TWI556467B - Nitride semiconductor structure - Google Patents

Nitride semiconductor structure Download PDF

Info

Publication number
TWI556467B
TWI556467B TW104119968A TW104119968A TWI556467B TW I556467 B TWI556467 B TW I556467B TW 104119968 A TW104119968 A TW 104119968A TW 104119968 A TW104119968 A TW 104119968A TW I556467 B TWI556467 B TW I556467B
Authority
TW
Taiwan
Prior art keywords
layer
type
ingan
doped
hole
Prior art date
Application number
TW104119968A
Other languages
Chinese (zh)
Other versions
TW201537775A (en
Inventor
賴彥霖
王信介
Original Assignee
新世紀光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新世紀光電股份有限公司 filed Critical 新世紀光電股份有限公司
Priority to TW104119968A priority Critical patent/TWI556467B/en
Publication of TW201537775A publication Critical patent/TW201537775A/en
Application granted granted Critical
Publication of TWI556467B publication Critical patent/TWI556467B/en

Links

Description

氮化物半導體結構 Nitride semiconductor structure

本發明係有關於一種氮化物半導體結構及半導體發光元件,尤其是指一種於多重量子井結構中使用四元氮化鋁銦鎵的阻障層與三元氮化銦鎵的井層以改善因晶格失配所產生的應力作用,使得井層具有3.5nm~7nm之厚度,同時可提供較佳的載子侷限,以提升內部量子效率,使得半導體發光元件獲得良好之發光效率者。 The invention relates to a nitride semiconductor structure and a semiconductor light-emitting element, in particular to a well layer using a four-component aluminum indium gallium nitride barrier layer and a three-component indium gallium nitride in a multiple quantum well structure to improve the cause The stress caused by lattice mismatch makes the well layer have a thickness of 3.5 nm to 7 nm, and at the same time provides better carrier limitation to enhance the internal quantum efficiency, so that the semiconductor light-emitting element obtains good luminous efficiency.

一般而言,氮化物發光二極體係將一緩衝層先形成於基板上,再於緩衝層上依序磊晶成長n型半導體層、發光層以及p型半導體層;接著,利用微影與蝕刻製程移除部分之p型半導體層、部分之發光層,直至暴露出部分之n型半導體層為止;然後,分別於n型半導體層之暴露部分以及p型半導體層上形成n型電極與p型電極,而製作出發光二極體;其中,發光層具有氮化物半導體多重量子井結構(MQW),而多重量子井結構包括以重複的方式交替設置的井層(well)和阻障層(barrier),因為井層具有相對阻障 層較低之能隙,使得在上述多重量子井結構中的每一個井層可以在量子力學上限制電子和電洞,造成電子和電洞分別從n型半導體層和p型半導體層注入,並在井層中結合,而發射出光粒子。 Generally, a nitride light-emitting diode system first forms a buffer layer on a substrate, and sequentially epitaxially grows an n-type semiconductor layer, a light-emitting layer, and a p-type semiconductor layer on the buffer layer; and then, uses lithography and etching. The process removes a portion of the p-type semiconductor layer and a portion of the light-emitting layer until a portion of the n-type semiconductor layer is exposed; then, an n-type electrode and a p-type are formed on the exposed portion of the n-type semiconductor layer and the p-type semiconductor layer, respectively An electrode is fabricated to produce a light-emitting diode; wherein the light-emitting layer has a nitride semiconductor multiple quantum well structure (MQW), and the multiple quantum well structure includes a well and a barrier that are alternately arranged in a repeated manner Because the well has relative barriers The lower energy gap of the layer allows each well layer in the above-described multiple quantum well structure to quantum and mechanically limit electrons and holes, causing electrons and holes to be injected from the n-type semiconductor layer and the p-type semiconductor layer, respectively, and Combines in the well layer to emit light particles.

目前,在多重量子井結構中約有1至30層的井層或阻障層,阻障層通常係以氮化鎵GaN之材料所形成,而井層係以氮化銦鎵InGaN所組成;然,上述之多重量子井結構由於氮化銦鎵與氮化鎵晶格間存在有約10~15%的晶格不匹配度,導致晶格間產生強大的應力作用,使得在多重量子井結構中有壓電場(piezo electric field)的產生,且於成長氮化銦鎵的過程中,當銦含量愈高時,所產生的壓電場也就愈大,對晶體結構的影響也就愈大,而隨著成長的厚度愈厚時,所累積的應力也就愈大,當晶體結構成長至超過某一個臨界厚度(critical thick ness),導致晶體結構無法再承受此應力作用時,則會產生較大的缺陷結構(例如V一形缺陷),使得一般井層具有一定的厚度限制,一般約為3nm左右。 At present, there are about 1 to 30 layers of well layers or barrier layers in a multiple quantum well structure. The barrier layer is usually formed of a material of gallium nitride GaN, and the well layer is composed of indium gallium nitride (InGaN); However, the multiple quantum well structure described above has a lattice mismatch of about 10 to 15% between the indium gallium nitride and the gallium nitride crystal lattice, resulting in a strong stress between the crystal lattices, resulting in a multiple quantum well structure. There is a piezoelectric field (piezo electric field), and in the process of growing indium gallium nitride, the higher the indium content, the larger the piezoelectric field is generated, and the effect on the crystal structure is increased. Large, and the thicker the thickness as the thickness grows, the greater the cumulative stress. When the crystal structure grows beyond a certain critical thickness, causing the crystal structure to no longer withstand this stress, Large defect structures (e.g., V-shaped defects) are produced such that the general well layer has a certain thickness limit, typically about 3 nm.

此外,上述之多重量子井結構也會因強大的極化電場作用的存在,而造成能帶嚴重傾斜或彎曲,導致電子與電洞分開侷限在井層的兩側,使得電子與電洞波函數(wave function)在空間上的重疊率降低,而降低電子與電洞的輻射再結合速率(radiative recombination rate)及內部量子效率(IQE)。 In addition, the above-mentioned multiple quantum well structure may also cause severe tilt or bending of the energy band due to the existence of a strong polarization electric field, which causes electrons and holes to be separated from each other on both sides of the well layer, so that the electron and hole wave functions The wave function reduces the spatial overlap rate and reduces the radiative recombination rate and internal quantum efficiency (IQE) of electrons and holes.

今,發明人即是鑑於上述現有之氮化物半導體發光元件在實際實施上仍具有多處之缺失,於是乃一本孜孜不倦之精神,並藉由其豐富之專業知識及多年之實務經驗所輔佐,而加以改善,並據此研創出本發明。 Nowadays, the inventor is still in the spirit of tirelessness in view of the fact that the above-mentioned conventional nitride semiconductor light-emitting elements have many defects in practical implementation, and are supplemented by their rich professional knowledge and years of practical experience. Improvements have been made, and the present invention has been developed based on this.

本發明主要目的為提供一種氮化物半導體結構,係於發光層中使用四元氮化鋁銦鎵的阻障層與三元氮化銦鎵的井層以改善因晶格失配所產生的應力作用,使得井層具有3.5nm~7nm之厚度,同時可提供較佳的載子侷限,以提升內部量子效率者。 The main object of the present invention is to provide a nitride semiconductor structure in which a barrier layer of quaternary aluminum nitride indium gallium and a well layer of ternary indium gallium nitride are used in the light-emitting layer to improve stress caused by lattice mismatch. The effect is that the well layer has a thickness of 3.5 nm to 7 nm, and at the same time provides a better carrier limitation to enhance the internal quantum efficiency.

本發明另提供一種半導體發光元件,係至少包含有上述之氮化物半導體結構,使得半導體發光元件獲得良好之發光效率者。 The present invention further provides a semiconductor light-emitting device comprising at least the nitride semiconductor structure described above such that the semiconductor light-emitting device obtains good light-emitting efficiency.

為了達到上述實施目的,本發明提供一種氮化物半導體結構,包括:一第一型摻雜半導體層;一發光層,包括一多重量子井結構;一AlGaN基礎的(AlGaN based)第二型載子阻障層;以及一第二型摻雜半導體層,其中AlGaN基礎的第二型載子阻障層配置於第二型摻雜半導體層與發光層之間,而發光層配置於AlGaN基礎的第二型載子阻障層與第一型摻雜半導體層之間,且多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層。 In order to achieve the above implementation, the present invention provides a nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure; and an AlGaN based second type carrier a sub-barrier layer; and a second type doped semiconductor layer, wherein the AlGaN-based second type carrier barrier layer is disposed between the second type doped semiconductor layer and the light emitting layer, and the light emitting layer is disposed on the AlGaN basis The second type of carrier barrier layer is between the first type of doped semiconductor layer, and the multiple quantum well structure comprises a plurality of AlInGaN based barrier layers stacked alternately and a plurality of InGaN based well layers.

本發明另提供一種氮化物半導體結構,包括:一第一型摻雜半導體層;一發光層,包括一多重量子井結構;一InGaN基礎的電洞提供層;以及一第二型摻雜半導體層,其中發光層配置於第一型 摻雜半導體層與InGaN基礎的電洞提供層之間,而InGaN基礎的電洞提供層配置於發光層與第二型摻雜半導體層之間,多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層,且InGaN基礎的電洞提供層之能隙大於多重量子井結構之InGaN基礎的井層的能隙。 The present invention further provides a nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure; an InGaN based hole providing layer; and a second type doped semiconductor Layer, wherein the luminescent layer is disposed in the first type The doped semiconductor layer is interposed between the InGaN-based hole-providing layer, and the InGaN-based hole-providing layer is disposed between the light-emitting layer and the second-type doped semiconductor layer, and the multiple quantum well structure includes a plurality of AlInGaN layers alternately stacked The barrier layer and the plurality of InGaN-based well layers, and the InGaN-based holes provide an energy gap of the layer greater than that of the InGaN-based well layer of the multiple quantum well structure.

一種氮化物半導體結構,包括:一第一型摻雜半導體層;一AlGaN基礎的(AlGaN based)第一型載子阻障層;一發光層,包括一多重量子井結構;一AlGaN基礎的(AlGaN based)第二型載子阻障層;以及一第二型摻雜半導體層,其中發光層配置於第一型摻雜半導體層與第二型摻雜半導體層之間,AlGaN基礎的第一型載子阻障層配置於第一型摻雜半導體層與發光層之間,AlGaN基礎的第二型載子阻障層配置於第二型摻雜半導體層與發光層之間,且多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; an AlGaN based first type carrier barrier layer; an luminescent layer comprising a multiple quantum well structure; an AlGaN based (AlGaN based) a second type of carrier barrier layer; and a second type of doped semiconductor layer, wherein the light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer, the AlGaN based A type of carrier barrier layer is disposed between the first type doped semiconductor layer and the light emitting layer, and the AlGaN based second type carrier barrier layer is disposed between the second type doped semiconductor layer and the light emitting layer, and is multiple The quantum well structure includes a plurality of AlInGaN based barrier layers stacked alternately and a plurality of InGaN based well layers.

在本發明的一實施例中,阻障層具有5nm~12nm之厚度,且阻障層可摻雜有濃度介於1016~1018cm-3的第一型摻質,使得阻障層可以減少載子遮蔽效應,以增加載子侷限效應。 In an embodiment of the invention, the barrier layer has a thickness of 5 nm to 12 nm, and the barrier layer may be doped with a first type dopant having a concentration of 10 16 to 10 18 cm -3 so that the barrier layer can Reduce the carrier shadowing effect to increase the carrier's confinement effect.

再者,在本發明的一實施例中,可於發光層與第二型摻雜半導體層間可配置有一電洞提供層,電洞提供層為氮化銦鎵InxGa1-xN,其中0<x<1,且電洞提供層可摻雜有濃度大於1018cm-3的第二型摻質,例如為鎂或鋅,較佳為鎂,以增加電洞的濃度。 Furthermore, in an embodiment of the invention, a hole providing layer may be disposed between the light emitting layer and the second type doped semiconductor layer, and the hole providing layer is indium gallium nitride In x Ga 1-x N, wherein 0 < x < 1, and the hole providing layer may be doped with a second type dopant having a concentration greater than 10 18 cm -3 , such as magnesium or zinc, preferably magnesium, to increase the concentration of holes.

在本發明的一實施例中,電洞提供層可摻雜有濃度介於1017~1020cm-3的四族元素,藉此提供更多的電洞進入發光層,進而增加電子電洞結合之情況。 In an embodiment of the invention, the hole providing layer may be doped with a group of four elements having a concentration of 10 17 to 10 20 cm -3 , thereby providing more holes into the light emitting layer, thereby increasing the electron hole. The situation of the combination.

在本發明的一實施例中,電洞提供層之能隙大於多重量子井結構之井層的能隙,藉以讓電洞容易進入井層又防止電子逃脫,使得電子及電洞更容易侷限在井層中,以增加電子電洞對覆合的機率。 In an embodiment of the invention, the energy supply gap of the hole providing layer is greater than the energy gap of the well layer of the multiple quantum well structure, so that the hole is easy to enter the well layer and the electron escapes, so that the electron and the hole are more easily confined to In the well layer, to increase the probability of electron hole caving.

在本發明的一實施例中,可於發光層與第一型摻雜半導體層間配置有一第一型載子阻隔層,且第一型載子阻隔層較佳為AlxGa1-xN,其中0<x<1;而電洞提供層與第二型摻雜半導體層間配置有一第二型載子阻隔層,且第二型載子阻隔層較佳為AlxGa1-xN,其中0<x<1;藉此,利用含有鋁之AlGaN的能帶隙較GaN要高的特性,不僅可增加氮化物半導體之能帶範圍,亦使得載子可侷限於多重量子井結構中,提高電子電洞覆合的機率,進而達到發光效率提升之功效。 In an embodiment of the invention, a first type carrier spacer layer is disposed between the light emitting layer and the first type doped semiconductor layer, and the first type carrier blocking layer is preferably Al x Ga 1-x N. Wherein 0<x<1; and a second type of carrier blocking layer is disposed between the hole providing layer and the second type doped semiconductor layer, and the second type carrier blocking layer is preferably Al x Ga 1-x N, wherein 0<x<1; thereby, the use of aluminum-containing AlGaN has a higher bandgap than GaN, which not only increases the energy band of the nitride semiconductor, but also limits the carrier to multiple quantum well structures. The probability of electronic hole cladding, and thus the efficiency of luminous efficiency.

