’‧‧‧佈植阻擋層 108’‧‧‧ implant barrier

108A’‧‧‧第一氧化物層 108A’‧‧‧First oxide layer

108B’‧‧‧氮化物層 108B’‧‧‧ nitride layer

108C’‧‧‧第二氧化物層 108C’‧‧‧Second oxide layer

110‧‧‧襯層 110‧‧‧ lining

112‧‧‧第一柱 112‧‧‧First column

114‧‧‧第二柱 114‧‧‧second column

116‧‧‧閘極介電層 116‧‧‧ gate dielectric layer

118‧‧‧浮置閘極 118‧‧‧Floating gate

120‧‧‧浮置閘極 120‧‧‧Floating gate

122‧‧‧源極區 122‧‧‧ source area

124‧‧‧層間介電層 124‧‧‧Interlayer dielectric layer

124a‧‧‧接觸開口 124a‧‧‧Contact opening

126‧‧‧接觸插塞 126‧‧‧Contact plug

210‧‧‧罩幕層 210‧‧‧ Cover layer

300‧‧‧佈植步驟 300‧‧‧planting steps

a‧‧‧距離 A‧‧‧distance

b‧‧‧距離 B‧‧‧distance

c‧‧‧距離 C‧‧‧distance

d‧‧‧距離 D‧‧‧distance

e‧‧‧距離 E‧‧‧distance

第1~3、4A~4D’、5~13圖係本揭露實施例之超接面半導體裝置在其製造方法中各階段的剖面圖。 Figs. 1 to 3, 4A to 4D', and 5 to 13 are cross-sectional views showing various stages of the method of manufacturing the superjunction semiconductor device of the present embodiment.

以下針對本揭露之半導體裝置作詳細說明。應了解的是,以下之敘述提供許多不同的實施例或例子,用以實施本揭露之不同樣態。以下所述特定的元件及排列方式儘為簡單描述本揭露。當然,這些僅用以舉例而非本揭露之限定。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本揭露,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸之情形。或者,亦可能間隔有一或更多其它材料層之情形,在此情形中,第一材料層與第二材料層之間可能不直接接觸。 The semiconductor device of the present disclosure will be described in detail below. It will be appreciated that the following description provides many different embodiments or examples for implementing the various aspects of the disclosure. The specific elements and arrangements described below are provided to provide a brief description of the disclosure. Of course, these are only used as examples and not as a limitation of the disclosure. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the disclosure, and are not intended to be a limitation of the various embodiments and/or structures discussed. Furthermore, when a first material layer is on or above a second material layer, the first material layer is in direct contact with the second material layer. Alternatively, it is also possible to have one or more layers of other materials interposed, in which case there may be no direct contact between the first layer of material and the second layer of material.

必需了解的是,為特別描述或圖示之元件可以此技術人士所熟知之各種形式存在。此外,當某層在其它層或基板「上」時,有可能是指「直接」在其它層或基板上,或指某層在其它層或基板上,或指其它層或基板之間夾設其它層。 It is to be understood that the elements specifically described or illustrated may be in various forms well known to those skilled in the art. In addition, when a layer is "on" another layer or substrate, it may mean "directly" on another layer or substrate, or a layer on another layer or substrate, or between other layers or substrates. Other layers.

第1-13圖係本揭露實施例之超接面半導體裝置在 其製造方法中各階段的剖面圖。 1-13 are the super junction semiconductor devices of the embodiments of the present disclosure. A cross-sectional view of each stage of the manufacturing process.

參見第1圖,提供具有第一導電型之基底100。此 基底100具有主動區100a及鄰近主動區100a之終端區100b(termination region)。此基底100可為主體矽基底、絕緣層上覆矽基底、或其它相似之基底。此外,基底100亦可為其它適合的基底,例如多層基底、梯度基底、混合定向基底或其它相似的基底。在一些實施例中,基底100之第一導電型可為P型,例如基底100可為硼摻雜之基底。在其它實施例中,基底100之第一導電型可為N型,例如基底100可為磷或砷摻雜之基底。基底100亦可為其它任何適合之基底。在一實施例中,基底100為重摻雜N型(N+)基底。 Referring to Figure 1, a substrate 100 having a first conductivity type is provided. this The substrate 100 has an active region 100a and a termination region 100b adjacent to the active region 100a. The substrate 100 can be a body substrate, an insulating layer overlying a substrate, or other similar substrate. In addition, substrate 100 can also be other suitable substrates, such as multilayer substrates, gradient substrates, hybrid oriented substrates, or other similar substrates. In some embodiments, the first conductivity type of the substrate 100 can be a P-type, for example, the substrate 100 can be a boron doped substrate. In other embodiments, the first conductivity type of the substrate 100 can be N-type, for example, the substrate 100 can be a phosphorus or arsenic doped substrate. Substrate 100 can also be any other suitable substrate. In an embodiment, the substrate 100 is a heavily doped N-type (N+) substrate.

參見第2圖,形成具有第一導電型之磊晶層102於 基底100上。基底100之摻雜濃度大於磊晶層102之摻雜濃度。 例如,當第一導電型為N型時,基底100可為重摻雜N型(N+)基底,而磊晶層102可為輕摻雜N型(N-)磊晶層。根據裝置的尺寸,磊晶層102可藉由磊晶成長形成至約1μm至約100μm之厚度於磊晶層102之後,於磊晶層102中形成多個溝槽。參見第3圖,於主動區100a之磊晶層102中形成多個第一溝槽104,而於終端區100b之磊晶層102中形成多個第二溝槽106。此第一溝槽104與第二溝槽106可藉由微影與蝕刻製程形成。在一些實施例中,第一溝槽104與第二溝槽106之間的距離可在主動區100a至終端區100b的方向上改變。例如,第一溝槽104與第二溝槽106之間的距離可由主動區100a增加至終端區 100b。詳細而言,距離a比距離b小,距離b比距離c小,距離c比距離d小,且距離d比距離e小。然而,在其它實施例中,第一溝槽104與第二溝槽106之間的距離可相同。 Referring to FIG. 2, an epitaxial layer 102 having a first conductivity type is formed. On the substrate 100. The doping concentration of the substrate 100 is greater than the doping concentration of the epitaxial layer 102. For example, when the first conductivity type is N-type, the substrate 100 may be a heavily doped N-type (N+) substrate, and the epitaxial layer 102 may be a lightly doped N-type (N-) epitaxial layer. Depending on the size of the device, the epitaxial layer 102 can be formed by epitaxial growth to a thickness of about 1 μm to about 100 μm after the epitaxial layer 102, and a plurality of trenches are formed in the epitaxial layer 102. Referring to FIG. 3, a plurality of first trenches 104 are formed in the epitaxial layer 102 of the active region 100a, and a plurality of second trenches 106 are formed in the epitaxial layer 102 of the termination region 100b. The first trench 104 and the second trench 106 can be formed by a lithography and etching process. In some embodiments, the distance between the first trench 104 and the second trench 106 may vary in the direction of the active region 100a to the termination region 100b. For example, the distance between the first trench 104 and the second trench 106 may be increased from the active region 100a to the termination region 100b. In detail, the distance a is smaller than the distance b, the distance b is smaller than the distance c, the distance c is smaller than the distance d, and the distance d is smaller than the distance e. However, in other embodiments, the distance between the first trench 104 and the second trench 106 may be the same.

於形成此第一溝槽104與第二溝槽106之後,形成 佈植阻擋層於第一溝槽104與第二溝槽106中。第4A-4D圖繪示本揭露實施例之佈植阻擋層108的製造方法。參見第4A圖,第一氧化物層108A、氮化物層108B及第二氧化物層108C依序順應性形成於磊晶層102上。此第一氧化物層108A、氮化物層108B及第二氧化物層108C的厚度比為1-10:1-10:1-50。此第一氧化物層108A及第二氧化物層108C可包括氧化矽、矽酸四乙酯(tetraethyl orthosilicate,TEOS)氧化物或上述之組合。氮化物層108B可包括氮化矽、氮氧化矽或上述之組合。在一實施例中,第一氧化物層108A為氧化矽層,氮化物層108B為氮化矽層,而第二氧化物層108C為矽酸四乙酯(tetraethyl orthosilicate,TEOS)氧化物層。此第一氧化物層108A、氮化物層108B及第二氧化物層108C可藉由沈積步驟形成,例如化學氣相沉積。或者,此第一氧化物層108A、氮化物層108B及第二氧化物層108C亦可藉由氧化或氮化步驟以熱成長形成。如第4B圖所示,在形成第一氧化物層108A、氮化物層108B及第二氧化物層108C後,形成罩幕層210以填滿露出第二氧化物層108C之表面的第一溝槽104與第二溝槽106。參見第4C圖,移除第一氧化物層108A、氮化物層108B及第二氧化物層108C未被罩幕層210覆蓋之部分。此移除方法可為濕蝕刻。在第4C圖之步驟後,移除罩幕層210。第一氧化物層108A、氮化物層108B及第 二氧化物層108C留下之部分形成佈植阻擋層108,如第4D圖所示。在此實施例中,佈植阻擋層108並未直接接觸溝槽104和106之側壁,並露出溝槽104和106的底部側壁。佈植阻擋層108的總厚度為1000埃至5000埃。在一實施例中,佈植阻擋層108的總厚度為約2000埃。 After forming the first trench 104 and the second trench 106, forming The implant barrier layer is in the first trench 104 and the second trench 106. 4A-4D illustrate a method of fabricating the implant barrier layer 108 of the disclosed embodiment. Referring to FIG. 4A, the first oxide layer 108A, the nitride layer 108B, and the second oxide layer 108C are sequentially formed on the epitaxial layer 102. The thickness ratio of the first oxide layer 108A, the nitride layer 108B, and the second oxide layer 108C is 1-10:1-10:1-50. The first oxide layer 108A and the second oxide layer 108C may include ruthenium oxide, tetraethyl orthosilicate (TEOS) oxide, or a combination thereof. The nitride layer 108B may include tantalum nitride, hafnium oxynitride or a combination thereof. In one embodiment, the first oxide layer 108A is a hafnium oxide layer, the nitride layer 108B is a tantalum nitride layer, and the second oxide layer 108C is a tetraethyl orthosilicate (TEOS) oxide layer. The first oxide layer 108A, the nitride layer 108B, and the second oxide layer 108C may be formed by a deposition step, such as chemical vapor deposition. Alternatively, the first oxide layer 108A, the nitride layer 108B, and the second oxide layer 108C may be formed by thermal growth by an oxidation or nitridation step. As shown in FIG. 4B, after the first oxide layer 108A, the nitride layer 108B, and the second oxide layer 108C are formed, the mask layer 210 is formed to fill the first trench exposing the surface of the second oxide layer 108C. The groove 104 and the second groove 106. Referring to FIG. 4C, the portions of the first oxide layer 108A, the nitride layer 108B, and the second oxide layer 108C that are not covered by the mask layer 210 are removed. This removal method can be wet etching. After the step of FIG. 4C, the mask layer 210 is removed. First oxide layer 108A, nitride layer 108B, and The portion of the dioxide layer 108C remaining forms a graft barrier layer 108, as shown in Figure 4D. In this embodiment, the implant barrier layer 108 does not directly contact the sidewalls of the trenches 104 and 106 and exposes the bottom sidewalls of the trenches 104 and 106. The implant barrier layer 108 has a total thickness of from 1000 angstroms to 5000 angstroms. In one embodiment, the implant barrier layer 108 has a total thickness of about 2000 angstroms.

第4D’圖繪示本揭露另一實施例之佈植阻擋層108 的剖面圖。在第4D’圖之實施例,第一氧化物層108A’、氮化物層108B’及第二氧化物層108C’直接形成於溝槽104和106的底部。形成第一氧化物層108A’、氮化物層108B’及第二氧化物層108C’之方法例如可為高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDPCVD)。在此實施例中,由於第一氧化物層108A’、氮化物層108B’及第二氧化物層108C’僅直接形成於溝槽104和106中,且由膜層108A’、108B’及108C’所形成之佈植阻擋層108’覆蓋溝槽104和106之底部側壁,故此實施例不需要第4A-4C圖所示之移除步驟。第一氧化物層108A’、氮化物層108B’及第二氧化物層108C’之厚度比約為1-10:1-10:1-50。佈植阻擋層108’的總厚度為1000埃至5000埃。在一實施例中,佈植阻擋層108’的總厚度為約2000埃。 FIG. 4D' illustrates a implant barrier layer 108 of another embodiment of the present disclosure. Sectional view. In the embodiment of Fig. 4D', the first oxide layer 108A', the nitride layer 108B', and the second oxide layer 108C' are formed directly on the bottoms of the trenches 104 and 106. The method of forming the first oxide layer 108A', the nitride layer 108B', and the second oxide layer 108C' may be, for example, high density plasma chemical vapor deposition (HDPCVD). In this embodiment, since the first oxide layer 108A', the nitride layer 108B', and the second oxide layer 108C' are formed only directly in the trenches 104 and 106, and by the film layers 108A', 108B', and 108C The resulting implant barrier layer 108' covers the bottom sidewalls of the trenches 104 and 106, so this embodiment does not require the removal step shown in Figures 4A-4C. The thickness ratio of the first oxide layer 108A', the nitride layer 108B', and the second oxide layer 108C' is about 1-10:1-10:1-50. The implant barrier layer 108' has a total thickness of from 1000 angstroms to 5000 angstroms. In one embodiment, the implant barrier layer 108' has a total thickness of about 2000 angstroms.

雖然第4D及4D’圖之佈植阻擋層108為氧化物/氮 化物/氧化物複合層(oxide-nitride-oxide composite layer),佈植阻擋層108亦可包括其它結構,例如氮化物/氧化物/氮化物複合層(nitride-oxide-nitride composite layer)、氮化物/氧化物複合層(nitride-oxide composite layer)、或氧化物/氮氧化物/氧化物複合層(oxide-oxynitride-oxide composite layer)。在後文中, 將以第4D’圖之佈植阻擋層108’作為範例以進一步說明本揭露。 Although the implant barrier layer 108 of the 4D and 4D' patterns is oxide/nitrogen The oxide-nitride-oxide composite layer, the implant barrier layer 108 may also include other structures, such as a nitride-oxide-nitride composite layer, a nitride. /nitride-oxide composite layer, or oxide-oxynitride-oxide composite layer. In the following text, The present disclosure will be further illustrated by taking the implant barrier layer 108' of the 4D' diagram as an example.

如第5圖所示,在形成佈植阻擋層108’之後,順應 性形成襯層110於磊晶層102上。襯層110可包括介電材料,一如氧化矽、氮化矽、氮氧化矽或其它適合之材料。應瞭解的是,儘管第5圖之步驟係實施於第4D’圖之佈植阻擋層108’上,然而第5圖之步驟亦可實施於第4D圖之佈植阻擋層108上。在形成襯層110於第4D圖之佈植阻擋層108上的實施例中,襯層110亦形成於溝槽104和106未被佈植阻擋層108覆蓋之側壁及底部上。 襯層110之厚度可為約100-500埃。 As shown in Fig. 5, after forming the implant barrier layer 108', conforming The underlayer 110 is formed on the epitaxial layer 102. The liner 110 may comprise a dielectric material such as hafnium oxide, tantalum nitride, hafnium oxynitride or other suitable material. It will be appreciated that although the steps of Figure 5 are implemented on the implant barrier layer 108' of Figure 4D', the steps of Figure 5 can also be implemented on the implant barrier layer 108 of Figure 4D. In the embodiment in which the liner 110 is formed on the implant barrier 108 of FIG. 4D, the liner 110 is also formed on the sidewalls and bottom of the trenches 104 and 106 that are not covered by the implant barrier 108. Liner layer 110 can have a thickness of between about 100 and 500 angstroms.

參見第6圖,在第5圖之步驟後,進行佈植步驟300以將第二導電型摻質以一角度佈植進入位於溝槽104和106側壁上的襯層110。第一導電型與第二導電型相異。例如,當第一導電型為N型時,第二導電型為P型。在佈植步驟300中,佈植阻擋層108’阻擋摻質以防止摻質進入溝槽104和106之底部 Referring to Figure 6, after the step of Figure 5, a planting step 300 is performed to implant the second conductivity type dopant into the liner 110 on the sidewalls of the trenches 104 and 106 at an angle. The first conductivity type is different from the second conductivity type. For example, when the first conductivity type is an N type, the second conductivity type is a P type. In the implanting step 300, the implant barrier layer 108' blocks the dopant to prevent dopants from entering the bottom of the trenches 104 and 106.

參見第7圖,將襯層110以第二導電型摻質佈植後,將介電材料填入第一溝槽104與第二溝槽106以分別形成多個第一柱112及多個第二柱114。此介電材料可為氧化矽、氮化矽、氮氧化矽、低介電常數介電材料,其它適合之介電材料、或上述之組合。填入介電材料之方法可包括沈積步驟及化學機械研磨步驟。此沈積步驟可包括化學氣相沉積。此化學機械研磨步驟亦可移除位於磊晶層102上之襯層110。 Referring to FIG. 7 , after the lining layer 110 is implanted with the second conductive type dopant, the dielectric material is filled into the first trench 104 and the second trench 106 to form a plurality of first pillars 112 and a plurality of Two columns 114. The dielectric material can be tantalum oxide, tantalum nitride, hafnium oxynitride, a low dielectric constant dielectric material, other suitable dielectric materials, or combinations thereof. The method of filling the dielectric material may include a deposition step and a chemical mechanical polishing step. This deposition step can include chemical vapor deposition. This chemical mechanical polishing step also removes the liner 110 on the epitaxial layer 102.

如第8圖所示,於第7圖之步驟後,形成閘極介電層116於磊晶層102上。閘極介電層116可包括氧化矽、氮化矽、 氮氧化矽、高介電常數介電質(high-k dielectric)、其它適合作為閘極介電層之介電材料、或上述之組合。高介電常數介電質可包括金屬氧化物,例如Li、Be、Mg、Ca、Sr、Sc、Y、Zr、Hf、Al、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu之氧化物或上述之混合物。此閘極介電層116可由本領域之通常步驟形成,例如原子層沉積、化學氣相沉積、物理氣相沉積、熱氧化法、紫外線-臭氧氧化法(UV-Ozone oxidation)、或上述之組合。 As shown in FIG. 8, after the step of FIG. 7, a gate dielectric layer 116 is formed on the epitaxial layer 102. The gate dielectric layer 116 may include tantalum oxide, tantalum nitride, Niobium oxynitride, high-k dielectric, other dielectric materials suitable as gate dielectric layers, or combinations thereof. The high-k dielectric may include metal oxides such as Li, Be, Mg, Ca, Sr, Sc, Y, Zr, Hf, Al, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, An oxide of Dy, Ho, Er, Tm, Yb, Lu or a mixture thereof. The gate dielectric layer 116 can be formed by conventional steps in the art, such as atomic layer deposition, chemical vapor deposition, physical vapor deposition, thermal oxidation, UV-Ozone oxidation, or a combination thereof. .

