TWI557915B - Vertical transistor device and fabricating method thereof - Google Patents

Vertical transistor device and fabricating method thereof Download PDF

Info

Publication number
TWI557915B
TWI557915B TW103107509A TW103107509A TWI557915B TW I557915 B TWI557915 B TW I557915B TW 103107509 A TW103107509 A TW 103107509A TW 103107509 A TW103107509 A TW 103107509A TW I557915 B TWI557915 B TW I557915B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
layer
semiconductor
vertical transistor
fabricating
Prior art date
Application number
TW103107509A
Other languages
Chinese (zh)
Other versions
TW201535735A (en
Inventor
羅廣禮
蔡孟諺
吳科慧
許舒涵
朱俊霖
Original Assignee
財團法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院 filed Critical 財團法人國家實驗研究院
Priority to TW103107509A priority Critical patent/TWI557915B/en
Publication of TW201535735A publication Critical patent/TW201535735A/en
Application granted granted Critical
Publication of TWI557915B publication Critical patent/TWI557915B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

垂直式電晶體元件及其製作方法 Vertical transistor element and manufacturing method thereof

本發明是有關於一種半導體元件及其製作方法,且特別是有關於一種垂直電晶體(vertical transistor)元件及其製作方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a vertical transistor device and a method of fabricating the same.

垂直式電晶體元件,包含縱向堆疊於基材上的源極、閘極與汲極結構。其中,閘極位於上下的源極和汲極之間,使通道垂直於基材水平面。由於通道長度取決於通道層的沉積厚度,製程上元件通道長度可以很好的得到控制,特別在通道長度日益縮小的情況下。另外,由於垂直元件採用縱向堆疊,與傳統平面型元件相比可大幅降低電晶體的橫向單位面積,增加半導體元件的積集度。 A vertical transistor element comprising a source, gate and drain structure stacked longitudinally on a substrate. Wherein, the gate is located between the source and the drain of the upper and lower sides, so that the channel is perpendicular to the horizontal plane of the substrate. Since the length of the channel depends on the deposition thickness of the channel layer, the length of the component channel on the process can be well controlled, especially in the case of increasingly smaller channel lengths. In addition, since the vertical elements are vertically stacked, the lateral unit area of the transistor can be greatly reduced as compared with the conventional planar type element, and the degree of integration of the semiconductor elements is increased.

然而,隨著關鍵尺寸下降,傳統垂直型元件的主動區越來越細,特別當垂直主動區的橫向尺寸到達幾十或十奈米以下,容易因此大幅增加垂直方向源極和汲極之間的寄生電阻,造成元件功率損耗增加的問題。 However, as the critical dimension decreases, the active area of the conventional vertical type component becomes finer and thinner, especially when the lateral dimension of the vertical active area reaches tens or less, which is easy to increase the vertical direction between the source and the drain. The parasitic resistance causes a problem of an increase in component power loss.

因此,有需要提供一種先進的垂直式電晶體元件及其製作方法,解決習知技術所面臨的問題。 Therefore, there is a need to provide an advanced vertical transistor component and a method of fabricating the same that solves the problems faced by the prior art.

本發明一方面是在提供一種垂直式電晶體元件,包括基 材、源極區、半導體通道區、汲極區、閘介電層以及閘電極層。其中,源極區位於基材的一表面上;半導體通道區位於源極區上方;汲極區位於半導體通道區部上方,並藉由半導體通道區與源極區縱向連接。閘介電層覆蓋於半導體通道區的一立壁,且鄰接源極和汲極。閘電極層覆蓋於閘介電層上。其中,半導體通道區的橫向尺寸實質小於源極區和汲極區的橫向尺寸。 One aspect of the present invention is to provide a vertical transistor element, including a base Material, source region, semiconductor channel region, drain region, gate dielectric layer, and gate electrode layer. Wherein, the source region is located on a surface of the substrate; the semiconductor channel region is located above the source region; the drain region is located above the semiconductor channel region, and is longitudinally connected to the source region by the semiconductor channel region. The gate dielectric layer covers a vertical wall of the semiconductor channel region and is adjacent to the source and the drain. The gate electrode layer covers the gate dielectric layer. Wherein, the lateral dimension of the semiconductor channel region is substantially smaller than the lateral dimension of the source region and the drain region.

在本發明的一實施例之中,源極區和汲極區分別具有往半導體通道區方向逐漸縮小的漸窄橫向尺寸(lateral tapered size)。 In an embodiment of the invention, the source region and the drain region respectively have a tapered shape that tapers toward the direction of the semiconductor channel region.

在本發明的一實施例之中,半導體通道區具有往其縱軸中心方向漸縮小的漸窄橫向尺寸。 In an embodiment of the invention, the semiconductor via region has a tapered lateral dimension that tapers toward the center of its longitudinal axis.

在本發明的一實施例之中,源極區和汲極區具有相同電性,且與半導體通道區三者共同形成一P-N-P接面或一N-P-N接面。 In an embodiment of the invention, the source region and the drain region have the same electrical properties, and together with the semiconductor channel region form a P-N-P junction or an N-P-N junction.

在本發明的一實施例之中,源極區和汲極區,具有不同電性,且二者分別與半導體通道區形成一P-I接面或一N-I接面。在本發明的一實施例之中,源極區、汲極區和,半導體通道區三者共同形成一P-I-N接面或一N-I-P接面。 In an embodiment of the invention, the source region and the drain region have different electrical properties, and the two form a P-I junction or an N-I junction with the semiconductor channel region, respectively. In an embodiment of the invention, the source region, the drain region, and the semiconductor channel region collectively form a P-I-N junction or an N-I-P junction.

在本發明的一實施例之中,基材係一矽基材;且源極區、汲極區以及半導體通道區係由鍺所構成。 In an embodiment of the invention, the substrate is a substrate; and the source region, the drain region, and the semiconductor channel region are formed of germanium.

本發明另一方面是在提供一種垂直式電晶體元件的製作方法,其包含下述步驟:首先,提供一基材。再於基材表面上,依序形成第一半導體層、第二半導體層、第三半導體層以及導體層。然後,圖案化第一半導體層、第二半導體層、第三半導體層以及導體層,以形成一台面結構(mesa structure),縱向地凸設於基材表面上。接著,進行一蝕刻製程,藉以在台面結構的側面形成至少一個側蝕開口,使圖案化後的第二半導體層具有實質小於圖案化後的第一半導體層和第三半導體層的橫向尺寸。後續,形成一介電材質層,覆蓋側蝕開口的一 側壁;並且形成一閘電極層,覆蓋於閘介電層上。 Another aspect of the present invention is to provide a method of fabricating a vertical transistor element comprising the steps of: first, providing a substrate. Further, on the surface of the substrate, a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a conductor layer are sequentially formed. Then, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the conductor layer are patterned to form a mesa structure which is longitudinally protruded on the surface of the substrate. Next, an etching process is performed to form at least one undercut opening on the side of the mesa structure such that the patterned second semiconductor layer has substantially less lateral dimensions than the patterned first semiconductor layer and the third semiconductor layer. Subsequently, a dielectric material layer is formed to cover one of the side etching openings a sidewall; and forming a gate electrode layer overlying the gate dielectric layer.