另,本發明提出一種半導體發光元件,係至少包含如上述之氮化物半導體結構,以及二相配合地提供電能之第一型電極與第二電極;藉此,利用四元氮化鋁銦鎵的阻障層以及三元氮化銦鎵的井層具有相同銦元素的特性,可調整四元組成條件以提供晶格匹配的組成,使得阻障層與井層的晶格常數較為相近,不僅可改善傳統氮化銦鎵的井層以及氮化鎵的阻障層因晶格不匹配而產生之晶體缺陷現象,亦可改善因晶格失配所產生的應力作用,使得本發明之氮化物半導體 結構其井層具有3.5nm~7nm之厚度,較佳係為4nm~5nm;同時,藉由提高添加Al元素可提供阻障層較佳的載子侷限,有效地將電子電洞侷限於井層內,藉此提升內部量子效率,使得半導體發光元件獲得良好之發光效率。 In addition, the present invention provides a semiconductor light emitting device comprising at least the nitride semiconductor structure as described above, and a first type electrode and a second electrode which provide electric energy in a two-phase manner; thereby, using a quaternary aluminum nitride indium gallium nitride The barrier layer and the ternary indium gallium nitride well layer have the same indium element characteristics, and the quaternary composition condition can be adjusted to provide a lattice matching composition, so that the barrier layer and the well layer have similar lattice constants, not only Improving the crystal defects of the conventional indium gallium nitride well layer and the gallium nitride barrier layer due to lattice mismatch, and also improving the stress caused by lattice mismatch, so that the nitride semiconductor of the present invention The well layer of the structure has a thickness of 3.5 nm to 7 nm, preferably 4 nm to 5 nm. Meanwhile, by adding the Al element, the barrier of the barrier layer is better, and the electron hole is effectively limited to the well layer. Thereby, thereby improving the internal quantum efficiency, the semiconductor light-emitting element obtains good luminous efficiency.

再者,因四元氮化鋁銦鎵的阻障層以及三元氮化銦鎵的井層可改善因晶格失配所產生的應力作用,進而有效降低多重量子井結構中壓電場的產生,達到有效抑制壓電效應及提升內部量子效率之功效,使得半導體發光元件可獲得更佳之發光效率。 Furthermore, the barrier layer of quaternary aluminum nitride indium gallium and the well layer of ternary indium gallium nitride can improve the stress caused by lattice mismatch, thereby effectively reducing the piezoelectric field in the multiple quantum well structure. The effect of effectively suppressing the piezoelectric effect and improving the internal quantum efficiency enables the semiconductor light emitting element to obtain better luminous efficiency.

(1)‧‧‧基板 (1) ‧‧‧Substrate

(2)‧‧‧緩衝層 (2) ‧‧‧buffer layer

(3)‧‧‧第一型摻雜半導體層 (3)‧‧‧First type doped semiconductor layer

(31)‧‧‧第一型電極 (31)‧‧‧First type electrode

(4)‧‧‧第一型載子阻隔層 (4) ‧‧‧First type carrier barrier

(5)‧‧‧發光層 (5) ‧‧‧Lighting layer

(51)‧‧‧井層 (51)‧‧‧ Wells

(52)‧‧‧阻障層 (52) ‧ ‧ barrier layer

(6)‧‧‧第二型載子阻隔層 (6) ‧‧‧Second type carrier barrier

(7)‧‧‧第二型摻雜半導體層 (7)‧‧‧Second type doped semiconductor layer

(71)‧‧‧第二型電極 (71)‧‧‧Second type electrode

(8)‧‧‧電洞提供層 (8) ‧‧‧ hole supply layer

第一圖:本發明氮化物半導體結構其一較佳實施例之剖面示意圖。 First Figure: A schematic cross-sectional view of a preferred embodiment of a nitride semiconductor structure of the present invention.

第二圖:根據本發明其一較佳實施例所製作之半導體發光元件剖面示意圖。 Second: A cross-sectional view of a semiconductor light emitting device fabricated in accordance with a preferred embodiment of the present invention.

本發明之目的及其結構設計功能上的優點,將依據以下圖面所示之較佳實施例予以說明,俾使審查委員能對本發明有更深入且具體之瞭解。 The object of the present invention and its structural design and advantages will be explained in the light of the preferred embodiments shown in the following drawings, so that the reviewing committee can have a more in-depth and specific understanding of the present invention.

首先,在以下實施例的描述中,應當理解當指出一層(或膜)或一結構配置在另一個基板、另一層(或膜)、或另一結構“上”或“下”時,其可“直接”位於其他基板、層(或膜)、或另一結構, 亦或者兩者間具有一個以上的中間層以“間接”方式配置,審查委員可參照附圖說明每一層所在位置。 First, in the following description of the embodiments, it should be understood that when a layer (or film) or a structure is disposed on another substrate, another layer (or film), or another structure "on" or "down", "directly" on another substrate, layer (or film), or another structure, Or more than one intermediate layer between the two is arranged in an "indirect" manner, and the reviewing committee can explain the location of each layer with reference to the drawings.

請參閱第一圖所示,為本發明氮化物半導體結構其一較佳實施例之剖面示意圖,係主要於基板(1)上配置有一第一型摻雜半導體層(3)與第二型摻雜半導體層(7),於第一型摻雜半導體層(3)與第二型摻雜半導體層(7)間配置有一發光層(5),發光層(5)具有多重量子井結構,且多重量子井結構包含複數個彼此交替堆疊之井層(51)及阻障層(52),且每兩阻障層(52)間係具有一井層(51),阻障層(52)由化學式AlxInyGa1-x-yN表示之四元材料所構成,其中x及y係滿足0<x<1、0<y<1、0<x+y<1之數值,而井層(51)係由化學式InzGa1-zN表示之材料所構成,其中0<z<1,且井層(51)具有3.5nm~7nm之厚度,較佳係為4nm~5nm,而阻障層(52)係具有5nm~12nm之厚度;其中阻障層(52)可摻雜有濃度介於1016~1018cm-3的第一型摻質(例如為矽或鍺),使得阻障層(52)可以減少載子遮蔽效應,以增加載子侷限效應。 Referring to the first figure, a cross-sectional view of a nitride semiconductor structure according to a preferred embodiment of the present invention is mainly provided with a first type doped semiconductor layer (3) and a second type doped on the substrate (1). a semiconductor layer (7) having a light-emitting layer (5) disposed between the first-type doped semiconductor layer (3) and the second-type doped semiconductor layer (7), the light-emitting layer (5) having a multiple quantum well structure, and The multiple quantum well structure comprises a plurality of well layers (51) and a barrier layer (52) stacked alternately with each other, and each well layer (52) has a well layer (51), and the barrier layer (52) is composed of The chemical formula Al x In y Ga 1-xy N is composed of a quaternary material, wherein x and y satisfy the values of 0<x<1, 0<y<1, 0<x+y<1, and the well layer ( 51) is composed of a material represented by the chemical formula In z Ga 1-z N, wherein 0 < z < 1, and the well layer (51) has a thickness of 3.5 nm to 7 nm, preferably 4 nm to 5 nm, and the barrier layer The layer (52) has a thickness of 5 nm to 12 nm; wherein the barrier layer (52) may be doped with a first type dopant (for example, ruthenium or osmium) having a concentration of 10 16 to 10 18 cm -3 , so that the barrier layer The barrier layer (52) can reduce the carrier shadowing effect to increase the carrier confinement effect.

此外,上述之氮化物半導體結構可於發光層(5)與第二型摻雜半導體層(7)間配置有一電洞提供層(8),其中電洞提供層(8)為氮化銦鎵InxGa1-xN,其中0<x<1,且電洞提供層(8)係摻雜有濃度大於1018cm-3的第二型摻質,例如為鎂或鋅,較佳為鎂;再者,電洞提供層(8)可摻雜有濃度介於1017 ~1020cm-3的四族元素,較佳為碳,利用碳(4A族)取代五價的氮原子,使得電洞提供層(8)可具有高電洞濃度,藉此提供更多的電洞進入發光層(5),進而增加電子電洞結合之情況;再者,電洞提供層(8)之能隙大於多重量子井結構之井層(51)的能隙,藉此可讓電洞進入井層且又避免電子逃逸進入第二型摻雜半導體層(7)內。 In addition, the above nitride semiconductor structure may be provided with a hole providing layer (8) between the light emitting layer (5) and the second type doped semiconductor layer (7), wherein the hole providing layer (8) is indium gallium nitride. In x Ga 1-x N, where 0 < x < 1, and the hole providing layer (8) is doped with a second type dopant having a concentration greater than 10 18 cm -3 , such as magnesium or zinc, preferably Magnesium; further, the hole supply layer (8) may be doped with a group of four elements having a concentration of 10 17 to 10 20 cm -3 , preferably carbon, using carbon (group 4A) to replace the pentavalent nitrogen atom, The hole providing layer (8) can have a high hole concentration, thereby providing more holes into the light emitting layer (5), thereby increasing the electron hole bonding; further, the hole providing layer (8) The energy gap is larger than the energy gap of the well layer (51) of the multiple quantum well structure, thereby allowing the holes to enter the well layer and preventing electrons from escaping into the second type doped semiconductor layer (7).