如第9圖所示,形成閘極介電層116後,形成兩個 浮置閘極(floating gate)118於此閘極介電層上,且此兩個浮置閘極118設於距離該終端區100b最遠的主動區102a中的第一柱112之相反側上。此浮置閘極118之材料可包括金屬、多晶矽、矽化鎢(WSi2)、或上述之組合。形成浮置閘極118之方法可為低壓化學氣相沉積、電漿輔助化學氣相沉積、其它任何適合之步驟、或上述之組合。此外,如第9圖所示,亦可同時形成多個浮置閘極120於終端區100b之閘極介電層116上,且此浮置閘極120覆蓋終端區100b中的部分第二柱114及部分磊晶層102。 浮置閘極120之材料與形成方法與浮置閘極118相似,故不再重複描述。 As shown in FIG. 9, after the gate dielectric layer 116 is formed, two floating gates 118 are formed on the gate dielectric layer, and the two floating gates 118 are disposed at a distance from the gate dielectric layer 116. The opposite side of the first post 112 in the active zone 102a furthest from the termination zone 100b. The material of the floating gate 118 may include metal, polysilicon, tungsten germanium (WSi 2 ), or a combination thereof. The method of forming the floating gate 118 can be low pressure chemical vapor deposition, plasma assisted chemical vapor deposition, any other suitable step, or a combination thereof. In addition, as shown in FIG. 9, a plurality of floating gates 120 may be simultaneously formed on the gate dielectric layer 116 of the termination region 100b, and the floating gate 120 covers a portion of the second pillars in the termination region 100b. 114 and a portion of the epitaxial layer 102. The material and formation method of the floating gate 120 is similar to that of the floating gate 118, and thus the description will not be repeated.

如第10圖所示,在第9圖之步驟後,形成源極區112於浮置閘極118之間的磊晶層102中。源極區112可藉由本領域通常使用之摻雜步驟形成,例如離子佈植步驟。 As shown in FIG. 10, after the step of FIG. 9, the source region 112 is formed in the epitaxial layer 102 between the floating gates 118. The source region 112 can be formed by a doping step commonly used in the art, such as an ion implantation step.

參見第11圖,於源極區112之後,形成層間介電層124。此層間介電層124可覆蓋閘極介電層116與浮置閘極118及 120,且可具有接觸開口(contact hole)124a露出源極區112。 Referring to FIG. 11, after the source region 112, an interlayer dielectric layer 124 is formed. The interlayer dielectric layer 124 can cover the gate dielectric layer 116 and the floating gate 118 and 120, and may have a contact hole 124a exposing the source region 112.

於第11圖之步驟後,形成接觸插塞以完成超接面 裝置之製造。參見第12圖,形成接觸插塞126於源極區122上且延伸穿過層間介電層124之接觸開口124a以完成超接面裝置1000之製造。應瞭解的是,雖然第12圖之超接面裝置係從第4D’圖之結構製造而得,此超接面裝置亦可從第4D圖之結構製造得到,如第13圖所示。在從第4D圖之結構製造超接面裝置之實施例中,襯層110形成於溝槽104和106未被佈植阻擋層108’覆蓋之側壁及底部上,如第13圖所示。 After the step of Figure 11, a contact plug is formed to complete the super junction Manufacturing of the device. Referring to FIG. 12, a contact plug 126 is formed over the source region 122 and extends through the contact opening 124a of the interlayer dielectric layer 124 to complete the fabrication of the superjunction device 1000. It should be understood that although the super junction device of Fig. 12 is manufactured from the structure of Fig. 4D', the super junction device can also be fabricated from the structure of Fig. 4D, as shown in Fig. 13. In an embodiment in which the superjunction device is fabricated from the structure of Figure 4D, the liner 110 is formed on the sidewalls and bottom of the trenches 104 and 106 that are not covered by the implant barrier layer 108', as shown in FIG.

本揭露使用佈植阻擋層108或108’以防止超接面裝 置之終端區因襯層100中的佈植摻質擴散進入第二溝槽106之底部而導致電壓損失,藉此可減少傳統超接面裝置常產生的位於終端區之溝槽底部的電場。由於本揭露之超接面裝置在終端區之溝槽底部沒有高電場,因此可有效消除超接面裝置之終端區崩潰問題。 The present disclosure uses a graft barrier 108 or 108' to prevent over-contact loading The terminal region is caused by the diffusion of the implant dopant in the liner 100 into the bottom of the second trench 106, thereby causing a voltage loss, thereby reducing the electric field generated by the conventional super junction device at the bottom of the trench at the termination region. Since the super junction device of the present disclosure has no high electric field at the bottom of the trench in the terminal region, the terminal region collapse problem of the super junction device can be effectively eliminated.

雖然本揭露的實施例及其優點已揭露如上,但應 該瞭解的是,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作更動、替代與潤飾。此外,本揭露之保護範圍並未侷限於說明書內所述特定實施例中的製程、機器、製造、物質組成、裝置、方法及步驟,任何所屬技術領域中具有通常知識者可從本揭露揭示內容中理解現行或未來所發展出的製程、機器、製造、物質組成、裝置、方法及步驟,只要可以在此處所述實施例中實施大抵相同功能或獲得大抵相同結果皆可根據本揭露使用。因此,本揭露之保護範圍 包括上述製程、機器、製造、物質組成、裝置、方法及步驟。另外,每一申請專利範圍構成個別的實施例,且本揭露之保護範圍也包括各個申請專利範圍及實施例的組合。 Although the embodiments of the present disclosure and their advantages have been disclosed above, It is understood that any person having ordinary skill in the art can make changes, substitutions, and refinements without departing from the spirit and scope of the disclosure. In addition, the scope of the disclosure is not limited to the processes, machines, manufactures, compositions, devices, methods, and steps in the specific embodiments described in the specification, and those of ordinary skill in the art may disclose the disclosure It is understood that the processes, machines, manufactures, compositions, devices, methods, and procedures that are presently or in the future may be used in accordance with the present disclosure as long as they can perform substantially the same function or achieve substantially the same results in the embodiments described herein. Therefore, the scope of protection of the present disclosure The above processes, machines, manufacturing, material compositions, devices, methods and steps are included. In addition, each patent application scope constitutes an individual embodiment, and the scope of protection of the disclosure also includes a combination of the scope of the patent application and the embodiments.

100‧‧‧基底 100‧‧‧Base

100a‧‧‧主動區 100a‧‧‧active area

100b‧‧‧終端區 100b‧‧‧terminal area

102‧‧‧磊晶層 102‧‧‧ epitaxial layer

108’‧‧‧佈植阻擋層 108’‧‧‧ implant barrier

108A’‧‧‧第一氧化物層 108A’‧‧‧First oxide layer

108B’‧‧‧氮化物層 108B’‧‧‧ nitride layer

108C’‧‧‧第二氧化物層 108C’‧‧‧Second oxide layer

110‧‧‧襯層 110‧‧‧ lining

112‧‧‧第一柱 112‧‧‧First column

114‧‧‧第二柱 114‧‧‧second column

116‧‧‧閘極介電層 116‧‧‧ gate dielectric layer

118‧‧‧浮置閘極 118‧‧‧Floating gate

120‧‧‧浮置閘極 120‧‧‧Floating gate

122‧‧‧源極區 122‧‧‧ source area

124‧‧‧層間介電層 124‧‧‧Interlayer dielectric layer

126‧‧‧接觸插塞 126‧‧‧Contact plug

a‧‧‧距離 A‧‧‧distance

b‧‧‧距離 B‧‧‧distance

c‧‧‧距離 C‧‧‧distance

d‧‧‧距離 D‧‧‧distance

e‧‧‧距離 E‧‧‧distance

Claims (13)

一種半導體裝置,包括:一基底,具有一第一導電型,且具有一主動區及一終端區(termination region);一磊晶層,設於該基底上且具有該第一導電型;多個第一溝槽,設於該主動區之磊晶層中;多個第二溝槽,設於該終端區之磊晶層中;一佈植阻擋層,形成於該第一溝槽與該第二溝槽之底部;一襯層,具有一第二導電型,且沿著該第一溝槽與該第二溝槽之側壁順應性形成,其中該第一導電型與該第二導電型相異;一介電材料,填滿該第一溝槽與該第二溝槽,且分別定義多個第一柱及多個第二柱;一閘極介電層,設於該磊晶層上;兩個浮置閘極(floating gate),形成於該閘極介電層上,且設於距離該終端區最遠的第一柱的相反側上;一源極區,形成於該浮置閘極之間;一層間介電層,覆蓋該閘極介電層與該浮置閘極;及一接觸插塞,形成於該源極區上且穿過該層間介電層。 A semiconductor device comprising: a substrate having a first conductivity type and having an active region and a termination region; an epitaxial layer disposed on the substrate and having the first conductivity type; a first trench is disposed in the epitaxial layer of the active region; a plurality of second trenches are disposed in the epitaxial layer of the termination region; and a implant barrier layer is formed on the first trench and the first trench a bottom of the trench; a liner having a second conductivity type and conforming along a sidewall of the first trench and the second trench, wherein the first conductivity type and the second conductivity type a dielectric material filling the first trench and the second trench, and defining a plurality of first pillars and a plurality of second pillars respectively; a gate dielectric layer disposed on the epitaxial layer Two floating gates are formed on the gate dielectric layer and disposed on opposite sides of the first pillar farthest from the termination region; a source region is formed on the floating Between the gates; an interlayer dielectric layer covering the gate dielectric layer and the floating gate; and a contact plug formed on the source region and wearing The interlayer dielectric layer. 如申請專利範圍第1項所述之半導體裝置,其中該佈植阻擋層包括一氧化物/氮化物/氧化物複合層、一氮化物/氧化物/氮化物複合層、一氧化物/氮氧化物/氧化物複合層、或一氮化物/氧化物複合層。 The semiconductor device of claim 1, wherein the implant barrier layer comprises an oxide/nitride/oxide composite layer, a nitride/oxide/nitride composite layer, and an oxide/nitrogen oxide An oxide/oxide composite layer or a nitride/oxide composite layer. 如申請專利範圍第1項所述之半導體裝置,其中該佈植阻 擋層包括一氧化矽/氮化矽/矽酸四乙酯(tetraethyl orthosilicate,TEOS)氧化物複合層,其中氧化矽:氮化矽:矽酸四乙酯氧化物的厚度比為1-10:1-10:1-50。 The semiconductor device according to claim 1, wherein the implant resistance The barrier layer comprises a tetraethyl orthosilicate (TEOS) oxide composite layer, wherein the thickness ratio of yttrium oxide: tantalum nitride: tetraethyl citrate oxide is 1-10: 1-10:1-50. 如申請專利範圍第1項所述之半導體裝置,其中該佈植阻擋層的總厚度為300-5000埃。 The semiconductor device of claim 1, wherein the implant barrier layer has a total thickness of 300-5000 angstroms. 如申請專利範圍第1項所述之半導體裝置,其中該佈植阻擋層覆蓋該第一溝槽與該第二溝槽底部的側壁。 The semiconductor device of claim 1, wherein the implant barrier layer covers sidewalls of the first trench and the bottom of the second trench. 如申請專利範圍第1項所述之半導體裝置,更包括多個浮置閘極形成於該終端區之閘極介電層上,其中該浮置閘極覆蓋該終端區中的部分該第二柱及部分該磊晶層。 The semiconductor device of claim 1, further comprising a plurality of floating gates formed on the gate dielectric layer of the termination region, wherein the floating gate covers a portion of the termination region Column and part of the epitaxial layer. 一種半導體裝置之製造方法,包括:提供一基底,具有一第一導電型,其中該基底具有一主動區及一終端區(termination region);形成一磊晶層於該基底上,該磊晶層具有該第一導電型;形成多個第一溝槽於該主動區之磊晶層中;形成多個第二溝槽於該終端區之磊晶層中;形成一佈植阻擋層於該第一溝槽與該第二溝槽之底部;順應性形成一襯層於該第一溝槽與該第二溝槽之側壁;將一第二導電型摻質佈植進入該襯層,其中該第一導電型與該第二導電型相異,且該佈植阻擋層阻擋該摻質,防止該摻質進入該第一溝槽與該第二溝槽之底部;將一介電材料填滿該第一溝槽與該第二溝槽以分別形成多個第一柱及多個第二柱;形成一閘極介電層於該磊晶層上; 形成兩個浮置閘極(floating gate)於該閘極介電層上,且上述兩個浮置閘極設於距離該終端區最遠的第一柱的相反側上;形成一源極區於該浮置閘極之間;形成一層間介電層覆蓋該閘極介電層與該浮置閘極;及形成一接觸插塞於該源極區上且穿過該層間介電層。 A method of fabricating a semiconductor device, comprising: providing a substrate having a first conductivity type, wherein the substrate has an active region and a termination region; forming an epitaxial layer on the substrate, the epitaxial layer Having the first conductivity type; forming a plurality of first trenches in the epitaxial layer of the active region; forming a plurality of second trenches in the epitaxial layer of the termination region; forming an implant barrier layer a trench and a bottom of the second trench; compliant forming a liner on sidewalls of the first trench and the second trench; implanting a second conductivity type dopant into the liner, wherein The first conductivity type is different from the second conductivity type, and the implant barrier layer blocks the dopant, preventing the dopant from entering the bottom of the first trench and the second trench; filling a dielectric material The first trench and the second trench respectively form a plurality of first pillars and a plurality of second pillars; forming a gate dielectric layer on the epitaxial layer; Forming two floating gates on the gate dielectric layer, and the two floating gates are disposed on opposite sides of the first pillar farthest from the terminal region; forming a source region Between the floating gates; forming an interlayer dielectric layer covering the gate dielectric layer and the floating gate; and forming a contact plug on the source region and passing through the interlayer dielectric layer. 如申請專利範圍第7項所述之半導體裝置之製造方法,其中該佈植阻擋層包括一氧化物/氮化物/氧化物複合層、一氮化物/氧化物/氮化物複合層、一氧化物/氮氧化物/氧化物複合層、或一氮化物/氧化物複合層。 The method of fabricating a semiconductor device according to claim 7, wherein the implant barrier layer comprises an oxide/nitride/oxide composite layer, a nitride/oxide/nitride composite layer, and an oxide. / oxynitride / oxide composite layer, or a nitride / oxide composite layer. 如申請專利範圍第7項所述之半導體裝置之製造方法,其中該佈植阻擋層包括一氧化矽/氮化矽/矽酸四乙酯(tetraethyl orthosilicate,TEOS)氧化物複合層,其中氧化矽:氮化矽:矽酸四乙酯氧化物的厚度比為1-10:1-10:1-50。 The method of manufacturing a semiconductor device according to claim 7, wherein the implant barrier layer comprises a tetraethyl orthosilicate (TEOS) oxide composite layer, wherein ruthenium oxide : Tantalum nitride: The thickness ratio of tetraethyl citrate oxide is 1-10:1-10:1-50. 如申請專利範圍第7項所述之半導體裝置之製造方法,其中該佈植阻擋層的總厚度為300-5000埃。 The method of fabricating a semiconductor device according to claim 7, wherein the implant barrier layer has a total thickness of 300 to 5000 angstroms. 如申請專利範圍第7項所述之半導體裝置之製造方法,其中該佈植阻擋層覆蓋該第一溝槽與該第二溝槽底部的側壁。 The method of fabricating a semiconductor device according to claim 7, wherein the implant barrier layer covers sidewalls of the first trench and the bottom of the second trench. 如申請專利範圍第7項所述之半導體裝置之製造方法,其中該佈植阻擋層係藉由一高密度電漿沈積步驟形成。 The method of fabricating a semiconductor device according to claim 7, wherein the implant barrier layer is formed by a high density plasma deposition step. 如申請專利範圍第7項所述之半導體裝置之製造方法,更包括形成多個浮置閘極於該終端區之閘極介電層上,其中 該浮置閘極覆蓋該終端區中的部分該第二柱及部分該磊晶層。 The method for fabricating a semiconductor device according to claim 7, further comprising forming a plurality of floating gates on the gate dielectric layer of the termination region, wherein The floating gate covers a portion of the second pillar and a portion of the epitaxial layer in the termination region.
TW103114930A 2014-04-25 2014-04-25 Semiconductor device and method of manufacturing the same TWI557916B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103114930A TWI557916B (en) 2014-04-25 2014-04-25 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103114930A TWI557916B (en) 2014-04-25 2014-04-25 Semiconductor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201541643A TW201541643A (en) 2015-11-01
TWI557916B true TWI557916B (en) 2016-11-11

Family

ID=55220571

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103114930A TWI557916B (en) 2014-04-25 2014-04-25 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI557916B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200807698A (en) * 2005-11-03 2008-02-01 Atmel Corp Buried floating gate non-volatile EEPROM memory cell device and method of marking the same
TW201222791A (en) * 2010-11-25 2012-06-01 Macronix Int Co Ltd Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device
TW201347180A (en) * 2012-05-04 2013-11-16 Great Power Semiconductor Corp Trench power MOSFET and fabrication method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200807698A (en) * 2005-11-03 2008-02-01 Atmel Corp Buried floating gate non-volatile EEPROM memory cell device and method of marking the same
TW201222791A (en) * 2010-11-25 2012-06-01 Macronix Int Co Ltd Semiconductor integrated circuit device and method of manufacturing a semiconductor integrated circuit device
TW201347180A (en) * 2012-05-04 2013-11-16 Great Power Semiconductor Corp Trench power MOSFET and fabrication method thereof

Also Published As

Publication number Publication date
TW201541643A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
US20230187497A1 (en) Semiconductor apparatus having staggered structure and method of manufacturing the same, and electronic device
KR101868799B1 (en) Nonvolatile memory device and method for fabricating the same
TWI487110B (en) Semiconductor device and fabricating method thereof
TWI503984B (en) Integrated circuit device and method of forming the same
CN103378153A (en) Structure and method for finfet integrated with capacitor
JP2012174866A (en) Semiconductor device and manufacturing method of the same
US9379104B1 (en) Method to make gate-to-body contact to release plasma induced charging
TWI701763B (en) Transistor structure and semiconductor layout structure
TW201911389A (en) Method of forming finfet
CN115224108A (en) Three-dimensional memory structure
TWI521698B (en) Semiconductor device and method of fabricating the same
US9153665B2 (en) Method for fabricating semiconductor device
US9786766B2 (en) Methods of fabricating transistors with a protection layer to improve the insulation between a gate electrode and a junction region
US10629734B2 (en) Fabricating method of fin structure with tensile stress and complementary FinFET structure
TW201327686A (en) Trench type power transistor device with super junction and manufacturing method thereof
TWI557916B (en) Semiconductor device and method of manufacturing the same
KR100853799B1 (en) Trench gate semi-conductor device, and method for fabricating thereof
US9466730B2 (en) Semiconductor device and method for fabricating the same
JP6046072B2 (en) Semiconductor device and manufacturing method thereof
US8853026B2 (en) Semiconductor device having deep wells and fabrication method thereof
CN112447588A (en) Integrated circuit device
JP6537536B2 (en) Method of fabricating uniform tunnel dielectric of embedded flash memory cell
KR20120120682A (en) Seimconductor device and method for fabricating the same
CN105097915A (en) Semiconductor device and manufacturing method thereof
TWI565006B (en) Method for fabricating memory device