在本發明的一實施例之中,形成該台面結構的步驟,包括:先圖案化導體層。再以圖案化的導體層為罩幕,進行乾式蝕刻製程,以移除移一部分的第一半導體層、一部分的第二半導體層以及一部分的第三半導體層。 In an embodiment of the invention, the step of forming the mesa structure comprises: patterning the conductor layer first. Then, using the patterned conductor layer as a mask, a dry etching process is performed to remove a portion of the first semiconductor layer, a portion of the second semiconductor layer, and a portion of the third semiconductor layer.

在本發明的一實施例之中,形成側蝕開口的步驟包括:以圖案化後的導體層為罩幕,對圖案化後的第一半導體層、第二半導體層以及第三半導體層,進行一濕式蝕刻製程。 In an embodiment of the invention, the step of forming the undercut opening includes: performing the patterned conductive layer as a mask to perform the patterned first semiconductor layer, the second semiconductor layer, and the third semiconductor layer A wet etching process.

在本發明的一實施例之中,直立式電晶體元件的製作方法,更包括下述步驟:先形成一鈍化層,以包覆閘電極層和台面結構,並填充側蝕開口。再進行平坦化製程,以移除一部分的鈍化層、一部分的介電材質層以及一部分的閘電極層,將圖案化後的導體層暴露於外。後續,於暴露於外的一部分導體層上形成接觸墊。 In an embodiment of the invention, the method for fabricating the vertical transistor component further includes the steps of: forming a passivation layer to cover the gate electrode layer and the mesa structure, and filling the sidewall etching opening. A planarization process is further performed to remove a portion of the passivation layer, a portion of the dielectric material layer, and a portion of the gate electrode layer, and expose the patterned conductor layer to the outside. Subsequently, a contact pad is formed on a portion of the conductor layer exposed to the outside.

在本發明的一實施例之中,導體層包含氮化鈦(TiN)。在本發明的一實施例之中,構成接觸墊的材質,係選自於氮化鈦、鈦鋁(Ti/Al)合金、鈦金(Ti/Au)合金以及上述之任意組合所構成之一族群。 In an embodiment of the invention, the conductor layer comprises titanium nitride (TiN). In an embodiment of the invention, the material constituting the contact pad is selected from the group consisting of titanium nitride, titanium aluminum (Ti/Al) alloy, titanium (Ti/Au) alloy, and any combination thereof. Ethnic group.

在本發明的一實施例之中,第一半導體層和第三半導體層具有相同電性,且與第二半導體層三者共同形成一P-N-P接面或一N-P-N接面。 In an embodiment of the invention, the first semiconductor layer and the third semiconductor layer have the same electrical properties, and together with the second semiconductor layer form a P-N-P junction or an N-P-N junction.

在本發明的一實施例之中,第一半導體層和第三半導體層具有不同電性,且與第二半導體層三者共同形成一P-I-N接面或一N-I-P接面。 In an embodiment of the invention, the first semiconductor layer and the third semiconductor layer have different electrical properties, and together with the second semiconductor layer form a P-I-N junction or an N-I-P junction.

在本發明的一實施例之中,蝕刻步驟係以圖案化後的導電層為蝕刻罩幕,使圖案化後的第一半導體層和第三半導體層,具有往蝕刻後的第二半導體層方向逐漸縮小的漸窄橫向尺寸。在本發明的一實施例之中,蝕刻後的第二半導體層,具有往其縱軸中心方向漸縮 小的漸窄橫向尺寸。 In an embodiment of the invention, the etching step is performed by using the patterned conductive layer as an etching mask, so that the patterned first semiconductor layer and the third semiconductor layer have a direction toward the second semiconductor layer after etching. Gradually narrowing the lateral dimension. In an embodiment of the invention, the etched second semiconductor layer has a tapering toward the center of its longitudinal axis Small tapered lateral dimensions.

在本發明的一實施例之中,基材係一矽基材;且第一半導體層、第二半導體層和第三半導體層係由鍺所構成。 In an embodiment of the invention, the substrate is a substrate; and the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer are made of tantalum.

根據上述實施例,本發明的是提供一種垂直式電晶體元件及其製作方法,其係先形成由三層半導體層以及一導體層所構成的台面結構,縱向地凸設於基材表面上。再以導體層為蝕刻罩幕,對三層半導體層進行側蝕,藉以在台面結構中形成至少一個側蝕開口,使第二半導體層具有實質小於第一半導體層和第三半導體層的橫向尺寸。後續,在側蝕開口的側壁上,依序形成介電材質層和閘電極層。 According to the above embodiment, the present invention provides a vertical transistor element and a method of fabricating the same, which first form a mesa structure composed of three semiconductor layers and a conductor layer, and is longitudinally protruded from the surface of the substrate. Then, the conductor layer is used as an etching mask to laterally etch the three semiconductor layers, thereby forming at least one side etching opening in the mesa structure, so that the second semiconductor layer has substantially smaller lateral dimensions than the first semiconductor layer and the third semiconductor layer. . Subsequently, a dielectric material layer and a gate electrode layer are sequentially formed on the sidewall of the undercut opening.

其中,蝕刻後的第一半導體層和第三半導體層,係分別做為垂直式電晶體元件的源極和汲極,而第二半導體層,則可做為分隔源極和汲極的半導體通道區。且源極和汲極的橫向尺寸,實質大於半導體通道區的橫向尺寸。使垂直式電晶體元件具有上下部分的橫向尺寸較寬,中間部分的橫向尺寸較窄的沙漏外型。 Wherein, the etched first semiconductor layer and the third semiconductor layer are respectively used as a source and a drain of the vertical transistor element, and the second semiconductor layer can be used as a semiconductor channel separating the source and the drain Area. And the lateral dimensions of the source and the drain are substantially larger than the lateral dimension of the semiconductor channel region. The vertical type crystal element has an hourglass shape in which the lateral dimension of the upper and lower portions is wider and the lateral portion of the intermediate portion is narrower.

與相同關鍵尺寸的習知垂直式電晶體元件相比,本案實施例所提供的垂直式電晶體元件,半導體通道區可以透過選擇性蝕刻技術縮得很小,並可將源極和汲極的橫向尺寸與半導體通道區之橫向尺寸的比例相對地提高。具有可大幅降低源極和汲極的寄生電阻,提高汲極電流的功能。可解決習知技術因關鍵尺寸降低所面臨的元件導通電流難以提升的問題。 Compared with the conventional vertical transistor element of the same critical dimension, the vertical transistor component provided by the embodiment of the present invention can reduce the semiconductor channel region by a selective etching technique and can have a source and a drain. The ratio of the lateral dimension to the lateral dimension of the semiconductor channel region is relatively increased. It has the function of greatly reducing the parasitic resistance of the source and drain and increasing the drain current. It can solve the problem that the conventional technology is difficult to increase the conduction current of the component due to the reduction of the critical size.

另外,由於垂直式電晶體元件的源極、半導體通道區和汲極,係分別由採用磊晶生長技術,搭配離子植入製程的個別半導體層所構成。可精準控制源極區、汲極區和半導體通道區中的p型或n型摻雜分布。再加上,其橫向尺寸,係藉由選擇性蝕刻技術來加以定義。因此,可以放寬製程上對黃光技術的精度要求。具有降低製造成本增進製程良率的優勢。 In addition, since the source, the semiconductor channel region and the drain of the vertical transistor element are respectively formed by individual semiconductor layers using an epitaxial growth technique and an ion implantation process. P-type or n-type doping profiles in the source, drain and semiconductor channel regions can be precisely controlled. In addition, its lateral dimensions are defined by selective etching techniques. Therefore, the accuracy requirements for the yellow light technology in the process can be relaxed. It has the advantage of reducing manufacturing costs and improving process yield.

100‧‧‧垂直式電晶體元件 100‧‧‧Vertical transistor components

101‧‧‧基材 101‧‧‧Substrate

101a‧‧‧基材表面 101a‧‧‧Substrate surface

102‧‧‧第一半導體層 102‧‧‧First semiconductor layer

102a‧‧‧第一半導體層的橫向尺寸 102a‧‧‧ transverse dimensions of the first semiconductor layer

103‧‧‧第二半導體層 103‧‧‧Second semiconductor layer

103b‧‧‧第二半導體層的橫向尺寸 103b‧‧‧ transverse dimensions of the second semiconductor layer

103’‧‧‧第二半導體層 103’‧‧‧Second semiconductor layer

103’a‧‧‧第二半導體層的縱軸中心線 103’a‧‧‧The centerline of the longitudinal axis of the second semiconductor layer

103’b‧‧‧第二半導體層的橫向尺寸 103'b‧‧‧ transverse dimensions of the second semiconductor layer

104‧‧‧第三半導體層 104‧‧‧ Third semiconductor layer

104a‧‧‧第三半導體層的橫向尺寸 104a‧‧‧ transverse dimensions of the third semiconductor layer

105‧‧‧導體層 105‧‧‧Conductor layer

106‧‧‧台面結構 106‧‧‧ countertop structure

107‧‧‧光阻進行 107‧‧‧Light resistance

108‧‧‧微影蝕刻製程 108‧‧‧Photolithography etching process

109‧‧‧乾式蝕刻製程 109‧‧‧dry etching process

110‧‧‧蝕刻製程 110‧‧‧ etching process

111‧‧‧側蝕開口 111‧‧‧Side etching opening

112‧‧‧閘極材料堆疊結構 112‧‧ ‧ gate material stack structure

112a‧‧‧閘介電層 112a‧‧‧gate dielectric layer

112b‧‧‧閘電極層 112b‧‧‧ gate electrode layer

114‧‧‧鈍化層 114‧‧‧ Passivation layer

115‧‧‧平坦化製程 115‧‧‧ Flattening process

116‧‧‧接觸墊 116‧‧‧Contact pads

200‧‧‧n垂直式電晶體元件 200‧‧‧n vertical transistor components

200’‧‧‧p型通道垂直式電晶體元件 200'‧‧‧p type channel vertical transistor component

202‧‧‧第一半導體層 202‧‧‧First semiconductor layer

203‧‧‧第二半導體層 203‧‧‧Second semiconductor layer

204‧‧‧第三半導體層 204‧‧‧ third semiconductor layer

i‧‧‧無摻雜 i‧‧‧No doping

p+‧‧‧高濃度p型電性摻雜 p+‧‧‧high concentration p-type electrical doping

n+‧‧‧高濃度n型電性摻雜 n+‧‧‧High concentration n-type electrical doping

圖1A至1H係根據本發明的一實施例所繪示之製作垂直式電晶體元件的製程結構剖面示意圖。 1A to 1H are schematic cross-sectional views showing a process structure for fabricating a vertical transistor component according to an embodiment of the invention.

圖1B’係根據本發明的另一實施例,所繪示的一種垂直式電晶體元件的部分製程結構剖面示意圖。 1B is a cross-sectional view showing a portion of a process structure of a vertical transistor element according to another embodiment of the present invention.

圖1E’係根據本發明的又一實施例,所繪示的一種垂直式電晶體元件的部分製程結構剖面示意圖。 1E is a cross-sectional view showing a portion of a process structure of a vertical transistor component according to still another embodiment of the present invention.

圖2B和圖2H係根據本發明的再一實施例,所繪示的一種垂直式電晶體元件的部分製程結構剖面示意圖。 2B and 2H are schematic cross-sectional views showing a partial process structure of a vertical transistor component according to still another embodiment of the present invention.

圖2H’係根據本發明的又再一實施例,所繪示的一種垂直式電晶體元件的部分製程結構剖面示意圖。 2H is a cross-sectional view showing a partial process structure of a vertical type of transistor element according to still another embodiment of the present invention.

本發明是在提供一種垂直式電晶體元件,可防電晶體元件因關鍵尺寸下降,造成源極和汲極的寄生電阻上升,而使元件驅動電流難以增加的問題。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數個垂直式電晶體元件及其製作方法作為較佳實施例,並配合所附圖式,作詳細說明如下。 SUMMARY OF THE INVENTION The present invention provides a vertical type of transistor element which can prevent the parasitic resistance of the source and the drain from rising due to a decrease in critical dimensions of the transistor element, thereby making it difficult to increase the element drive current. The above and other objects, features, and advantages of the present invention will become more apparent and understood. .

請參照圖1A至1H,圖1A至1H係根據本發明的一實施例所繪示之製作垂直式電晶體元件100的製程結構剖面示意圖。其中製作垂直式電晶體元件100的方法,包含下述步驟:首先,提供一基材101。在本發明的一些實施例之中,基材101係一矽基材,但在其他實施例之中,基材101可以由其他合適的半導體材質所構成(如圖1A所繪示)。 1A to 1H are schematic cross-sectional views showing a process structure for fabricating a vertical transistor device 100 according to an embodiment of the invention. The method of fabricating the vertical transistor component 100 includes the steps of: first, providing a substrate 101. In some embodiments of the present invention, the substrate 101 is a substrate, but in other embodiments, the substrate 101 may be formed of other suitable semiconductor materials (as shown in FIG. 1A).

然後,再以原位摻雜(in-situ doping)磊晶成長製程,例如以物理氣相沉積、化學氣相沉積或其他合適的磊晶生長製程,或搭配複數次離子植入製程,在基材101表面101a上,依序形成第一半導體層102、第二半導體層103、第三半導體層104以及導體層105。 Then, in-situ doping epitaxial growth process, such as physical vapor deposition, chemical vapor deposition or other suitable epitaxial growth process, or with multiple ion implantation processes, On the surface 101a of the material 101, the first semiconductor layer 102, the second semiconductor layer 103, the third semiconductor layer 104, and the conductor layer 105 are sequentially formed.

在本發明的一些實施例中,第一半導體層102、第二半導體層103和第三半導體層104,是由相同的半導體材質,例如係、鍺或其他Ⅲ-V族或II-VI族的半導體材料,所構成。但在其他實施例之中,第一半導體層102、第二半導體層103和第三半導體層104,亦可分別由不同的半導體材質構成所謂的異質材料結構。 In some embodiments of the present invention, the first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 are made of the same semiconductor material, such as a system, a germanium, or other III-V or II-VI family. Made up of semiconductor materials. However, in other embodiments, the first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 may each be made of a different semiconductor material to form a so-called heterogeneous material structure.

其中,第一半導體層102和第三半導體104層具有不相同的電性,且二者可分別與第二半導體103層形成一P-I接面或一N-I。例如,在本實施例之中,第一半導體層102、第二半導體層103和第三半導體層104係由鍺所構成。第一半導體層102為具有高濃度p型電性摻雜(以p+表示)的鍺材料層;第二半導體104層為無摻雜(以i表示)的鍺材料層;第三半導體104層為具有高濃度n型電性摻雜(以n+表示)的鍺材料層。第一半導體層102、第二半導體層103和第三半導體層104三者共同形成一P-I-N穿隧接面(tunnel junction)(如圖1B所繪示)。 The first semiconductor layer 102 and the third semiconductor 104 layer have different electrical properties, and the two may form a P-I junction or an N-I with the second semiconductor 103 layer, respectively. For example, in the present embodiment, the first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 are composed of germanium. The first semiconductor layer 102 is a germanium material layer having a high concentration of p-type electrical doping (indicated by p+); the second semiconductor 104 layer is an undoped (indicated by i) germanium material layer; the third semiconductor layer 104 is A layer of tantalum material having a high concentration of n-type electrically doped (indicated by n+). The first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 collectively form a P-I-N tunnel junction (as shown in FIG. 1B).

在本發明的另一個實施例之中,第一半導體層102為具有高濃度n型電性摻雜(以n+表示)的鍺材料層;第二半導體104層為無摻雜(以i表示)的鍺材料層;第三半導體104層為具有高濃度p型電性摻雜(以p+表示)的鍺材料層。第一半導體層102、第二半導體層103和第三半導體層104三者共同形成一N-I-P穿隧接面(如圖1B’所繪示)。 In another embodiment of the present invention, the first semiconductor layer 102 is a germanium material layer having a high concentration of n-type electrical doping (indicated by n+); the second semiconductor 104 layer is undoped (indicated by i) The layer of germanium material; the third layer of semiconductor 104 is a layer of germanium material having a high concentration of p-type electrical doping (indicated by p+). The first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 collectively form an N-I-P tunnel junction (as shown in FIG. 1B').

另外,導體層105,可以是包含氮化鈦的一種硬罩幕層。且其材質亦並不以此為限。任何適於用來做為硬罩幕層的導體材質, 都可用來形成導體層105。例如,在本實施例中,導體層105即是一氮化鈦層。 In addition, the conductor layer 105 may be a hard mask layer containing titanium nitride. And its material is not limited to this. Any conductor material suitable for use as a hard mask layer, Both can be used to form the conductor layer 105. For example, in the present embodiment, the conductor layer 105 is a titanium nitride layer.

然後,對第一半導體層102、第二半導體層103、第三半導體層104以及導體層105進行圖案化,藉以形成縱向凸設於基材101表面101a上的一台面結構106。其中,第一半導體層102、第二半導體層103、第三半導體層104以及導體層105的圖案化製程,包含下述步驟:首先以光阻107進行微影蝕刻製程108,藉以圖案化導體層105(如圖1C所繪示)。移除光阻層107之後,再以圖案化的導體層105為罩幕,進行乾式蝕刻製程109,以移除移一部分的第一半導體層102、一部分的第二半導體層103以及一部分的第三半導體層104,使剩餘的第一半導體層102、第二半導體層103、第三半導體層104以及導體層105,形成凸設於基材101表面101a上的堆疊台面結構106(如圖1D所繪示)。 Then, the first semiconductor layer 102, the second semiconductor layer 103, the third semiconductor layer 104, and the conductor layer 105 are patterned to form a mesa structure 106 longitudinally protruding on the surface 101a of the substrate 101. The patterning process of the first semiconductor layer 102, the second semiconductor layer 103, the third semiconductor layer 104, and the conductor layer 105 includes the following steps: first performing a lithography process 108 with the photoresist 107, thereby patterning the conductor layer 105 (as shown in Figure 1C). After removing the photoresist layer 107, the patterned etching layer 105 is used as a mask to perform a dry etching process 109 to remove a portion of the first semiconductor layer 102, a portion of the second semiconductor layer 103, and a portion of the third portion. The semiconductor layer 104 is such that the remaining first semiconductor layer 102, the second semiconductor layer 103, the third semiconductor layer 104, and the conductor layer 105 form a stacked mesa structure 106 protruding on the surface 101a of the substrate 101 (as shown in FIG. 1D). Show).

接著,再以圖案化的導體層105為罩幕,進行一蝕刻製程110,例如濕式蝕刻製程,藉以在台面結構106中形成至少一個側蝕開口111。並且藉由選擇性蝕刻技術,使圖案化後的第二半導體層103,具有實質小於圖案化後的第一半導體層102和第三半導體層104的橫向尺寸(如圖1E所繪示)。 Then, using the patterned conductive layer 105 as a mask, an etching process 110, such as a wet etching process, is performed to form at least one undercut opening 111 in the mesa structure 106. And the second semiconductor layer 103 after patterning is substantially smaller than the lateral dimension of the patterned first semiconductor layer 102 and the third semiconductor layer 104 by a selective etching technique (as shown in FIG. 1E).

例如在本發明的一些實施例之中,藉由選擇性的蝕刻110,可使圖案化後的第一半導體層102和第三半導體層104,分別具有往圖案化後的第二半導體層103方向逐漸縮小的漸窄橫向尺寸。也就是說,蝕刻後的第一半導體層102靠近導體層105的一端,具有較寬的橫向尺寸102a,而隨著其與第二半導體層103之間的縱向距離越來越小,該橫向尺寸102a也隨之變窄。同樣的,蝕刻後的第三半導體層104靠近基材的一端,具有較寬的橫向尺寸104a,而隨著其與第二 半導體層103之間的縱向距離越來越小,該橫向尺寸104a也隨之變窄。 For example, in some embodiments of the present invention, the patterned first semiconductor layer 102 and the third semiconductor layer 104 may have a direction toward the patterned second semiconductor layer 103 by selective etching 110. Gradually narrowing the lateral dimension. That is, the etched first semiconductor layer 102 is adjacent to one end of the conductor layer 105, has a wider lateral dimension 102a, and as the longitudinal distance between it and the second semiconductor layer 103 becomes smaller, the lateral dimension 102a also narrows. Similarly, the etched third semiconductor layer 104 is adjacent to one end of the substrate, having a wider lateral dimension 104a, and along with it The longitudinal distance between the semiconductor layers 103 is getting smaller and smaller, and the lateral dimension 104a is also narrowed.

藉由控制蝕刻製程110的選擇特性,可將第一半導體層102、第二半導體層103和第三半導體層104,經由側蝕開口111暴露於外的斜面晶格排列,維持在特定的晶格方向。在本實施例之中,第一半導體層102和第三半導體層104,經由側蝕開口111暴露於外的斜面,其晶面為(111)。而第二半導體層103經由側蝕開口111暴露於外的斜面,其晶面為(110)。也就是說,藉由控制蝕刻110的選擇特性,蝕刻後的第二半導體層103,可具有大致平均的橫向尺寸103a,且可與蝕刻後的第一半導體層102和第三半導體層104,構成一個上下部分的橫向尺寸較寬,而中間部分的橫向尺寸較窄的沙漏型結構(如圖1E所繪示)。 By controlling the selective characteristics of the etching process 110, the first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 may be exposed to the outer bevel lattice through the undercut opening 111 to maintain a specific lattice. direction. In the present embodiment, the first semiconductor layer 102 and the third semiconductor layer 104 are exposed to the outer slope via the undercut opening 111, and the crystal plane thereof is (111). The second semiconductor layer 103 is exposed to the outer slope via the undercut opening 111, and its crystal plane is (110). That is, by controlling the selection characteristics of the etch 110, the etched second semiconductor layer 103 may have a substantially average lateral dimension 103a and may be formed with the etched first semiconductor layer 102 and third semiconductor layer 104. One of the upper and lower portions has a wider lateral dimension, and the middle portion has a narrower lateral dimension of the hourglass structure (as shown in Figure 1E).

但在值得注意的是,本發明的另外一些實施例之中,藉由調控蝕刻製程110,亦可使圖案化後的第二半導體層103’,具有晶面為(111)的斜面,經由側蝕開口111暴露於外。意即是,使蝕刻後的第二半導體層103,具有往其縱軸中心線103’a漸縮小的漸窄橫向尺寸103’b(如圖1E’所繪示)。 However, it is to be noted that in other embodiments of the present invention, the patterned second semiconductor layer 103' may have a beveled surface having a crystal plane of (111) by adjusting the etching process 110. The etch opening 111 is exposed to the outside. That is, the etched second semiconductor layer 103 has a tapered lateral dimension 103'b which is tapered toward its longitudinal axis center line 103'a (as shown in Fig. 1E').

後續,藉由沉積製程,在導體層105以及側蝕開口111的側壁上,形成一閘極堆疊結構112,並覆蓋圖案化後的導體層105以及經由側蝕開口111暴露於外的一部分第一半導體層102、一部分第二半導體層103以及一部分第三半導體層104。並且,在介電材質層112a上形成閘電極層112b,閘電極層112b可透過物理氣相沉積(PVD)技術沉積。因導體層105下測的底切結構(under-cut)具有阻擋效果,閘電極層112b不會形成於底切上(如圖1F所繪示),因此閘電極層112b不會跟後續的汲極接觸墊116產生短路。 Subsequently, a gate stack structure 112 is formed on the sidewalls of the conductor layer 105 and the undercut opening 111 by a deposition process, and covers the patterned conductor layer 105 and a portion exposed to the outside via the undercut opening 111. The semiconductor layer 102, a portion of the second semiconductor layer 103, and a portion of the third semiconductor layer 104. Further, a gate electrode layer 112b is formed on the dielectric material layer 112a, and the gate electrode layer 112b is deposited by a physical vapor deposition (PVD) technique. Since the under-cut under the conductor layer 105 has a blocking effect, the gate electrode layer 112b is not formed on the undercut (as shown in FIG. 1F), so the gate electrode layer 112b does not follow the subsequent 汲. The pole contact pads 116 create a short circuit.

再於閘電極層112b上形成一鈍化層114,以包覆閘電極層112b和台面結構106,並填充側蝕開口111(如圖1G所繪示)。在本 發明的一些實施例中,鈍化層114可以藉由旋塗製程(spin-coating),將聚醯亞胺(polyimide)塗佈於閘電極層112b和台面結構106上,經過烤硬(hard curing)來加以完成。 A passivation layer 114 is formed on the gate electrode layer 112b to cover the gate electrode layer 112b and the mesa structure 106, and fill the undercut opening 111 (as shown in FIG. 1G). In this In some embodiments of the invention, the passivation layer 114 may be coated on the gate electrode layer 112b and the mesa structure 106 by spin-coating, and subjected to hard curing. Come and do it.

之後,以圖案化後的導體層105為停止層,進行平坦化製程115,例如回蝕刻製程或化學機械研磨,以移除一部分的鈍化層114、一部分的介電材質層112a以及一部分的閘電極層112b,並將圖案化後的導體層105暴露於外。再於暴露於外的一部分導體層105上形成接觸墊116,完成如圖1H所繪示的垂直式電晶體元件100。在本發明的一些實施例中,構成接觸墊116的材料,可以為氮化鈦(TiN)、鈦鋁(Ti/Al)合金、鈦金(Ti/Au)合金或上述之任意組合所構成之材料。其中,構成接觸墊116的材質並不以此為限。任何具有類似性質的導體材質,都可用來形成接觸墊116。 Thereafter, the patterned conductive layer 105 is used as a stop layer, and a planarization process 115, such as an etch back process or chemical mechanical polishing, is performed to remove a portion of the passivation layer 114, a portion of the dielectric material layer 112a, and a portion of the gate electrode. Layer 112b and exposes patterned conductor layer 105 to the outside. A contact pad 116 is formed on a portion of the conductor layer 105 exposed to the outside to complete the vertical transistor element 100 as illustrated in FIG. 1H. In some embodiments of the present invention, the material constituting the contact pad 116 may be composed of titanium nitride (TiN), titanium aluminum (Ti/Al) alloy, titanium (Ti/Au) alloy, or any combination thereof. material. The material constituting the contact pad 116 is not limited thereto. Any conductor material having similar properties can be used to form the contact pads 116.

而值得注意的是,前述製作垂直式電晶體元件100的方法,不但適於製作垂直式的PIN隧穿場效電晶體,也適合用來製作垂直式的金屬氧化物半導體場效電晶體。請參照圖2B和圖2H,圖2B和圖2H係根據本發明的另一實施例,所繪示的一種垂直式電晶體元件200的部分製程結構剖面示意圖。其中,製作垂直式電晶體元件200的方法,大致與製作垂直式電晶體元件100的方法類似。差別在於,形成第一半導體層202、第二半導體層203及第三半導體層204的原位摻雜磊晶成長製程和離子植入製程有所不同。以下相同製程,將以相同的元件符號加以表示。 It should be noted that the foregoing method for fabricating the vertical transistor element 100 is not only suitable for fabricating a vertical PIN tunneling field effect transistor, but also for fabricating a vertical metal oxide semiconductor field effect transistor. Referring to FIG. 2B and FIG. 2H, FIG. 2B and FIG. 2H are schematic cross-sectional views showing a portion of a process structure of a vertical transistor component 200 according to another embodiment of the present invention. Among them, the method of fabricating the vertical transistor element 200 is substantially similar to the method of fabricating the vertical transistor element 100. The difference is that the in-situ doping epitaxial growth process and the ion implantation process for forming the first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 are different. The same processes will be denoted by the same component symbols.

如圖2B所示,第一半導體層202、第二半導體層203和第三半導體層204,同樣是由鍺所構成。但並不以此為限,在其他實施例之中,第一半導體層202、第二半導體層203和第三半導體層204亦可由其他合適的半導體材質所構成。而且,第一半導體層202、第二半導體層203和第三半導體層204,可以分別由不同的半導體材 質所構成。另外,在本發明的一些實施例中,第一半導體層202和第三半導體204層二者具有相同的電性,且二者也可分別與第二半導體203層形成一P+-N-P+接面或一N+-P-N+接面,而分別構成一p型通道場效電晶體元件或一n型通道場效電晶體元件。 As shown in FIG. 2B, the first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 are also composed of germanium. However, it is not limited thereto. In other embodiments, the first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 may also be formed of other suitable semiconductor materials. Further, the first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 may be composed of different semiconductor materials. In addition, in some embodiments of the present invention, both the first semiconductor layer 202 and the third semiconductor 204 layer have the same electrical property, and both may also form a P + -NP + connection with the second semiconductor 203 layer, respectively. The surface or an N + -PN + junction forms a p-type channel field effect transistor element or an n-type channel field effect transistor element, respectively.

之後,再接續圖1C-1H所繪示的製程,以完成如圖2H所繪示垂直式電晶體元件200。由於後續製程大致與製作垂直式電晶體元件100的方法相同,故不再贅述。 Thereafter, the process illustrated in FIGS. 1C-1H is continued to complete the vertical transistor component 200 as illustrated in FIG. 2H. Since the subsequent process is substantially the same as the method of fabricating the vertical transistor element 100, it will not be described again.

例如,在本實施例之中,第一半導體層202、第二半導體層203和第三半導體層204係由鍺所構成。第一半導體層202和第三半導體204層,皆為具有高濃度n型電性摻雜(皆以n+表示)的鍺材料層;第二半導體層203為具有p型電性摻雜(以p表示)的鍺材料層。第一半導體層202、第二半導體層203和第三半導體層204三者共同形成一N+-P-N+接面,進而構成n型通道場效電晶體元件200(如圖2H所繪示)。 For example, in the present embodiment, the first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 are composed of germanium. The first semiconductor layer 202 and the third semiconductor 204 layer are both germanium material layers having a high concentration of n-type electrical doping (all denoted by n+); the second semiconductor layer 203 has p-type electrical doping (p Indicates the layer of tantalum material. The first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 together form an N + -PN + junction, thereby forming an n-type channel field effect transistor element 200 (as shown in FIG. 2H).

不過值得注意的是,在本發明的另一些實施例之中,第一半導體層202和第三半導體層204,亦可皆為具有高濃度p型電性摻雜的鍺材料層(皆以p+表示);第二半導體層203為具有n型電性摻雜的鍺材料層(以n表示)。則第一半導體層202、第二半導體層203和第三半導體層204三者可共同形成一P+-N-P+接面,進而構成p型通道場效電晶體元件200’(如圖2H’所繪示)。 It should be noted that, in other embodiments of the present invention, the first semiconductor layer 202 and the third semiconductor layer 204 may also be a layer of germanium material having a high concentration of p-type electrical doping (both in p + indicates); the second semiconductor layer 203 is a layer of germanium material (represented by n) having an n-type electrical doping. Then, the first semiconductor layer 202, the second semiconductor layer 203, and the third semiconductor layer 204 can collectively form a P + -NP + junction, thereby forming a p-type channel field effect transistor element 200' (as shown in FIG. 2H' Painted).

請再參照圖1H,經由前述製程方法所製備的垂直式電晶體元件100,其蝕刻剩餘的第一半導體層102和第三半導體層104分別做為垂直式電晶體元件100的源極和汲極;而蝕刻剩餘的第二半導體層103則用來做為連接源極和汲極的半導體通道區。閘介電層112a則覆蓋於半導體通道區的立壁,且鄰接源極和汲極(即覆蓋於側蝕開口111的側壁)。閘電極層112b覆蓋於閘介電層112a上。其中,半 導體通道區的橫向尺寸,實質小於源極區和汲極區的橫向尺寸。 Referring again to FIG. 1H, the vertical transistor element 100 prepared by the above-described process method etches the remaining first semiconductor layer 102 and third semiconductor layer 104 as the source and drain of the vertical transistor element 100, respectively. And etching the remaining second semiconductor layer 103 is used as a semiconductor channel region connecting the source and the drain. The gate dielectric layer 112a covers the vertical walls of the semiconductor via region and is adjacent to the source and drain (ie, the sidewalls of the undercut opening 111). The gate electrode layer 112b covers the gate dielectric layer 112a. Among them, half The lateral dimension of the conductor channel region is substantially smaller than the lateral dimension of the source region and the drain region.

以結構而言,由於垂直式電晶體元件100的半導體通道區,可以透過選擇性蝕刻技術,將其橫向尺寸縮得很小。與相同關鍵尺寸的習知垂直式電晶體元件相比,這樣的設計,由於電晶體元件100之源極和汲極的橫向尺寸相對較大,因而不會增加串聯電阻而降低汲極電流;同時由於通道區的橫向尺寸可以縮得很小,因而可增加閘極對通道的控制能力,抑制元件的短通道效應。 Structurally, due to the semiconductor channel region of the vertical transistor component 100, the lateral dimension can be minimized by selective etching techniques. Compared with conventional vertical transistor elements of the same critical size, such a design, since the lateral dimension of the source and the drain of the transistor element 100 is relatively large, does not increase the series resistance and reduces the gate current; Since the lateral dimension of the channel region can be reduced to a small extent, the gate can control the channel and suppress the short channel effect of the component.

而以製程而言,由於第一半導體層102、第二半導體層103和第三半導體層104,係藉由原位磊晶生長製程形成於基材101表面。因此,各層的p型或n型摻雜分布,可被精準地加以控制。另外,由於垂直式電晶體元件100的源極、半導體通道區和汲極的橫向尺寸,係藉由選擇性蝕刻技術來加以定義。因此,可以放寬元件縮小化對於黃光技術的精度要求,具有降低製造成本增進製程良率的優勢。 In the process, the first semiconductor layer 102, the second semiconductor layer 103, and the third semiconductor layer 104 are formed on the surface of the substrate 101 by an in-situ epitaxial growth process. Therefore, the p-type or n-type doping profile of each layer can be precisely controlled. In addition, since the lateral dimensions of the source, semiconductor channel region and drain of the vertical transistor element 100 are defined by selective etching techniques. Therefore, it is possible to relax the precision requirement of the component reduction for the yellow light technology, and the advantage of reducing the manufacturing cost and improving the process yield.

根據上述實施例,本發明的是提供一種垂直式電晶體元件及其製作方法,其係先形成由三層半導體層以及一導體層所構成的台面結構,縱向地凸設於基材表面上。再以導體層為蝕刻罩幕,對三層半導體層進行側蝕,藉以在台面結構中形成至少一個側蝕開口,使第二半導體層具有實質小於第一半導體層和第三半導體層的橫向尺寸。後續,在側蝕開口的側壁上,依序形成介電材質層和閘電極層。 According to the above embodiment, the present invention provides a vertical transistor element and a method of fabricating the same, which first form a mesa structure composed of three semiconductor layers and a conductor layer, and is longitudinally protruded from the surface of the substrate. Then, the conductor layer is used as an etching mask to laterally etch the three semiconductor layers, thereby forming at least one side etching opening in the mesa structure, so that the second semiconductor layer has substantially smaller lateral dimensions than the first semiconductor layer and the third semiconductor layer. . Subsequently, a dielectric material layer and a gate electrode layer are sequentially formed on the sidewall of the undercut opening.

其中,蝕刻後的第一半導體層和第三半導體層,係分別做為垂直式電晶體元件的源極和汲極,而第二半導體層,則可做為分隔源極和汲極的半導體通道區。且源極和汲極的橫向尺寸,實質大於半導體通道區的橫向尺寸。使垂直式電晶體元件具有上下部分的橫向尺寸較寬,中間部分的橫向尺寸較窄的沙漏外型。 Wherein, the etched first semiconductor layer and the third semiconductor layer are respectively used as a source and a drain of the vertical transistor element, and the second semiconductor layer can be used as a semiconductor channel separating the source and the drain Area. And the lateral dimensions of the source and the drain are substantially larger than the lateral dimension of the semiconductor channel region. The vertical type crystal element has an hourglass shape in which the lateral dimension of the upper and lower portions is wider and the lateral portion of the intermediate portion is narrower.

與相同關鍵尺寸的習知垂直式電晶體元件相比,本案實施例所提供的垂直式電晶體元件,半導體通道區可以透過選擇性蝕刻 技術縮得很小,並可將源極和汲極的橫向尺寸與半導體通道區之橫向尺寸的比例相對地提高。具有可大幅降低源極和汲極的寄生電阻,提高汲極電流的功能;同時可解決習知技術因關鍵尺寸降低所面臨的閘極對通道的控制能力變差而引起的短通道效應問題。 Compared with the conventional vertical transistor element of the same critical size, the vertical transistor component provided by the embodiment of the present invention can selectively etch the semiconductor channel region. The technique shrinks very little and can increase the ratio of the lateral dimensions of the source and drain to the lateral dimension of the semiconductor channel region. The utility model has the functions of greatly reducing the parasitic resistance of the source and the drain and increasing the drain current, and at the same time, solving the problem of the short channel effect caused by the poor control ability of the gate to the channel due to the reduction of the critical size of the prior art.

另外,由於垂直式電晶體元件的源極、半導體通道區和汲極,係分別由採用磊晶生長技術。可精準控制源極區、汲極區和半導體通道區中的p型或n型摻雜分布。再加上,其橫向尺寸,係藉由選擇性蝕刻技術來加以定義。因此,可以放寬元件縮小化對黃光技術的精度要求,具有降低製造成本增進製程良率的優勢。 In addition, since the source of the vertical transistor element, the semiconductor channel region, and the drain are respectively employed by epitaxial growth techniques. P-type or n-type doping profiles in the source, drain and semiconductor channel regions can be precisely controlled. In addition, its lateral dimensions are defined by selective etching techniques. Therefore, the accuracy requirement of the yellowing technology can be relaxed, and the manufacturing cost can be improved to improve the process yield.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。任何該領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in the preferred embodiments, it is not intended to limit the invention. Anyone having ordinary knowledge in the field can make some changes and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧垂直式電晶體元件 100‧‧‧Vertical transistor components

101‧‧‧基材 101‧‧‧Substrate

101a‧‧‧基材表面 101a‧‧‧Substrate surface

102‧‧‧第一半導體層 102‧‧‧First semiconductor layer

103‧‧‧第二半導體層 103‧‧‧Second semiconductor layer

104‧‧‧第三半導體層 104‧‧‧ Third semiconductor layer

105‧‧‧導體層 105‧‧‧Conductor layer

111‧‧‧側蝕開口 111‧‧‧Side etching opening

112‧‧‧閘極材料堆疊結構 112‧‧ ‧ gate material stack structure

112a‧‧‧閘介電層 112a‧‧‧gate dielectric layer

112b‧‧‧閘電極層 112b‧‧‧ gate electrode layer

114‧‧‧鈍化層 114‧‧‧ Passivation layer

115‧‧‧平坦化製程 115‧‧‧ Flattening process

116‧‧‧接觸墊 116‧‧‧Contact pads

i‧‧‧無摻雜 i‧‧‧No doping

p+‧‧‧高濃度p型電性摻雜 p+‧‧‧high concentration p-type electrical doping

n+‧‧‧高濃度n型電性摻雜 n+‧‧‧High concentration n-type electrical doping

Claims (18)

一種直立式電晶體(vertical transistor)元件,包括:一基材;一源極區,位於該基材的一表面上;一半導體通道區,位於該源極區上方;一汲極區,位於該半導體通道區部上方,並藉由該半導體通道區與該源極區縱向連接;一閘介電層,覆蓋於該半導體通道區的一立壁,且鄰接該源極和該汲極;以及一閘電極層,覆蓋於該閘介電層上;其中,該半導體通道區具有實質小於該源極區和該汲極區的一橫向尺寸(lateral size)。 A vertical transistor component includes: a substrate; a source region on a surface of the substrate; a semiconductor channel region above the source region; and a drain region located at the substrate Above the semiconductor channel region, and longitudinally connected to the source region by the semiconductor channel region; a gate dielectric layer covering a vertical wall of the semiconductor channel region, adjacent to the source and the drain; and a gate An electrode layer overlying the gate dielectric layer; wherein the semiconductor channel region has a lateral dimension substantially smaller than the source region and the drain region. 如申請專利範圍第1項所述之直立式電晶體元件,其中該源極區和該汲極區分別具有往該半導體通道區方向逐漸縮小的一漸窄橫向尺寸(lateral tapered size)。 The upright transistor component of claim 1, wherein the source region and the drain region respectively have a tapered tapered dimension that tapers toward the semiconductor channel region. 如申請專利範圍第1項所述之直立式電晶體元件,其中該半導體通道區具有往其縱軸中心方向漸縮小的一漸窄橫向尺寸。 The upright transistor component of claim 1, wherein the semiconductor channel region has a tapered transverse dimension that tapers toward a center of its longitudinal axis. 如申請專利範圍第1項所述之直立式電晶體元件,其中該源極區和該汲極區具有一相同電性,且與該半導體通道區三者共同形成一P-N-P接面或一N-P-N接面。 The upright transistor component of claim 1, wherein the source region and the drain region have the same electrical property, and together with the semiconductor channel region form a PNP junction or an NPN connection. surface. 如申請專利範圍第1項所述之直立式電晶體元件,其中該源極區 和該汲極區具有不同電性,且二者分別與該半導體通道區形成一P-I接面或一N-I接面。 The upright transistor component of claim 1, wherein the source region And the drain region has different electrical properties, and the two respectively form a P-I junction or an N-I junction with the semiconductor channel region. 如申請專利範圍第1項所述之直立式電晶體元件,其中該源極區、該汲極區和該半導體通道區三者共同形成一P-I-N接面或一N-I-P接面。 The upright transistor component of claim 1, wherein the source region, the drain region and the semiconductor channel region together form a P-I-N junction or an N-I-P junction. 如申請專利範圍第1項所述之直立式電晶體元件,其中該基材係一矽基材;且該源極區、該汲極區以及該半導體通道區係由鍺所構成。 The upright transistor component of claim 1, wherein the substrate is a substrate; and the source region, the drain region, and the semiconductor channel region are formed of germanium. 一種直立式電晶體元件的製作方法,包含:提供一基材;於該基材的一表面上,依序形成一第一半導體層、一第二半導體層、一第三半導體層以及一導體層;圖案化該第一半導體層、該第二半導體層、該第三半導體層以及該導體層,以形成一台面結構(mesa structure),縱向地凸設於該表面上;進行一蝕刻製程,藉以在該台面結構中形成至少一側蝕開口,使圖案化後的該第二半導體層,具有實質小於圖案化後的該第一半導體層和該第三半導體層的一橫向尺寸;形成一介電材質層,覆蓋該側蝕開口的一側壁;以及形成一閘電極層,覆蓋於該介電材質層上。 A method for fabricating a vertical transistor component, comprising: providing a substrate; forming a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, and a conductor layer on a surface of the substrate Patterning the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, and the conductor layer to form a mesa structure, longitudinally protruding on the surface; performing an etching process, thereby Forming at least one side etching opening in the mesa structure, so that the patterned second semiconductor layer has substantially less than a lateral dimension of the patterned first semiconductor layer and the third semiconductor layer; forming a dielectric a material layer covering a sidewall of the undercut opening; and forming a gate electrode layer overlying the dielectric material layer. 如申請專利範圍第8項所述之直立式電晶體元件的製作方法,其中形成該台面結構的步驟,包括:圖案化該導體層;以及以圖案化的該導體層為罩幕,進行一乾式蝕刻製程,以移除移一 部分的該第一半導體層、一部分的該第二半導體層以及一部分的該第三半導體層。 The method for fabricating a vertical transistor device according to claim 8, wherein the step of forming the mesa structure comprises: patterning the conductor layer; and patterning the conductor layer as a mask to perform a dry type Etching process to remove shift one a portion of the first semiconductor layer, a portion of the second semiconductor layer, and a portion of the third semiconductor layer. 如申請專利範圍第8項所述之直立式電晶體元件的製作方法,其中形成該側蝕開口的步驟包括,以圖案化後的該導體層為罩幕,對圖案化後的該第一半導體層、該第二半導體層以及該第三半導體層,進行一濕式蝕刻製程。 The method for fabricating a vertical transistor device according to claim 8, wherein the step of forming the undercut opening comprises: patterning the conductive layer as a mask, and patterning the first semiconductor The layer, the second semiconductor layer and the third semiconductor layer are subjected to a wet etching process. 如申請專利範圍第8項所述之直立式電晶體元件的製作方法,更包括:形成一鈍化層,以包覆該閘電極層以及該台面結構,並填充該側蝕開口;進行一平坦化製程,以移除一部分的該鈍化層、一部分的該介電材質層以及一部分的該閘電極層,將圖案化後的該導體層暴露於外;以及於暴露於外的一部分該導體層上形成一接觸墊。 The method for fabricating a vertical transistor device according to claim 8 , further comprising: forming a passivation layer to cover the gate electrode layer and the mesa structure, and filling the undercut opening; performing a planarization a process of removing a portion of the passivation layer, a portion of the dielectric material layer, and a portion of the gate electrode layer, exposing the patterned conductor layer to the outside; and forming a portion of the conductor layer exposed to the outside A contact pad. 如申請專利範圍第11項所述之直立式電晶體元件的製作方法,其中該導體層包含氮化鈦(TiN)。 The method of fabricating a vertical transistor device according to claim 11, wherein the conductor layer comprises titanium nitride (TiN). 如申請專利範圍第11項所述之直立式電晶體元件的製作方法,其中構成該接觸墊的材質,係選自於氮化鈦、鈦鋁(Ti/Al)合金、鈦金(Ti/Au)合金以及上述之任意組合所構成之一族群。 The method for fabricating a vertical transistor device according to claim 11, wherein the material constituting the contact pad is selected from the group consisting of titanium nitride, titanium aluminum (Ti/Al) alloy, and titanium (Ti/Au). An alloy and a combination of any of the above. 如申請專利範圍第8項所述之直立式電晶體元件的製作方法,其中該第一半導體層和該第三半導體層具有一相同電性,且與該 第二半導體層三者共同形成一P-N-P接面或一N-P-N接面。 The method for fabricating a vertical transistor device according to claim 8, wherein the first semiconductor layer and the third semiconductor layer have the same electrical property, and The second semiconductor layer collectively forms a P-N-P junction or an N-P-N junction. 如申請專利範圍第8項所述之直立式電晶體元件的製作方法,其中該第一半導體層和該第三半導體層具有不相同電性,且與該第二半導體層三者共同形成一P-I-N接面或一N-I-P接面。 The method for fabricating a vertical transistor device according to claim 8, wherein the first semiconductor layer and the third semiconductor layer have different electrical properties, and together with the second semiconductor layer form a PIN Junction or a NIP junction. 如申請專利範圍第8項所述之直立式電晶體元件的製作方法,其中該蝕刻步驟,係以圖案化後的該導電層為蝕刻罩幕,使圖案化後的該第一半導體層和該第三半導體層,具有往圖案化後的該第二半導體層方向逐漸縮小的一漸窄橫向尺寸。 The method for fabricating a vertical transistor device according to claim 8, wherein the etching step is performed by using the patterned conductive layer as an etching mask to pattern the first semiconductor layer and the patterned semiconductor layer The third semiconductor layer has a tapered lateral dimension that gradually decreases toward the patterned second semiconductor layer. 如申請專利範圍第16項所述之直立式電晶體元件的製作方法,其中圖案化後的該第二半導體層,具有往其縱軸中心方向漸縮小的一漸窄橫向尺寸。 The method of fabricating a vertical transistor device according to claim 16, wherein the patterned second semiconductor layer has a tapered lateral dimension that tapers toward a center of a longitudinal axis thereof. 如申請專利範圍第16項所述之直立式電晶體元件的製作方法,其中該基材係一矽基材;且該第一半導體層、該第二半導體層和該第三半導體層係由鍺所構成。 The method for fabricating a vertical transistor device according to claim 16, wherein the substrate is a substrate; and the first semiconductor layer, the second semiconductor layer, and the third semiconductor layer are Composition.
TW103107509A 2014-03-05 2014-03-05 Vertical transistor device and fabricating method thereof TWI557915B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103107509A TWI557915B (en) 2014-03-05 2014-03-05 Vertical transistor device and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103107509A TWI557915B (en) 2014-03-05 2014-03-05 Vertical transistor device and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW201535735A TW201535735A (en) 2015-09-16
TWI557915B true TWI557915B (en) 2016-11-11

Family

ID=54695314

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103107509A TWI557915B (en) 2014-03-05 2014-03-05 Vertical transistor device and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI557915B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3454378A1 (en) * 2017-09-08 2019-03-13 IMEC vzw A method for forming a vertical channel device, and a vertical channel device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522566B (en) * 2000-08-18 2003-03-01 Infineon Technologies Ag Vertical field-effect-transistor and its production method
TW200532854A (en) * 2004-03-17 2005-10-01 Japan Science & Tech Agency Organic vertical transistor and process for fabricating the same
US20080090362A1 (en) * 2002-10-01 2008-04-17 Samsung Electronics Co., Ltd. Methods of fabricating field effect transistors having multiple stacked channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW522566B (en) * 2000-08-18 2003-03-01 Infineon Technologies Ag Vertical field-effect-transistor and its production method
US20080090362A1 (en) * 2002-10-01 2008-04-17 Samsung Electronics Co., Ltd. Methods of fabricating field effect transistors having multiple stacked channels
TW200532854A (en) * 2004-03-17 2005-10-01 Japan Science & Tech Agency Organic vertical transistor and process for fabricating the same

Also Published As

Publication number Publication date
TW201535735A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
US20200295051A1 (en) Mechanisms for forming finfet device
TWI723288B (en) Semiconductor device and methods of forming same
US10763362B2 (en) Fin field effect transistor (FinFET) device structure with stop layer and method for forming the same
US9773786B2 (en) FETs and methods of forming FETs
US10103253B2 (en) Structure and method for vertical tunneling field effect transistor with leveled source and drain
TW201620023A (en) Semiconductor device and method of forming the same
KR102331059B1 (en) Semiconductor device and method
US9379187B2 (en) Vertically-conducting trench MOSFET
US9496259B2 (en) FinFET semiconductor device having fins with stronger structural strength
TW201913748A (en) Methods for forming semiconductor devices
TW201735364A (en) FINFET and the methods of fabricating the same
CN111435643B (en) Preparation method of three-dimensional stacked gate-all-around transistor
US10347629B2 (en) FinFET device
US9620643B2 (en) Reducing parasitic capacitance and resistance in finFET
TWI557915B (en) Vertical transistor device and fabricating method thereof
US9012985B2 (en) Semiconductor device having a trench whose upper width is wider than a lower width thereof, and a method for fabricating the same
CN211238262U (en) Semiconductor device structure
US11145760B2 (en) Structure having improved fin critical dimension control
US20170222049A1 (en) Vertical transistor and the fabrication method
CN113394097B (en) Preparation method of semiconductor device structure
KR102473596B1 (en) Semiconductor finfet device and method
KR102224831B1 (en) Semiconductor finfet device and method
US10056378B2 (en) Silicon nitride fill for PC gap regions to increase cell density
TWI737855B (en) Power transistor and manufacturing method thereof
TW202109888A (en) Method for manufacturing integrated circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees