TWI554062B - 用於半雙工ip鏈路之離散多調式系統 - Google Patents

用於半雙工ip鏈路之離散多調式系統 Download PDF

Info

Publication number
TWI554062B
TWI554062B TW104110863A TW104110863A TWI554062B TW I554062 B TWI554062 B TW I554062B TW 104110863 A TW104110863 A TW 104110863A TW 104110863 A TW104110863 A TW 104110863A TW I554062 B TWI554062 B TW I554062B
Authority
TW
Taiwan
Prior art keywords
dmt
symbols
symbol
qam
signal
Prior art date
Application number
TW104110863A
Other languages
English (en)
Other versions
TW201528741A (zh
Inventor
馬克 費莫夫
克雷格 托梅柴克
Original Assignee
英特希爾美國公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特希爾美國公司 filed Critical 英特希爾美國公司
Publication of TW201528741A publication Critical patent/TW201528741A/zh
Application granted granted Critical
Publication of TWI554062B publication Critical patent/TWI554062B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

用於半雙工IP鏈路之離散多調式系統 【相關申請案之交互參照】
此申請案係主張2012年1月20日申請的名稱為"用於半雙工IP鏈路之離散多調式系統及方法"的美國臨時申請案序號61/589,101、2012年12月5日申請的名稱為"用於半雙工IP鏈路之離散多調式系統"的美國申請案序號13/706,290、以及2012年12月5日申請的名稱為"用於半雙工IP鏈路之離散多調式系統"的國際申請案號PCT/US12/68041的益處,該些申請案係明確地以其整體被納入在此作為參考。
本發明係有關於離散多調式系統,特別是用於半雙工IP鏈路之離散多調式系統。
同軸電纜安全鏈路技術(SLOC)是一種半雙工點對點的雙向數位視訊網際網路協定(IP)鏈路,其在同軸電纜上係具有同步的類比複合視訊、遮沒以及同步(CVBS)傳輸,其可被利用於安全性的應用。在一種單一載波的系統中,發送的數位正交振幅調變(QAM)符號通常是相同的星座圖組中的組成份子。對於高位元率而言,高階的星座圖是所需的。為了可靠的接收,高階的星座圖於是需要相當高的接收器的信號對雜訊比。實質的高頻衰減係使得此為難以達成的。一降低的星座圖的階層係產生對於一更寬 的信號頻寬的需求,並且因此在信號頻帶的高端有更多的衰減。
在揭露內容的一特點中,用於SLOC通訊之系統、裝置及方法係被提出。裝置可被配置及/或適配於以一第一整數(V)個碼區塊來編碼資料,並且以一第二整數(U)個離散多調式調變(DMT)符號來發送該V個碼區塊,每個DMT符號係包括複數個QAM符號,該複數個QAM符號係調變在一下行鏈路信號中的一次頻帶的次載波。每個QAM符號可以是指派給該次頻帶的一星座圖的QAM符號中之一。一共同的邊界通常是設置在每個DMT符號的一開始處、或是在每個碼區塊的一開始處。
在揭露內容的一特點中,發送該V個碼區塊係包含從可被指派給該次頻帶的複數個QAM星座圖選擇該QAM符號的星座圖。選擇該QAM符號的星座圖係包含根據和該一或多個次頻帶相關的信號對雜訊比來指派複數個QAM星座圖中之至少一QAM星座圖給一或多個次頻帶。
在揭露內容的一特點中,編碼資料可包含利用一同步到一第三整數(W)個DMT符號的交錯器來交錯該資料的位元組。
在揭露內容的一特點中,發送該V個碼區塊係包含在一同軸電纜上發送該下行鏈路信號。內含在該下行鏈路信號中之一最低頻率的次載波可具有一頻率高於被指派用於透過該同軸電纜來發送一基頻視訊信號的一最高頻率。發送該V個碼區塊可包含在該下行鏈路信號中的一對應數目個次載波上發送兩個或多個前導符號(pilot)。發送該兩個或多個前導符號可包含在該下行鏈路信號所用的複數個次載波傳播該兩個或多個前導符號。發送該V個碼區塊可包含在複數個連續的下行鏈路的時間間隔的每一 個中發送兩個DMT符號、以及在一上行鏈路的時間間隔中從一上行鏈路信號接收一DMT符號,該上行鏈路的時間間隔係出現在該複數個連續的下行鏈路的時間間隔的每一個之後。
一種用於接收及解碼用在該揭露的SLOC系統的信號之裝置可被配置以接收包括複數個QAM符號的DMT符號、利用一區塊錯誤解碼器來解碼由該些QAM符號所載有的資料、以及在該共同的邊界同步化該區塊錯誤更正解碼器。該區塊錯誤更正解碼器可以解碼以一第二整數(U)個DMT符號編碼的一第一整數(V)個碼區塊。該U個DMT符號以及該V個碼區塊可以開始在一共同的邊界處。
在揭露內容的一特點中,每個QAM符號可以調變在一接收到的信號中的一次頻帶的一次載波。每個QAM符號可以是指派給該次頻帶的一星座圖的QAM符號中之一。
在揭露內容的一特點中,V可以是U的一整數倍數,並且一碼區塊可以開始在每個DMT符號的一開始處。V可以是U的一整數倍數,並且一碼區塊可以開始在一對或是其它預設數目個DMT符號的一開始處。該碼區塊可以開始在一組或是群組的該些DMT符號的該開始處,並且該群組或組的大小可藉由該系統來加以預設且/或是可根據應用、頻道狀況以及針對處理效率來配置的。該些碼區塊可包括里德所羅門封包。U可以是V的一整數倍數,並且每個碼區塊係開始在一DMT符號的一開始處。
在揭露內容的一特點中,該QAM符號的星座圖是可被指派給該次頻帶的複數個QAM星座圖中之一。該區塊錯誤更正解碼器可包括一被配置以同步化在該共同的邊界處的里德所羅門解碼器,而不論該複數個 QAM星座圖中被指派給該次頻帶的為何。
在揭露內容的一特點中,該裝置係被配置以利用一同步到一第三整數(W)個DMT符號的反交錯器來反交錯由該些QAM符號所載有的該資料的位元組。該W個DMT符號可以對應於一和該接收到的信號相關的交錯訊框的一第四數目個位元組。該QAM符號的星座圖可以是可被指派給該次頻帶的複數個QAM星座圖中之一,並且該反交錯器可被配置為同步的,而不論該複數個QAM星座圖中被指派給該次頻帶的為何。
在揭露內容的一特點中,該接收到的信號係包括複數個次頻帶。每個次頻帶可包含該接收到的信號的兩個或多個相鄰的次載波。不同的QAM星座圖可被指派給該複數個次頻帶中的至少兩個。QAM符號的較低階的星座圖可被指派給包含較高頻率的次載波的次頻帶,並且QAM符號的較高階的星座圖可被指派給包含較低頻率的次載波之次頻帶。一共同的QAM星座圖可被指派給該複數個次頻帶的每一個。QAM符號的一共同的星座圖可被指派給一群組的相鄰的次頻帶,並且QAM符號的不同的星座圖可被指派給不同群組的相鄰的次頻帶。根據和該兩個或多個群組的相鄰的次頻帶相關的信號對雜訊比,兩個或多個群組的相鄰的次頻帶可包括不同數目個次頻帶。
在揭露內容的一特點中,該接收到的信號可以是接收自一同軸電纜,並且內含在該接收到的信號中之一最低頻率的次載波可具有一頻率高於被指派用於透過該同軸電纜來發送一基頻視訊信號的一最高頻率。該些DMT符號可以透過該同軸電纜以在一發送的信號的複數個次頻帶中來加以發送。該裝置可被配置以根據兩個或多個在該接收到的信號中的一對 應數目個次載波上所載有的前導符號來估計在該同軸電纜中的頻道品質。例如,頻道品質可包含和該接收到的信號相關的信號對雜訊比。該些前導符號可以在該接收到的信號的該些次載波的全部或一些之間循環或傳播。
在揭露內容的一特點中,該發送的信號以及該接收到的信號係以相鄰的時間間隔來加以發送。在一例子中,兩個下行鏈路DMT符號係在複數個連續的下行鏈路的時間間隔的每一個中來加以接收,並且一上行鏈路DMT符號可以在一上行鏈路的時間間隔中來加以發送,該上行鏈路的時間間隔係被界定在該複數個連續的下行鏈路的時間間隔的每一個之後。一同步DMT符號可以在每個訊框中或是在一預先定義的訊框組中來加以接收。系統組態設定資訊可以在複數個訊框的每一個中來加以接收,每個訊框係包含複數個封包,每個封包係包含兩個下行鏈路DMT符號以及一個上行鏈路DMT符號。
100‧‧‧頻率響應圖
102‧‧‧頻率響應
200‧‧‧頻率響應圖
202‧‧‧頻帶
204‧‧‧基頻
300‧‧‧星座圖指派的圖表
302‧‧‧次頻帶
304‧‧‧CVBS頻寬
306a-306g‧‧‧群組
400‧‧‧SLOC系統圖
402‧‧‧攝影機
404‧‧‧同軸電纜
406‧‧‧顯示器
408‧‧‧數位錄影機(DVR)
412‧‧‧多媒體處理器
414‧‧‧數據機
416‧‧‧CVBS信號
418‧‧‧DMT信號
422‧‧‧視訊處理器
424‧‧‧數據機
426‧‧‧CVBS信號
428‧‧‧DMT信號部分
430‧‧‧主機處理器
432‧‧‧儲存媒體
440‧‧‧資料
500‧‧‧概要圖
502‧‧‧攝影機側的SLOC數據機
504‧‧‧AFE
506‧‧‧帶通濾波器(BPF)
508‧‧‧類比至數位轉換器(ADC)
510‧‧‧攝影機側的DMT接收器
514‧‧‧數位至類比轉換器(DAC)
516‧‧‧AFE
518‧‧‧帶通濾波器(BPF)
520‧‧‧下游DMT發送器
528‧‧‧加法器
530‧‧‧IP MII信號
532‧‧‧CVBS信號
534‧‧‧MII介面
600‧‧‧概要圖
602‧‧‧DVR側的SLOC數據機
604‧‧‧AFE
606‧‧‧上游DMT發送器
608‧‧‧DAC
610‧‧‧電纜線
612‧‧‧BPF
614‧‧‧AFE
618‧‧‧ADC
620‧‧‧下游DMT接收器
624‧‧‧AFE
700‧‧‧方塊概要圖
702‧‧‧MII發送介面(MIITx)
704‧‧‧里德所羅門(RS)編碼器
706‧‧‧交錯器
708‧‧‧隨機產生器
712‧‧‧PTCM編碼器
714‧‧‧映射器
716‧‧‧QAM符號多工器(mux)
718‧‧‧控制器前導符號的模式產生器(CPPG)模組
722‧‧‧模組
724‧‧‧加窗模組
726‧‧‧半頻帶的上取樣濾波器
728‧‧‧箝位模組
730‧‧‧模組
734‧‧‧sysdata X
736‧‧‧sysdata Y
738‧‧‧QAM符號類型輸入選擇器
740‧‧‧超框同步信號
800‧‧‧實施方式
802‧‧‧移位暫存器
804‧‧‧移位暫存器
806‧‧‧輸入換向器
808‧‧‧輸出換向器
850‧‧‧反交錯器
902‧‧‧第14級
904‧‧‧第15級
1025、1041、1057、1073‧‧‧次載波
1100‧‧‧星座圖
1110‧‧‧星座圖
1120‧‧‧星座圖
1200‧‧‧時序圖
1202、1204、1208‧‧‧下游DMT符號
1206、1210‧‧‧上游DMT符號
1220‧‧‧DMT頻譜
1300‧‧‧圖表
1400‧‧‧分接值
1500‧‧‧頻率響應
1600‧‧‧圖形
1602、1604、1606、1608‧‧‧信號頻譜
1700‧‧‧圖表
1702‧‧‧箝位雜訊
1704‧‧‧4k DMT信號
1900‧‧‧示意圖
1902‧‧‧硬性箝位
1904‧‧‧2N點的FFT
1906‧‧‧設定箱(bin)N至2N-1為零
1908‧‧‧2N點的IFFT
1910‧‧‧上取樣的DMT信號
1923‧‧‧次載波
2000‧‧‧時序圖
2100‧‧‧流程圖
2200‧‧‧流程圖
2600‧‧‧接收器
2604‧‧‧AGC及HPF模組
2614‧‧‧等化器模組
2616‧‧‧計算sysdata模組
2618‧‧‧控制模組
2620‧‧‧解映射器/維特比解碼器模組
2624‧‧‧反交錯器
2626‧‧‧RS解碼器
2628‧‧‧讀取sysdata模組
2630‧‧‧demux
2700‧‧‧取樣時脈設計及/或產生器的高階圖
2720‧‧‧速率轉換器控制迴路
2900‧‧‧攝影機側的AFE
2920‧‧‧DVR側的AFE
3100‧‧‧處理系統
3102‧‧‧匯流排
3103‧‧‧裝置驅動器
3104、3105‧‧‧處理器
3106‧‧‧主要記憶體
3108‧‧‧唯讀記憶體
3110‧‧‧大量儲存裝置
3112‧‧‧顯示器系統
3114‧‧‧輸入裝置
3116‧‧‧游標控制
3118‧‧‧通訊介面
3120‧‧‧網路
3122‧‧‧本地的網路
3124‧‧‧主機電腦
3128‧‧‧網際網路
3130‧‧‧伺服器
3200‧‧‧流程圖
3202、3204、3206‧‧‧步驟
3220‧‧‧流程圖
3222、3224、3226‧‧‧步驟
圖1係描繪2000呎的RG-59電纜線的頻率響應。亦見於章節V。
圖2係描繪超過2000呎的RG-59電纜線在一信號頻帶上的頻率傾斜。
圖3是描繪根據本發明的某些特點的星座圖到次頻帶的指派的一例子之頻率分布圖表。
圖4是描繪根據本發明的某些特點的一範例系統之概要示意圖以及頻譜佔用圖表。
圖5係描繪根據本發明的某些特點之攝影機側的數據機。
圖6係描繪根據本發明的某些特點的底側的數據機之一DVR例子。
圖7係描繪根據本發明的某些特點之一DMT發送器。
圖8是描繪一交錯器以及一反交錯器之圖。
圖9係根據本發明的某些特點之一隨機產生器。
圖10係描繪根據本發明的某些特點之一截短栅格碼調變器。
圖11係描繪QAM星座圖。
圖12是描繪根據本發明的某些特點的半雙工操作及DMT頻譜之概要圖。
圖13是描繪根據本發明的某些特點的用於下游信號的旁波瓣能量減少之圖表。
圖14係描繪根據本發明的某些特點之離散時間加窗的半頻帶的濾波器分接點。
圖15係描繪根據本發明的某些特點之一半頻帶的濾波器響應。
圖16係描繪相關於取樣率轉換的DMT大小頻譜。
圖17係描繪在一DMT符號內的一或多個箝位的機率。
圖18是描繪根據本發明的某些特點的DMT信號的頻譜密度、硬性箝位雜訊、箝位雜訊以及顯著的頻帶外的雜訊縮減之圖。
圖19是根據本發明的某些特點的一頻域濾波操作之示意圖。
圖20是描繪根據本發明的某些特點的半雙工交替的下游及上游DMT符號之概要圖。
圖21是根據本發明的某些特點的一種用於判斷可信度的方法之流程圖。
圖22是根據本發明的某些特點的一種用於同步化發送器及接收器的計 數器的方法之流程圖。
圖23係描繪根據本發明的某些特點之一脈波持續期間的容限目標。
圖24是描繪針對於3000呎的RG-59的頻率響應之圖表。
圖25是描繪根據本發明的某些特點的星座圖到次頻帶的指派的一例子之頻率分布圖表。
圖26是描繪根據本發明的某些特點的一DMT接收器之概要圖。
圖27係描繪根據本發明的某些特點之取樣時脈同步以及側邊的接收器的速率轉換。
圖28是根據本發明的某些特點的里德所羅門解碼器之高階流程圖。
圖29係描繪根據本發明的某些特點之類比的前端。
圖30係展示用在本發明的某些實施例的一濾波器之一頻率響應。
圖31是描繪在本發明的某些實施例中所採用的處理系統之簡化的方塊概要圖。
圖32係包含根據本發明的特點的用於通訊的方法之流程圖。
本發明的實施例現在將會參考圖式來加以詳細地描述,該些實施例係被提供作為說明的例子以便於使得熟習此項技術者能夠實施本發明。值得注意的是,以下的圖式及例子並非意味要限制本發明的範疇至單一實施例,而是其它藉由交換所述或所繪的元件的一些或全部之實施例也是可行的。只要方便的話,相同的元件符號將會被使用在整個圖式以指示相同或類似的部件。在這些實施例的某些元件可以部分或完全利用已知的構件來實施的情形中,此種已知的構件中只有對於本發明的理解為必要的 那些部分才會加以描述,並且此種已知的構件的其它部分的詳細說明將會被省略而不模糊本發明。在本說明書中,除非另有明確的敘述,展示單一構件的一實施例不應該被視為限制性的;而是在此的說明係欲涵蓋其它包含複數個相同構件的實施例,並且反之亦然。再者,申請人並不欲使說明書或申請專利範圍中的任何術語被認定為一種不尋常或是特殊的意義,除非被明確地如此闡述。再者,本發明的實施例係涵蓋在此藉由舉例說明的構件之現有及未來所知的等同物。
如在此所述的,第一代SLOC可以被描述特徵為一種全雙工、單一載波、點對點、雙向的數位視訊IP鏈路,其具有在同軸電纜上同時及/或同步的發送類比複合的視訊在下游方向上、遮沒以及同步(CVBS),以用於安全性的應用。在一例子中,一第一代SLOC系統可以在1000-1500呎的低成本的RG-59電纜線上提供從攝影機到監視及/或數位錄影機(DVR)每秒36個百萬位元(Mbps)的下游位元率。先進的網際網路協定(IP)攝影機可以在可延伸超出36Mbps之顯著較高的位元率下輸出資料。
本發明的某些實施例係在一半雙工、雙向的IP資料鏈路中利用一DMT系統以提供下一代SLOC。在下游方向上(攝影機到DVR),網際網路協定的資料(通常是壓縮的數位視訊)可以結合CVBS來加以發送。網際網路協定的應答封包可被傳送在上游(DVR到攝影機的)方向上。該下一代SLOC系統可以在至少2000呎的低成本的RG-59電纜線上支援100Mbps往下游以及6.25Mbps往上游,其中位元率係自動地隨著電纜線變得較長而適應性地降低。在3000呎的情形中,52.3Mbps往下游以及3.26Mbps往上游的位元率可被達成。一上游鏈路可以從監視及/或DVR提供至攝影機。在下游 方向上之同步的CVBS發送可以藉由使得在例如是DC至11MHz的範圍中的數位頻譜歸零來加以提供。
一簡單且有效的位元載入(BL)的方法可被使用來利用電纜線的頻道容量。該BL方法係容許該系統能夠克服在長區段的電纜線中之大的頻率傾斜(參見圖1),此係產生高的位元率及/或長的電纜線可及範圍。一種在此揭露的緊密結合該BL方法、里德所羅門封包化(或類似者)以及位元組交錯之資料分框(framing)方法可以用一種提供接收器中的反交錯及解碼構件簡單的同步之方式而被利用,以將輸入資料對映至調變。該些解碼構件可包括一區塊錯誤更正解碼器,例如在此所述的里德所羅門解碼器。同步化可以用一種一致的方式運作,而不論位元載入的指派為何。在發送器的上取樣的信號之受控制的限幅可以降低峰值平均功率比並且可以改善發送的SNR,同時限制頻帶內的雜訊的產生。該上取樣的信號之升餘弦加窗(windowing)係利用此項技術中已知的技術及方法,以控制頻帶外的雜訊而避免數位干擾進入到該CVBS信號。小數量移動的前導符號的使用係容許有效的頻道估計,致能追蹤用於該DMT信號的數位適應性等化。該DMT頻道估計器可被利用以估計在該CVBS頻帶中的頻率傾斜。此資訊可被利用以致能該CVBS信號之有效的類比或數位等化。一低雜訊的AFE係被描述,其係使得某些系統能夠符合效能目標。
圖1是展示2000呎的RG-59電纜線之一典型的頻率響應之圖100。在一單一載波的系統中,所有發送的數位QAM符號通常是相同的星座圖組中的組成份子。對於高位元率而言,可能需要高階的星座圖以在每個符號編碼更多的資訊位元。為了可靠的接收,高階的星座圖於是需要 相對高的接收器SNR。該實質的高頻衰減係使得此難以在習知的系統中達成。然而,若該星座圖階層被降低,一更寬的信號頻寬可能是所需的,其中較大的衰減係發生在放大後的信號頻帶的高端處。
某些實施例係利用DMT(基頻多載波)調變,其中一信號係包括一組次載波。該些次載波的複數個次頻帶的每一個可藉由來自一針對該次頻帶所選及/或匹配到該次頻帶的星座圖的QAM符號來加以調變。較低頻率的次載波通常比較高頻率的次載波遭受到較少的衰減,並且較低頻率的次載波通常是在一比該些較高頻率的次載波高的類比前端(AFE)之後的信號對雜訊比(SNR)之下加以接收。於是,較低頻率的次載波可以可靠地支援較高階的星座圖。為了提供較高頻率的次載波之可靠的接收,該些較高頻率的次載波係藉由來自較低階的星座圖的符號來加以調變。利用此配置下,該些較低頻率的次載波可以支援比該些較高頻率的次載波高的每個次載波的位元率。整體來說,此設計係容許該系統能夠達成一種位元率/可靠度的取捨,其係比利用單一載波的系統所能實際達成的更密切地接近該頻道容量。
圖2是展示2000呎的RG-59電纜線對於對應於一SLOC數位信號的頻寬202的一子集合之一典型的頻率響應之圖200。在一SLOC數位信號中的頻帶202可以從大約11MHz延伸到大約42MHz,並且如該圖200中所示,一2000呎長度的RG-59電纜線可以在橫跨此頻帶202造成大約20dB的傾斜。僅管某些實施例可以依照個別的次載波來提供不同的星座圖指派,但在同軸電纜上之SLOC的良好效能可在星座圖的指派上利用較少粒度(granularity)來加以達成。被展示為在0Hz到11MHz之間的基頻204可被 保留以用於運載一同步的類比視訊信號。該基頻信號可以在接收器加以等化,以校正相移及衰減。
圖3是描繪用於次頻帶配置的一特定例子的星座圖指派的一例子之圖表300。在該例子中,在一信號中可利用的頻寬係被分成44個次頻帶,即例如由次頻帶302所描繪者。在該例子中,該可利用的頻寬係排除CVBS頻寬304。該些次頻帶可具有相等的頻寬並且可包括一整數個相鄰的次載波。次頻帶可被分成群組306a-306g,並且QAM星座圖可被指派給該些群組306a-306g。該些群組306a-306g可包括不同數目個次頻帶。在圖3中描繪的例子中,群組306a中的每個次頻帶係被指定一512 QAM星座圖,群組306b中的每個次頻帶係被指定一256 QAM星座圖,群組306c中的每個次頻帶係被指定一128 QAM星座圖,群組306d中的每個次頻帶係被指定一64 QAM星座圖,群組306e中的每個次頻帶係被指定一32 QAM星座圖,群組306f中的每個次頻帶係被指定一16 QAM星座圖,並且群組306b中的每個次頻帶係被指定一8相移鍵控(PSK)星座圖。
某些利用根據圖3所指派的QAM星座圖的實施例可以另外使用截短栅格(punctured trellis)編碼的調變以發送里德所羅門編碼的資料,其可以在該接收器的格子解碼器產生範圍從512 QAM的37.8dB到8 PSK的8.8dB之準無誤碼(QEF)的SNR臨界值輸入。在該圖表300中,每個群組306a-306g的y軸值(高度)係指出其個別的QEF臨界值。SNR臨界值的此變化範圍係緊密地近似該電纜線傾斜,並且每個群組306a-306g在該接收器之處可具有大致相同的SNR邊限。給定在一系統中所利用的編碼及調變下,QAM星座圖可以利用任何適當或適應性的方法來加以自動地指派給群組 306a-306g,並且某些眾所周知的技術就接近頻道容量而言可以產生接近最佳的結果。
圖4是描繪根據本發明的某些特點的一種SLOC系統之圖400。一配備SLOC的攝影機402可以藉由同軸電纜404而連接至一配備SLOC的數位錄影機DVR 408或是其它的接收設備,例如視訊伺服器及視訊路由器、等等。配備SLOC的攝影機402係包括一數據機414,該數據機414係發送一或多個代表一藉由多媒體處理器412產生、或者是處理及/或中繼的視訊流的信號。該一或多個信號可包含一被發送為一基頻信號的類比CVBS信號416、以及一同時發送的佔用從11.2MHz到42.3MHz的頻帶之數位DMT信號418,該數位DMT信號418係運載由一如同在圖形上被描繪在440的與媒體無關的介面(MII)所供應的資料。該DMT信號可搭載該MII網際網路協定信號418,該MII網際網路協定信號418通常是以高達100Mbps的標稱速率以在下游方向上運載壓縮的高解析度數位視訊至該DVR。該CVBS信號416可以載有該DMT信號中所載有的壓縮的高解析度數位視訊之一標準解析度的版本。
該DVR 408亦可包括一數據機424,該數據機424係接收且分開一接收自該同軸電纜404的信號成為一接收到的CVBS信號426以及一接收到的MII的下游DMT信號部分428。該接收到的下游DMT信號係被解碼且經由一MII介面而被傳送至一主機處理器430,該主機處理器430係解碼在該MII信號428中之壓縮的數位高解析度視訊、或是使得其被解碼。數據機424亦可以發送一運載來自該MII信號428的返回資料的上游DMT信號。該上游DMT信號可以用半雙工方式以高達6.25MHz的位元率來加以發 送。該上游DMT信號可以編碼一音訊饋送、攝影機控制資訊及/或其它資訊,例如用來維持在該上游攝影機402以及下游DVR 408或其它裝置之間的網際網路協定連線所需的訊息。在一例子中,該上游DMT信號係佔用從11.07MHz到43.19MHz的頻帶,此與該下游DMT信號所用的頻帶幾乎為相同的。
圖5及6分別包含概要圖500及600,其係呈現攝影機側的SLOC數據機502以及DVR側的SLOC數據機602的高階視圖。攝影機側的數據機502係接收一IP MII信號530,該IP MII信號530係被饋送至下游DMT發送器520。DMT發送器520可以提供一標稱100Mbps的輸出至數位至類比轉換器(DAC)514,該DAC 514係轉換該信號成為一類比信號並且在加法器528中和該攝影機的CVBS信號532組合。加法器528可將該組合的信號驅動到該電纜線514上。AFE 516係包含一帶通濾波器("BPF")518以降低在低端被加到該CVBS的干擾,並且抑制在該高端的DMT影像。該較低位元率的上游DMT信號可以接收自該電纜線514並且被饋送至攝影機側的DMT接收器510以用於解碼。AFE 504可包括一帶通濾波器(BPF)506以在提供該DMT信號以供類比至數位轉換器(ADC)508數位化之前,先衰減該CVBS信號,同時通過該上游DMT信號。DMT接收器510的一輸出可被提供至該MII介面534。
在該DVR側的SLOC數據機602,接收自電纜線610之組合的CVBS/DMT信號係被饋送至AFE 604、614及624。AFE 614係濾除大部分的CVBS,並且在藉由ADC 618數位化之後饋送該濾波後的DMT信號至該下游DMT接收器620。在該CVBS信號路徑中,AFE 624的LPF係濾除 大部分的DMT信號。在某些實施例中,一ADC、數位LPF以及DAC可被插入以用於進一步的DMT抑制。AFE 604係具有一類似於該攝影機側的數據機502的BPF 518的置於DAC 608之後的BPF 612。一類比CVBS等化器610係提供補償給歸因於該電纜線的高頻衰減。發出自該主機MII介面的返回封包係藉由該上游DMT發送器606來向上游發送,該上游DMT發送器606在結構上是類似於該下游DMT發送器520,但是可適當地或是根據所要地被配置不同的操作參數。DAC 608係轉換該上游DMT信號成為一類比信號以用於透過包含BPF 612的AFE 604來加以發送。
SLOC DMT發送器
圖7是描繪根據本發明的某些特點的一DMT發送器之方塊概要圖700。一MII發送介面(MIITx)702係接收該MII資料。來自該MIITx的資料係形成位元組,並且接著在一里德所羅門(RS)編碼器704的輸入處形成為尺寸為k位元組的封包,該RS編碼器704係計算並且附加r=24個同位位元組至該封包。該所產生的封包尺寸n=k+12 P=k+24可以用一種稍後描述的方式根據該次載波星座圖的指派來變化。每封包高達t=r/2=12個受損的位元組可以在該接收器加以校正。該RS編碼器的輸出係接著藉由一卷積的(convolutional)位元組交錯器706來加以處理。圖8係描繪交錯器706的一實施方式800。交錯器706以及在該SLOC接收器620中之一互補的反交錯器850可以用任何此項技術中已知的適當方式來加以利用,並且可被配置以對抗影響該發送的信號之脈波雜訊。此脈波雜訊可能透過一電力線來耦合到該系統中、或是來自該非常長的長度之同軸電纜,該同軸電纜可能拾取電氣雜訊,即使該同軸電纜的電纜線是屏蔽的。此種脈波雜訊可能造成IP封 包損失。
根據本發明的某些特點,可以容忍一具有一"封包"的持續期間的雜訊脈波,其中該封包的內容及尺寸係在以下更詳細地論述。結構800及850係包括B個具有增加的尺寸的移位暫存器。對於交錯器800而言,最上方的移位暫存器802係具有長度零,並且最下方的移位暫存器804係具有長度(B-1)M個位元組,其中M通常是一個小的整數,並且通常BM P。對於該交錯器800以及反交錯器850而言,可能需要一同步信號以使得輸入換向器806以及輸出換向器808在該位元組流中的相同點到達該頂端位置,並且同步化該交錯至該反交錯。此同步係在此說明書的別處更詳細地論述。當一位元組進入該交錯器並且一不同的位元組離開該交錯器時,該輸入與輸出換向器806、808係向下移動一位置。當該些換向器806、808到達底部時,它們移動回到頂端。該RS編碼器704/交錯器706的組合係容許在該接收器中之一對應的反交錯器/RS解碼器能夠校正因為雜訊脈波而受損的Bt個位元組的持續期間之資料。
交錯器706的輸出位元組係接著藉由隨機產生器708而隨機化,以確保QAM符號的均勻分布。圖9係展示根據以下的多項式之一下游隨機產生器708的一例子:x 16+x 13+x 12+x 11+x 7+x 6+x 3+x+1
在此所述的例子中,除了第14級902及第15級904被移除以外,該上游隨機產生器係與該下游隨機產生器708相同。
該資料係接著利用截短栅格碼調變(PCTM)而被編碼。圖10是描繪一PTCM編碼器712之圖1000。該PTCM編碼器係一次編碼來自該 隨機產生器的m-1個位元成為m個位元。該碼可以是基於一1/2速率的母碼。藉由該1/2速率的編碼器輸出的位元接著可以根據一指定的模式而被刪除(截短),以產生較高速率的(m-1)/m速率碼。該數量m範圍可以從用於4-QAM符號的m=2到用於512-QAM符號的m=9。該QAM星座圖數目係由2m給出的。一特定的QAM星座圖至次載波中之一特定的DMT次頻帶的指派(m的選擇)係在以下更詳細地論述。
m個資料位元係接著藉由映射器714而對映到所選的2 m QAM星座圖中的點。該256點、64點、16點以及4點的星座圖是方形的。該128點以及32點的星座圖是交叉的星座圖。假設符號為均勻的分布,這些星座圖可被縮放以使得所有的星座圖都具有相同的平均功率。圖11係展示三個繪製在複數平面中之可能的星座圖1100、1110及1120。複數的QAM資料符號係被饋送至該QAM符號多工器(mux)716。該mux 716亦可以輸入固定位準的BPSK時序的同步以及前導符號,其係與該些QAM資料符號加以多路複用(multiplexed),這些全部都被指派給在每個DMT資料符號之內的某些DMT次載波。
該mux 716係以規則的間隔,經由來自模組718的特殊輸入來週期性地插入一超框(superframe)DMT同步符號。此DMT符號可包括藉由一特定的未編碼的二進位相移鍵控(BPSK)的偽隨機數字(PN)序列調變的次載波,其係輕易地可藉由該接收器偵測到。此係致能稍後將會論述的某些方法的接收器同步。緊接在該DMT超框同步符號之後的是兩個(上游)或是一個(下游)DMT系統資料(sysdata)符號被插入,其同樣是經由來自模組718的該特殊輸入而被插入。這些符號係載有該星座圖至次載波的指派以及其 它重要的參數及資訊。該DMT sysdata符號的內容及結構亦在此揭露內容中的別處進一步加以論述。
在系統起動期間,一系列的僅包括從兩個其它PN序列(tr0、tr1)導出之未編碼的BPSK訓練的符號的DMT符號係被發送,以協助接收器時序同步以及最初的頻道估計。系統起動的細節係在以下加以論述。
DMT調變參數
作為在該下游DMT調變中的一第一步驟的是,IFFT 720的一4k點的實數輸出係藉由從一2k長的輸入資料區塊產生一複數的共軛輸入序列而獲得的。該上游發送器可以利用一512點的實數輸出IFFT。該標稱取樣頻率是F s =90MHz。一2μS(180個樣本)循環的字尾(CS)係附加至該IFFT輸出向量以形成一DMT符號。該CS係容許該接收器能夠抵抗DMT符號間的干擾,並且大幅簡化數位等化。所產生的DMT參數係被展示在表1中。
電纜線的傳遞延遲係在半雙工系統中產生增加的負擔。對於1000公尺的電纜線而言,單向的延遲(OWD)大約是5μS。在一些增加的安全邊限下,一6μS(540個樣本)的最大OWD或是一12μS的來回延遲(RTD)的裕度係被做成。該半雙工操作係被描繪在圖12的時序圖1200中,即如從該電 纜線的攝影機側以及DVR側所觀看到者。該線係交替在向下游傳送的兩個DMT符號1202、1204以及向上游傳送的一個DMT符號1206之間。D1 1202、D2 1204以及D3 1208的每一個係代表一對具有持續期間2 x 47.51μS=95.02μS的下游DMT符號。U1 1206以及U2 1210的每一個是單一具有持續期間7.69μS的上游DMT符號。兩個下游符號接著是一個上游符號以及該介於中間的空隔之組合在此係被稱為一"封包"。
在一例子中,2048個下游次載波係被指派如下
●空的次載波係提供一用於CVBS的空洞:
0-509(510個次載波,0-11.20MHz)
●有用的次載波:
510-1923(1414個次載波)
●空的次載波以避免疊頻(防護頻帶):
1924-2047(124個次載波),大約6%的DMT頻帶
該些有用的次載波中,四個是永久利用一固定的BPSK符號來加以調變的,並且被利用以協助接收器的時序同步。這些是次載波1025、1041、1057及1073。兩個利用一固定的BPSK符號調變的前導符號次載波亦被利用來協助接收器等化。此對次載波頻率係根據一已知的模式而對於每個DMT符號來變化,其係循環或者是傳播通過所有偶數有用的次載波以及奇數的次載波1923。此係留下1408個可供利用來運載IP資料的次載波。
在一例子中,512個上游次載波係被指派如下:
●空的次載波係提供一用於CVBS的空洞:
0-62(63個次載波,0-11.07MHz)
●有用的次載波:
63-239(177個次載波)
●空的次載波以避免疊頻:
240-255(16個次載波),大約6%的DMT頻帶
該些有用的次載波中,一個係被使用於一利用一固定的BPSK符號調變的移動的前導符號次載波,其係有助於接收器等化。此次載波頻率係根據一已知的模式而對於每個DMT符號來變化,其係循環或者是傳播通過所有有用的次載波。剩餘的176個次載波係可供利用以發送IP資料。
所產生的理想的DMT頻譜1220係被展示在圖12中。對於下游信號而言,f 1=11.20MHz並且f 2=42.28MHz。對於上游信號而言,f 1=11.07MHz並且f 2=42.19MHz。
DMT調變說明
對於IFFT而言:令A[n]是在圖8的N點的IFFT模組的輸入之QAM符號的第mN長度的向量。令該向量是藉由以下得出
接著該IFFT係有效率地計算出該向量 ,其中
注意到的是,A[n]是共軛對稱的,亦即 ,以及
因此,向量x[m]是實數的。
該下游4096點的時域抽取(DIT)IFFT係包括六個基底4的級。該上游512點的DIT IFFT係由四個基底4的級、接著是一個基底2的級所構成。IFFT/FFT架構係在該DMT接收器的說明中進一步加以論述。注意到的是,由於該DIT IFFT的運算,該輸入QAM符號流係藉由以位元反置的順序編號的次載波加以調變的。因此,一位元載入的表係被存取以指派正確的星座圖至目前的次載波。該IFFT輸出是正常的次載波順序。
該系統可具有一插入一循環的字尾(CS)之模組722。為了方便起見,該IFFT輸出向量可以重新編索引如下[x 0[m]x 1 [m].......x N-1[m]]在某些實施例中,一具有N CS=180個樣本(2μS)的CS係附加至該IFFT輸出向量。此係得出為 該CS可被想成在連續的DMT符號之間的一時域的防護間隔。若此防護間隔長於該電纜線之預期的頻道脈波響應,則DMT符號間的干擾係可避免。此干擾可以避免,因為屆時將會有該接收到的DMT符號的至少N個樣本是不包含另一延遲的DMT符號的任何成分。
該循環的延伸係提供另一優點,因為其容許簡單的移除DMT符號內的干擾。當該循環延伸的DMT符號和該電纜線的頻道脈波響應線性地卷積運算時,該接收器所看到的效果就像是未延伸的DMT符號和該電纜線的頻道脈波響應循環地卷積運算。根據QAM前導符號次載波給定 該響應之一良好的估計,該DMT符號內的干擾理想上可以利用頻域的適應性等化來完全地加以移除,該頻域的適應性等化實際是一循環的卷積運算。只要該頻道脈波響應不長於該CS,此都會成立。
現在參考到加窗模組724,該DMT信號係具有由於在該DMT符號邊界的時域的波形不連續所引起的在頻域中之強烈減少以及緩慢減少的旁波瓣。當該信號被內插成2 x F samp 時,此可能使得移除頻譜影像是困難的。再者,AFE濾波以避免DMT干擾進入到CVBS可能是困難的。加窗在平滑化該DMT時域符號的轉換上是非常有效的,並且因此降低頻帶外的能量而換得失去該CS的一小部分的效用。除了該CS之外,用於加窗的N W 個更多循環的樣本亦附加至x[m]以形成:
如同將會體認到的,該DMT符號的升餘弦加窗可以實質降低該DMT信號的旁波瓣。加窗係用以下的方式被執行在y[m]上: 其中w k 是由以下所得的升餘弦函數的樣本 其中N s =N+N CS 並且β=N W /N s 。SLOC係使用N W =21個樣本。
在使用加窗的DMT系統中,每個DMT符號之最後的N W 個樣本可以和下一個DMT符號的前N W 個樣本重疊(相加)。此係縮短該CS的 有效長度N w 個樣本。然而,在目前揭露的SLOC系統的某些實施例中,此方法係由於該設計的半雙工本質的緣故而被修改。對於該上游DMT符號而言,並不需要重疊,因為該些DMT符號總是隔離的;亦即並沒有相鄰的DMT符號被發送。如圖12的星座圖1200中所示,該些下游DMT符號是成隔離對的。因此,該對的第一符號的最後N W 個樣本係重疊該對的第二符號的前N W 個樣本。DMT符號的重疊對係由以下得出: 其中該些上標(0)及(1)係分別指該對的第一及第二DMT符號。
該下游信號的旁波瓣能量減少係被展示在圖13的圖表1300中。該加窗運算的90MHz取樣的輸出,即上游的[m]或是下游的[m]係被饋送至一個2x上取樣半頻帶的濾波器。
某些實施例係利用一個半頻帶的上取樣濾波器726。在加窗之後,下一個步驟可以是用兩倍的因數上取樣方程式1或是方程式2的信號。此可藉由在每個資料樣本之間插入一個零樣本並且接著利用一個半頻帶的濾波器來濾波該序列以移除該頻譜影像而加以達成。一理想的無限長的半頻帶濾波器係具有一磚牆頻率響應。一實際的實施方式可以利用一窗口函數來截斷該離散時間的分接(tap)值,該窗口函數將會造成一些通帶的漣波以及在該通帶至阻帶的區域中的某個斜率。用在該SLOC發送器的半頻帶濾波器的分接值1400係被展示在圖14中。注意到的是,除了中心的分接之外,每隔一個分接值是零。所產生的頻率響應1500係被展示在圖15中。
圖16是描繪信號頻譜1602、1604、1606及1608的圖形1600。 頻譜1602係描繪在取樣率F s =90MHz下,在該半頻帶的濾波器的輸入處的DMT信號頻譜。具有所產生的影像之2x上取樣的信號頻譜係被展示在該頻譜1604中。此離散時間的半頻帶的濾波器的施加係產生該頻譜1606。後續的位在DAC之後的AFE濾波係移除靠近180MHz的影像,即如在該頻譜1608中所見到的。若該長度B的半頻帶濾波器函數是,則該濾波器輸出是
在某些實施例中,一箝位(clipping)模組728係施加一箝位演算法。對於一DMT信號而言,該峰值平均功率比(PAPR)可以是非常高的。該PAPR係被定義為 該PAPR係成比例於在一DMT符號中的次載波數目。一比例常數係根據調變每個次載波的星座圖而有所不同。該PAPR可能是重要的,因為若吾人想要避免信號箝位,則實質的頂部空間是所需的。然而,此係產生對於一非常大的(就位元數目而論)DAC/ADC的需求以提供足夠的解析度(並且因此為低的量化雜訊)。
圖17係包含對於利用隨機64 QAM符號調變的DMT信號的情形,一DMT符號的PAPR超過該x軸值的機率之圖表1700。此係相當於若該DAC頂部空間被設定至對應的x軸值,在一DMT符號內的一或多個箝位(clip)的機率。圖形是針對於用在SLOC的兩個IFFT長度而得出的。對於一給定的頂部空間而言,一箝位的機率係隨著該IFFT長度的增加而增高。該半頻帶的濾波器輸出的此種箝位係產生頻帶內以及頻帶外的(OOB) 雜訊。再者,儘管在一給定的頂部空間設定下,更多的箝位發生於較大的IFFT,但產生的箝位雜訊係藉由該接收器的FFT運算而在更多的樣本上平均。此係大幅減弱箝位的影響。在12dB的頂部空間設定下,箝位雜訊1702相較於該4k DMT信號1704的頻譜圖係被展示在圖18中。
若箝位是被執行在基本的DMT取樣率(用於SLOC的90MHz),則產生的雜訊是頻帶內的。若該信號是在2x上取樣之後被箝位,則較小的頻帶內的雜訊係被產生,但是顯著的OOB雜訊則會出現。低通濾波於是可以降低該OOB雜訊,但是亦造成在PAPR上的一些再度增長,其係部分地抵消一開始的箝位的益處。
一種有效的用於硬性箝位該上取樣的多載波信號並且濾除該OOB雜訊之方法可以用一種迭代(iterative)方式執行。由於該濾波係造成一些PAPR的再度增長,因此該方法可以用一種迭代方式執行。更多的迭代可以達成更佳的PAPR控制,但同時產生更多頻帶內的雜訊。如同由圖19中的示意圖1900所描繪,該上取樣的DMT信號1910可以在1902加以硬性箝位。接著一2N點的FFT係在1904加以執行。該些高階的箱(bin)N至2N-1係在1906被設定為零以達成該OOB濾波。此之後接著是一2N點的IFFT 1908。該方法係良好地執行,但是該額外的2N點的FFT/IFFT1908的運算可能引發難以接受的高硬體成本及/或處理負擔。
注意到的是,在圖19中的頻域濾波運算1900係藉由和該磚牆函數之逐點的乘積而得出 此運算係等同於和該sinc函數之循環的卷積
此係啟發一種實質等效的方法,其係利用和之循環的卷積而運算在時域中,此係消除對於該額外的FFT/IFFT之需求。該OOB箝位雜訊之顯著的減少係被展示在圖18的比較圖中。將會體認到的是,對於該發送的DMT信號,該箝位可被設定為提供大約12dB的頂部空間。模組730係執行內插至DAC的速率。該半頻帶的輸出可被傳送至一Farrow內插器,其係增加取樣速率從2F s 到2F c =2F s ×64/63
資料分框
資料分框係影響到SLOC發送器及SLOC接收器兩者的操作。一超框以及一交錯訊框係在此加以定義。一超框結構可以是不同於被使用於上游信號的交錯訊框。一下游超框係包括一超框DMT同步符號、一不具有前導符號次載波的DMT系統資料(sysdata)符號、以及708個DMT資料符號,每個DMT資料符號係具有一對循環的前導符號次載波。一上游超框係包括一超框DMT同步符號、2個DMT sysdata符號,每個DMT sysdata符號係具有一循環的前導符號次載波、以及352個DMT資料符號,每個DMT資料符號係具有一循環的前導符號次載波。該超框可被視為包含355個封包。由於每封包的兩個下游DMT符號接著是一個上游DMT符號之半雙工交替的格式,因此該上游及下游超框可能重疊。此係被描繪在圖20的時序圖2000中。
一DMT超框同步符號(下游及上游)可包括一具有調變該些資料次載波的BPSK符號的形式之特定的未編碼的PN序列。該四個同步次載波亦存在。此序列可藉由利用此項技術中已知的手段之接收器來加以健 全地偵測到。在一例子中,一超框的開頭係被用來:
●同步化發送器的隨機產生器以及接收器的去隨機產生器(derandomizer)。在該超框的開頭處,該些暫存器對於下游係被設定至該值F180H,對於上游則被設定至3180H。
●同步化發送器之移動的前導符號模式以及在接收器的數位等化器之預期的前導符號位置。在剛好354個下游DMT資料符號之後,所有下游的前導符號次載波都被涵蓋。在剛好2個上游sysdata符號以及175個上游DMT資料符號之後,所有上游的前導符號次載波都被涵蓋。因此,每個超框有兩個完整的循環或輪替。
●指出該些DMT sysdata符號的位置給接收器。
如同所指出的,某些實施例係利用一循環的前導符號模式。對於每個下游DMT符號而言,一不同對的BPSK調變的前導符號次載波可被指派在有用的次載波範圍510-1923之內。這些次載波對可以用一種循環的方式來加以指派。在一例子中,除了次載波1923之外,只有偶數編號的次載波才會被指派。在354個DMT符號(亦即,一超框)之後,所有的前導符號次載波都可被涵蓋到。例如,一種用於前導符號次載波的指派之方法可以運作如下:f l =510,f u =1923;在超框同步處:初始化k=0;在每個DMT符號的開始處:N=0;當N<2 BR_count=k的位元反置的值;若{(f l BR_count f u )&&(BR_count is even)}或是(BR_count=1923)則BR_count是此DMT符號的一前導符號次載波;N=N+1;k=k+1;一類似的方法可被採用於該上游DMT信號,儘管一些差異可能是明顯的。一差異係有關於該"當迴圈"的條件,其可被改成N<1,使得每個DMT符號只有一個前導符號次載波被指派。該些界限(f l =63,f u =239)可以是不同的,並且偶數以及奇數次載波兩者都可被指派作為前導符號。因此:f l =63,f u =239;在超框同步處:初始化k=0;在每個DMT符號的開始處:N=0;當N<1BR_count=k的位元反置的值;若{(f l BR_count f u )}則BR_count是此DMT符號的一前導符號次載波; N=N+1;k=k+1;上游DMT的sysdata符號的結構可以是如下:
●每個超框載有8個位元組的sysdata
●DMT的sysdata符號#1
-4個位元組-16個未編碼的4-QAM符號在4個次頻帶中
-資料在所有44個次頻帶上重複11次
●DMT的sysdata符號#2
-4個位元組-16個未編碼的4-QAM符號在4個次頻帶中
-資料在所有44個次頻帶上重複11次
下游DMT的sysdata符號的結構是如下:
●每個超框載有8個位元組的sysdata
●DMT的sysdata符號
-8個位元組-32個未編碼的4-QAM符號在1個次頻帶中
-資料在所有44個次頻帶上重複44次
該8個位元組的資料係包含以下的元件:
●次頻帶數目(1-44)
●被指派給該次頻帶的星座圖(藉由分別代表空的、4-QAM、8-PSK、16-QAM、32-QAM、64-QAM、128-QAM、256-QAM以及512-QAM的數字0-7來指出)。
●和該次頻帶相關的發送的功率位準
P參數-每個RS封包的位元組數目
●交錯器B參數
-上游是藉由數字0-31來指出5到36,
-和下游的P相同
●僅對於上游而言,交錯訊框的DMT符號計數(xmitter_W_count)將會體認到的是,次頻帶數目、星座圖指派、次頻帶功率位準、以及BP參數係被發送以供相對側的發送器使用。該元件xmitter_W_count係被發送以供相對側的接收器使用。
對於該sysdata之個別四個部分的每一個,根據一目前的頻道估計,上游接收器可以從具有最高的SNR的4個次頻帶讀取該sysdata。這些次頻帶不需要是相鄰的。對於該下游信號而言,下游接收器可以從一具有最高的SNR的次頻帶讀取該sysdata。
對於接收到的sysdata之進一步強健度可藉由利用一可信度計數器(conf_ctr)演算法來加以達成,該演算法可以為了該sysdata資訊的每個元件而用硬體及軟體的任意組合加以實施為一conf_ctr元件。此係被描繪在圖21的流程圖2100中,其可以應用到所有的sysdata元件,除了該上游xmitter_W_count以外。在下游及上游接收器中,可以有46個個別的conf_ctr元件。這些係涵蓋用於該44個次頻帶的星座圖指派及功率位準以及該BP參數。在一例子中,用於流程圖參數的值是max=16並且thresh=6。
在上游接收器中,如同在此的別處所論述的,可以有一額外的conf_ctr元件用於xmitter_W_count
該上游的交錯訊框可被定義以包含W個DMT資料符號,其中W係藉由在此的別處所敘述的手段來加以決定。該交錯訊框的開始處通 常並未對準到該超框的開始處。內含在每個DMT超框同步符號之後的上游DMT sysdata符號中的是一包含目前的發送器交錯訊框DMT資料符號計數值(xmitter_W_count)的元件。此係為一模數W的計數器。注意到的是,對於下游信號而言,W通常被有效地設定為1。
不同於其它的sysdata元件,xmitter_W_count不只是被接收及儲存。接收器具有其本身的交錯訊框符號計數器rcvr_W_count,該計數器可以在接收到各個DMT資料符號時增量模數W。一例如是描繪在圖22的流程圖2200中的演算法係致能該發送器及接收器的計數器的同步。此係產生強健的交錯訊框同步,因而上游的反交錯器係正確地反交錯該些接收到的位元組。該W參數的重要性係在此的別處加以解說。
資料對映到DMT資料符號
每個下游DMT符號可以有剛好1408個資料次載波,並且每個上游DMT符號有1408/8=176個資料次載波,並且次載波可利用QAM符號加以調變。由每個資料次載波所載有的淨資料位元的數目係依據指派給該些用於該次載波的QAM符號的星座圖而定(參見表2)。
由於此位元載入,每個DMT符號之發送的資料位元淨數目(以及因此淨位元率)可以隨著所選的星座圖到次頻帶的對映而變化。不論所選的位元載入的指派為何,在RS封包的開始點以及DMT符號邊界之間具有一致的對齊可能是所期望的。此可藉由每V個DMT符號具有一剛好整數的RS封包來加以達成,其中V是一個小整數。
在某些實施例中,(i)每個DMT符號的RS封包數目是U/V,其中U是一整數並且V=1、或是U=1並且V是一整數,而不論該位元載入的指派為何。在該交錯器-反交錯器中最頂端的換向器切換點以及該些DMT符號邊界之間具有一致的對齊亦可能是所期望的。此可藉由將該頂端切換位置對齊到每個第W個DMT符號邊界來加以達成,其中W係代表DMT符號包括一交錯訊框之一給定的數目。在某些實施例中,(ii)在W個DMT符號中的位元組數目剛好是一整數倍數B,而不論該位元載入的指派為何。實施例(i)係提供該接收器中的RS解碼器的簡單同步。該DMT接收器的早期處理將會藉由任何此項技術中已知的適當手段來健全地建立DMT符號邊界的位置。DMT符號邊界的位置與已知的VP一起可被RS解碼器利用來指出該RS封包的開始點。實施例(ii)係提供該接收器的反交錯器至該發送器的交錯器的簡單同步。已知的DMT符號邊界加上在長度W的"交錯訊框"內之DMT資料符號計數可被該接收器利用來同步化該反交錯器的換向器的切換位置,以符合該發送器的交錯器的切換位置。此計數係被保持在該接收器中,並且同步到該發送器中之對應的計數。
對於項目(i)的推論可以敘述如下:(1)每V個DMT符號的位元組數目必須是一整數,並且(2)每V個DMT符號的RS封包數目必須是一 整數。在該推論1中所述的要件可藉由限制每個可指派的次頻帶的次載波數目為4的一個整數倍數來達成。此係確保每個次頻帶都包含整數個半位元組,而不論星座圖指派為何。參見表3。在表3中,其指出一上游(US)DMT符號係包括44個分別具有1x4=4個次載波的次頻帶(44x4=176個資料次載波)、以及由44個分別具有8x4=32個次載波的次頻帶(44x32=1408個資料次載波)所組成的一下游(DS)DMT符號。
對於上游信號而言,可看出的是因為某些次頻帶可以載有一整數個加上半個的位元組,因此需要兩個DMT符號以確保整數個位元組。對於下游信號而言,單一DMT符號將會總是載有整數個位元組。
為了符合推論2的要件,P可被允許隨著該位元載入而變化(同位位元組的數目可被保持為固定的,只有資料位元組的數目會改變)。對於上游信號而言,V=2,U=1;每個DMT符號有U/V=1/2個RS封包,2個DMT符號載有剛好1個RS封包。對於下游信號而言,V=1,U=4;每個DMT符號有U/V=4個RS封包。
項目(ii)係提供該交錯器及反交錯器的簡單同步。對於下游信號而言,此係輕易地被達成如下:
B參數(B DS )被設定等於P
M DS =1
WDS=1
因此每W=1個DMT符號的位元組數目剛好是4B DS
至於下游信號,在W個DMT符號中的位元組數目是一整數倍數B US 可能是所要的。為上游信號來達成此是稍微較為複雜的,並且被解說如下:
B US =ceil(B DS /6),M US =6
●由於一個上游DMT符號可能包含一個半位元組,因此設定W US =偶數整數xB US
對於SLOC上游而言,W US =2xB US 。此係定義一上游交錯訊框的長度。該上游交錯訊框的邊界係在上游接收器被判斷出。
在以下兩個例子中,假設由個別的上游及下游接收器量測到的頻道響應是實際相同的。在該情形中,該位元載入的指派在頻譜上將會是相同的,並且P US =P DS 。然而,並不需要是該種情形。
在第一例子中,該上游及下游星座圖至次載波的指派係分別在表4(用於超過2000呎的RG-59的100.8Mbps下游操作的上游星座圖的對映)以及表5(用於超過2000呎的RG-59的100.8Mbps下游操作的下游星座圖的對映),並且描繪在圖3中。
給定圖1的電纜線頻率響應,此位元載入係被提供以使得該100Mbps下游位元率能夠被達成。其它的位元率目標結合不同的電纜線類型及/或長度可以使用不同的星座圖至次載波的對映。在此例子中,每個上游DMT符號係載有102.5個位元組。兩個DMT符號係載有P為205個位元組。對於下游信號而言,每個DMT符號係載有820個位元組。P是820/4=205個位元組(對於上游及下游都是相同的)。對於該交錯器-反交錯器而言,吾 人將有
P DS =205;P US =205
B DS =P DSB US =ceil(P US /6)=ceil(34.167)=35
W US =2 x 35=每個交錯訊框70個DMT資料符號
●在70個上游DMT資料符號中的位元組數目是70 x 102.5=7175
●要件是7175為35的一整數倍數:7175/35=205該脈波持續期間的容限目標是一如在圖23中所繪的封包。個別的上游及下游脈波持續期間容限是:
B US x t=35 x 12位元組=2.049 RS封包>1封包。
B DS x t=205 x 12位元組=12 RS封包>1封包。
該第二例子係針對3000呎的RG-59電纜線的情形。3000呎的RG-59的頻率響應係被展示在圖24中。大約30dB的傾斜係在橫跨該SLOC的信號頻帶被觀察到。該上游及下游星座圖至次載波的指派係分別在表6(用於超過3000呎的RG-59的52.29Mbps下游操作的上游星座圖的對映)以及表7(用於超過3000呎的RG-59的52.29Mbps下游操作的下游星座圖的對映)中給出,並且描繪在圖25中。
此第二例子係描繪超過3000呎的電纜線的操作,其中對於較高頻的次頻帶之接收器SNR將會由於較長的電纜線之增大高頻衰減而變成太低而無法可靠的接收。因此,較高頻的次頻帶並未被使用。此係降低淨位元率,但是容許在較低的速率下可靠的接收資料。注意到的是,由於 較高階的資料次載波的歸零,吾人可以在每個次載波更大功率下發送有效的次載波。每個上游DMT符號係載有59個位元組。兩個DMT符號係載有P等於118個的位元組。對於下游信號而言,每個DMT符號係載有472個位元組。P=472/4=118個位元組(對於上游及下游而言都是相同的)。對於該交錯器-反交錯器而言,吾人係具有:
P DS =118;P US =118
B DS =P DSB US =ceil(P US /6)=ceil(19.67)=20
W US =2 x 20=每個交錯訊框有40個DMT資料符號
●在40個上游DMT資料符號中的位元組數目是40 x 59=2360
●要件是2360是20的一整數倍數:2360/20=118該脈波持續期間的容限目標是一如在圖23中所繪的封包。該個別的上游及下游脈波持續期間容限是
B US x t=20 x 12個位元組=2.034 RS封包>1封包,
B DS x t=205 x 12個位元組=12 RS封包>1封包
表8係展示P值的範圍,其係產生自在一寬範圍的電纜線長度上之位元載入的計算。亦被展示的是對於每個P而言,在RS封包中的B DS B US W US 以及脈波容限。
起動
系統起動係以兩個PN序列(tr0及tr1)的反覆發送開始,該兩個PN序列係具有調變該些資料次載波的BPSK符號的形式。對於下游而言,該些序列係根據一被縮短為長度-1414的長度-2047的二進位PN序列。對於上游而言,該些序列係根據一被縮短為長度-177的長度-255的序列。這些序列係協助接收器於達成取樣同步以及DMT符號同步。再者,接收器可以使用該訓練的資料來計算一精確的頻道估計以及每個次頻帶估計的SNR。該頻道估計於是可被用來利用此項技術中已知的方法以決定最初的頻域等化器的權重係數。
頻道及SNR的估計接著可以藉由接收器饋送到一位元載入的(BL)演算法,該BL演算法係為了相對側的發送器計算以下所要的:
●星座圖到次頻帶的指派
●次頻帶發送的功率位準
●每個DMT資料符號的位元組數目、以及每個RS封包(P)的位元組數目
●用於上游的B US W US ,用於下游的B DS =PW=1如同先前解說的,和上面最後兩段點句相關的元件是第一點句的函數。此sysdata係以DMT sysdata符號週期性地傳送至該另一側,以供另一側發送器使用。
每一個別的接收器可以同步到該些DMT超框同步符號,該些DMT超框同步符號可以使得接收器找出該些DMT sysdata符號。如先前所述,該sysdata係可靠地從這些符號讀取出。當該conf_ctr元件到達臨界 值時,該sysdata係為了該發送器而被使用:
●星座圖到次頻帶的指派
●次頻帶發送的功率位準
P、B及W
頻道狀況可能隨著時間而緩慢地改變。接收器係根據次頻帶估計來持續地更新頻道狀態及SNR。此可能產生改變的位元載入的參數。因此,該sysdata可能改變並且可透過該週期性的DMT sysdata符號而被傳送至該個別的發送器。根據本發明的另一特點,系統起動係有關於在兩側之間的半雙工TDMA同步。兩側都根據預設的協定來發送,以避免衝突。此係在每一側藉由利用該取樣時脈作為一全域的時脈以驅動一指出何時發送其封包的部分給每一個別側之計數器來加以管理。
分框控制的操作
再次參考到圖7,一控制器前導符號的模式產生器(CPPG)模組718係從本地的接收器接收兩組sysdata作為輸入。輸入sysdata X 734係藉由本地的接收器從相對側來加以接收。輸入sysdata X 734可被發送器利用來產生其將要發送的信號所用之分框。輸入sysdata Y 736可藉由該本地的接收器計算出並且以DMT sysdata符號發送至相對側。
在起動期間,該CPPG 718係利用被提供至該QAM符號mux 716的QAM符號類型輸入選擇器738來選擇特殊的輸入。該CPPG 718係產生用於該第一類型的DMT訓練的符號的PN序列tr0的BPSK符號,接著是用於第二類型的DMT訓練的符號的PN序列tr1的BPSK符號。此係重複一段充分的類型期間以容許在相對側的接收器能夠達成取樣時脈同步、DMT 符號同步以及等化。
在起動之後,該CPPG 718係和用於下游發送器的每個第710個DMT符號以及用於上游發送器的每個355個DMT符號同時產生一超框DMT同步符號。在該時間點,BPSK符號係為了包括一PN序列以及用於目前的W_count(將被相對側的接收器用於交錯訊框同步的W_count)的QPSK符號的超框DMT同步符號而被輸出。此係在該特殊的輸入處被饋送至該QAM符號mux 714。此之後接著是一不具有前導符號次載波的DMT sysdata符號(下游)、或是兩個分別具有單一前導符號次載波的DMT sysdata符號(上游),亦在該特殊的輸入處被饋送至該QAM符號mux。此sysdata將會被相對側的發送器所利用。該超框同步信號740亦可被利用以初始化該隨機產生器708。
該超框的DMT符號的剩餘部分是DMT資料符號,其可包括藉由來自該映射器714的QAM資料符號、空的QAM符號、循環的前導符號或是同步BPSK符號來加以調變的次載波。該些個別的輸入係藉由該CPPG 718根據該特定的QAM/BPSK符號將被指派的IFFT次載波而利用信號738來加以選出。對於該QAM資料符號編碼而言,該CPPG 718係利用信號740來指出將被使用於下一個QAM資料符號的碼速率及星座圖給該PTCM編碼器712以及映射器714。此係根據從sysdata X 734已知的BL對映而定。
如同在此所指出的,載有前導符號的次載波可根據一或多個演算法來加以選擇。對於上游信號而言,次載波63-239可包括176個載有資料的次載波以及1個具有一次載波索引的前導符號次載波,該次載波索 引係隨著每個DMT資料符號而改變。對於一給定的DMT資料符號而言,若該前導符號被指派給次載波x,則用於在索引x及以上的所有資料次載波的索引係增加1以便於"讓出空間"給前導符號次載波。對於下游信號而言,次載波519-1923係包括4個在固定索引的同步次載波、1408個資料次載波以及2個其索引隨著每個DMT資料符號而改變的前導符號次載波。如同上游信號,該些資料次載波必須"讓出空間"給該些前導符號次載波。對於一給定的DMT資料符號而言,可以假設該些前導符號被指派索引xy,其中x<y。對於在索引x及以上但小於索引y的所有資料次載波的索引係增量1。對於在索引y及以上的所有資料次載波的索引係增量2。
該CPPG 718係根據sysdata X 734來饋送該RS封包尺寸P給該RS編碼器704。其亦傳送一同步信號給該RS編碼器704,該同步信號係和每個第V個DMT資料符號同時(V=1用於下游,V=2用於上游。對於該V=2的情形,該計數係被同步到該超框)。
該CPPG 718係饋送該B參數型式的sysdata X 734以及一同步符號給該交錯器706,該同步符號係和每個第W個DMT資料符號同時。如先前所述,在每個超框DMT符號時間的模數W計數係被載入到該超框DMT同步符號上。
現在參考到圖26,在一接收器2600之處,該BL對映係根據來自該數位頻域等化器模組2614的頻道及SNR的估計而在模組2616中被計算出。如先前所述,該PBW參數可根據該BL對映而被計算出。此係被稱為sysdata Y並且是此接收器所看到的頻道狀況的一函數。該sysdata Y 736的BL對映結合超框同步以及DMT符號同步可被該軟性解映射器/維 特比(Viterbi)解碼器模組2620利用,以瞭解目前輸入的QAM符號的星座圖及碼速率。該WP參數係分別被饋送至該反交錯器2624以及RS解碼器2626。
該控制模組2618係被饋送有超框同步以及DMT符號同步。從此資訊可知在該解多工器(demux)的輸入的QAM符號是DMT資料符號或是DMT sysdata符號。此資訊係被用來控制該demux 2630,以便於導引該些QAM符號至該軟性解映射器/維特比解碼器2620或是該讀取sysdata模組2628。
該讀取sysdata模組係抽取出sysdata X並且執行圖21的可信度計數器演算法。此係被饋送至該本地的發送器。對於該W_count而言,圖22的演算法係被執行,並且此值係被回授到該控制模組,該控制模組係使用其來更新一被用來產生在第W個DMT資料符號信號的同步之模數W的DMT資料符號計數器。
根據該sysdata Y輸入以及該些輸入的同步信號,該控制模組係在每個第W個DMT符號輸出一同步信號以同步化該反交錯器的操作。其亦在每個V個DMT符號輸出一同步信號以同步化該RS解碼器的操作。
SLOC DMT接收器
繼續參考至圖26的DMT接收器,一執行在標稱90MHz的ADC係提供輸入至一數位AGC及HPF模組2604。該AGC係提供12-13dB的頂部空間,而該HPF係抑制在該接收器AFE中的類比BPF之後剩餘的CVBS信號。取樣時脈頻率及相位恢復以及DMT符號時序恢復係簡短地在 此加以敘述。
該DMT系統對於取樣時脈頻率以及相位誤差可能是非常靈敏的。由於該DMT發送器及接收器分別具有其本身的本地振盪器,因此頻率誤差最初可能存在。在該攝影機側,該DMT發送器以及DMT接收器係使用相同的取樣時脈。若該DVR側的接收器可以同步到該攝影機側的發送器的取樣時脈,並且接著使用該時脈於其發送器,則所有的四個取樣時脈將會是同步的。
該取樣時脈設計及/或產生器的高階圖2700係被展示在圖27中。該些RC區塊是取樣率轉換器,其係利用Farrow架構以達成取樣率轉換。如同可見的,只有該DVR側的接收器需要利用一同步迴路。
用於該DVR側的DMT接收器的速率轉換器控制迴路2720係被展示在圖27中。該取樣時脈頻率以及相位誤差係利用頻域資料來加以估計。該些誤差估計係藉由該速率轉換器利用眾所週知的方法而被使用來調整該內插的時序。頻率同步係在系統起動期間藉助於在起動期間的DMT訓練的符號來達成。該相位係在正常的資料傳送期間藉助於該四個前導符號次載波來加以追蹤。
同樣在系統起動期間,在該接收器之處,該些發送的DMT符號的邊界必須被找出。此通常是所需的,以同步化該FFT開始點,以便於避免符號間的干擾。在該接收器中,一利用該一先驗(priori)已知的發送的PN序列之時域交互相關的運算係找出該些DMT符號邊界所據以推論出的波峰。
該接收器可以利用快速傅立葉轉換(FFT)。令r[m]是在圖31 的N點的FFT模組的輸入處之DMT信號樣本的第m個長度N的向量。該向量係由以下得出: 接著,該FFT係有效率地計算該向量 ,其中 為了計算該FFT,該DMT接收器係利用一種由log2 N級的"蝶形區塊"所構成的管線化架構,每個蝶形區塊係包含一複數乘法器。(發送器的IFFT架構是類似的。)記憶體的需求是N到2N的數量級,並且隨著所選的特定架構稍微改變。對於下游接收器而言,4096點的頻域抽取(DIF)FFT模組係包括六個基底4的級。對於上游接收器而言,512點的DIF FFT模組係包括一基底2的級接著是四個基底4的級。該DIF FFT輸入是正常的次載波順序。該輸出是位元反置的次載波順序。
頻道估計及等化
在已經達成AGC及同步之後,該些前導符號次載波係提供該頻道估計器計算該電纜線頻率響應的估計所需的資訊。在訓練的期間,所有有用的次載波都可被視為是前導符號。在訓練之後,該些前導符號次載波係如同先前解說地循環或是傳播。在DMT符號時間m之瞬間的頻道估計是: 其中f l ...f u 是有用的次載波(上游為63-239,下游為510-1923)的變化範圍。對於下游信號而言,M=706並且D=2。對於上游信號而言,M=175並且D=1。在訓練之後,在每個DMT符號時間m,該向量只有p個元件被更新;其餘的元件係保持其在先前的DMT符號期間計算出的值。對於下游而言,p=2。對於上游而言,p=1。因此,當對應的次載波被指派為一前導符號時,該複數向量H的每個元件係藉由該接收到的BPSK符號的大小及相位來加以判斷出。該向量的每個元件(頻率箱)係由以下得出: 其中Z i是該接收到的樣本,P i是該一先驗已知的BPSK前導符號,並且i是在DMT符號時間q i期間的前導符號次載波的數目。
該些循環的前導符號係容許追蹤頻道的頻率響應之緩慢的變化。該些頻率箱係藉由以下而隨著時間被更新: 其中β是一遺忘因數,並且j對於上游而言是177,而對於下游而言是354,亦即相對於上次接收到次載波i的前導符號時的q i的時間。
由於是較小的IFFT用於上游信號,因此其頻率箱是相當寬的。由於該理由,一前導符號次載波係對於f l ...f u 的所有次載波以循環的方式被傳送,因而不需要內插法來決定任一個次載波的頻道估計。對於下游信號而言,其中D=2,"中間的"次載波頻道估計係利用三次內插法來計算出的。在時間s的完全內插的頻道估計[s],係由以下得出 對於n {f l ,f l+D ,...,f l+MD ,f u }, 對於n {513,515,...,1919}, 對於n=511, 對於n=1921, DMT符號在該等化器輸入(FFT輸出)處之每個接收到的樣本係由以下得出 ,其中V n [s]是雜訊。
假設每個次載波箱的寬度是足夠小到使得橫跨每個箱的頻道響應大致是平坦的,則強制歸零的等化可藉由單純反轉根據該頻道估計的頻道響應來達成。對於DMT符號而言,在次載波n(其中n {f l f u })上發送的QAM符號係藉由該等化器而被估計為: 其中是對於次載波n的頻道響應之最近的估計。此頻域乘積係等同於 時域之循環的卷積。然而,該DMT循環的字尾延伸係使得此實際為該些等化器分接值與未延伸的DMT符號樣本向量的一線性卷積。
該等化器輸出係饋送PTCM編碼量化的QAM資料符號樣本再加上雜訊至該軟性解映射器,該軟性解映射器係利用眾所周知的演算法來計算軟性位元度量(metrics)。為了正確的操作,該軟性解映射器必須知道用於目前的QAM符號的星座圖。為此,其可以依賴DMT超框符號同步、 DMT符號同步以及在該計算sysdata模組2616中計算出的位元載入的指派對映(BL對映)。
該軟性位元度量係被饋送至該維特比解碼器。該維特比演算法是眾所周知的並且執行軟性解碼,其係每個接收到的QAM符號產生m-1個解碼的位元。為了正確的操作,該維特比解碼器必須知道用於目前的QAM符號的星座圖。為此,其係依賴DMT超框符號同步、DMT符號同步以及在該計算sysdata模組2616中計算出的位元載入的指派對映(BL對映)。若在該維特比解碼器輸出之位元錯誤率是2x10-4或更小,則該RS解碼器的輸出將會是準無誤碼的。
該去隨機產生器係具有和圖9的發送器的隨機產生器相同的結構。該去隨機產生器可以同步到來自該控制模組2618的超框同步信號,並且如在此所述的初始化。
圖8的反交錯器850係輸入去隨機化的資料位元組,並且回復原始的資料位元組順序。其係藉由來自該控制模組2618的一信號來加以同步化,該信號係以每隔第W個DMT資料符號來出現。
該RS解碼器係根據每個第V個DMT資料符號的一同步信號以及已知的封包尺寸P來判斷封包的開始點。來自該維特比解碼器之校正後的位元流輸出係被封包成為位元組,並且饋送至該SLOC的RS解碼器。該RS解碼器的一高階流程圖係被展示在圖28中。一徵狀(syndrome)計算器係將該輸入封包視為一具有該些位元組作為GF(256)的係數之多項式。其係計算2t=12個徵狀。若所有的徵狀都為零,則該輸入封包是一有效的碼字。否則,該封包是因為錯誤而受損的。接著,關鍵方程式求解器係利用 例如是該Berlekamp-Massey演算法來決定錯誤定位多項式以及錯誤值多項式。一項搜尋可以藉由評估該錯誤定位多項式的根來找出受損的位元組。該些錯誤值係被判斷出,並且該些受損的位元組係被校正。
圖29係分別展示圖5及6的攝影機側的AFE 2900以及DVR側的AFE 2920的細節。對於DMT Rx路徑而言,該些濾波級係包括一BPF,其中一可變增益級被插入在第一濾波器級之後。此BPF係抑制在低側的接近CVBS信號。DMT Tx路徑亦使用一BPF以避免干擾進入到在該低側的CVBS、以及在高側的影像抑制(參見圖30)。在CVBS路徑中,該LPF係降低干擾進入到該DMT信號。在DVR側,該DMT濾波係類似於該攝影機側的DMT濾波。對於該CVBS路徑而言,該LPF係抑制該強的接近DMT Tx。
某些IP攝影機可能不具有一CVBS輸出,並且SLOC可以利用該可利用的低頻頻譜的空間中的一部分。給定沒有必要發送CVBS下,SLOC亦可以利用增大的DMT發送功率。於是,有用的電纜線長度可以延伸到100Mbps。
現在轉到圖31,本發明的某些實施例係利用一處理系統3100,該處理系統3100係被部署以執行在此敘述的功能中的某些功能。處理系統3100可包括一市售的系統,其係執行市售的作業系統,例如微軟視窗®、UNIX或是其之一變化、Linux、一即時作業系統及/或一封閉式作業系統。該處理系統的架構可被調適、配置及/或設計以用於整合到該處理系統中,以用於內嵌在一影像捕捉系統、一數據機、一視訊處理工作站、一DVR、視訊顯示器系統、視訊攝影機及/或一路由器或是其它通訊裝置中的一或多個內。在一例子中,處理系統3100係包括一匯流排3102及/或其它用於在 處理器之間通訊的機構,而不論那些處理器是和該處理系統3100一體的(例如,處理器3104)或是位在不同的或許是實際分開的處理系統3100中。裝置驅動器3103可以提供被用來控制內部及外部構件的輸出信號。
處理系統3100通常亦包括記憶體3106或是其它種類的儲存,其可包含非暫時性儲存媒體,例如隨機存取記憶體("RAM")、靜態記憶體、快取、快閃記憶體、以及任何其它可耦接至匯流排3102的適當類型的儲存裝置。記憶體3106可被利用於儲存指令及資料,其可以使得處理器3104及3105中的一或多個執行一所要的方法。主要記憶體3106可被利用於儲存暫態及/或暫時的資料,例如在藉由處理器3104執行該些指令的期間所產生及/或使用的變數及中間的資訊。處理系統3100通常亦包括非暫時性、實體的儲存,例如唯讀記憶體("ROM")3108、快閃記憶體、記憶體卡或類似者;非暫時性儲存可以連接至該匯流排3102,但同樣亦可以利用一高速的萬用串列匯流排(USB)、Firewire或是其它此種耦接至匯流排3102的匯流排來加以連接。非暫時性儲存可被利用於儲存組態設定以及其它資訊,其包含藉由處理器3104及/或3105執行的指令。非暫時性儲存亦可包含大量儲存裝置3110,例如磁碟片、光碟片、快閃碟片,其可以直接或間接耦接至匯流排3102並且用於儲存將藉由處理器3104及/或3105執行的指令以及其它資訊。
處理系統3100可以提供一輸出給一例如是LCD平面顯示器的顯示器系統3112,其包含觸控面板顯示器、電致發光顯示器、電漿顯示器、陰極射線管或是其它顯示裝置,其可被配置且適配於接收及顯示資訊給處理系統3100的使用者。裝置驅動器3103可包含一顯示器驅動器、圖像 適配器及/或其它模組,其係維持一顯示畫面的一數位表示並且轉換該數位表示成為一用於驅動顯示器系統3112的信號。顯示器系統3112亦可包含邏輯及軟體以從系統3100所提供的一信號來產生一顯示畫面。在此方面,顯示器3112可被設置成為一遠端的終端機、視訊監視器。例如,一數據機可以處理一或多個代表一視訊流的信號,其中該一或多個信號是在一同軸電纜上加以發送的。一輸入裝置3114一般是在本地或是透過一遠端的系統來加以設置,並且通常提供字母數字的輸入以及游標控制3116的輸入,例如滑鼠、軌跡球、等等。將會體認到的是,輸入與輸出可被提供至一無線裝置,例如PDA、平板電腦或是其它適當配備以顯示該些影像並且提供使用者輸入的系統。
根據本發明的一實施例,一SLOC數據機的部分可藉由處理系統3100來加以實施。處理器3104係執行一或多個序列的指令。例如,此種指令可被儲存在主要記憶體3106中,其已經從一例如是儲存裝置3110的電腦可讀取的媒體加以接收。根據本發明的某些特點,內含在主要記憶體3106中的指令序列的執行係使得處理器3104執行方法步驟、或是使其將被執行。在某些實施例中,可由執行特定功能的內嵌的處理系統提供功能,其中該些內嵌的系統係利用硬體模組3105及軟體之一客製的組合來執行一組預先定義的工作。例如,客製的硬體模組3105可以執行某些將會是難以用處理器3104上所執行的軟體來實施之信號處理的功能。處理器3104可包括一或多個在接收到的信號上執行某些運算的數位信號處理器。於是,本發明的實施例並不限於任何硬體電路及軟體之特定的組合。
該術語"電腦可讀取的媒體"係被用來定義任何可儲存並且 提供指令及其它資料給處理器3104及/或3105的媒體,尤其是其中該些指令是將被處理器3104及/或3105及/或該處理系統的其它週邊執行的情形。此種媒體可包含非揮發性儲存、揮發性儲存以及傳送媒體。非揮發性儲存可被體現在例如是光學或磁性的碟片的媒體上,其係包含DVD、CD-ROM以及藍光。儲存可被設置在本地且實體在處理器3104及3105的附近、或是通常藉由網路連線的使用而設置在遠端。非揮發性儲存可以是可從處理系統3104移開的,即如同在藍光、DVD或CD儲存或是可以利用一包含USB等等的標準介面而輕易地連接或斷連到電腦的記憶卡或記憶條的例子。因此,電腦可讀取的媒體可包含軟碟片、撓性碟片、硬碟、磁帶、任何其它的磁性媒體、CD-ROM、DVD、藍光、任何其它的光學媒體、穿孔卡片、紙帶、任何其它具有孔洞圖案的實體媒體、RAM、PROM、EPROM、快閃/EEPROM、任何其它記憶體晶片或卡匣、或是任何其它電腦可以讀取出的媒體。
傳送媒體可被利用來連接該處理系統的元件及/或處理系統3100的構件。此種媒體可包含絞線對、同軸電纜、銅導線以及光纖。傳送媒體亦可包含無線媒體,例如無線電、聲波以及光波。尤其,射頻(RF)、光纖及紅外線(IR)資料通訊可被利用。
各種形式的電腦可讀取的媒體可以參與提供指令及資料以供處理器3104及/或硬體模組3105執行,該些硬體模組3105可包含序列器(sequencer)以及客製組態設定的邏輯。例如,該些指令最初可以是從一遠端電腦的一磁碟片擷取出,並且透過一網路或數據機而發送至處理系統3100。該些指令可以在執行之前或是在執行期間,選配地儲存在一不同的儲 存體或是儲存體的一不同的部分中。
處理系統3100可包含一在網路3120上提供雙向的資料通訊的通訊介面3118,該網路3120可包含一本地的網路3122、一廣域網路或是該兩者的一些組合。例如,一整合服務數位網路(ISDN)可以結合一本地區域網路(LAN)來加以利用。在另一例子中,一LAN可包含一無線鏈路。網路鏈路3120通常透過一或多個網路來提供資料通訊給其它資料裝置。例如,網路鏈路3120可以透過本地的網路3122來提供一連線至一主機電腦3124、或是連線至一例如是網際網路3128的廣域網路。本地的網路3122以及網際網路3128都可以使用載有數位資料流的電氣、電磁或光學的信號。
處理系統3100可以使用一或多個網路來傳送包含程式碼及其它資訊的訊息及資料。在網際網路的例子中,一伺服器3130可以透過網際網路3128來發送所請求的一應用程式碼,並且可以響應地接收一下載的應用程式,該應用程式係提供在以上的例子中所敘述的剖析描繪。該接收到的碼可藉由處理器3104及/或3105來加以執行。
圖32係包含根據本發明的某些特點的一種通訊方法的流程圖3200。該方法可在一數據機中加以執行,並且該數據機的各種元件可包括一電腦處理器、一數位信號處理器、一或多個序列器、信號處理器、現場可程式化的裝置、特殊應用積體電路及/或專用的邏輯。各種的功能模組及/或其它元件可以執行該方法的一或多個步驟。某些功能性元件係相關圖5-9、19及26-29來加以描繪及敘述,並且這些模組可以個別地包括該數據機以及軟體模組的組合。
在步驟3202,該數據機係接收包括複數個QAM符號的DMT 符號。每個QAM符號可以調變在一接收到的信號中的一次頻帶的一次載波。每個QAM符號可以是指派給該次頻帶的一星座圖的QAM符號中之一。該QAM星座圖可以是可被指派給該次頻帶的複數個QAM星座圖中之一。
在步驟3204,該數據機係解碼由該些QAM符號所載有的資料。由該些QAM符號載有的該資料可以利用一例如是里德所羅門解碼器的區塊錯誤偵測解碼器來加以解碼。該里德所羅門解碼器(或是其它的區塊解碼器)可被利用來解碼一第一整數(V)個碼字,該些碼字在此可被稱為碼區塊、及/或里德所羅門封包。例如,里德所羅門封包可以用一第二整數(U)個DMT符號來加以編碼。UV可以是整數。該里德所羅門解碼器可被配置以同步化在該共同的邊界,而不論該複數個QAM星座圖中被指派給該次頻帶的為何。一共同的邊界可以出現在每個DMT符號的開始處、或是在每個里德所羅門封包的開始處。V可以是U的一整數倍數。一里德所羅門封包可以開始於每個DMT符號的開始處。該里德所羅門封包可以開始於每對的DMT符號的開始處。在某些實施例中,UV的一整數倍數,並且每個里德所羅門封包可以開始於一DMT符號的開始處。
在步驟3206,該里德所羅門解碼器係被同步化在該共同的邊界處。
在某些實施例中,該數據機係被配置以利用一同步到一第三整數(W)個DMT符號的反交錯器來反交錯由該些QAM符號所載有的該資料的位元組。在一例子中,該W個DMT符號係對應於一和該接收到的信號相關的交錯訊框的一第四數目個位元組。該QAM星座圖可以是可被指派給該次頻帶的複數個QAM星座圖中之一。反交錯通常可以藉由一被配置為同 步化的反交錯器來加以執行,而不論該複數個QAM星座圖中被指派給該次頻帶的為何。
在某些實施例中,該接收到的信號係包括複數個次頻帶。該複數個次頻帶的每一個可包含該接收到的信號的兩個或多個相鄰的次載波。不同的QAM星座圖可被指派給該複數個次頻帶中的至少兩個。在一例子中,QAM符號的較低階的星座圖可被指派給包含較高頻率的次載波的次頻帶,並且QAM符號的較高階的星座圖可被指派給包含較低頻率的次載波之次頻帶。一共同的QAM星座圖可被指派給該複數個次頻帶的每一個。QAM符號的一共同的星座圖可被指派給一群組的相鄰的次頻帶。QAM符號的不同的星座圖可被指派給不同群組的相鄰的次頻帶。兩個或多個群組的相鄰的次頻帶可根據和該兩個或多個群組的相鄰的次頻帶相關的信號對雜訊比來包括不同數目個次頻帶。
在某些實施例中,該接收到的信號係從一同軸電纜加以接收,並且內含在該複數個次頻帶中之一最低頻率的次載波可具有一頻率高於透過該同軸電纜發送的一基頻視訊信號。該些DMT符號可以透過該同軸電纜而在一發送的信號的一次頻帶中加以發送。
在某些實施例中,該數據機係根據兩個或多個在該接收到的信號中的一對應數目個次載波上載有的前導符號來估計在該同軸電纜中的頻道品質。頻道品質可包含該同軸電纜的一信號對雜訊比,並且可以相關於相移以及對於脈波雜訊的敏感性、等等。該兩個或多個前導符號可以循環或者是傳播在該接收到的信號的次載波之間。該發送的信號以及該接收到的信號可以用相鄰的時間間隔來加以發送。
在某些實施例中,兩個下行鏈路DMT符號可以在複數個連續的下行鏈路的時間間隔的每一個中加以接收。透過該同軸電纜發送該些DMT符號可包含在一上行鏈路的時間間隔中發送一上行鏈路DMT符號,該上行鏈路的時間間隔係被定義在該複數個連續的下行鏈路的時間間隔的每一個之後。一同步DMT符號可加以接收。該數據機的某些操作特點可利用在複數個訊框的每一個中接收的系統組態設定資訊來加以組態設定。每個訊框可包含複數個封包。每個封包可包含兩個下行鏈路DMT符號以及一個上行鏈路DMT符號。
圖32係包含根據本發明的某些特點的一種通訊方法的流程圖3220。該方法可在一數據機中加以執行,並且該數據機的各種元件可包括一電腦處理器、一數位信號處理器、一或多個序列器、信號處理器、現場可程式化的裝置、特殊應用積體電路及/或專用的邏輯。各種的功能模組及/或其它元件可以執行該方法的一或多個步驟。某些功能性元件係相關圖5-9、19及26-29來加以描繪及敘述,並且這些模組可以個別地包括該數據機以及軟體模組的組合。
在步驟3222,該數據機係以一整數(V)個里德所羅門封包來編碼資料。
在步驟3224,該數據機可以選擇一或多個次載波來載有前導符號信號。該前導符號信號的選擇可以藉由在此揭露的方法及演算法來管理。該數據機可以發送兩個或多個在該下行鏈路信號中之一對應數目個次載波上的前導符號,藉此該兩個或多個前導符號係循環或者是傳播在該下行鏈路信號的次載波之間。在一例子中,該兩個或多個前導符號係以一 種每次循環重複一次的模式循環在該些次載波之間。在另一例子中,該兩個或多個前導符號可以根據一種可持續改變的模式而持續或週期性地循環。
在步驟3226,該數據機係以一整數(U)個DMT符號來發送該V個里德所羅門封包。每個DMT符號可包括複數個調變在一下行鏈路信號中的一次頻帶的次載波之QAM符號。每個QAM符號可以是指派給該次頻帶的一星座圖的QAM符號中之一。該V個里德所羅門封包的每一個的發送可以和一DMT符號的開始同時啟動。
在某些實施例中,該數據機係利用一同步到一第三整數(W)個DMT符號的交錯器來交錯該資料的位元組。W可以是一整數。
在某些實施例中,該數據機係從可被指派給該次頻帶的複數個QAM星座圖選擇該QAM星座圖。該數據機可以根據和該一或多個次頻帶相關的信號對雜訊比、或是根據頻道品質的某種其它指示器,藉由指派該複數個QAM星座圖中的至少一個給一或多個次頻帶來選擇該QAM星座圖。該數據機可以在一同軸電纜上發送該下行鏈路信號。內含在該下行鏈路信號中之一最低頻率的次載波可具有一頻率高於透過該同軸電纜通訊的一基頻視訊信號。
在某些實施例中,該數據機係在複數個連續的下行鏈路的時間間隔的每一個中發送兩個DMT符號,並且在一上行鏈路的時間間隔中從該同軸電纜接收一DMT符號,該上行鏈路的時間間隔係出現在該複數個連續的下行鏈路的時間間隔的每一個之後。因此,該數據機可以利用一用於半雙工通訊的通訊頻道中之可利用的頻寬的至少一部分。
本發明的某些特點的額外說明
本發明的某些實施例係提供用於涉及視訊饋送的通訊之系統及方法。根據本發明的某些特點之一種方法係包括接收複數個在一下行鏈路信號中的次載波的一次頻帶上調變的下行鏈路符號。一指派給該次頻帶的QAM符號的第一星座圖可以是不同於被指派給該下行鏈路信號中的其它次頻帶的QAM符號的至少一其它的星座圖。該方法可包括利用一區塊錯誤更正解碼器來解碼該複數個下行鏈路符號。該區塊錯誤更正解碼器可以根據QAM符號的第一星座圖的識別以及識別在該複數個下行鏈路符號之間的邊界的資訊來加以同步化。
在某些實施例中,該次頻帶是在該下行鏈路信號中的複數個次頻帶中之一。該複數個次頻帶的每一個可包括該下行鏈路信號的兩個或多個相鄰的次載波。QAM符號的較低階的星座圖可被指派給包含較高頻率的次載波的次頻帶。QAM符號的較高階的星座圖可被指派給包含較低頻率的次載波之次頻帶。每個星座圖的QAM符號可被指派給一群組的相鄰的次頻帶。兩個或多個群組的次頻帶係包括不同數目個群組的次頻帶。該下行鏈路信號可以是接收自一同軸電纜。內含在該複數個次頻帶中之一最低頻率的次載波可具有一頻率高於透過該同軸電纜發送的一基頻視訊信號。QAM符號的星座圖可根據和每個群組的相鄰的次頻帶中之相鄰的次頻帶相關的一信號對雜訊比而被指派給多個群組的一或多個相鄰的次頻帶。
在某些實施例中,該下行鏈路信號係接收自一同軸電纜。該方法可包括透過該同軸電纜以在一上行鏈路信號中發送複數個上行鏈路符號。一整數個位元組可被編碼在該複數個上行鏈路符號的每一個中。一整 數個位元組可被編碼在該複數個下行鏈路符號的每一個中。該複數個上行鏈路符號的每一個可以編碼和藉由該複數個下行鏈路符號的每一個編碼的位元組數目不同的數目個位元組。在該下行鏈路信號中的該次頻帶可以是群組的相鄰的次頻帶中之一。該群組的相鄰的次頻帶可包括一第一數目個次載波。在該上行鏈路信號中的複數個其它群組的次頻帶中的至少一群組係包括一第二數目個次載波。該第一及第二數目可以是不同的。
在某些實施例中,在該下行鏈路信號中的次頻帶係包括32個次載波,並且在該上行鏈路信號中的至少一次頻帶係包括4個次載波。
在某些實施例中,在該下行鏈路信號中的次頻帶係在一對應數目個次載波上運載兩個或多個下行鏈路前導符號,其中一接收器係根據該些前導符號來估計頻道品質。頻道品質可包含在前導符號中藉由該接收器量測的信號對雜訊比。運載該兩個或多個前導符號的次載波可根據一循環來加以選擇。
在某些實施例中,透過該同軸電纜發送複數個上行鏈路符號係包含從該上行鏈路信號的一次頻帶選擇至少一次載波來運載一上行鏈路前導符號。發送複數個上行鏈路符號可包含從該上行鏈路信號的該次頻帶週期性地選擇一不同的次載波來作為該上行鏈路前導符號。一整數個半位元組係被編碼在該每個上行鏈路符號中,並且一整數個位元組係被編碼在每個下行鏈路符號中。
在某些實施例中,發送該複數個上行鏈路符號係包含對於該複數個上行鏈路符號的每一個,交錯上行鏈路資料的位元組以獲得交錯的資料,並且利用一指派給該上行鏈路次頻帶的星座圖來編碼該交錯的資料 在該每個上行鏈路符號中。交錯上行鏈路資料的位元組可包含利用一被判斷為指派給該上行鏈路次頻帶的一星座圖的QAM符號的一函數的訊框尺寸來交錯上行鏈路資料的位元組。對於上行鏈路及下行鏈路的次頻帶的每一個所選的功率位準以及QAM符號的星座圖的指派之組合可被選擇以便於在該上行鏈路及下行鏈路的次頻帶之間提供一頻譜匹配。
在某些實施例中,該上行鏈路信號及下行鏈路信號係以相鄰的時間間隔來加以發送。兩個下行鏈路符號係在連續的下行鏈路的時間間隔的每一個中加以接收。透過該同軸電纜發送複數個上行鏈路符號可包含在該連續的下行鏈路的時間間隔的每一個之後發送一上行鏈路符號。該方法可包括在複數個訊框的每一個中接收一下行鏈路同步符號以及系統組態設定資訊。每個訊框可包含下行鏈路間隔,下行鏈路符號係在下行鏈路間隔中加以接收。複數個訊框的每一個可包括355個封包,每個封包包含兩個下行鏈路符號以及一個上行鏈路符號。在某些實施例中,該方法係包括在該複數個訊框的每一個中發送一上行鏈路同步符號。
本發明先前的說明係欲為舉例說明的,而非限制性的。例如,熟習此項技術者將會體認到本發明可利用上述的功能及能力的各種組合來加以實施,並且可包含較上述少的構件、或是額外的構件。本發明的某些額外的觀點及特點係進一步在以下闡述,並且如同熟習此項技術者在受到本揭露內容的教示之後將會體認到的,其可以利用在以上較詳細敘述的功能及構件來加以獲得。
儘管本發明已經參考特定的範例實施例來加以敘述,但對於具有此項技術的通常知識者而言將會是明顯的是各種對於這些實施例的修 改及改變都可以在不脫離本發明較廣的精神及範疇下加以完成。於是,該說明書及圖式係欲被視為舉例說明而非限制性的意思。
400‧‧‧SLOC系統圖
402‧‧‧攝影機
404‧‧‧同軸電纜
406‧‧‧顯示器
408‧‧‧數位錄影機(DVR)
412‧‧‧多媒體處理器
414‧‧‧數據機
416‧‧‧CVBS信號
418‧‧‧DMT信號
422‧‧‧視訊處理器
424‧‧‧數據機
426‧‧‧CVBS信號
428‧‧‧DMT信號部分
430‧‧‧主機處理器
432‧‧‧儲存媒體
440‧‧‧資料

Claims (17)

  1. 一種通訊之方法,其係包括:以一第一整數(V)個碼區塊來編碼資料;以及以一第二整數(U)個離散多調式調變(DMT)符號來發送該V個碼區塊,每個DMT符號係包括複數個正交振幅調變(QAM)符號,該些QAM符號係調變在一下行鏈路信號中的一次頻帶的次載波,其中每個QAM符號是指派給該次頻帶的一星座圖的QAM符號中之一,其中一共同的邊界係出現在每個DMT符號的一開始處、或是在每個碼區塊的一開始處,並且其中編碼資料係包含利用一同步到一第三整數(W)個DMT符號的交錯器來交錯該資料的位元組。
  2. 如申請專利範圍第1項之方法,其中發送該V個碼區塊係包含從可被指派給該次頻帶的複數個QAM星座圖選擇該QAM符號的星座圖。
  3. 如申請專利範圍第2項之方法,其中選擇該QAM符號的星座圖係包含根據和該一或多個次頻帶相關的信號對雜訊比來指派複數個QAM星座圖中之至少一QAM星座圖給一或多個次頻帶。
  4. 如申請專利範圍第1項之方法,其中發送該V個碼區塊係包含在一同軸電纜上發送該下行鏈路信號,並且其中內含在該下行鏈路信號中之一最低頻率的次載波係具有一頻率高於被指派用於透過該同軸電纜來發送一基頻視訊信號的一最高頻率。
  5. 如申請專利範圍第4項之方法,其中發送該V個碼區塊係包含在該下行鏈路信號中的一對應數目個次載波上發送兩個或多個前導符號。
  6. 如申請專利範圍第5項之方法,其中發送該兩個或多個前導符號係包含在該下行鏈路信號所用的複數個次載波傳播該兩個或多個前導符號。
  7. 如申請專利範圍第1項之方法,其中發送該V個碼區塊係包含:在複數個連續的下行鏈路的時間間隔的每一個中發送兩個DMT符號;以及在一上行鏈路的時間間隔中從一上行鏈路信號接收一DMT符號,該上行鏈路的時間間隔係出現在該複數個連續的下行鏈路的時間間隔的每一個之後。
  8. 一種通訊之裝置,其係包括:一被配置以發送離散多調式調變(DMT)符號的發送器,每個發送的DMT符號係包括複數個正交振幅調變(QAM)符號,其中每個QAM符號係調變在一發送的信號中的一次頻帶的一次載波;一處理系統,其係被配置以根據該發送器所使用的一頻道的一狀況來指派一QAM符號的星座圖給在該發送的信號中之該次頻帶,其中每個QAM符號是該星座圖的QAM符號中之一;一同步到該些接收到的DMT符號的邊界的區塊錯誤更正解碼器;以及一被配置以交錯將在該些DMT符號中載有的資料的位元組之交錯器,其中該交錯器係被同步到一第三整數(W)個DMT符號。
  9. 如申請專利範圍第8項之裝置,其中該發送器係被配置來發送以一第二整數(U)個DMT符號編碼的一第一整數(V)個碼區塊,其中一共同的邊界係出現在每個DMT符號的一開始處、或是在每個碼區塊的一開始處。
  10. 如申請專利範圍第8項之裝置,其中該發送器所使用的該頻道的狀 況係包括一信號對雜訊比。
  11. 如申請專利範圍第8項之裝置,其進一步包括一被配置以從一接收到的信號接收DMT符號的接收器,每個接收到的DMT符號係包括一第二QAM星座圖的複數個QAM符號,該第二QAM星座圖的複數個QAM符號係調變在一第二次頻帶中的一次載波;以及一同步到該些接收到的DMT符號的邊界的區塊錯誤更正解碼器,其中該發送器及接收器係以不同的資料速率運作。
  12. 如申請專利範圍第11項之裝置,其中該複數個QAM符號的每一個係包括以一第二整數(U)個DMT符號編碼的一第一整數(V)個碼區塊,其中一共同的邊界係出現在每個接收到的DMT符號的一開始處、或是在每個碼區塊的一開始處,並且其中該區塊錯誤更正解碼器係包括一同步到該共同的邊界的里德所羅門解碼器。
  13. 如申請專利範圍第11項之裝置,其中該發送的信號以及該接收到的信號係透過一同軸電纜來通訊,並且其進一步包括一被配置以從該發送的信號以及該接收到的信號分離出一基頻視訊信號的低通濾波器。
  14. 如申請專利範圍第13項之裝置,其中被配置以判斷該頻道的狀況的該處理系統係根據在該接收到的信號中的兩個或多個前導符號。
  15. 如申請專利範圍第11項之裝置,其中該兩個或多個前導符號係循環在該接收到的信號的次載波之間。
  16. 如申請專利範圍第11項之裝置,其進一步包括一被配置以反交錯由該些接收到的DMT符號的該些QAM符號所載有的該資料的位元組之反交錯器,其中該反交錯器係被同步到一第三整數(W)個DMT符號,其中該W 個DMT符號係對應於一和該接收到的信號相關的交錯訊框的一第四數目個位元組。
  17. 一種電腦可讀取的媒體,其係包括碼以用於:將資料編碼在一第一整數(V)個里德所羅門封包中;以及以一第二整數(U)個離散多調式調變(DMT)符號來發送該V個里德所羅門封包,每個DMT符號係包括複數個正交振幅調變(QAM)符號,該複數個QAM符號係調變在一下行鏈路信號中的一次頻帶的次載波,其中每個QAM符號是指派給該次頻帶的一星座圖的QAM符號中之一,其中一共同的邊界係出現在每個DMT符號的一開始處、或是在每個碼區塊的一開始處,並且其中編碼資料係包含利用一同步到一第三整數(W)個DMT符號的交錯器來交錯該資料的位元組。
TW104110863A 2012-01-20 2012-12-07 用於半雙工ip鏈路之離散多調式系統 TWI554062B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261589101P 2012-01-20 2012-01-20
US13/706,290 US9001911B2 (en) 2012-01-20 2012-12-05 Discrete multi-tone systems for half-duplex IP links
PCT/US2012/068041 WO2013109350A1 (en) 2012-01-20 2012-12-05 Discrete multi-tone systems for half-duplex ip links

Publications (2)

Publication Number Publication Date
TW201528741A TW201528741A (zh) 2015-07-16
TWI554062B true TWI554062B (zh) 2016-10-11

Family

ID=48799576

Family Applications (2)

Application Number Title Priority Date Filing Date
TW101146034A TWI520532B (zh) 2012-01-20 2012-12-07 用於半雙工ip鏈路之離散多調式系統
TW104110863A TWI554062B (zh) 2012-01-20 2012-12-07 用於半雙工ip鏈路之離散多調式系統

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW101146034A TWI520532B (zh) 2012-01-20 2012-12-07 用於半雙工ip鏈路之離散多調式系統

Country Status (4)

Country Link
US (2) US9001911B2 (zh)
CN (1) CN104054314B (zh)
TW (2) TWI520532B (zh)
WO (1) WO2013109350A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103634712B (zh) * 2013-12-10 2016-08-17 重庆三峡学院 利用dmt调制和解调32qam-ofdm下行链路信号的自混频零差检测无源光接入系统
CN105519002B (zh) * 2014-05-20 2017-08-29 华为技术有限公司 一种参数获取方法及装置
US9807767B2 (en) * 2014-09-10 2017-10-31 Qualcomm Incorporated Systems and methods for allocating tones between users in wireless communication systems
CN107710669B (zh) * 2015-09-21 2020-06-02 华为技术有限公司 一种数据传输方法、收发设备及系统
US9503291B1 (en) * 2015-11-04 2016-11-22 Global Unichip Corporation Method and apparatus for discrete multitone transmission
WO2017139305A1 (en) * 2016-02-09 2017-08-17 Jonathan Perry Network resource allocation
CN107645371B (zh) * 2016-07-20 2021-07-20 中兴通讯股份有限公司 一种载波配置的方法、装置和系统
WO2018064815A1 (en) * 2016-10-08 2018-04-12 Huawei Technologies Co., Ltd. Trellis-based processing for robust digital multiband transmissions
US10097225B1 (en) * 2017-08-31 2018-10-09 Bae Systems Information And Electronic Systems Integration Inc. All-digital blind adaptive receiver for non-cooperative communications and signal exploitation
US10652847B2 (en) * 2017-09-25 2020-05-12 JVC Kenwood Corporation Simulcast controller, relay station, and communication method operated on simulcasting
KR102369812B1 (ko) * 2017-12-21 2022-03-04 한국전자통신연구원 대역내 전이중 송수신 방법 및 장치
US20190222388A1 (en) 2018-01-16 2019-07-18 Sierra Wireless, Inc. Methods and apparatuses for reference signals in 2 sub-carrier pi/2 binary phase shift keying communication
US10530527B1 (en) * 2018-07-20 2020-01-07 Adtran, Inc. Discrete multi-tone (DMT) systems and methods for mitigating interpolation errors from crosstalk vectoring
US20230124141A1 (en) * 2021-10-20 2023-04-20 Qualcomm Incorporated Iterative phase-noise cancellation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512789B1 (en) * 1999-04-30 2003-01-28 Pctel, Inc. Partial equalization for digital communication systems
US20110134975A1 (en) * 2008-07-15 2011-06-09 Nokia Siemens Networks Oy Method and device for data processing and communication system comprising such device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6535553B1 (en) * 1998-06-19 2003-03-18 Samsung Electronics Co., Ltd. Passband equalizers with filter coefficients calculated from modulated carrier signals
WO2001084796A2 (en) * 2000-05-01 2001-11-08 Centillium Communications, Inc. Framing technique for adsl systems
US7269209B2 (en) 2002-02-08 2007-09-11 Broadcom Corporation Discrete multitone transmission and reception
US20060083322A1 (en) * 2004-10-15 2006-04-20 Desjardins Philip Method and apparatus for detecting transmission errors for digital subscriber lines
US7693225B2 (en) * 2005-07-21 2010-04-06 Realtek Semiconductor Corp. Inter-symbol and inter-carrier interference canceller for multi-carrier modulation receivers
WO2007027977A2 (en) * 2005-08-31 2007-03-08 Conexant Systems, Inc. Systems and methods for resolving signal-to-noise ratio margin difference in dual latency discrete multi-tone based xdsl systems under colored noise conditions
US7545871B2 (en) * 2006-02-24 2009-06-09 National Taiwan University Discrete multi-tone system having DHT-based frequency-domain equalizer
EP2241007A4 (en) 2008-01-03 2013-12-18 Ikanos Technology Ltd COGNITIVE AND UNIVERSAL IMPULSE NOISE PROTECTION
US7953143B2 (en) 2008-02-22 2011-05-31 Ikanos Communications, Inc. Systems and methods for deriving parameters for impulse noise detectors
US8428188B2 (en) * 2009-06-17 2013-04-23 Techwell, Inc. Carrier phase offset correction for a QAM system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512789B1 (en) * 1999-04-30 2003-01-28 Pctel, Inc. Partial equalization for digital communication systems
US20110134975A1 (en) * 2008-07-15 2011-06-09 Nokia Siemens Networks Oy Method and device for data processing and communication system comprising such device

Also Published As

Publication number Publication date
TW201332320A (zh) 2013-08-01
CN104054314B (zh) 2018-04-10
WO2013109350A1 (en) 2013-07-25
TWI520532B (zh) 2016-02-01
TW201528741A (zh) 2015-07-16
US20130223550A1 (en) 2013-08-29
US9001911B2 (en) 2015-04-07
US9237053B2 (en) 2016-01-12
CN104054314A (zh) 2014-09-17
US20150156051A1 (en) 2015-06-04

Similar Documents

Publication Publication Date Title
TWI554062B (zh) 用於半雙工ip鏈路之離散多調式系統
Keller et al. Adaptive multicarrier modulation: A convenient framework for time-frequency processing in wireless communications
Mignone et al. CD3-OFDM: A novel demodulation scheme for fixed and mobile receivers
JP4447056B2 (ja) 多重搬送波伝送システムにおける、あるいはそれに関する改良
JP4130996B2 (ja) 多重搬送波伝送システムにおける、あるいはそれに関する改良
US6538986B2 (en) Data transmission system and method using nQAM constellation with a control channel superimposed on a user data channel
JP4016125B2 (ja) 多重搬送波伝送システムにおける、あるいはそれに関する改良
JP4130997B2 (ja) 多重搬送波伝送システムの改良
EP1848138B1 (en) Protection of communication systems against repetitive electrical impulse noise
WO2002101939A2 (en) Robust burst detection and acquisition system and method
TW200934189A (en) Methods and apparatus for estimating the channel impulse response
WO2006097735A2 (en) Parallel data processing apparatus and method in a multicarrier communication system
KR20070014169A (ko) 다중-입력-다중-출력 ofdm 무선 근거리 네트워크를구현하기 위한 방법 및 시스템
US8817918B2 (en) Cyclic prefix and precursor joint estimation
TW201110574A (en) Receiver and method
CN103210621B (zh) 在噪声介质上进行通信的鲁棒前导码
US8213524B2 (en) DTMB-based control system and receiving system having the same
WO2010054557A1 (zh) 一种数据子载波上的信道估计方法及系统
Arndt et al. Performance comparison between OFDM and FBMC systems in digital TV transmission
Gatherer Cable Modems
Panta et al. The performance of Overlap PCC-OFDM with error-correcting codes
Mali et al. Orthogonal Frequency Division Multiplexing for Wireless Networks S
Ravach Performance Analysis of OFDM Technology on Radio-over-Fiber Systems
Jaiswal et al. Companding and clipped filtering based Hybrid Technique for PAPR reduction of FBMC-OQAM
Liao et al. A new digital signal processing implementation of OFDM timing recovery