另,發光層(5)與第一型摻雜半導體層(3)間亦可配置有一第一型載子阻隔層(4),且第一型載子阻隔層(4)較佳係由化學式AlxGa1-xN表示之材料所構成,其中0<x<1;而電洞提供層(8)與第二型摻雜半導體層(7)間配置有一第二型載子阻隔層(6),且第二型載子阻隔層(6)係由化學式AlxGa1-xN表示之材料所構成,其中0<x<1;藉此,利用含有鋁之AlGaN的能帶隙較GaN要高的特性,不僅可增加氮化物半導體之能帶範圍,亦使得載子可侷限於多重量子井結構中,提高電子電洞覆合的機率,進而達到增加發光效率之功效。 In addition, a first type carrier spacer layer (4) may be disposed between the light emitting layer (5) and the first type doped semiconductor layer (3), and the first type carrier blocking layer (4) is preferably a chemical formula. The material represented by Al x Ga 1-x N is composed of 0<x<1; and a second type carrier spacer layer is disposed between the hole supply layer (8) and the second type doped semiconductor layer (7) ( 6), and the second type carrier blocking layer (6) is composed of a material represented by a chemical formula of Al x Ga 1-x N, wherein 0 < x <1; thereby, an energy band gap of AlGaN containing aluminum is used. The high GaN characteristics not only increase the energy band of the nitride semiconductor, but also limit the carrier to multiple quantum well structures, improve the probability of electron hole cladding, and thus increase the luminous efficiency.

再者,基板(1)與第一型摻雜半導體層(3)間可配置有一緩衝層(2),緩衝層(2)係由化學式AlxGa1-xN表示之材料所構成,其中0<x<1;而緩衝層(2)係用以改善第一型摻雜半導體層(3)成長於異質基板(1)上所產生之晶格常數不匹配(lattice mismatch)的問題,且緩衝層(2)的材料亦可例如是GaN、InGaN、SiC、ZnO等,且其形成方法 可例如是於400~900℃的溫度下進行低溫磊晶成長。 Furthermore, a buffer layer (2) may be disposed between the substrate (1) and the first type doped semiconductor layer (3), and the buffer layer (2) is composed of a material represented by the chemical formula Al x Ga 1-x N , wherein 0<x<1; and the buffer layer (2) is used to improve the lattice mismatch caused by the growth of the first type doped semiconductor layer (3) on the heterogeneous substrate (1), and The material of the buffer layer (2) may be, for example, GaN, InGaN, SiC, ZnO, or the like, and the formation method thereof may be, for example, low temperature epitaxial growth at a temperature of 400 to 900 °C.

根據上述實施例之氮化物半導體結構於實際實施使用時,首先基板(1)的材料可例如是藍寶石(sapphire)、矽、SiC、ZnO或GaN基板等,而第一型摻雜半導體層(3)之材料可例如為矽或鍺摻雜之氮化鎵系列材料,第二型摻雜半導體層(7)之材料則可例如為鎂或鋅摻雜之氮化鎵系列材料,其中第一、二型摻雜半導體層(3)、(7)形成之方法可例如是進行有機金屬化學氣相沉積法(metalorganic chemical vapor deposition;MOCVD);而值得注意的,上述井層(51)與阻障層(52)較佳的作法是利用有機金屬蒸汽沉積法或分子束磊晶法(MBE)加以沉積,一般是使用含低烷基銦和鎵化合物的氣體混合物;該等阻障層(52)於850~1000℃的溫度沉積,而該等井層(51)通常是在500~950℃的溫度下形成;藉此,由於多重量子井結構包含有氮化鋁銦鎵的阻障層(52)以及氮化銦鎵的井層(51),其具有相同的銦元素,使得阻障層(52)與井層(51)的晶格常數較為相近,可改善傳統氮化鎵的阻障層以及氮化銦鎵的井層所造成的晶格不匹配而產生之晶體缺陷現象,且由於晶格間應力的產生主要係來自於材料間晶格常數的不匹配所造成的,藉此亦可改善因晶格失配所產生應力作用,使得本發明之氮化物半導體結構其井層(51)具有3.5nm~7nm之厚度,較佳係為4nm~5nm。 When the nitride semiconductor structure according to the above embodiment is actually used, the material of the substrate (1) may be, for example, a sapphire, germanium, SiC, ZnO or GaN substrate, etc., and the first type doped semiconductor layer (3) The material of the second type doped semiconductor layer (7) may be, for example, a magnesium or zinc doped gallium nitride series material, of which the first material is The method for forming the doped semiconductor layer (3), (7) may be, for example, metalorganic chemical vapor deposition (MOCVD); and it is worth noting that the well layer (51) and the barrier are Preferably, the layer (52) is deposited by organometallic vapor deposition or molecular beam epitaxy (MBE), typically using a gas mixture containing a low alkyl indium and a gallium compound; the barrier layers (52) Deposited at a temperature of 850 to 1000 ° C, and the well layers (51) are usually formed at a temperature of 500 to 950 ° C; thereby, since the multiple quantum well structure includes a barrier layer of aluminum indium gallium nitride (52) And a layer of indium gallium nitride (51) having the same indium element, making the barrier (52) The lattice constant of the well layer (51) is relatively similar, which can improve the crystal defect caused by the lattice mismatch caused by the barrier layer of the conventional gallium nitride and the well layer of the indium gallium nitride, and The inter-lattice stress is mainly caused by the mismatch of the lattice constants between the materials, thereby also improving the stress caused by the lattice mismatch, so that the nitride semiconductor structure of the present invention has a well layer (51). It has a thickness of 3.5 nm to 7 nm, preferably 4 nm to 5 nm.

再者,因四元氮化鋁銦鎵的阻障層(52)以及氮化銦鎵的井層(51)可改善因晶格失配所產生應力作用,進而有效降低多重量子井結構中壓電場的產生,使得能帶彎曲與傾斜的現象得到相當程度的改善,進而達到有效抑制壓電效應及提升內部量子效率之功效。 Furthermore, the barrier layer (52) of quaternary aluminum nitride indium gallium and the well layer (51) of indium gallium nitride can improve the stress caused by lattice mismatch, thereby effectively reducing the voltage in the multiple quantum well structure. The generation of the electric field enables the bending and tilting of the band to be considerably improved, thereby achieving the effect of effectively suppressing the piezoelectric effect and improving the internal quantum efficiency.

請參閱第二圖所示,上述之氮化物半導體結構可應用於半導體發光元件中,第二圖為根據本發明其一較佳實施例所製作之半導體發光元件剖面示意圖,該半導體發光元件至少包含有:一基板(1);一第一型摻雜半導體層(3),係配置於基板(1)上;其中,第一型摻雜半導體層(3)之材料可例如為矽或鍺摻雜之氮化鎵系列材料;一發光層(5),係配置於第一型摻雜半導體層(3)上,發光層(5)具有多重量子井結構,而多重量子井結構包含複數個彼此交替堆疊之井層(51)及阻障層(52),且每兩阻障層(52)間係具有一井層(51),阻障層(52)由化學式AlxInyGa1-x-yN表示之材料所構成,其中,x及y係滿足0<x<1、0<y<1、0<x+y<1之數值,而井層(51)由化學式InzGa1-zN表示之材料所構成,其中0<z<1,且井層(51)具有3.5nm~7nm之厚度,較佳係為4nm~5nm;一第二型摻雜半導體層(7),係配置於發光層(5)上,第二型摻雜半導體層(7)之材料可例如為鎂或鋅摻雜之氮化鎵系列材料;一第一型電極(31),係以歐姆接觸配置於第一型摻雜半導體層(3)上;以及一第二型電極(71),係以歐姆接觸配置於第二型摻雜半導體層(7) 上;其中,第一型電極(31)與第二型電極(71)係相配合地提供電能,且可以下列材料、但不僅限於這些材料所製成:鈦、鋁、金、鉻、鎳、鉑及其合金等;其製程方法已為習知技藝中眾所皆知之知識,且並非本發明之重點,因此,不再本發明中加以贅述。 Referring to the second figure, the nitride semiconductor structure described above can be applied to a semiconductor light emitting device. The second figure is a schematic cross-sectional view of a semiconductor light emitting device fabricated according to a preferred embodiment of the present invention. The semiconductor light emitting device includes at least a substrate (1); a first type doped semiconductor layer (3) disposed on the substrate (1); wherein the material of the first type doped semiconductor layer (3) may be, for example, germanium or germanium a GaN series material; a light-emitting layer (5) disposed on the first type doped semiconductor layer (3), the light-emitting layer (5) having a multiple quantum well structure, and the multiple quantum well structure comprising a plurality of mutual The well layer (51) and the barrier layer (52) are alternately stacked, and each well layer (52) has a well layer (51), and the barrier layer (52) is composed of a chemical formula Al x In y Ga 1- A material represented by xy N, wherein x and y satisfy the values of 0 < x < 1, 0 < y < 1, 0 < x + y < 1, and the well layer (51) is of the chemical formula In z Ga 1- The material represented by z N is composed of 0<z<1, and the well layer (51) has a thickness of 3.5 nm to 7 nm, preferably 4 nm to 5 nm; and a second type doped semiconductor layer (7) Disposed on the luminescent layer (5) The material of the second type doped semiconductor layer (7) may be, for example, a magnesium or zinc doped gallium nitride series material; a first type electrode (31) is disposed in the first type doped semiconductor layer by ohmic contact (3) upper; and a second type electrode (71) disposed on the second type doped semiconductor layer (7) in an ohmic contact; wherein the first type electrode (31) and the second type electrode (71) Electrically coupled to provide electrical energy, and may be made of, but not limited to, titanium, aluminum, gold, chromium, nickel, platinum, alloys thereof, and the like; methods of making the processes are well known in the art. The knowledge is not the focus of the present invention and therefore will not be described in detail in the present invention.

此外,發光層(5)與第一型摻雜半導體層(3)間可配置一由AlxGa1-xN材料所構成之第一型載子阻隔層(4),其中0<x<1;而發光層(5)與第二型摻雜半導體層(7)間亦可配置一由AlxGa1-xN材料所構成之第二型載子阻隔層(6),其中0<x<1;藉此,利用含有鋁之AlGaN的能帶隙較GaN要高的特性,不僅可增加氮化物半導體之能帶範圍,亦使得載子可侷限於多重量子井結構中,提高電子電洞覆合的機率,進而達到增加發光效率之功效。 In addition, a first type of carrier blocking layer (4) composed of an Al x Ga 1-x N material may be disposed between the light emitting layer (5) and the first type doped semiconductor layer (3), wherein 0<x<1; and a second type of carrier blocking layer (6) composed of an Al x Ga 1-x N material may be disposed between the light emitting layer (5) and the second type doped semiconductor layer (7), wherein 0<x<1; thereby, the characteristics of the band gap of AlGaN containing aluminum are higher than that of GaN, which not only increases the energy band range of the nitride semiconductor, but also limits the carrier to the multiple quantum well structure and improves the electronic power. The probability of hole cladding, in turn, achieves the effect of increasing luminous efficiency.

再者,基板(1)與第一型摻雜半導體層(3)間可配置一由AlxGa1-xN所構成之緩衝層(2),其中0<x<1,以作為改善第一型摻雜半導體層(3)成長於異質基板(1)上所產生之晶格常數不匹配的問題,且緩衝層(2)的材料亦可例如是GaN、InGaN、SiC、ZnO等。 Furthermore, a buffer layer (2) composed of Al x Ga 1-x N may be disposed between the substrate (1) and the first type doped semiconductor layer (3), wherein 0<x<1, as an improvement The problem that the lattice constant of the one-type doped semiconductor layer (3) grows on the hetero-substrate (1) does not match, and the material of the buffer layer (2) may be, for example, GaN, InGaN, SiC, ZnO or the like.

藉此,由上述之氮化物半導體結構實施說明可知,本發明之半導體發光元件藉由四元氮化鋁銦鎵的阻障層(52)以及三元氮化銦鎵的井層(51)具有相同銦元素的特性,利用調整四元組成條件以提供晶格匹配的組成,使得阻障層(52)與井層(51)的 晶格常數較為相近,不僅可改善傳統氮化鎵的阻障層以及氮化銦鎵的井層所造成的晶格不匹配而產生之晶體缺陷現象,且由於晶格間應力的產生主要係來自於材料間晶格常數的不匹配所造成的,藉此亦可改善因晶格失配所產生應力作用,使得本發明之氮化物半導體結構其井層(51)具有3.5nm~7nm之厚度,較佳係為4nm~5nm;同時,亦可提高添加Al元素以提供阻障層(52)較佳的載子侷限,有效地將電子電洞侷限於井層(51)內,藉此提升內部量子效率,使得半導體發光元件獲得良好之發光效率。 Therefore, the semiconductor light emitting device of the present invention has a barrier layer (52) of quaternary aluminum nitride indium gallium and a well layer (51) of ternary indium gallium nitride having the above-described nitride semiconductor structure. The characteristics of the same indium element are adjusted by the quaternary composition conditions to provide a lattice-matched composition such that the barrier layer (52) and the well layer (51) The lattice constants are similar, which not only improves the crystal defect caused by the lattice mismatch caused by the barrier layer of the conventional gallium nitride and the well layer of indium gallium nitride, but also the intergranular stress mainly comes from The mismatch of the lattice constants between the materials, thereby improving the stress caused by the lattice mismatch, so that the nitride semiconductor structure of the present invention has a well layer (51) having a thickness of 3.5 nm to 7 nm. Preferably, it is 4 nm to 5 nm; at the same time, the addition of Al element can be improved to provide a better carrier limitation of the barrier layer (52), and the electron hole is effectively confined in the well layer (51), thereby enhancing the interior. The quantum efficiency enables the semiconductor light-emitting element to obtain good luminous efficiency.

再者,因四元氮化鋁銦鎵的阻障層(52)以及三元氮化銦鎵的井層(51)可改善因晶格失配所產生應力作用,進而有效降低多重量子井結構中壓電場的產生,達到有效抑制壓電效應及提升內部量子效率之功效,使得半導體發光元件可獲得更佳之發光效率。 Furthermore, the barrier layer (52) of quaternary aluminum nitride indium gallium and the well layer (51) of ternary indium gallium nitride can improve the stress caused by lattice mismatch, thereby effectively reducing the structure of multiple quantum wells. The generation of the medium-voltage field achieves the effect of effectively suppressing the piezoelectric effect and improving the internal quantum efficiency, so that the semiconductor light-emitting element can obtain better luminous efficiency.

綜上所述,本發明之氮化物半導體結構及半導體發光元件,的確能藉由上述所揭露之實施例,達到所預期之使用功效,且本發明亦未曾公開於申請前,誠已完全符合專利法之規定與要求。爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, the nitride semiconductor structure and the semiconductor light-emitting device of the present invention can achieve the intended use efficiency by the above-disclosed embodiments, and the present invention has not been disclosed before the application, and has completely complied with the patent. The rules and requirements of the law.爰Issuing an application for a patent for invention in accordance with the law, and asking for a review, and granting a patent, is truly sensible.

惟,上述所揭之圖示及說明,僅為本發明之較佳實施例,非為限定本發明之保護範圍;大凡熟悉該項技藝之人士,其所依本發明之特徵範疇,所作之其它等效變化或修飾,皆應視為不脫離本發明之設計範疇。 The illustrations and descriptions of the present invention are merely preferred embodiments of the present invention, and are not intended to limit the scope of the present invention; those skilled in the art, which are characterized by the scope of the present invention, Equivalent variations or modifications are considered to be within the scope of the design of the invention.

(1)‧‧‧基板 (1) ‧‧‧Substrate

(2)‧‧‧緩衝層 (2) ‧‧‧buffer layer

(3)‧‧‧第一型摻雜半導體層 (3)‧‧‧First type doped semiconductor layer

(4)‧‧‧第一型載子阻隔層 (4) ‧‧‧First type carrier barrier

(5)‧‧‧發光層 (5) ‧‧‧Lighting layer

(51)‧‧‧井層 (51)‧‧‧ Wells

(52)‧‧‧阻障層 (52) ‧ ‧ barrier layer

(6)‧‧‧第二型載子阻隔層 (6) ‧‧‧Second type carrier barrier

(7)‧‧‧第二型摻雜半導體層 (7)‧‧‧Second type doped semiconductor layer

(8)‧‧‧電洞提供層 (8) ‧‧‧ hole supply layer

Claims (23)

一種氮化物半導體結構,包括:一第一型摻雜半導體層;一發光層,包括一多重量子井結構;一AlGaN基礎的(AlGaN based)第二型載子阻障層;一第二型摻雜半導體層,其中該AlGaN基礎的第二型載子阻障層配置於該第二型摻雜半導體層與該發光層之間,而該發光層配置於該AlGaN基礎的第二型載子阻障層與該第一型摻雜半導體層之間,且該多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層;以及一InGaN基礎的電洞提供層,該InGaN基礎的電洞提供層配置於該發光層與該AlGaN基礎的第二型載子阻障層之間,該InGaN基礎的電洞提供層中摻雜有濃度大於1017cm-3的四族元素。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure; an AlGaN based second type carrier barrier layer; a doped semiconductor layer, wherein the AlGaN-based second type carrier barrier layer is disposed between the second type doped semiconductor layer and the light emitting layer, and the light emitting layer is disposed on the AlGaN based second type carrier a barrier layer and the first type doped semiconductor layer, and the multiple quantum well structure comprises a plurality of AlInGaN-based barrier layers alternately stacked and a plurality of InGaN-based well layers; and an InGaN-based hole provided a layer, the InGaN-based hole providing layer is disposed between the light-emitting layer and the AlGaN-based second type carrier barrier layer, and the InGaN-based hole providing layer is doped with a concentration greater than 10 17 cm -3 The four elements of the family. 如申請專利範圍第1項所述的氮化物半導體結構,其中各該InGaN基礎的井層的厚度介於3.5奈米至7奈米之間,且各該AlInGaN基礎的阻障層的厚度介於5奈米至12奈米之間。 The nitride semiconductor structure according to claim 1, wherein the thickness of each of the InGaN-based well layers is between 3.5 nm and 7 nm, and the thickness of each of the AlInGaN-based barrier layers is between 5 nm to 12 nm. 如申請專利範圍第1項所述的氮化物半導體結構,其中各該AlInGaN基礎的阻障層中摻雜有濃度介於1016~1018cm-3的第一型摻質。 The nitride semiconductor structure according to claim 1, wherein each of the barrier layers of the AlInGaN layer is doped with a first type dopant having a concentration of 10 16 to 10 18 cm -3 . 如申請專利範圍第1項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質。 The nitride semiconductor structure according to claim 1, wherein the InGaN-based hole providing layer is doped with a second type dopant having a concentration greater than 10 18 cm -3 . 如申請專利範圍第1項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層之能隙大於該多重量子井結構之InGaN基礎的井層的能隙。 The nitride semiconductor structure of claim 1, wherein the InGaN-based hole provides a layer having an energy gap greater than an energy gap of the InGaN-based well layer of the multiple quantum well structure. 如申請專利範圍第1項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有第二型摻質,而該第二型摻質包括鎂或鋅,且該InGaN基礎的電洞提供層中摻雜有碳。 The nitride semiconductor structure according to claim 1, wherein the InGaN-based hole providing layer is doped with a second type dopant, and the second type dopant comprises magnesium or zinc, and the InGaN base The holes provide a layer doped with carbon. 一種氮化物半導體結構,包括:一第一型摻雜半導體層;一發光層,包括一多重量子井結構;一InGaN基礎的電洞提供層;以及一第二型摻雜半導體層,其中該發光層配置於該第一型摻雜半導體層與該InGaN基礎的電洞提供層之間,而該InGaN基礎的電洞提供層配置於該發光層與該第二型摻雜半導體層之間,該多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層,且該InGaN基礎的電洞提供層之能隙大於該多重量子井結構之InGaN基礎的井層的能隙。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure; an InGaN based hole providing layer; and a second type doped semiconductor layer, wherein the The light-emitting layer is disposed between the first-type doped semiconductor layer and the hole-providing layer of the InGaN-based layer, and the hole-providing layer of the InGaN-based layer is disposed between the light-emitting layer and the second-type doped semiconductor layer. The multiple quantum well structure includes a plurality of AlInGaN-based barrier layers alternately stacked and a plurality of InGaN-based well layers, and the InGaN-based holes provide a layer having an energy gap larger than the InGaN-based well layer of the multiple quantum well structure Energy gap. 如申請專利範圍第7項所述的氮化物半導體結構,其中一層AlInGaN基礎的阻障層位於InGaN基礎的電洞提供層與其中一層InGaN基礎的井層之間。 The nitride semiconductor structure according to claim 7, wherein a barrier layer of AlInGaN-based barrier is located between the hole-providing layer of the InGaN-based layer and the well layer of one of the InGaN-based layers. 如申請專利範圍第7項所述的氮化物半導體結構,其中各該InGaN基礎的井層的厚度介於3.5奈米至7奈米之間,且各該AlInGaN基礎的阻障層的厚度介於5奈米至12奈米之間。 The nitride semiconductor structure according to claim 7, wherein the thickness of each of the InGaN-based well layers is between 3.5 nm and 7 nm, and the thickness of each of the AlInGaN-based barrier layers is between 5 nm to 12 nm. 如申請專利範圍第7項所述的氮化物半導體結構,其中各該AlInGaN基礎的阻障層中摻雜有濃度介於1016~1018cm-3的第一型摻質。 The nitride semiconductor structure according to claim 7, wherein each of the barrier layers of the AlInGaN layer is doped with a first type dopant having a concentration of 10 16 to 10 18 cm -3 . 如申請專利範圍第7項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質。 The nitride semiconductor structure according to claim 7, wherein the InGaN-based hole providing layer is doped with a second type dopant having a concentration greater than 10 18 cm -3 . 如申請專利範圍第11項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有濃度大於1017cm-3的四族元素。 The nitride semiconductor structure according to claim 11, wherein the InGaN-based hole providing layer is doped with a group of four elements having a concentration greater than 10 17 cm -3 . 如申請專利範圍第7項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有第二型摻質,而該第二型摻質包括鎂或鋅,且該InGaN基礎的電洞提供層中摻雜有碳。 The nitride semiconductor structure according to claim 7, wherein the InGaN-based hole providing layer is doped with a second type dopant, and the second type dopant comprises magnesium or zinc, and the InGaN base The holes provide a layer doped with carbon. 一種氮化物半導體結構,包括:一第一型摻雜半導體層;一AlGaN基礎的(AlGaN based)第一型載子阻障層; 一發光層,包括一多重量子井結構;一AlGaN基礎的(AlGaN based)第二型載子阻障層;一第二型摻雜半導體層,其中該發光層配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間,該AlGaN基礎的第一型載子阻障層配置於該第一型摻雜半導體層與該發光層之間,該AlGaN基礎的第二型載子阻障層配置於該第二型摻雜半導體層與該發光層之間,且該多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層;以及一InGaN基礎的電洞提供層,該InGaN基礎的電洞提供層配置於該發光層與該AlGaN基礎的第二型載子阻障層之間,該InGaN基礎的電洞提供層中摻雜有濃度大於1017cm-3的四族元素。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; an AlGaN based first type carrier barrier layer; an luminescent layer comprising a multiple quantum well structure; an AlGaN based (AlGaN based) a second type of carrier barrier layer; a second type of doped semiconductor layer, wherein the light emitting layer is disposed between the first type of doped semiconductor layer and the second type of doped semiconductor layer, the AlGaN a basic first type carrier barrier layer is disposed between the first type doped semiconductor layer and the light emitting layer, and the AlGaN based second type carrier barrier layer is disposed on the second type doped semiconductor layer Between the light-emitting layers, and the multiple quantum well structure includes a plurality of AlInGaN-based barrier layers alternately stacked and a plurality of InGaN-based well layers; and an InGaN-based hole supply layer, the InGaN-based holes provided The layer is disposed between the luminescent layer and the AlGaN-based second type carrier barrier layer, and the InGaN-based hole providing layer is doped with a group of four elements having a concentration greater than 10 17 cm -3 . 如申請專利範圍第14項所述的氮化物半導體結構,其中各該InGaN基礎的井層的厚度介於3.5奈米至7奈米之間,且各該AlInGaN基礎的阻障層的厚度介於5奈米至12奈米之間。 The nitride semiconductor structure according to claim 14, wherein the thickness of each of the InGaN-based well layers is between 3.5 nm and 7 nm, and the thickness of each of the AlInGaN-based barrier layers is between 5 nm to 12 nm. 如申請專利範圍第14項所述的氮化物半導體結構,其中各該AlInGaN基礎的阻障層中摻雜有濃度介於1016~1018cm-3的第一型摻質。 The nitride semiconductor structure according to claim 14, wherein each of the AlInGaN-based barrier layers is doped with a first type dopant having a concentration of 10 16 to 10 18 cm -3 . 如申請專利範圍第14項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質。 The nitride semiconductor structure according to claim 14, wherein the InGaN-based hole providing layer is doped with a second type dopant having a concentration greater than 10 18 cm -3 . 如申請專利範圍第14項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層之能隙大於該多重量子井結構之InGaN基礎的井層的能隙。 The nitride semiconductor structure of claim 14, wherein the InGaN-based hole provides a layer having an energy gap greater than an energy gap of the InGaN-based well layer of the multiple quantum well structure. 如申請專利範圍第14項所述的氮化物半導體結構,其中該InGaN基礎的電洞提供層中摻雜有第二型摻質,而該第二型摻質包括鎂或鋅,且該InGaN基礎的電洞提供層中摻雜有碳。 The nitride semiconductor structure according to claim 14, wherein the InGaN-based hole providing layer is doped with a second type dopant, and the second type dopant comprises magnesium or zinc, and the InGaN base The holes provide a layer doped with carbon. 一種氮化物半導體結構,包括:一第一型摻雜半導體層;一發光層,包括一多重量子井結構;一AlGaN基礎的(AlGaN based)第二型載子阻障層;一第二型摻雜半導體層,其中該AlGaN基礎的第二型載子阻障層配置於該第二型摻雜半導體層與該發光層之間,而該發光層配置於該AlGaN基礎的第二型載子阻障層與該第一型摻雜半導體層之間,且該多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層;以及一InGaN基礎的電洞提供層,該InGaN基礎的電洞提供層配置於該發光層與該AlGaN基礎的第二型載子阻障層之間,該AlGaN基礎的第二型載子阻障層配置於該第二型摻雜半導體層以及該InGaN基礎的電洞提供層之間,該InGaN基礎的電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質以及濃度大於1017cm-3的碳。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure; an AlGaN based second type carrier barrier layer; a doped semiconductor layer, wherein the AlGaN-based second type carrier barrier layer is disposed between the second type doped semiconductor layer and the light emitting layer, and the light emitting layer is disposed on the AlGaN based second type carrier a barrier layer and the first type doped semiconductor layer, and the multiple quantum well structure comprises a plurality of AlInGaN-based barrier layers alternately stacked and a plurality of InGaN-based well layers; and an InGaN-based hole provided a layer, the InGaN-based hole supply layer is disposed between the light-emitting layer and the AlGaN-based second type carrier barrier layer, and the AlGaN-based second type carrier barrier layer is disposed in the second-type dopant Between the hetero-semiconductor layer and the hole-providing layer of the InGaN-based layer, the InGaN-based hole provides a second type dopant doped with a concentration greater than 10 18 cm -3 and a carbon concentration greater than 10 17 cm -3 . 一種氮化物半導體結構,包括: 一第一型摻雜半導體層;一發光層,包括一多重量子井結構;一InGaN基礎的電洞提供層;以及一第二型摻雜半導體層,其中該發光層配置於該第一型摻雜半導體層與該InGaN基礎的電洞提供層之間,而該InGaN基礎的電洞提供層配置於該發光層與該第二型摻雜半導體層之間,該多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層,且該InGaN基礎的電洞提供層之能隙大於該多重量子井結構之InGaN基礎的井層的能隙,該InGaN基礎的電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質以及濃度大於1017cm-3的碳。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure; an InGaN based hole providing layer; and a second type doped semiconductor layer, wherein the The light-emitting layer is disposed between the first-type doped semiconductor layer and the hole-providing layer of the InGaN-based layer, and the hole-providing layer of the InGaN-based layer is disposed between the light-emitting layer and the second-type doped semiconductor layer. The multiple quantum well structure includes a plurality of AlInGaN-based barrier layers alternately stacked and a plurality of InGaN-based well layers, and the InGaN-based holes provide a layer having an energy gap larger than the InGaN-based well layer of the multiple quantum well structure The energy gap of the InGaN-based hole provides a layer doped with a second type dopant having a concentration greater than 10 18 cm -3 and a carbon concentration greater than 10 17 cm -3 . 一種氮化物半導體結構,包括:一第一型摻雜半導體層;一AlGaN基礎的(AlGaN based)第一型載子阻障層;一發光層,包括一多重量子井結構;一AlGaN基礎的(AlGaN based)第二型載子阻障層;一第二型摻雜半導體層,其中該發光層配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間,該AlGaN基礎的第一型載子阻障層配置於該第一型摻雜半導體層與該發光層之間,該AlGaN基礎的第二型載子阻障層配置於該第二型摻雜半導體層與該發光層之間,且該多重量子井結構包括交替堆疊的多個AlInGaN基礎的阻障層以及多個InGaN基礎的井層;以及 一InGaN基礎的電洞提供層,該InGaN基礎的電洞提供層配置於該發光層與該AlGaN基礎的第二型載子阻障層之間,該AlGaN基礎的第二型載子阻障層配置於該InGaN基礎的電洞提供層與該第二型摻雜半導體層之間,該InGaN基礎的電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質以及濃度大於1017cm-3的碳。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; an AlGaN based first type carrier barrier layer; an luminescent layer comprising a multiple quantum well structure; an AlGaN based (AlGaN based) a second type of carrier barrier layer; a second type of doped semiconductor layer, wherein the light emitting layer is disposed between the first type of doped semiconductor layer and the second type of doped semiconductor layer, the AlGaN a basic first type carrier barrier layer is disposed between the first type doped semiconductor layer and the light emitting layer, and the AlGaN based second type carrier barrier layer is disposed on the second type doped semiconductor layer Between the light-emitting layers, and the multiple quantum well structure includes a plurality of AlInGaN-based barrier layers alternately stacked and a plurality of InGaN-based well layers; and an InGaN-based hole supply layer, the InGaN-based holes provided a layer is disposed between the luminescent layer and the second type carrier barrier layer of the AlGaN-based layer, and the second-type carrier barrier layer of the AlGaN-based layer is disposed on the hole-providing layer of the InGaN-based layer and the second-type dopant Between the hetero-semiconductor layers, the InGaN-based hole provides a layer of doping Mixed with a second type of dopant having a concentration greater than 10 18 cm -3 and a concentration greater than 10 17 cm -3 . 一氮化物半導體結構,包括:一第一型摻雜半導體層;一發光層,包括一多重量子井結構,其中該多重量子井結構包括交替堆疊的多個包括鋁以及銦的GaN基礎的阻障層以及多個包括銦的GaN基礎的井層;一包括銦的GaN基礎的第二型電洞提供層,該GaN基礎的第二型電洞提供層中摻雜有濃度大於1018cm-3的第二型摻質以及濃度大於1017cm-3的碳;以及一第二型摻雜半導體層,其中發光層配置于該第一型摻雜半導體層以及該第二型GaN基礎的電洞提供層之間,該第二型GaN基礎的第二型電洞提供層配置於該發光層以及該第二型摻雜半導體層。 A nitride semiconductor structure comprising: a first type doped semiconductor layer; a light emitting layer comprising a multiple quantum well structure, wherein the multiple quantum well structure comprises a plurality of GaN based barriers comprising aluminum and indium stacked alternately a barrier layer and a plurality of GaN-based well layers including indium; a second type of hole-providing layer comprising a GaN-based indium layer, the second-type hole of the GaN-based layer providing a layer doped with a concentration greater than 10 18 cm - 3 a second type dopant, and carbon concentration of greater than 10 17 cm -3; and a second-type doped semiconductor layer, wherein the light emitting layer is disposed on the first electrically-type doped semiconductor layer and the second type GaN-based Between the holes providing layers, the second type of GaN-based second type hole providing layer is disposed on the light emitting layer and the second type doped semiconductor layer.
TW104119968A 2012-11-19 2012-11-19 Nitride semiconductor structure TWI556467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104119968A TWI556467B (en) 2012-11-19 2012-11-19 Nitride semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104119968A TWI556467B (en) 2012-11-19 2012-11-19 Nitride semiconductor structure

Publications (2)

Publication Number Publication Date
TW201537775A TW201537775A (en) 2015-10-01
TWI556467B true TWI556467B (en) 2016-11-01

Family

ID=54850990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119968A TWI556467B (en) 2012-11-19 2012-11-19 Nitride semiconductor structure

Country Status (1)

Country Link
TW (1) TWI556467B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081390A1 (en) * 2004-12-06 2008-04-03 Remigijus Gaska Nitride-based light emitting heterostructure
US20100019222A1 (en) * 2008-07-25 2010-01-28 High Power Opto.Inc. Low-temperature led chip metal bonding layer
US20100243985A1 (en) * 2009-03-26 2010-09-30 Liang-Jyi Yan High light-extraction efficiency light-emitting diode structure
CN102214739A (en) * 2011-05-24 2011-10-12 中国科学院半导体研究所 Method for roughing epitaxy of GaN (gallium nitride)-based LED (light-emitting diode)
JP2011249776A (en) * 2010-04-30 2011-12-08 Sumitomo Chemical Co Ltd Semiconductor substrate, manufacturing method of semiconductor substrate, electronic device, manufacturing method of electronic device
US20120217473A1 (en) * 2011-02-25 2012-08-30 Michael Shur Light Emitting Diode with Polarization Control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080081390A1 (en) * 2004-12-06 2008-04-03 Remigijus Gaska Nitride-based light emitting heterostructure
US20100019222A1 (en) * 2008-07-25 2010-01-28 High Power Opto.Inc. Low-temperature led chip metal bonding layer
US20100243985A1 (en) * 2009-03-26 2010-09-30 Liang-Jyi Yan High light-extraction efficiency light-emitting diode structure
JP2011249776A (en) * 2010-04-30 2011-12-08 Sumitomo Chemical Co Ltd Semiconductor substrate, manufacturing method of semiconductor substrate, electronic device, manufacturing method of electronic device
US20120217473A1 (en) * 2011-02-25 2012-08-30 Michael Shur Light Emitting Diode with Polarization Control
CN102214739A (en) * 2011-05-24 2011-10-12 中国科学院半导体研究所 Method for roughing epitaxy of GaN (gallium nitride)-based LED (light-emitting diode)

Also Published As

Publication number Publication date
TW201537775A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
TWI499080B (en) Nitride semiconductor structure and semiconductor light-emitting element
US20140191192A1 (en) Semiconductor light-emitting device
JP2009049416A (en) Nitride semiconductor light emitting element
JP6227134B2 (en) Nitride semiconductor light emitting device
US11522106B2 (en) Nitride-based light-emitting diode device
KR20110090118A (en) Semiconductor light emitting device
US20130026446A1 (en) Semiconductor light emitting device and fabrication method thereof
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
KR20130022815A (en) Nitride semiconductor light emitting device and manufacturing method thereof
KR20180079031A (en) Iii-nitride semiconductor light emitting device
KR20140102422A (en) Nitride-based semiconductor light emitting device
KR20110117963A (en) Nitride semiconductor light emitting device and manufacturing method of the same
JP2016143771A (en) Epitaxial wafer, semiconductor light-emitting element, light-emitting device, and manufacturing method of epitaxial wafer
TWI610460B (en) Nitride semiconductor structure
TWI556467B (en) Nitride semiconductor structure
KR20130007682A (en) Light emitting device and method for fabricating the same
TWI649896B (en) Nitride semiconductor structure
KR101387543B1 (en) Nitride semiconductor light emitting device
TWI642203B (en) Light-emitting device
TWI568022B (en) Semiconductor stack structure
JP6071044B2 (en) Semiconductor light emitting device and manufacturing method thereof
KR20140104755A (en) Semiconductor light emitting device
JP2016225525A (en) Nitride semiconductor light-emitting element
TWI508326B (en) Nitride semiconductor structure and semiconductor light-emitting element
CN116960242A (en) Light-emitting diode and manufacturing method thereof