TWI555634B - A metal-welded converter-radiator composite - Google Patents

A metal-welded converter-radiator composite Download PDF

Info

Publication number
TWI555634B
TWI555634B TW103125697A TW103125697A TWI555634B TW I555634 B TWI555634 B TW I555634B TW 103125697 A TW103125697 A TW 103125697A TW 103125697 A TW103125697 A TW 103125697A TW I555634 B TWI555634 B TW I555634B
Authority
TW
Taiwan
Prior art keywords
converter
heat sink
composite
metal
glass
Prior art date
Application number
TW103125697A
Other languages
English (en)
Other versions
TW201518084A (zh
Inventor
爾本 韋伯
沃克 海格曼
彼得 布瑞克斯
麥可 克勞吉
Original Assignee
史歐特公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 史歐特公司 filed Critical 史歐特公司
Publication of TW201518084A publication Critical patent/TW201518084A/zh
Application granted granted Critical
Publication of TWI555634B publication Critical patent/TWI555634B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • B23K1/203Fluxing, i.e. applying flux onto surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/06Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for positioning the molten material, e.g. confining it to a desired area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Optical Filters (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

以金屬性焊接的轉換器-散熱器複合體 發明領域
本發明一般而言係有關於一種轉換器-散熱器複合體以及一種製造轉換器-散熱器複合體的方法。
特定言之,本發明係有關於一種陶瓷轉換器,其藉由金屬結合與散熱器連接。
發明背景
螢光轉換器,通常亦稱轉換器,用來將第一波長的光(或電磁輻射)轉換為第二波長的光。
其中,轉換器被具有第一波長的初級輻射光源激勵。在此過程中,初級輻射光源的光至少部分地被該轉換器轉換為具有第二波長的次級輻射。一部分透入之光功率在轉換器中被轉換為熱量。必須儘可能有效地將該熱量排出轉換器,以免轉換器升溫過高,因為此種情形可能造成轉換器材料毀壞的後果,視所用轉換器材料而定。此外對具有相對較高之熱損傷閾值的轉換器而言,轉換效率隨溫度升高而降低。此種效應源於所謂“thermal quenching”(熱淬滅)現象。
為將上述負面效應降至最低或予以避免,光轉換用裝置通常具有例如形式為散熱片之散熱器,以便將熱量排出轉換器材料。為轉換器有效散熱的重要因素尤其是轉換器材料之導熱性以及轉換器與散熱器之連接的導熱性。
WO 2009/115976 A1描述一種光轉換用裝置,其轉換器劃分為若干單個區段。將轉換器材料劃分為若干較小的單個區段可透過散熱用元件來將轉換器中的熱量順利地傳導至散熱片。此等轉換器區段與某種熱傳導及反射之材料發生接觸。
根據先前技術中的一種將轉換器熱結合散熱器的方案,應用例如基於環氧化物或聚矽氧的膠黏劑。
例如在US 201257364 A中,藉由含有導熱填充劑之膠黏劑來對轉換器進行熱結合。
但膠黏層會大幅增大整個系統的熱阻,使得激勵光的允許功率以及需要達到的光通量及亮度受到限制。且膠黏連接通常亦對整個系統的使用壽命構成限制。
此外,轉換器與散熱器之連接必須滿足某些光學要求,特別是足夠高的反射。次級光在轉換器中等向性地反射,因而例如在漫反射(remission)式裝置中,次級光的若干光分量並非沿有用方向發射,而是朝散熱器發射。為對此等光分量加以利用,需要將其自散熱器予以反射。
先前技術中用以達成上述目的之解決方案為應用一鏡面。通常為該鏡面鍍覆一位於散熱器上的膠黏層(例如基於聚矽氧膠黏劑或環氧化物膠黏劑)。
發明概要
有鑒於此,本發明提供一種轉換器-散熱器複合體,其散熱器與轉換器以某種方式相連,使得轉換器與散熱器之連接具有高反射特性,且轉換器與散熱器之該連接以及該整個系統皆具較小的熱阻及較長的預期使用壽命。本發明的另一目的在於提供一種製造相應之轉換器-散熱器複合體的方法。
本發明用以達成上述目的之解決方案為獨立項之標的。本發明之有利設計方案及改良方案參閱附屬項。
本發明之轉換器-散熱器複合體包括一陶瓷轉換器、一含金屬之塗層及一金屬散熱器。該陶瓷轉換器的表面至少局部直接塗佈有該含金屬之塗層,該散熱器透過一金屬性焊接與該含金屬之塗層連接。
其中,該陶瓷轉換器將第一波長的光至少部分地轉換為第二波長的光。應用陶瓷轉換器特別有利,因其除溫度穩定性較高外亦具良好的導熱性。高導熱性有利於自轉換器內朝散熱器散熱。故例如亦可採用具有相對較厚之轉換器的部件。根據一種實施方式,該轉換器厚度為50μm至500μm,較佳為150μm至250μm。其中,轉換器之厚度越大,該金屬塗層之導熱性及連接該散熱器之該連接的導熱性之影響愈大,因為在此情況下,轉換器之熱阻的重要性愈小。
該陶瓷轉換器的表面至少局部直接塗佈有一金 屬塗層。該金屬塗層較佳含有至少一選自包括以下元素之群的金屬:銀、金及鉑,且具反射性。
根據一種實施方式,該金屬塗層的反射率為Alanod公司之鏡面的反射的至少50%,較佳至少60%,尤佳至少75%。
由於該陶瓷轉換器之局部較低的透明度,測定本發明之含金屬之塗層的反射率時,並非在該陶瓷轉換器基板上對該塗層進行檢驗,而是將其鍍覆於一透明的玻璃陶瓷基板(Cleartrans)上,再穿過該轉換器基板對該塗層的反射性能進行檢驗。
為此,用一積分球對該等樣本在Lambda 950分光光度計中的漫反射進行量測。作為基準量測,先是將一樣本量測為100%基準,在該樣本中,Alanod公司的一高反射之銀鏡佈置於一未壓印之Cleartrans基板後(Ref_HR),再將一未壓印之空白的Cleartrans基板(Ref 0R)量測為零基準。
依照以下規則針對每個波長對該等光譜進行標準化:
Alanod公司之基準鏡的反射率為98%,故該標準化反射率約等於絕對反射率。
另一評定反射性之方案在於,在轉換器光譜中仍有激勵光之分量的情況下,可透過對因反射器而導致的色度座標位移進行評定而進行反射性評定。用第一波長的光(如藍色光)照射該轉換器時,該光被部分吸收並例如轉換為 具有較長的第二波長的次級光(如黃色光)。該光在轉換器中等向性地射出。該轉換器不吸收或幾乎不吸收該次級輻射,故相當一部分到達轉換器底面。在該底面設有反射器的情況下,該光沿輻射方向返回,並視情況在多個散射及反射過程後有助於具有某個色度座標的有效光通量。若該底面反射器的反射率小於100%或者完全不存在,則該有效光中的次級光的分量有所下降。在上述實例中,該有效光中的黃色光分量下降,色度座標朝藍色光位移。亦即,色度座標圖中的色度座標位移係表明反射器之品質的標準。
因此,可透過定義為的品質因數FOMCIE-cx來測定該反射之品質。參數cx(Messprobe)為設有含銀塗層之轉換器的在漫反射中測定之針對CIE 1931標準色系而規定之色度座標。cx(RefHR)為放置或鍍覆於反射率為98%之Alanod鏡面上的轉換器之測定色度座標。cx(Ref0R)為位於深色背景或光阱上的轉換器之測定色度座標。
根據本發明的一種實施方式,該FOMCIE-cx大於40%,特別是大於60%。
作為替代方案,亦可直接用次級光通量進行評定。此舉特別適用於以下轉換器:激勵光幾乎完全被吸收及轉換,故其色度座標與純發射光譜的色度座標基本一致。此時,由於幾乎不存在色度座標位移,故就量測技術而言無法非常簡單地透過色度座標位移及FOMCIE-cx進行評 定。
故作為替代方案,可透過品質因數 來確定反射品質。透過將尚存之激勵光自該轉換器朝該量測裝置發射之整個光通量中予以光譜濾出來確定該次級光通量。
在所有為量測FOMSekundärlichstrom而實施之單個量測中,用激勵光照射轉換器之強度以及激勵光之功率必須相同。
LichtstromSekundär(Messprobe)為設有含銀塗層之轉換器的次級光通量。LichtstromSekundär(RefHR)為放置或鍍覆於高反射基準鏡,如反射率為98%之Alanod鏡面上的轉換器之次級光通量。
LichtstromSekundär(RefOR)為位於深色背景或光阱上的轉換器之次級光通量。
根據一種實施方式,該金屬塗層之品質因數FOM_Sekundärlichtstrom大於40%,特別是大於60%。
根據本發明,該含金屬之塗層的一部分透過一金屬性焊接與該散熱器連接。故在本發明之轉換器-散熱器複合體中,該轉換器透過一金屬結合結合該散熱器。因此,基於本發明所應用之金屬,在轉換器與散熱器間存在一具有較小熱阻的連接。
如此便能為該轉換器-散熱器複合體提供較高的 熱傳係數WÜK。由於該金屬塗層及該焊接的導熱性較佳,該值主要取決於陶瓷轉換器之熱傳係數且與轉換器厚度密切相關。
其中,透過如下方式得出該熱傳係數WÜK:熱阻Rth為熱源與散熱片之溫差與自熱源流向散熱片之熱流之商:
就一厚度為d、橫截面積為A且被在整個面積A上均勻分佈之熱流Q流過的均質物體而言,與材料導熱性λ的關係式如下
因此,熱阻以與熱傳導所用面積成比例的方式減小,且以與接觸面厚度成比例的方式增大。亦須將界面之熱阻考慮在內。
為給出與面積無關的參數而將該熱傳係數WÜK定義為:對該界面上的熱傳導與熱傳遞進行歸納。
其中,就一厚度為d且被均勻之熱流密度q
流過的均質物體而言,關係式如下:
就厚度為200μm之轉換器而言,第一實施方式之轉換器-散熱器複合體的熱傳係數WÜK至少為25000W/Km2,其中,本發明亦可應用具有其他厚度之轉換器。
該熱傳係數WÜK(量測於一具有200μm厚之轉換器的基準系統上)較佳為25000至32000W/Km2
此點能實現較高的光功率密度。舉例而言,在熱傳係數為30000W/m2K且最大溫差為120℃時,最大散熱功率為3.6W/mm2。僅有約1/3的光功率需要被散熱,故在該實例中能實現最大為10W/mm2的光功率密度。
此外,該含金屬之塗層具有較高的反射率,故毋需另設鏡面或反射元件。
轉換器-散熱器複合體採用本發明之結構後,毋需設置有機助黏劑,如基於環氧化物或聚矽氧的膠黏劑。如此便能實現優於先前技術的導熱性及使用壽命。
根據一種實施方式,該含金屬之塗層係一含銀塗層。含銀塗層之導熱性良好且易於加工,故應用含銀塗層特別有利。此外還能藉此而獲得某種塗層,其具有較高的反射率且對有效光之色度座標不產生影響或僅產生極小影響。該塗層之銀含量較佳至少為90wt%,尤佳至少為95wt%,最佳為98wt%以上。
根據另一實施方式,該含金屬之塗層的層厚為50nm至30μm,較佳為2至20μm,尤佳為8至12μm。
該含金屬之塗層尤指經燒結之塗層。
根據本發明的一種改良方案,該含金屬之塗層另 含玻璃。特定言之,所用玻璃之玻璃態化溫度Tg為300℃至600℃,較佳為400℃至560℃。此點確保玻璃成分在包括步驟c)及e)(塗佈+燒結過程)之金屬化過程中會熔化。如此可有助於在與含金屬之塗層的相應界面上將轉換器表面潤濕以及藉由燒結過程而形成一大體均勻的銀層。此點又對該轉換器-散熱器複合體的熱性能及光學性能產生積極影響。該玻璃含量較佳為0.2至5wt%。
此外,應用亦具玻璃成分之含金屬之塗層後,能夠對玻璃-轉換器界面上的光學反射加以利用,從而增強該含金屬之塗層的反射率。根據本發明之特別有利的方案,應用折射率nD20為1.4至2.0的玻璃,特別是應用折射率nD20為1.4至1.6的玻璃。後一類玻璃與轉換器的折射率差相對較大,故可提高反射貢獻。
根據該改良方案的一種實施方式,該含金屬之塗層的玻璃成分包括基於ZnO、基於SO3或基於矽酸鹽的玻璃,因為上述玻璃既具有利的玻璃態化溫度又具適宜的折射率。
亦可應用富PbO或富Bi2O3的玻璃。
尤佳採用基於矽酸鹽的玻璃,特別是SiO2含量大於25wt%的玻璃,為該玻璃。即使在製造過程之條件下,例如在燒製該含金屬之塗層時,在可能導致金屬析出之金屬參與的情況下,該等玻璃相對氧化還原反應而言呈惰性或者至少基本上呈惰性,因此,該玻璃在該含金屬之塗層中高度透明。藉此便能對玻璃-金屬界面上的反射進行最佳 利用。
透過改變SiO2比例可對該等玻璃的可焊性以及對具有相應玻璃比例之含金屬之塗層的可焊性進行調節。在此情況下,焊料之潤濕隨SiO2比例的增大而降低。
根據另一實施方式,位於含金屬之塗層與散熱器之間的該焊接含有一含錫之無鉛焊料的若干比例。
此點確保以良好的熱穩定及足夠的機械穩定的方式將該含金屬之塗層或該經塗佈之轉換器結合該散熱器。
根據本發明的一種實施方式,該散熱器的導熱性>300W/mK。該散熱器較佳含有銅或含銅材料。因此,該散熱器除熱阻較小外亦具良好的可焊性。根據一種改良方案,該散熱器用一複合材料製成,該複合材料由一含銅之芯體及一鍍覆於上的塗層,特別是“化學金-鎳”構成。藉由該塗層可將環境因素所致之腐蝕效應降至最低。
藉由色度座標位移,可將該轉換器之連接該散熱器的結合的導熱性視作該初級光源之射入功率的函數。導熱率較小時,轉換器在射入功率相對較小的情況下就會大幅升溫,使得轉換效率降低且所測色度座標的強度下降。若整個系統的導熱性增強或其熱阻減小,則所測色度座標的強度基本保持恆定。因此,可透過以下因數來定義導熱率之品質FOMWärmeleitung=cy1-cy2
其中,cy1為本發明之轉換器-散熱器複合體在射入功率 為P1時所測定之色度座標,cy1為該轉換器-散熱器複合體在功率為P2時所測定之色度座標,其中就該等射入功率P1及P2而言,P1<<P2。P2為該轉換器單元的工作功率,P1為至少降低了7個數量級的功率,其不會產生值得一提的熱淬滅。
FOM Wärmeleitung 之值較佳最大為0.04,尤佳最大為0.02。
該散熱器可與一散熱片連接或者構建為散熱片。
該轉換器-散熱器複合體既可採用透射工作模式又可採用漫反射工作模式。
在該轉換器採用透射工作模式的實施方式中,該含金屬之塗層在該轉換器上受到橫向結構化處理,亦即,唯有轉換器表面之若干分區設有該含金屬之塗層。特定言之,該轉換器之位於該初級光源之光路中的表面不具任何含金屬之塗層。
根據另一實施方式,該轉換器-散熱器複合體採用漫反射工作模式。其中,特別是該轉換器之背離該初級光源的一側(或多側)設有該含金屬之塗層,從而對該光進行反射。
根據另一實施方式,該轉換器之側面亦設有該含金屬之塗層,從而一方面將射至該等側面的光朝該轉換器反射,另一方面透過該等側面將所產生之熱量排出。
根據一種實施方式,在具有5.2mm x 5.2mm之方形轉換器面積、轉換器厚度為200μm,且經由該面積進行均勻熱輸入的情況下,該轉換器-散熱器複合體的熱阻<3 K/W,較佳<2K/W,尤佳<1.5K/W。
本發明亦有關於一種製造複合體的方法,該複合體包括一陶瓷轉換器、一含金屬之散熱用反射塗層,及一透過一焊接與該含金屬之塗層連接的散熱器,其作為另一散熱用元件。本發明之方法至少包括處理步驟a)至f)。
步驟a)中,首先提供一具有至少一拋光表面的陶瓷轉換器。由於該陶瓷轉換器材料的溫度穩定性較高,在隨後之處理步驟中能使用亮度較大的初級光源(如半導體雷射器)以及較高的過程溫度。
步驟b)包含提供一含金屬之膏劑。該含金屬之膏劑包括在有機混合介質中的金屬粉末。該等有機混合介質尤指實施為樹脂與有機添加劑在一混合溶劑中的溶液以及/或者可IR乾燥的流變添加劑(如Johnson Matthey公司的650-63 IR Medium Oil-based,Okuno 500)。藉由該混合介質來調節該膏劑的流變性,從而使得該膏劑(例如)具有可印刷性。
該金屬粉末較佳含有至少一選自包括以下元素之群的金屬:銀、金及鉑,或者上述之合金。尤佳採用銀粉末。此舉特別有利,因為銀既具高導熱性又具高反射性。
根據一種實施方式,步驟b)所提供之金屬膏劑含有70至90wt%,較佳80至85wt%的銀比例。有機混合介質之比例為10至30wt%,較佳為15至20wt%。
隨後,將步驟b)中所獲得的膏劑鍍覆至該拋光之轉換器表面的至少一分區(步驟c)。較佳藉由一印刷法,特 別是網板印刷法將該膏劑鍍覆至該轉換器表面。藉此便能以極其簡單的方式在該轉換器表面上製成該塗層之橫向結構。可僅對轉換器表面的若干分區進行壓印或開槽。亦可採用其他印刷法,如移印或滾筒印刷法。
步驟d)中係將鍍覆於該轉換器表面上的該膏劑烘乾。較佳在150至400℃,尤佳在250至300℃的溫度條件下將該膏劑烘乾。藉此便能至少部分地將該混合介質所含溶劑去除並特別是對該鍍覆之膏劑進行預壓縮。烘乾時間視該鍍覆之膏劑中的溶劑比例而定,通常為5至10分鐘。
下一步驟e)中係在>450℃的溫度條件下對該鍍覆之膏劑進行燒製,此舉可將所製成之塗層更好地與該轉換器熱結合及機械結合。該燒製溫度還引起該金屬粉末所含金屬粒子的燒結。透過上述方式所產生之燒結結構具有相對較高的均勻度且提高了透過上述方式所獲得之塗層的反射性能。其中,該燒製溫度為700℃至1000℃時特別有利。
根據一種實施方式,該金屬粉末可基本熔化或部分熔化,視所採用之燒製溫度及所用金屬粉末而定,從而在與該金屬之界面上將該陶瓷轉換器潤濕。根據其他實施方式,該膏劑所含的金屬粒子僅僅燒結在一起。
燒製該膏劑時將該鍍覆之膏劑的有機成分以及該混合介質的殘餘燃盡。
步驟f)中,以形成一焊接的方式將透過上述方式所塗佈之該轉換器結合該散熱器。
在此過程中,以採用一焊料的方式將該散熱器焊 接至步驟e)中獲得的該塗層且採用一較佳含錫之無鉛焊料。
根據本發明的一種改良方案,步驟b)中所提供之膏劑另具一玻璃比例。該玻璃比例可提高塗層在轉換器表面上的黏著性且增強金屬粒子間的燒結特性。玻璃比例還對該金屬塗層之可焊性產生影響。
根據本發明的另一改良方案,可多次鍍覆該金屬反射器。為此,在烘乾該膏劑(步驟d)後或在燒製該膏劑(步驟e)後重新鍍覆膏劑(步驟c)並如前所述進行進一步處理。
根據一種實施方式,該玻璃比例為0.05至8wt%,較佳為0.1至6wt%,尤佳為0.2至5wt%。該玻璃比例較為有利,因為該玻璃比例足以提高塗層在轉換器表面上的黏著性,同時確保塗層具有良好的可焊性。
有利者係採用粒度指數D50為1至5μm的玻璃粉末。此點確保玻璃粒子在膏劑中均勻分佈從而確保玻璃比例在步驟e)中所獲得的塗層中均勻分佈。
根據一種實施方式,該膏劑所含該玻璃的玻璃態化溫度Tg為300℃至600℃,較佳為350℃至560℃。
步驟b)中所用玻璃粉末較佳係指基於PbO、基於Bi2O3、基於ZnO、基於SO3或基於矽酸鹽的玻璃。該等玻璃在軟化溫度及折射率方面特別有利。
根據一種尤佳實施方式,在步驟b)中採用基於矽酸鹽的玻璃,特別是SiO2含量至少為25wt%的玻璃。
該等玻璃除具有利之折射率及軟化溫度外,在本 發明之燒製條件(步驟e)下在該金屬及/或該陶瓷轉換器參與的情況下還針對氧化還原過程具有較高的耐受性。
本發明之轉換器-散熱器複合體尤其能應用於雷射頭燈及聚光燈,特別是舞台照明用聚光燈。另一應用領域在於投影儀。該等投影儀既可指沿交替方向投射影像的投影儀(旋轉式投影儀),又可指僅以一個方向投射影像(靜態)的投影儀。該轉換器-散熱器複合體還可應用於光學量測技術中的光源。
1‧‧‧初級光
2‧‧‧轉換器
3‧‧‧膠黏劑
4‧‧‧鏡面
5‧‧‧散熱器
6‧‧‧初級光
7‧‧‧含金屬之塗層
8‧‧‧焊接
9‧‧‧陶瓷轉換器
10‧‧‧含銀塗層
11‧‧‧界面
12‧‧‧細孔
13‧‧‧玻璃楔形件
14‧‧‧散熱片
15‧‧‧熱流
16‧‧‧SiO2鎢疊層
下面結合圖1至14以及若干實施例對本發明進行說明。
圖1為一膠黏之轉換器-散熱器複合體在漫反射裝置中的示意圖;圖2為本發明之轉換器-散熱器複合體的第一實施方式在漫反射裝置中的示意圖;圖3為本發明之轉換器-散熱器複合體的第二實施方式在透射裝置中的示意圖;圖4為本發明之轉換器-散熱器複合體的第三實施方式在透射裝置中的示意圖;圖5為膠黏之轉換器-散熱器複合體(圖5a)與本發明之轉換器-散熱器複合體(圖5b)之溫度穩定性及功率穩定性的對比圖;圖6a及圖6b為採用本發明之塗佈方案的轉換器與設有及未設Alanod鏡面之未塗佈之轉換器的色度座標(圖6a)及 次級光通量(圖6b)的對比圖;圖7及圖8為本發明之在含金屬之塗層的玻璃含量方面有所不同的不同實施方式的SEM橫截面影像;圖9為在透明之玻璃陶瓷基板上的含金屬之塗層的不同實施方式的反射量測圖;圖10為不同玻璃的折射率及軟化溫度的示意圖;圖11為用於測定熱傳係數WÜK之試驗裝置的示意圖;圖12為該等量測電阻器在測定熱傳係數WÜK時的佈置方案圖;及圖13及14為具有金屬塗層之轉換器的不同實施方式之透過色度座標而評定之品質。
較佳實施例之詳細說明
圖1為一先前技術所揭露之轉換器-散熱器複合體在漫反射裝置中的示意圖。該轉換器2之背離或相對初級光源1的一側藉由一膠黏層3鍍覆於一鏡面4上,該鏡面與一散熱器5連接。鏡面4確保對形成於轉換器2中的次級光6及對初級光1之未被吸收的分量進行反射。
圖2為本發明之轉換器-散熱器複合體的第一實施方式在漫反射裝置中的示意圖。其中,轉換器2在其背離初級光源1的一側具有含金屬之塗層7。含金屬之塗層7與散熱器5係透過焊接8相連。該含金屬之塗層7具反射性,從而替代圖1所示之鏡面4。
圖3及4為本發明之轉換器-散熱器複合體的兩個 實施方式在透射裝置中的結構圖。該含金屬之塗層7在轉換器表面上受到橫向結構化處理,其中,特別是在光路中不鍍覆含金屬之塗層7。
在圖3所示實施方式中,該鍍覆於轉換器2上的含金屬之塗層7具有若干並不透過焊接8與散熱器5連接的分區,該等分區例如位於轉換器之朝向該初級光源的一側上。在此情況下,含金屬之塗層7對次級輻射進行反射,從而防止次級輻射6在轉換器2之側面上射出。此外,圖3所示之對該含金屬之塗層7的橫向結構化處理還能增強散熱效果並實現均勻散熱。
圖4所示在透射裝置中的實施方式中,轉換器2呈錐形。該錐體之側面上設有含金屬之塗層,其藉由焊接8結合該散熱器。
圖5a及5b中,轉換器之色度座標位移顯示為不同溫度條件下之射入雷射功率的函數。圖5a為圖1所示傳統轉換器-散熱器複合體的溫度-功率特性曲線,圖5b為圖2所示本發明轉換器-散熱器複合體之實施方式的溫度-功率特性曲線。該等轉換器之成分及厚度相同。
可將作為入射至較小激勵光斑之雷射功率的函數的色度座標位移用來評定導熱性。導熱率較小時,轉換器在雷射功率相對較小的情況下就會大幅升溫,使得轉換效率降低且所測色度座標下降。導熱性增強後,色度座標在雷射功率較大時仍保持在較高水平。
此種不同之處可自圖5a及5b中看出,圖5a及5b 係對採用膠黏方案之轉換器(膠黏在鏡面上,該鏡面又透過導熱膏結合散熱器)與本發明之焊接方案進行比較:若在散熱片的相同溫度(85℃或120℃)條件下對相應特性進行比較,則與膠黏方案相比,本發明之方案的色度座標(及轉換效率)在大得多的雷射功率條件下方會下降。散熱器溫度為85℃時,在採用膠黏方案的情況下,雷射電流約為1000mA時的色度座標位移達到Dcy>0.02,而在採用本發明之解決方案的情況下,即使在最大可能的雷射電流1400mA時的色度座標位移仍為Dcy<0.02。散熱器溫度為120℃時,在採用膠黏方案的情況下,雷射電流約為820mA時的色度座標位移就達到了Dcy>0.02,而在採用本發明之解決方案的情況下,雷射電流為1200mA時方會出現此種情形。
表1為圖1所示傳統轉換器-散熱器複合體及圖2所示本發明之轉換器-散熱器複合體的一實施方式在均勻熱輸入情況下的估計熱阻。
圖6為設有及未設反射器以及含金屬之反射塗層之轉換器-散熱器複合體的色度座標(圖6a)及次級光通量(圖6b)的對比圖。
評定膏狀反射器在內陶瓷-反射器界面上的反射性能並不常見,因為該陶瓷係指具有高折射率及多孔表面的半透明介質。亦即,不能認定在透明基板上的評定對類似的折射率(例如,藍寶石或cleartrans玻璃陶瓷)具有代表性。
圖6a為透過因反射器所引發之色度座標位移而進行的評定:用(波長例如為450nm之)藍色光照射轉換器時,該光被全部或部分吸收並例如轉換為黃色次級光。該光在轉換器中等向性地射出。該轉換器不吸收或幾乎不吸收該次級輻射,故相當一部分到達轉換器底面。在該底面設有反射器的情況下,該光沿輻射方向返回,並視情況在多個散射及反射過程後有助於具有某個色度座標的有效光通量。若該底面反射器的反射率小於100%或者完全不存在,則該有效光中的黃色光分量下降,色度座標朝藍色光位移。亦即,色度座標圖(如CIE1931/2°觀測器)中的色度座標位移係表明反射器之品質的標準。為實施可靠評定,轉換器需要採用一定厚度或者充分地摻雜有螢光活性中心,使得所有藍色光皆被轉換器厚度吸收。即使在反射器仍對 藍色光之分量進行反射的情況下,色度座標位移亦為適宜之標準。透過色度座標位移進行評定之優點在於,功率較小時所測色度座標具有一與激勵功率無關且就量測技術而言易於獲得的大小。但該大小僅適用於對激勵光的足夠分量進行漫反射的轉換器。
圖6a為用波長為450nm之藍色雷射光照射之200μm厚之轉換器的在漫反射中所測的色度座標,該轉換器先是放置於反射率極高的金屬鏡面上(Alanod Miro Silver),再放置於黑色墊子上。該等色度座標以FOM_CIE-cx的形式提供了針對高反射鏡面之情形及針對未設鏡面之情形的基準色度座標。在具有金屬塗層的同一轉換器上所測之色度座標介於該二基準值之間。根據該等色度座標資料所算出之FOM_CIE-cx為66%。
亦即,含金屬之塗層的反射效果遠高於黑色墊子,但低於該Alanod基準鏡。但該轉換器-散熱器複合體的熱結合顯著提高。
圖6b為該金屬塗層的替代評定方案,係透過次級光通量進行。該實例中係用一亮度攝像機進行量測,其中,透過一攝像機鏡頭由一分光光度計對轉換器表面上的一量測光斑以某個立體角所發射的光通量進行偵測。再透過所偵測之光譜將次級光分量與激勵光數學分離,從而測出用於計算FOM_Sekundärlichtstrom的輸入變量。在該實例中,FOM_Sekundärlichtstrom為59%。量測該等輸入變量時,尤其需要注意採用相同的激勵功率。亦可使用透過濾波器來 分離次級光分量與激勵光或者透過其他量測裝置來偵測光通量或某個光通量分量的量測部件。
圖7為具有經燒結之含銀塗層10的陶瓷轉換器9的SEM橫截面影像(聚焦離子束剖面)。塗層10之厚度為9μm(圖7a)及11μm(圖7b)。其中,圖7a與7b中的塗層之區別之處在於塗層中的玻璃比例不同。圖7a所示塗層10中不含玻璃,而圖7b之膏劑中的玻璃含量為0.5wt%。藉由方位對比度可看出該膏劑的原始晶粒結構。該塗層具有一燒結結構,其中,燒製前存在的金屬粒子基本上被燒結在一起,使得該塗層具有相對較高的均勻度。主要出現在含銀塗層與陶瓷轉換器之界面11上的空腔12即所謂之“管腔”係因相關工藝而產生。
圖7a中可看出一SiO2-鎢層16,其在藉由聚焦離子束進行橫截面製備前被鍍覆,以便提高橫截面影像的品質,但該層並非該金屬反射器的一部分。
圖8a至8c同樣為具有含銀塗層10的陶瓷轉換器9的SEM橫截面影像(聚焦離子束剖面),其中,圖8a至8c中之塗層在其玻璃比例方面有所不同。圖8a所示塗層10中不含玻璃,而圖8b及8c之膏劑中的玻璃比例為0.5wt%及1.5wt%。
與不含玻璃的塗層(圖7a、8a)相比,含玻璃之塗層(圖7b、8b、8c)整面接觸塗層與轉換器表面之界面的程度更高。因此,玻璃比例能提高塗層在轉換器表面上的黏著性。亦可藉由形成於含玻璃之塗層上的玻璃楔形件13看出 此點。作為製備偽影,在該等空腔(因利用離子束蝕刻進行橫截面製備而產生)內還沈積有一層,其在材料對比度中的亮度大於玻璃(參閱圖8c右邊緣,該層位於玻璃楔形件上方,或者參閱圖8a,在該含銀塗層之空腔的內壁上可看到一個細小的層)。
玻璃比例亦有助於增強金屬粒子間的燒結效果。
圖9為在透明之玻璃陶瓷基板上的本發明之含金屬之塗層的不同實施方式的標準化反射光譜,以及相應之基準樣本。
很難評定陶瓷轉換器上的膏狀反射器,因為陶瓷轉換器不透明。因此,將在玻璃含量及所用玻璃成分有所不同的多種含銀塗層鍍覆於一透明的玻璃陶瓷基板(Cleartrans)上,再穿過該基板對該塗層的反射性能進行檢驗。為此,對該等樣本在Lambda 950分光光度計中的漫反射進行量測。作為基準量測,先是將一樣本量測為100%基準,在該樣本中,一高反射之Alanod銀鏡佈置於一未壓印之Cleartrans基板後(Ref_HR),再將一未壓印之空白的Cleartrans基板(Ref 0R)量測為零基準。
依照以下規則針對每個波長對該等光譜進行標準化:
量測結果表明,在所用實施例中可達到超過83%(就銀鏡之反射率而言)。該反射率與玻璃含量以及所用玻璃之成分及折射率相關。
實施例1不含玻璃,而實施例2及3之塗層含有0.5wt%及1.5wt%的矽酸鹽玻璃(係指步驟b)中所提供的膏劑,即在燒製前)。實施例D含有基於Bi2O3的玻璃,且由於該玻璃之折射率以及在界面上可能出現氧化還原反應,該實施例具有較小的反射率。
圖10為應用於以下實施例中之不同玻璃類型的折射率與軟化溫度的關聯圖。
表2為在所用玻璃類型及玻璃含量方面有所不同的不同實施例A至I。其中,該等重量比例係就處理步驟b)中所提供之膏劑而言。未列出的剩餘成分包含有機混合介質。
下表列出實施例A至I之玻璃成分(以wt%為單 位):SIO2A,SiO2-富含
SIO2B,SiO2-富含
BI2O3A,Bi2O3-富含
ZNOPA,ZnO/P2O5-富含
ZNOBA,ZnO:B2O3-富含
SO3A,SO3-富含
圖11為一複雜之轉換器-散熱器複合體的結構圖,其中(例如透過雷射光點)將熱量定位地輸入轉換器2。
在該裝置中,厚度為200μm之轉換器之背離初級光源1的一側塗佈有一含金屬之塗層7,其透過金屬性焊接8(未繪示於圖11中)結合一空間受限的散熱器5。散熱器5與一散熱片14連接。熱流用箭頭15表示。
箭頭15表明熱流在該轉換器-散熱器複合體中的擴展。應用雷射器為初級光源1後,熱輸出受到射束光點(半徑約為200μm)的限制。在該陶瓷中就會出現熱流擴展,因此,熱流密度在與散熱器的界面上就會下降。該熱流在散熱器中進一步擴展,因此,由於散熱器與真正意義上的散熱片間的接觸面較大,故二者間的熱傳係數WÜK即使在該連接之熱傳係數較小的情況下亦能達到可接受之程度。
有鑒於此,在該裝置上所測定之熱阻僅提供了一針對整個複合體之在定位熱輸入情況下的實際品質因數,該熱輸入與轉換器厚度及雷射光點之幾何形狀密切相關。但在該裝置上所測定之熱阻不適於以與應用無關的方式對轉換器-散熱器複合體進行評定。
圖12所示結構係用於對圖2所示轉換器-散熱器複合體的熱阻進行評定,該評定以與供該轉換器-散熱器複合體工作的光學裝置無關的方式進行。
為對待測物體(如焊接之轉換器)的熱阻進行測定,將其焊接於一Cu載體上並使其一側接觸熱源,另一側接觸散熱片。利用“熱量測電阻器”來測定熱流。
在該量測結構中,設有用於測定上量測電阻器上之熱流的溫度量測點T1/T2。T5/T6為下量測電阻器的量測 點。
在其之間,該待測物體位於兩個具有溫度量測點T3及T4的Cu載體之間,該二溫度量測點上測定溫差T3-T4。圖12示出上述情形。
該溫差與熱流之商為待測物體之熱阻。該熱阻之倒數除以待測物體面積,得出熱傳係數。
所用待測物體為:
- 量測1:焊接於Cu載體(T3/T4)上的陶瓷轉換器,尺寸為5.2mm x 5.2mm,該等Cu載體又連接雙組件之膠黏劑。
- 量測2:直接與雙組件之膠黏劑連接之Cu載體(T3/T4)。
在該試驗中,轉換器-散熱器複合體之熱阻為0.5 x(量測1之熱阻-量測2之熱阻)
用於量測熱流之熱量測電阻器係用1.4841型鋼材製成(材料名稱X 15 CrNiSi 25 20)。該熱量測電阻器之直徑為10mm,長度為10mm,具有兩個用於間距為7mm之熱電偶的鑽孔。透過該等間距為7mm之熱電偶來量測溫差,再利用根據該鋼材之材料資料所算出的熱阻來將該溫差換算為熱流。在100℃以下之溫度範圍內,該“量測電阻器”的熱阻在7.5℃時最大為10K,具體視電阻器溫度而定。表4示出量測電阻器之熱阻與溫度的關聯。
表5表明,在迄今為止所使用之標準系統(厚度為200μm之陶瓷轉換器,用聚矽氧膠黏)中,轉換器之熱阻與聚矽氧膠黏劑之熱阻基本相等。(1.23K/W)。
而在以金屬性焊接的本發明之轉換器-散熱器複合體中,該熱阻由轉換器之熱阻決定,因此,藉由焊接而成之轉換器總成的熱阻較膠黏方案而言幾乎降低一半。
轉換器愈薄,連接層(聚矽氧/焊接)之導熱性方面的差別愈具決定性,因為在此情況下,轉換器之熱阻的重要性愈小。採用厚度僅為50μm之轉換器時,焊接方案之熱阻不及膠黏方案之熱阻的四分之一。
採用非常定位的熱輸入(如透過雷射光點)時需要注意:有助於導熱的不再是轉換器的整個面積,而是大體上由雷射光點之大小所給出的局部。在此情況下,陶瓷對熱阻的相對貢獻隨射束光點之縮小而增大。表6示出此點。
圖13為針對若干具有不同玻璃成分的膏劑而言,在CIE1931色空間中因金屬反射器而導致的色度座標位移。繪示於右上方之橢圓中係在金屬化處理前在一高反射Alanod鏡面(R=98%)上所測樣本的量測資料(HR-基準量測)。位於左下方之橢圓中係設有金屬塗層之相同樣本的量測資料。色度座標位移Dcx係針對一樣本而示範性地示出。在此情況下在深色背景及射束阱上不存在針對轉換器之深色基準量測的色度座標,故在此情況下無法計算FOM_CIE-cx(參閱圖6)。但所有樣本皆為由相同材料構成之厚度相同的金屬轉換器,故此種情況下之Dcx適於對反射器進行評定。
從圖中亦可看出,轉換器之色度座標在實施金屬性塗佈前後不處於同一直線。亦即,金屬反射器除對激勵光與次級光之比產生影響外,在本實例中亦引起紅色色彩分量之相對增大,從而導致設有金屬塗層之轉換器在CIE1931色空間中的色度座標直線朝右下方偏移。產生此點之原因在於:長波光譜分量的反射率高於次級光譜之短波光譜分量,參閱圖9。此種效應在其他含金屬(如含金)之塗層中可能更為顯著,可利用此點來對轉換器-散熱器複合體之色度座標針對性地施加影響。
圖14為圖13所測定之色度座標位移Dcx與應用於金屬反射器中的玻璃系統的關聯圖。較小的色度座標位移表示良好的反射器。除不含玻璃比例的Ag塗層外,基於矽酸鹽玻璃之反射器具有最佳反射性能。
實施例:藉由焊接將含金屬之塗層與散熱器連接在一起。
將銅散熱器即設有防腐用鎳金層之銅散熱器放入一樣本架,使得待焊接之表面水平佈置且與樣本架基本齊平。隨後放置厚度為100μm的一焊接模版並用校準銷進行定向。往該焊接模版鍍覆焊膏(Heraeus F169 SA40C5-86 D30)並透過若干孔口進行塗刷。
取下焊接模版後,將陶瓷轉換器放置於所產生的焊膏區。隨後可將一定位設備放置於該樣本架上並將整個裝置送至加熱板上。焊料(在215℃條件下)軟化後,於20秒的保持時間後將整個裝置自加熱板上取下。樣本冷卻後還必須去除其中的助溶劑殘餘。在40℃條件下在超音波清洗器中用乙醇實現此點,作用時間為10分鐘。
在將轉換器與金屬反射器焊接在一起的過程中,可焊性與應用於膏劑中的玻璃比例密切相關。舉例而言,玻璃比例相對較高時(1.5wt%),具有矽酸鹽玻璃比例之Ag膏劑在焊接過程中的潤濕性較差。增加玻璃比例可提高潤濕性。不含玻璃的Ag膏劑亦具極佳的潤濕性。但不含玻璃的Ag膏劑之反射性會受到焊接過程的負面影響,透過以下情形就能看出此點:與尚未焊接之帶含銀塗層的轉換器相比,已焊接之帶含銀塗層的轉換器的外觀更深。就相應實施方式之在本實施例中所描述之焊接過程而言,尤佳採用矽酸鹽玻璃比例為0.5wt%的含銀塗層,藉此能在不影響反射性的條件下達到良好的焊接潤濕性。
本實施例清楚地表明,必須對金屬塗層、所用焊料與焊接過程予以協調。採用另一焊料或另一焊接過程時,亦可採用能在不影響反射率的條件下達到良好焊接潤濕性的其他玻璃比例。
以10天的時間對用該焊接過程所製成之轉換器-散熱器複合體實施-40℃至160℃的熱週期試驗,每天兩個週期,不使20個經測試之轉換器-散熱器複合體中的任一個上出現轉換器與散熱器分離的現象。
根據該實施例的一種變體,在該焊接過程中用焊爐來替代該加熱板。藉此能更好地達到焊料所要求的加熱曲線。
1‧‧‧初級光
2‧‧‧轉換器
5‧‧‧散熱器
6‧‧‧初級光
7‧‧‧含金屬之塗層
8‧‧‧焊接

Claims (44)

  1. 一種轉換器-散熱器複合體,包括一用於將一第一波長的光至少部分地轉換為一第二波長的光的陶瓷轉換器,一含金屬之反射塗層及一散熱器,其中,該陶瓷轉換器的表面的至少部分直接塗佈有該含金屬之塗層,該含金屬之塗層將熱量自該轉換器排入該散熱器,以及該散熱器透過一金屬性焊接與該含金屬之塗層連接。
  2. 如請求項1之轉換器-散熱器複合體,其中,該轉換器-散熱器複合體在轉換器厚度為200μm時的熱傳係數至少為25000K/Wm2
  3. 如請求項1之轉換器-散熱器複合體,其中,該轉換器-散熱器複合體的熱阻<3K/W。
  4. 如請求項1之轉換器-散熱器複合體,其中,該轉換器-散熱器複合體的熱阻<2K/W。
  5. 如請求項1之轉換器-散熱器複合體,其中,該轉換器-散熱器複合體的熱阻<1.5K/W。
  6. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之塗層含有銀、金、鉑及/或相應之合金。
  7. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之 塗層係一含銀塗層及/或該銀含量至少為90wt%。
  8. 如請求項7之轉換器-散熱器複合體,其中,該銀含量較至少為95wt%。
  9. 如請求項7之轉換器-散熱器複合體,其中,該銀含量至少為98wt%。
  10. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之塗層的層厚為50nm至30μm。
  11. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之塗層的層厚為2至20μm。
  12. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之塗層的層厚為8至12μm。
  13. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之塗層含有玻璃以及/或者該玻璃含量為0.05至10wt%。
  14. 如請求項13之轉換器-散熱器複合體,其中,該玻璃含量為0.1至5wt%。
  15. 如請求項13之轉換器-散熱器複合體,其中,該玻璃含量為0.2至1.5wt%。
  16. 如請求項7之轉換器-散熱器複合體,其中,該玻璃之玻璃態化溫度為300℃至600℃。
  17. 如請求項7及10中任一項之轉換器-散熱器複合體,其中,該玻璃之折射率nD20為1.4至2.0。
  18. 如請求項13至16中任一項之轉換器-散熱器複合體,其中,該玻璃為基於PbO、基於Bi2O3、基於ZnO、基於SO3或基於矽酸鹽的玻璃。
  19. 如請求項17之轉換器-散熱器複合體,其中,該玻璃為基於PbO、基於Bi2O3、基於ZnO、基於SO3或基於矽酸鹽的玻璃。
  20. 如請求項13至16中任一項之轉換器-散熱器複合體,其中,該玻璃為SiO2含量>25wt%的基於矽酸鹽的玻璃。
  21. 如請求項17之轉換器-散熱器複合體,其中,該玻璃為 SiO2含量>25wt%的基於矽酸鹽的玻璃。
  22. 如請求 項1之轉換器-散熱器複合體,其中,位於含金屬之塗層與散熱器之間的該金屬性焊接含有一含錫之無鉛焊料的若干比例。
  23. 如請求項1之轉換器-散熱器複合體,其中,該散熱器具有>300W/mK的導熱性以及/或者構建為散熱片。
  24. 如請求項1之轉換器-散熱器複合體,其中,該轉換器採用透射工作模式且該含金屬之塗層在該轉換器上受到橫向結構化處理。
  25. 如請求項1之轉換器-散熱器複合體,其中,該轉換器採用漫反射工作模式且該轉換器的至少一背離該初級光源的一側塗佈有該含金屬之塗層。
  26. 如請求項1之轉換器-散熱器複合體,其中,定義為 的反射之品質FOM CIE-cx ,其中cx(Messprobe)規定為設有該含銀塗層之該轉換器的在漫反射中測定之針對CIE 1931標準色系而規定之色度座標,cx(RefHR)規定為 放置或鍍覆於反射率為98%之Alanod鏡面上的該轉換器之測定色度座標,以及,cx(Ref0R)規定為位於深色背景或光阱上的該轉換器之測定色度座標,該反射之品質至少為40%。
  27. 如請求項26之轉換器-散熱器複合體,其中,該反射之品質FOM CIE-cx 至少為60%。
  28. 如請求項1之轉換器-散熱器複合體,其中,該散熱器包括一複合材料,該複合材料含有一含銅之芯體及一鍍覆於該芯體上的塗層。
  29. 如請求項28之轉換器-散熱器複合體,其中,該散熱器包括一複合材料,該複合材料含有一含鎳及/或含金塗層。
  30. 如請求項1之轉換器-散熱器複合體,其中,該含金屬之塗層為經燒結之塗層。
  31. 一種製造轉換器-散熱器複合體的方法,該轉換器-散熱器複合體包括一陶瓷轉換器、一含金屬之散熱用反射塗層,及一透過一金屬性焊接與該含金屬之塗層連接的散熱器,其作為另一散熱用元件,該方法至少包括以下步驟:a)提供一具有至少一拋光表面的陶瓷轉換器,b)提供一含金屬之膏劑,其含有一在有機混合介質中的金屬粉末,c)將該含金屬之膏劑鍍覆至該拋光之轉換器表面的至少一分區 d)將該鍍覆之膏劑烘乾e)在>450℃的溫度條件下對該鍍覆之膏劑進行燒製f)以採用一金屬焊料的方式藉由焊接將該散熱器與步驟e)中獲得的該塗層連接在一起。
  32. 如請求項31之製造轉換器-散熱器複合體的方法,其中,步驟b)中所採用之該膏劑含有銀粉末以及/或者該膏劑之銀含量為70至90wt%。
  33. 如請求項32之製造轉換器-散熱器複合體的方法,其中,該膏劑之銀含量為80至85wt%。
  34. 如請求項31或32之製造轉換器-散熱器複合體的方法,其中,步驟b)中所採用之該膏劑含有玻璃粉末。
  35. 如請求項34之製造轉換器-散熱器複合體的方法,其中,步驟b)中所採用之該膏劑含有D50值為1至5μm的玻璃粉末。
  36. 如請求項34之製造轉換器-散熱器複合體的方法,其中,在步驟b)中採用基於PbO、基於Bi2O3、基於ZnO、基於SO3或基於矽酸鹽的玻璃之玻璃粉末,以及/或者該膏劑中的玻璃比例為0.05至8wt%。
  37. 如請求項36之製造轉換器-散熱器複合體的方法,其中,採用SiO2含量>25wt%之基於矽酸鹽的玻璃,以及/或者該膏劑中的玻璃比例為0.2至5wt%。
  38. 如請求項34之製造轉換器-散熱器複合體的方法,其中,該膏劑中所含之玻璃之玻璃態化溫度Tg為400℃至 560℃。
  39. 如請求項31之製造轉換器-散熱器複合體的方法,其中,在步驟c)中藉由網板印刷來鍍覆該膏劑。
  40. 如請求項31之製造轉換器-散熱器複合體的方法,其中在步驟d)中,在150至400℃的溫度條件下實施烘乾。
  41. 如請求項31之製造轉換器-散熱器複合體的方法,其中在步驟d)中,在250至300℃的溫度條件下實施烘乾。
  42. 如請求項31之製造轉換器-散熱器複合體的方法,其中在步驟e)中,在700℃至1000℃的溫度條件下對該含金屬之塗層進行燒製。
  43. 如請求項31之製造轉換器-散熱器複合體的方法,其中在步驟e)中,對該含金屬之塗層進行燒結。
  44. 如請求項31之製造轉換器-散熱器複合體的方法,其中,步驟f)中所採用之該焊料為含銀之錫焊料。
TW103125697A 2013-08-12 2014-07-28 A metal-welded converter-radiator composite TWI555634B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013013296.7A DE102013013296B4 (de) 2013-08-12 2013-08-12 Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
TW201518084A TW201518084A (zh) 2015-05-16
TWI555634B true TWI555634B (zh) 2016-11-01

Family

ID=51229885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103125697A TWI555634B (zh) 2013-08-12 2014-07-28 A metal-welded converter-radiator composite

Country Status (9)

Country Link
US (1) US9982878B2 (zh)
JP (1) JP6320531B2 (zh)
KR (1) KR101823801B1 (zh)
CN (1) CN105474050B (zh)
CA (1) CA2920697C (zh)
DE (1) DE102013013296B4 (zh)
MY (1) MY177307A (zh)
TW (1) TWI555634B (zh)
WO (1) WO2015022151A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013296B4 (de) * 2013-08-12 2020-08-06 Schott Ag Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung
JP6384146B2 (ja) * 2014-06-25 2018-09-05 セイコーエプソン株式会社 波長変換素子、光源装置、及びプロジェクター
DE102015113562B4 (de) 2015-08-17 2017-08-24 Schott Ag Konverter-Kühlkörperverbund mit metallischer Lotverbindung
WO2017029255A2 (de) * 2015-08-17 2017-02-23 Schott Ag Verfahren zur justierung eines auf einem optischen konverter erzeugten leuchtflecks, vorrichtung mit leuchtfleck und deren verwendung sowie konverter-kühlkörperverbund mit metallischer lotverbindung
WO2017053747A1 (en) * 2015-09-25 2017-03-30 Materion Corporation High optical power light conversion device using a phosphor element with solder attachment
JP6775177B2 (ja) * 2016-03-07 2020-10-28 パナソニックIpマネジメント株式会社 照明器具、及び、照明装置
JP6604473B2 (ja) * 2015-10-09 2019-11-13 パナソニックIpマネジメント株式会社 照明器具、及び、照明装置
KR102591068B1 (ko) * 2015-12-15 2023-10-18 마테리온 코포레이션 향상된 파장 변환 장치
JP6852976B2 (ja) * 2016-03-29 2021-03-31 日本特殊陶業株式会社 波長変換部材、その製造方法および発光装置
CN105716039B (zh) * 2016-04-12 2018-06-15 杨阳 光转换装置及其制备方法和应用
CN105762239B (zh) * 2016-04-12 2018-11-06 杨阳 光转换装置及其制备方法和应用
JP7114489B2 (ja) * 2016-06-22 2022-08-08 ルミレッズ ホールディング ベーフェー 光変換パッケージ
DE102017216079A1 (de) * 2017-09-12 2019-03-14 Osram Gmbh Konversionselement in kühlkörper
KR101984102B1 (ko) 2017-11-03 2019-05-30 엘지전자 주식회사 형광체 모듈
CN112666780B (zh) 2019-10-15 2022-06-24 台达电子工业股份有限公司 波长转换装置
CN111106509A (zh) * 2019-12-24 2020-05-05 杭州电子科技大学 一种激光散热装置及其制备方法、固体激光器
WO2022163175A1 (ja) 2021-01-28 2022-08-04 日本特殊陶業株式会社 波長変換部材及びそれを備える光源装置
WO2023006671A1 (en) 2021-07-29 2023-02-02 Signify Holding B.V. A laser lighting device
DE102022113940A1 (de) 2022-06-02 2023-12-07 Schott Ag Verfahren zum Feststellen eines thermischen Qualitätsmaßes eines Probenkörpers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200923244A (en) * 2007-09-28 2009-06-01 Osram Opto Semiconductors Gmbh Semiconductor source of light with a source of primary rays and a luminescence conversion element
CN102187485A (zh) * 2008-10-15 2011-09-14 株式会社小糸制作所 发光模块、发光模块的制造方法及灯具单元
JP2012185980A (ja) * 2011-03-04 2012-09-27 Nippon Electric Glass Co Ltd 波長変換素子、それを備える光源およびその製造方法
US20130099264A1 (en) * 2011-08-11 2013-04-25 Scott M. Zimmerman Solid state light sources based on thermally conductive luminescent elements containing interconnects

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19546997C2 (de) * 1995-12-15 1997-12-18 Siemens Ag Verfahren zum Verbinden von metallischen Teilen mit nichtmetallischen Teilen
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
JP2006086176A (ja) * 2004-09-14 2006-03-30 Hitachi Kyowa Engineering Co Ltd Led用サブマウント及びその製造方法
JP4823306B2 (ja) 2005-04-22 2011-11-24 エイ・ティ・アンド・ティ・コーポレーション VoIPネットワークにおけるメディアサーバリソースの管理
KR20090083450A (ko) * 2006-11-06 2009-08-03 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 자체 지지 파장 변환 소자 제조 방법 및 발광 장치 제조 방법
DE102007010872A1 (de) * 2007-03-06 2008-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Präzisionsbearbeitung von Substraten und dessen Verwendung
JP2008277438A (ja) 2007-04-26 2008-11-13 Ricoh Microelectronics Co Ltd 電子部品、基板、並びに、電子部品及び基板の製造方法
US7700967B2 (en) * 2007-05-25 2010-04-20 Philips Lumileds Lighting Company Llc Illumination device with a wavelength converting element held by a support structure having an aperture
WO2009115976A1 (en) 2008-03-20 2009-09-24 Koninklijke Philips Electronics N.V. Illumination system comprising a luminescent element with a heat sink
TW200941659A (en) * 2008-03-25 2009-10-01 Bridge Semiconductor Corp Thermally enhanced package with embedded metal slug and patterned circuitry
JP5236344B2 (ja) * 2008-04-24 2013-07-17 パナソニック株式会社 半導体発光装置
CN101728366A (zh) * 2008-10-22 2010-06-09 先进开发光电股份有限公司 光电元件封装模块及其制造方法
CN102770977A (zh) * 2010-02-25 2012-11-07 旭硝子株式会社 发光元件搭载用基板及发光装置
CN102339811A (zh) * 2010-07-27 2012-02-01 埃派克森微电子(上海)股份有限公司 具有cob封装功率器件的电路板
KR20130099912A (ko) * 2010-08-26 2013-09-06 니폰 덴키 가라스 가부시키가이샤 파장 변환 소자, 광원 및 액정용 백라이트 유닛
US8833975B2 (en) 2010-09-07 2014-09-16 Sharp Kabushiki Kaisha Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
JP5707885B2 (ja) * 2010-11-15 2015-04-30 三菱マテリアル株式会社 パワーモジュール用基板、冷却器付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5585421B2 (ja) 2010-11-30 2014-09-10 日本電気硝子株式会社 波長変換素子及びそれを備える光源
JP2012190628A (ja) 2011-03-10 2012-10-04 Stanley Electric Co Ltd 光源装置および照明装置
JP2012222011A (ja) * 2011-04-05 2012-11-12 Panasonic Corp Led発光モジュール及びそれを用いた照明装置
DE102012005654B4 (de) * 2011-10-25 2021-03-04 Schott Ag Optischer Konverter für hohe Leuchtdichten
DE102012005657B4 (de) * 2012-03-22 2020-06-10 Schott Ag Weißlichtbeleuchtungsvorrichtung
CN102936669B (zh) * 2012-11-28 2014-09-10 一远电子科技有限公司 一种低熔点无铅焊料合金
CN103042315B (zh) * 2013-01-22 2015-05-27 马莒生 耐热耐湿低熔点无铅焊料合金
CN103170766A (zh) * 2013-03-27 2013-06-26 江苏盛之祥电子科技有限公司 一种低熔点高可靠性无铅焊料的制备方法
CN106195924B (zh) * 2013-06-08 2019-05-03 深圳光峰科技股份有限公司 一种波长转换装置及其制作方法、相关发光装置
DE102013013296B4 (de) * 2013-08-12 2020-08-06 Schott Ag Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung
TWI565108B (zh) * 2014-08-21 2017-01-01 錼創科技股份有限公司 發光模組

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200923244A (en) * 2007-09-28 2009-06-01 Osram Opto Semiconductors Gmbh Semiconductor source of light with a source of primary rays and a luminescence conversion element
CN102187485A (zh) * 2008-10-15 2011-09-14 株式会社小糸制作所 发光模块、发光模块的制造方法及灯具单元
JP2012185980A (ja) * 2011-03-04 2012-09-27 Nippon Electric Glass Co Ltd 波長変換素子、それを備える光源およびその製造方法
US20130099264A1 (en) * 2011-08-11 2013-04-25 Scott M. Zimmerman Solid state light sources based on thermally conductive luminescent elements containing interconnects

Also Published As

Publication number Publication date
DE102013013296A1 (de) 2015-02-12
CA2920697A1 (en) 2015-02-19
CN105474050B (zh) 2018-09-25
CA2920697C (en) 2018-03-20
KR101823801B1 (ko) 2018-01-30
JP6320531B2 (ja) 2018-05-09
DE102013013296B4 (de) 2020-08-06
MY177307A (en) 2020-09-11
US9982878B2 (en) 2018-05-29
JP2016534396A (ja) 2016-11-04
KR20160043046A (ko) 2016-04-20
WO2015022151A1 (de) 2015-02-19
CN105474050A (zh) 2016-04-06
TW201518084A (zh) 2015-05-16
US20160245494A1 (en) 2016-08-25

Similar Documents

Publication Publication Date Title
TWI555634B (zh) A metal-welded converter-radiator composite
JP6553168B2 (ja) 乱反射材料、乱反射層、波長変換装置及び光源システム
TWI546267B (zh) 一種具有多層結構的螢光玻璃片及其製作方法及發光裝置
JP7170073B2 (ja) はんだ取付を伴う蛍光体要素を用いる高光学パワー光変換デバイス
KR20070112411A (ko) 반사 부재, 이것을 이용한 발광 장치 및 조명 장치
CN204829755U (zh) 波长转换装置、相关发光装置和投影系统
JP2011119343A (ja) 素子搭載基板及び発光装置
TWI677115B (zh) 波長轉換構件及發光裝置
WO2019159441A1 (ja) 光波長変換装置
TWI669375B (zh) 波長轉換構件及發光裝置
WO2017188191A1 (ja) 波長変換部材、その製造方法および発光装置
WO2023218964A1 (ja) 波長変換部材および光源装置
KR102665902B1 (ko) 형광판, 파장 변환 부재, 및, 광원 장치
KR102665901B1 (ko) 형광판, 파장 변환 부재, 및, 광원 장치
TWI788684B (zh) 波長轉換構件、光源裝置及波長轉換構件的製造方法
US20230213171A1 (en) Fluorescent plate, wavelength conversion member, and light source device
JP2024013799A (ja) 波長変換部材、波長変換装置、および、光源装置
JP7244297B2 (ja) 光波長変換部品

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees