TWI550805B - Multi-chip stack package structure - Google Patents

Multi-chip stack package structure Download PDF

Info

Publication number
TWI550805B
TWI550805B TW104112561A TW104112561A TWI550805B TW I550805 B TWI550805 B TW I550805B TW 104112561 A TW104112561 A TW 104112561A TW 104112561 A TW104112561 A TW 104112561A TW I550805 B TWI550805 B TW I550805B
Authority
TW
Taiwan
Prior art keywords
wafer
package structure
pads
stack package
active surface
Prior art date
Application number
TW104112561A
Other languages
Chinese (zh)
Other versions
TW201639104A (en
Inventor
吳自勝
Original Assignee
南茂科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南茂科技股份有限公司 filed Critical 南茂科技股份有限公司
Priority to TW104112561A priority Critical patent/TWI550805B/en
Priority to CN201510352871.4A priority patent/CN106206556A/en
Application granted granted Critical
Publication of TWI550805B publication Critical patent/TWI550805B/en
Publication of TW201639104A publication Critical patent/TW201639104A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Description

晶片堆疊封裝結構 Wafer stack package structure

本發明是有關於一種封裝結構,且特別是有關於一種結 合覆晶及打線之晶片堆疊封裝結構。 The present invention relates to a package structure, and in particular to a knot A wafer stacked package structure with flip chip and wire bonding.

在目前的晶片封裝製程中,通常是透過打線接合(wire bonding)或覆晶接合(flip chip bonding)等方式使晶片電性連接至線路載板。就打線接合而言,其係以相對於晶片的主動表面的背面連接線路載板的晶片接合區,並透過金屬導線電性連接主動表面上的接墊與線路載板上的接點。另,就覆晶接合而言,其係先在晶片的主動表面上的接墊上製作焊料凸塊(solder bump),接著使晶片以其主動表面朝向線路載板的晶片接合區,並使焊料凸塊對準於線路載板上的接點。之後,迴焊焊料凸塊藉以電性連接主動表面上的接墊與線路載板上的接點。 In the current chip packaging process, usually through wire bonding (wire Bonding or flip chip bonding or the like electrically connects the wafer to the line carrier. In the case of wire bonding, it is connected to the wafer bonding region of the wiring carrier with respect to the back surface of the active surface of the wafer, and is electrically connected to the pads on the active surface and the contacts on the wiring carrier through the metal wires. In addition, in the case of flip chip bonding, solder bumps are formed on the pads on the active surface of the wafer, and then the wafer is oriented with its active surface toward the wafer bonding region of the wiring carrier, and the solder bump is formed. The block is aligned with the contacts on the line carrier. Thereafter, the solder bumps are electrically soldered to electrically connect the pads on the active surface to the contacts on the line carrier.

再者,單以打線接合來使晶片電性連接至線路載板,則 線路載板上的接點僅能設置於晶片接合區的周圍。又,單以覆晶接合來使晶片電性連接至線路載板,則線路載板上的接點僅能設 置於晶片接合區內。然而,在現今電子產業對於電性效能最大化、低成本與積體電路的高積集度、微間距(fine pitch)等的要求下,單以打線接合或覆晶接合來電性連接晶片與線路載板的封裝製程與封裝結構,已無法完全滿足現今電子產業的要求。 Furthermore, by wire bonding to electrically connect the wafer to the line carrier, The contacts on the line carrier can only be placed around the wafer bonding area. Moreover, by simply flip-chip bonding to electrically connect the wafer to the line carrier, the contacts on the line carrier can only be set. Placed in the wafer bonding area. However, in today's electronics industry, for maximum electrical efficiency, low cost and high integration of integrated circuits, fine pitch, etc., wire bonding or flip chip bonding is used to electrically connect wafers and wires. The packaging process and package structure of the carrier board cannot fully meet the requirements of the current electronics industry.

本發明提供一種晶片堆疊封裝結構,其可符合高積集度以及微間距的設計需求。 The present invention provides a wafer stack package structure that meets the design requirements of high integration and fine pitch.

本發明提出一種晶片堆疊封裝結構,其包括線路載板、第一晶片、多個焊球、第二晶片以及多條焊線。線路載板具有多個第一接墊以及環繞這些第一接墊的多個第二接墊。第一晶片設置於線路載板上。第一晶片具有第一主動表面、相對於第一主動表面的第一背面以及位於第一主動表面上的多個第一導電柱。這些焊球分別電性連接這些第一導電柱與這些第一接墊。第二晶片具有第二主動表面、相對於第二主動表面的第二背面以及位於第二主動表面上的多個第二導電柱,其中第二晶片設置於第一晶片上,且第二背面與第一背面彼此相對。這些焊線分別電性連接這些第二導電柱與這些第二接墊。 The present invention provides a wafer stack package structure including a line carrier, a first wafer, a plurality of solder balls, a second wafer, and a plurality of bonding wires. The line carrier has a plurality of first pads and a plurality of second pads surrounding the first pads. The first wafer is disposed on the line carrier. The first wafer has a first active surface, a first back surface opposite the first active surface, and a plurality of first conductive pillars on the first active surface. The solder balls are electrically connected to the first conductive pillars and the first pads, respectively. The second wafer has a second active surface, a second back surface opposite to the second active surface, and a plurality of second conductive pillars on the second active surface, wherein the second wafer is disposed on the first wafer, and the second back surface is The first back faces are opposite each other. The bonding wires are electrically connected to the second conductive pillars and the second pads, respectively.

在本發明的一實施例中,上述的焊線的材質包括銅、金、銀或上述金屬的合金。 In an embodiment of the invention, the material of the bonding wire comprises copper, gold, silver or an alloy of the above metals.

在本發明的一實施例中,上述的第一導電柱與第二導電柱之材質係選自於由銅、金、銀或上述金屬的合金所組成之族群 中的一種材質。 In an embodiment of the invention, the material of the first conductive pillar and the second conductive pillar is selected from the group consisting of copper, gold, silver or an alloy of the above metals. One of the materials.

在本發明的一實施例中,上述的各個第二導電柱具有金屬層。各個金屬層位於對應的第二導電柱相對遠離第二主動表面的端部。 In an embodiment of the invention, each of the second conductive pillars has a metal layer. Each of the metal layers is located at an end of the corresponding second conductive post that is relatively far from the second active surface.

在本發明的一實施例中,上述的金屬層之材質包含鋁。 In an embodiment of the invention, the material of the metal layer comprises aluminum.

在本發明的一實施例中,上述的第一接墊位在該第一晶片在線路載板上的正投影內。 In an embodiment of the invention, the first pad is located within an orthographic projection of the first wafer on the line carrier.

在本發明的一實施例中,上述的第二接墊位在第一晶片在線路載板上的正投影外。 In an embodiment of the invention, the second pad is located outside the orthographic projection of the first wafer on the line carrier.

在本發明的一實施例中,上述的晶片堆疊封裝結構更包括黏膠層。黏膠層連接第一晶片的第一背面與第二晶片的第二背面。 In an embodiment of the invention, the wafer stack package structure further includes an adhesive layer. The adhesive layer connects the first back side of the first wafer and the second back side of the second wafer.

在本發明的一實施例中,上述的晶片堆疊封裝結構更包括封裝膠體,包覆這些第二接墊、第一晶片、第二晶片、這些第二導電柱以及這些焊線,並填入第一主動表面與線路載板之間以包覆這些第一導電柱、這些焊球以及這些第一接墊。 In an embodiment of the present invention, the wafer stack package structure further includes an encapsulant covering the second pads, the first wafer, the second wafer, the second conductive pillars, and the bonding wires, and filling in the first An active surface is interposed between the line carrier and the line carrier to encapsulate the first conductive posts, the solder balls, and the first pads.

在本發明的一實施例中,上述的第一背面的表面積大於或等於第二背面的表面積。 In an embodiment of the invention, the surface area of the first back surface is greater than or equal to the surface area of the second back surface.

基於上述,本發明的晶片堆疊封裝結構可包括相互堆疊的第一晶片與第二晶片,其中第一晶片可以覆晶接合的方式使第一導電柱電性連接於第一接墊,且第二晶片可以打線接合的方式使第二導電柱電性連接於第二接墊,因此在佈線面積有限的線路 載板上,亦能獲致高腳數,以符合高積集度與微間距的設計需求。 Based on the above, the wafer stack package structure of the present invention may include a first wafer and a second wafer stacked on each other, wherein the first wafer may be electrically bonded to the first pad in a manner of flip chip bonding, and the second The wafer can be wire bonded to electrically connect the second conductive post to the second pad, so that the wiring area is limited On the carrier board, the number of high feet can also be obtained to meet the design requirements of high integration and micro-pitch.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、100A‧‧‧晶片堆疊封裝結構 100, 100A‧‧‧ wafer stacking structure

110‧‧‧線路載板 110‧‧‧Line carrier

111‧‧‧基材 111‧‧‧Substrate

111a‧‧‧表面 111a‧‧‧ surface

112‧‧‧第一接墊 112‧‧‧First mat

113‧‧‧第二接墊 113‧‧‧second mat

120‧‧‧第一晶片 120‧‧‧First chip

121‧‧‧第一主動表面 121‧‧‧First active surface

122‧‧‧第一背面 122‧‧‧ first back

123‧‧‧第一導電柱 123‧‧‧First conductive column

130‧‧‧焊球 130‧‧‧ solder balls

140‧‧‧第二晶片 140‧‧‧second chip

141‧‧‧第二主動表面 141‧‧‧Second active surface

142‧‧‧第二背面 142‧‧‧ second back

143‧‧‧第二導電柱 143‧‧‧Second conductive column

143a‧‧‧端部 143a‧‧‧End

144‧‧‧金屬層 144‧‧‧metal layer

150‧‧‧焊線 150‧‧‧welding line

160‧‧‧黏膠層 160‧‧‧Adhesive layer

170‧‧‧封裝膠體 170‧‧‧Package colloid

圖1是本發明一實施例的晶片堆疊封裝結構的俯視示意。 1 is a top plan view of a wafer stack package structure in accordance with an embodiment of the present invention.

圖2是圖1的晶片堆疊封裝結構沿A-A剖線的剖面示意圖。 2 is a cross-sectional view of the wafer stack package structure of FIG. 1 taken along line A-A.

圖3是本發明另一實施例的晶片堆疊封裝結構的剖面示意圖。 3 is a cross-sectional view showing a wafer stack package structure according to another embodiment of the present invention.

圖1是本發明一實施例的晶片堆疊封裝結構的俯視示意。圖2是圖1的晶片堆疊封裝結構沿A-A剖線的剖面示意圖,為求清楚表示與便於說明,圖1省略繪示封裝膠體170。請參考圖1與圖2,在本實施例中,晶片堆疊封裝結構100包括線路載板110、第一晶片120、多個焊球130、第二晶片140以及多條焊線150,其中線路載板110的基材111的材質例如是印刷電路板的基材所通常採用之材質,例如是FR4、FR5或BT材料。然而,線路載板110的基材111的材質並不限定於前述提及之FR4、FR5或BT等材料,線路載板110的基材111亦可採用聚醯亞胺(PI)、聚乙烯對苯二甲酸酯(PET)、聚醚(PES)、碳酸脂(PC)或其他適合的可 撓性材料所構成。另一方面,基材111的表面111a上形成有多個第一接墊112以及環繞這些第一接墊112的多個第二接墊113。一般而言,第一接墊112與第二接墊113的材質可包括銅、金、銀、鋁或上述金屬的合金。 1 is a top plan view of a wafer stack package structure in accordance with an embodiment of the present invention. 2 is a cross-sectional view of the wafer stack package structure of FIG. 1 taken along line A-A. For clarity and convenience of description, FIG. 1 omits the encapsulant 170. Referring to FIG. 1 and FIG. 2 , in the embodiment, the wafer stack package structure 100 includes a circuit carrier 110 , a first wafer 120 , a plurality of solder balls 130 , a second wafer 140 , and a plurality of bonding wires 150 . The material of the substrate 111 of the board 110 is, for example, a material generally used for a substrate of a printed circuit board, and is, for example, a FR4, FR5 or BT material. However, the material of the substrate 111 of the line carrier 110 is not limited to the above-mentioned materials such as FR4, FR5 or BT, and the substrate 111 of the line carrier 110 may also be made of polyimide, PI or polyethylene. Phthalate (PET), polyether (PES), carbonate (PC) or other suitable Made of flexible material. On the other hand, a plurality of first pads 112 and a plurality of second pads 113 surrounding the first pads 112 are formed on the surface 111a of the substrate 111. Generally, the material of the first pad 112 and the second pad 113 may include copper, gold, silver, aluminum or an alloy of the above metals.

第一晶片120設置於線路載板110上,其中第一晶片120具有第一主動表面121、相對於第一主動表面121的第一背面122以及位於第一主動表面121上的多個第一導電柱123。如圖2所示,第一晶片120以其第一主動表面121朝向基材111的表面111a而設置於線路載板110上。詳細而言,第一導電柱123的數量會與第一接墊112的數量相對應,且在第一晶片120設置於線路載板110上之後,各個第一導電柱123會與對應的第一接墊112相對準。另一方面,在將第一晶片110設置於線路載板110上之前,會先在各個第一導電柱123遠離第一主動表面121的端部123a上形成焊球130。因此,在將第一晶片110設置於線路載板110上之後,各個第一導電柱123可透過對應的焊球130抵接於對應的第一接墊112,並藉由迴焊處理以使各個第一導電柱123透過對應的焊球130電性連接於對應的第一接墊112。換言之,第一晶片120例如是透過覆晶接合的方式而與線路載板110電性連接。 The first wafer 120 is disposed on the line carrier 110, wherein the first wafer 120 has a first active surface 121, a first back surface 122 opposite to the first active surface 121, and a plurality of first conductive layers on the first active surface 121. Column 123. As shown in FIG. 2, the first wafer 120 is disposed on the line carrier 110 with its first active surface 121 facing the surface 111a of the substrate 111. In detail, the number of the first conductive pillars 123 may correspond to the number of the first pads 112, and after the first wafer 120 is disposed on the line carrier 110, the first conductive pillars 123 may correspond to the first The pads 112 are relatively aligned. On the other hand, before the first wafer 110 is placed on the line carrier 110, the solder balls 130 are first formed on the end portions 123a of the respective first conductive pillars 123 away from the first active surface 121. Therefore, after the first wafer 110 is disposed on the line carrier 110, each of the first conductive pillars 123 can be abutted against the corresponding first pads 112 through the corresponding solder balls 130, and processed by reflow processing. The first conductive pillar 123 is electrically connected to the corresponding first pad 112 through the corresponding solder ball 130 . In other words, the first wafer 120 is electrically connected to the line carrier 110 by, for example, flip chip bonding.

第二晶片140具有第二主動表面141、相對於第二主動表面141的第二背面142以及位於第二主動表面141上的多個第二導電柱143,其中第二晶片140例如是以其第二背面142朝向第一晶片120的第一背面122而設置於第一晶片120上,使得第二背 面142與第一背面122彼此相對。在本實施例中,晶片堆疊封裝結構100更包括黏膠層160,例如是絕緣膠層、絕緣膠膜或絕緣散熱膠等具黏著力之膠體。在將第二晶片140疊置於第一晶片120上之後,便是利用黏膠層160來連接第一晶片120的第一背面122與第二晶片140的第二背面142,以將第二晶片140黏貼固定於第一晶片110上。在本實施例中,第一晶片120的尺寸與第二晶片140的尺寸實質上一致,因此第一晶片120的第一背面122的表面積例如是與第二晶片140的第二背面142的表面積相等,但本發明不限於此。在其他實施例中,第一晶片120的尺寸亦可大於第二晶片140的尺寸,此時的第一晶片120的第一背面122的表面積例如是大於第二晶片140的第二背面142的表面積。 The second wafer 140 has a second active surface 141, a second back surface 142 opposite to the second active surface 141, and a plurality of second conductive pillars 143 on the second active surface 141, wherein the second wafer 140 is, for example, The second back surface 142 is disposed on the first wafer 120 toward the first back surface 122 of the first wafer 120 such that the second back The face 142 and the first back face 122 are opposed to each other. In this embodiment, the wafer stack package structure 100 further includes an adhesive layer 160, such as an adhesive layer such as an insulating layer, an insulating film or an insulating heat sink. After the second wafer 140 is stacked on the first wafer 120, the first back surface 122 of the first wafer 120 and the second back surface 142 of the second wafer 140 are connected by the adhesive layer 160 to transfer the second wafer. The adhesive is attached to the first wafer 110. In the present embodiment, the size of the first wafer 120 is substantially the same as the size of the second wafer 140, and thus the surface area of the first back surface 122 of the first wafer 120 is, for example, equal to the surface area of the second back surface 142 of the second wafer 140. However, the invention is not limited thereto. In other embodiments, the size of the first wafer 120 may also be larger than the size of the second wafer 140. The surface area of the first back surface 122 of the first wafer 120 is greater than the surface area of the second back surface 142 of the second wafer 140, for example. .

如圖1與圖2所示,本實施例的第一晶片120上的第一導電柱123的數量例如是與第二晶片140上的第二導電柱143的數量相同,惟第一導電柱123在主動表面121上的位置分佈與第二導電柱143在主動表面121上的位置分佈有所不同。換言之,在將第二晶片140疊置於第一晶片120上之後,第一導電柱123與第二導電柱143例如是非對稱地設置於黏膠層160的相對兩側。在另一實施例中,數量相同的第導電柱123與第二導電柱143可以是對稱地設置於黏膠層160的相對兩側。在又一實施例中,第一晶片120上的第一導電柱123的數量可不同於第二晶片140上的第二導電柱143的數量,而使第一導電柱123與第二導電柱143非對稱地設置於黏膠層160的相對兩側。 As shown in FIG. 1 and FIG. 2, the number of the first conductive pillars 123 on the first wafer 120 of the present embodiment is, for example, the same as the number of the second conductive pillars 143 on the second wafer 140, but the first conductive pillar 123 The positional distribution on the active surface 121 differs from the positional distribution of the second conductive post 143 on the active surface 121. In other words, after the second wafer 140 is stacked on the first wafer 120, the first conductive pillars 123 and the second conductive pillars 143 are asymmetrically disposed on opposite sides of the adhesive layer 160, for example. In another embodiment, the same number of the first conductive pillars 123 and the second conductive pillars 143 may be symmetrically disposed on opposite sides of the adhesive layer 160. In still another embodiment, the number of the first conductive pillars 123 on the first wafer 120 may be different from the number of the second conductive pillars 143 on the second wafer 140, and the first conductive pillar 123 and the second conductive pillar 143 are made. They are asymmetrically disposed on opposite sides of the adhesive layer 160.

如圖2所示,第一接墊112例如是位在第一晶片120在線路載板110上的正投影內,而圍繞第一接墊112的第二接墊113則位在第一晶片120在線路載板110上的正投影外,以利於第二晶片140透過打線接合的方式與第二接墊113電性連接。在本實施例中,焊線150的其中一端連接至第二晶片140的第二導電柱143,且焊線150的另一端連接至與線路載板110的第二接墊113,以電性連接第二導電柱143與第二接墊113。一般而言,焊線150的材質可包括銅、金、銀或上述金屬的合金。 As shown in FIG. 2, the first pad 112 is located in the orthographic projection of the first wafer 120 on the line carrier 110, and the second pad 113 surrounding the first pad 112 is located on the first wafer 120. In addition to the orthographic projection on the line carrier 110, the second wafer 140 is electrically connected to the second pad 113 by means of wire bonding. In this embodiment, one end of the bonding wire 150 is connected to the second conductive pillar 143 of the second wafer 140, and the other end of the bonding wire 150 is connected to the second pad 113 of the circuit carrier 110 to be electrically connected. The second conductive pillar 143 and the second pad 113. In general, the material of the bonding wire 150 may include copper, gold, silver, or an alloy of the above metals.

簡言之,由於本實施例的晶片堆疊封裝結構100包括相互堆疊的第一晶片120與第二晶片140,其中第一晶片120可以覆晶接合的方式使第一導電柱123電性連接於第一接墊112,且第二晶片140可以打線接合的方式使第二導電柱143電性連接於第二接墊113,因此在佈線面積有限的線路載板110上,亦能獲致高腳數,以符合高積集度與微間距的設計需求。 In short, since the wafer stack package structure 100 of the present embodiment includes the first wafer 120 and the second wafer 140 stacked on each other, the first wafer 120 can be electrically connected to the first conductive pillar 123 by flip-chip bonding. A pad 112 is disposed, and the second wafer 140 can be electrically connected to the second pad 113 by means of wire bonding. Therefore, the number of pins on the line carrier 110 having a limited wiring area can be obtained. In order to meet the design requirements of high integration and micro-pitch.

此外,第一導電柱123與第二導電柱143之材質可選自於由銅、金、銀或上述金屬的合金所組成之族群中的一種材質,較佳的是,第一導電柱123與第二導電柱143皆為銅或銅合金柱,但本發明不以此為限。具體來說,第一晶片120透過銅柱接合於線路載板110後便可由銅柱支撐於線路載板110的上方,連帶著,相互堆疊的第一晶片120與第二晶片140亦是由位於第一晶片120的主動表面121上的銅柱所支撐,故無需填充底膠(underfill)於第一晶片120的主動表面121與基材111的表面111a之間。由於銅 為低電阻及抗電致遷移能力高的金屬材料,因此利用銅柱來作為第一晶片120與線路載板110之間電性連接的媒介,以及利用銅柱來作為焊線150與第二晶片140之間電性連接的媒介,皆能有效降低電流推擠以及電致遷移(electromigration)效應的發生機率。 In addition, the material of the first conductive pillar 123 and the second conductive pillar 143 may be selected from one of a group consisting of copper, gold, silver or an alloy of the above metals. Preferably, the first conductive pillar 123 and The second conductive pillars 143 are all copper or copper alloy pillars, but the invention is not limited thereto. Specifically, the first wafer 120 is bonded to the line carrier 110 through the copper pillars, and then supported by the copper pillars above the line carrier 110. The first wafer 120 and the second wafer 140 stacked on each other are also located. The copper pillars on the active surface 121 of the first wafer 120 are supported, so that no underfill is required to be filled between the active surface 121 of the first wafer 120 and the surface 111a of the substrate 111. Due to copper The metal material has low resistance and high electromigration resistance, so the copper pillar is used as a medium for electrically connecting the first wafer 120 and the wiring carrier 110, and the copper pillar is used as the bonding wire 150 and the second wafer. The medium that is electrically connected between 140 can effectively reduce the probability of current pushing and electromigration effects.

請參考圖2,在本實施例中,晶片堆疊封裝結構100更包括封裝膠體170,其材質可為環氧樹脂。封裝膠體170形成於基材111的表面111a上,用以包覆第二接墊113、第一晶片120、第二晶片140、第二導電柱143以及焊線150,其中封裝膠體170更進一步填入第一主動表面121與線路載板110之間以包覆第一導電柱123、焊球130以及第一接墊112。由於第一導電柱123可提高線路載板110及第一晶片120與封裝膠體170之間的結合面積與結合強度,且第二導電柱143可提高第二晶片140與封裝膠體170之間的結合面積與結合強度,因此有助於改善封裝膠體170脫層(delamination)的現象,以提高晶片堆疊封裝結構100的可靠度。 Referring to FIG. 2 , in the embodiment, the wafer stack package structure 100 further includes an encapsulant 170 , which may be made of epoxy resin. The encapsulant 170 is formed on the surface 111a of the substrate 111 for covering the second pad 113, the first wafer 120, the second wafer 140, the second conductive pillar 143, and the bonding wire 150, wherein the encapsulant 170 is further filled. The first active surface 121 and the line carrier 110 are interposed to cover the first conductive pillars 123, the solder balls 130, and the first pads 112. The first conductive pillar 123 can improve the bonding area and bonding strength between the circuit carrier 110 and the first wafer 120 and the encapsulant 170, and the second conductive pillar 143 can improve the bonding between the second wafer 140 and the encapsulant 170. The area and bonding strength, thus helping to improve the delamination of the encapsulant 170 to improve the reliability of the wafer stack package structure 100.

以下將列舉其他實施例以作為說明。在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。 Other embodiments are listed below for illustration. It is to be noted that the following embodiments use the same reference numerals and parts of the above-mentioned embodiments, and the same reference numerals are used to refer to the same or similar elements, and the description of the same technical content is omitted. For the description of the omitted portions, reference may be made to the foregoing embodiments, and the following embodiments are not repeated.

圖3是本發明另一實施例的晶片堆疊封裝結構的剖面示意圖。請參考圖3,圖3的晶片堆疊封裝結構100A與圖2的晶片堆疊封裝結構100大致相似,惟兩者的主要差異在於:在晶片堆 疊封裝結構100A中,各個第二導電柱143可具有金屬層144,其中各個金屬層144位於對應的第二導電柱143相對遠離第二主動表面141的端部143a。一般而言,各個金屬層144例如是透過電鍍的方式而形成於對應的第二導電柱143的端部143a,其中金屬層144的材質可為鋁,且厚度約介於0.6微米至0.9微米之間。因此,本實施例的焊線150可透過金屬層144接合於第二導電柱143的端部143a,藉以增加焊線150與第二導電柱143彼此間的結合強度。 3 is a cross-sectional view showing a wafer stack package structure according to another embodiment of the present invention. Referring to FIG. 3, the wafer stack package structure 100A of FIG. 3 is substantially similar to the wafer stack package structure 100 of FIG. 2, but the main difference between the two is: in the wafer stack In the stacked package structure 100A, each of the second conductive pillars 143 may have a metal layer 144, wherein each of the metal layers 144 is located at an end 143a of the corresponding second conductive pillar 143 that is relatively far from the second active surface 141. Generally, each metal layer 144 is formed on the end portion 143a of the corresponding second conductive pillar 143 by electroplating, wherein the metal layer 144 is made of aluminum and has a thickness of about 0.6 micrometers to 0.9 micrometers. between. Therefore, the bonding wire 150 of the present embodiment can be bonded to the end portion 143a of the second conductive pillar 143 through the metal layer 144, thereby increasing the bonding strength between the bonding wire 150 and the second conductive pillar 143.

綜上所述,本發明的晶片堆疊封裝結構可包括相互堆疊的第一晶片與第二晶片,其中第一晶片可以覆晶接合的方式使第一導電柱電性連接於第一接墊,且第二晶片可以打線接合的方式使第二導電柱電性連接於第二接墊,因此在佈線面積有限的線路載板的上,亦能獲致高腳數,以符合高積集度與微間距的設計需求。另一方面,第一晶片可由第一導電柱支撐於線路載板的上方,故無需填充底膠於第一晶片與線路載板之間。由於第一導電柱與第二導電柱皆例如是銅柱,其中銅為低電阻及抗電致遷移能力高的金屬材料,因此利用銅柱來做為第一晶片與線路載板之間電性連接的媒介,以及利用銅柱來做為焊線與第二晶片之間電性連接的媒介,皆能有效降低電流推擠以及電致遷移(效應的發生機率。 另外,封裝膠體亦可透過第一導電柱與第二導電柱,以緊密地結合於線路載板以及相對堆疊的第一晶片與第二晶片,而有助於改善封裝膠體脫層的現象,以提高晶片堆疊封裝結構的可靠度。 In summary, the wafer stack package structure of the present invention may include a first wafer and a second wafer stacked on each other, wherein the first wafer may be electrically bonded to the first pad by flip-chip bonding, and The second wafer can be electrically connected to the second pad by wire bonding, so that the number of high pins can be obtained on the line carrier with limited wiring area to meet the high integration and fine pitch. Design needs. On the other hand, the first wafer can be supported by the first conductive pillar above the line carrier, so that it is not necessary to fill the primer between the first wafer and the line carrier. Since the first conductive pillar and the second conductive pillar are both copper pillars, wherein copper is a metal material with low resistance and high electromigration resistance, the copper pillar is used as the electrical property between the first wafer and the line carrier. The medium to be connected, as well as the copper column as the medium for the electrical connection between the bonding wire and the second wafer, can effectively reduce current pushing and electromigration (the probability of occurrence of effects). In addition, the encapsulant can also pass through the first conductive pillar and the second conductive pillar to tightly bond to the line carrier and the oppositely stacked first wafer and the second wafer, thereby helping to improve the phenomenon of encapsulation colloid delamination. Improve the reliability of the wafer stack package structure.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧晶片堆疊封裝結構 100‧‧‧ wafer stacking structure

110‧‧‧線路載板 110‧‧‧Line carrier

111‧‧‧基材 111‧‧‧Substrate

111a‧‧‧表面 111a‧‧‧ surface

112‧‧‧第一接墊 112‧‧‧First mat

113‧‧‧第二接墊 113‧‧‧second mat

120‧‧‧第一晶片 120‧‧‧First chip

121‧‧‧第一主動表面 121‧‧‧First active surface

122‧‧‧第一背面 122‧‧‧ first back

123‧‧‧第一導電柱 123‧‧‧First conductive column

130‧‧‧焊球 130‧‧‧ solder balls

140‧‧‧第二晶片 140‧‧‧second chip

141‧‧‧第二主動表面 141‧‧‧Second active surface

142‧‧‧第二背面 142‧‧‧ second back

143‧‧‧第二導電柱 143‧‧‧Second conductive column

150‧‧‧焊線 150‧‧‧welding line

160‧‧‧黏膠層 160‧‧‧Adhesive layer

170‧‧‧封裝膠體 170‧‧‧Package colloid

Claims (10)

一種晶片堆疊封裝結構,包括:一線路載板,具有多個第一接墊以及環繞該些第一接墊的多個第二接墊;一第一晶片,設置於該線路載板上,該第一晶片具有一第一主動表面、相對於該第一主動表面的一第一背面以及位於該第一主動表面上的多個第一導電柱;多個焊球,分別電性連接該些第一導電柱與該些第一接墊;一第二晶片,具有一第二主動表面、相對於該第二主動表面的一第二背面以及連接該第二主動表面上的多個第二導電柱,其中該第二晶片設置於該第一晶片上,且該第二背面與該第一背面彼此相對;以及多條焊線,分別電性連接該些第二導電柱與該些第二接墊,其中各該焊線的其中一端連接至對應的該第二導電柱,且各該焊線的另一端連接至對應的該第二接墊。 A wafer stacking package structure includes: a line carrier board having a plurality of first pads and a plurality of second pads surrounding the first pads; a first chip disposed on the line carrier board, the The first wafer has a first active surface, a first back surface opposite to the first active surface, and a plurality of first conductive pillars on the first active surface; a plurality of solder balls electrically connected to the first a conductive pillar and the first pads; a second wafer having a second active surface, a second back surface opposite to the second active surface, and a plurality of second conductive pillars connected to the second active surface The second wafer is disposed on the first wafer, and the second back surface and the first back surface are opposite to each other; and the plurality of bonding wires are electrically connected to the second conductive pillars and the second pads respectively One end of each of the bonding wires is connected to the corresponding second conductive post, and the other end of each of the bonding wires is connected to the corresponding second pad. 如申請專利範圍第1項所述的晶片堆疊封裝結構,其中該些焊線的材質包括銅、金、銀或上述金屬的合金。 The wafer stack package structure according to claim 1, wherein the material of the bonding wires comprises copper, gold, silver or an alloy of the above metals. 如申請專利範圍第1項所述的晶片堆疊封裝結構,其中該些第一導電柱與該些第二導電柱之材質係選自於由銅、金、銀或上述金屬的合金所組成之族群中的一種材質。 The wafer stack package structure of claim 1, wherein the materials of the first conductive pillars and the second conductive pillars are selected from the group consisting of copper, gold, silver or alloys of the above metals. One of the materials. 如申請專利範圍第3項所述的晶片堆疊封裝結構,其中各該第二導電柱具有一金屬層,各該金屬層位於對應的該第二導電 柱相對遠離該第二主動表面的一端部。 The wafer stack package structure of claim 3, wherein each of the second conductive pillars has a metal layer, and each of the metal layers is located at the corresponding second conductive layer. The post is relatively far from one end of the second active surface. 如申請專利範圍第4項所述的晶片堆疊封裝結構,其中該些金屬層之材質包含鋁。 The wafer stack package structure of claim 4, wherein the material of the metal layers comprises aluminum. 如申請專利範圍第1項所述的晶片堆疊封裝結構,其中該些第一接墊位在該第一晶片在該線路載板上的正投影內。 The wafer stack package structure of claim 1, wherein the first pads are located in an orthographic projection of the first wafer on the line carrier. 如申請專利範圍第1項所述的晶片堆疊封裝結構,其中該些第二接墊位在該第一晶片在該線路載板上的正投影外。 The wafer stack package structure of claim 1, wherein the second pads are located outside the orthographic projection of the first wafer on the line carrier. 如申請專利範圍第1項所述的晶片堆疊封裝結構,更包括:一黏膠層,連接該第一背面與該第二背面。 The wafer stack package structure of claim 1, further comprising: an adhesive layer connecting the first back surface and the second back surface. 如申請專利範圍第1項所述的晶片堆疊封裝結構,更包括:一封裝膠體,包覆該些第二接墊、該第一晶片、該第二晶片、該些第二導電柱以及該些焊線,並填入該第一主動表面與該線路載板之間以包覆該些第一導電柱、該些焊球以及該些第一接墊。 The wafer stack package structure of claim 1, further comprising: an encapsulant covering the second pads, the first wafer, the second wafer, the second conductive pillars, and the And bonding the first active surface and the line carrier to cover the first conductive pillars, the solder balls, and the first pads. 如申請專利範圍第1項所述的晶片堆疊封裝結構,其中該第一背面的表面積大於或等於該第二背面的表面積。 The wafer stack package structure of claim 1, wherein the first back surface has a surface area greater than or equal to a surface area of the second back surface.
TW104112561A 2015-04-20 2015-04-20 Multi-chip stack package structure TWI550805B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104112561A TWI550805B (en) 2015-04-20 2015-04-20 Multi-chip stack package structure
CN201510352871.4A CN106206556A (en) 2015-04-20 2015-06-24 Chip stacking and packaging structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104112561A TWI550805B (en) 2015-04-20 2015-04-20 Multi-chip stack package structure

Publications (2)

Publication Number Publication Date
TWI550805B true TWI550805B (en) 2016-09-21
TW201639104A TW201639104A (en) 2016-11-01

Family

ID=57445168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104112561A TWI550805B (en) 2015-04-20 2015-04-20 Multi-chip stack package structure

Country Status (2)

Country Link
CN (1) CN106206556A (en)
TW (1) TWI550805B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551364A (en) * 2022-04-28 2022-05-27 珠海市人民医院 Multi-chip fan-out type packaging structure and packaging method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI240342B (en) * 2004-09-23 2005-09-21 Taiwan Semiconductor Mfg Aluminum cap for reducing scratch and wire-bond bridging of bond pads
US7087458B2 (en) * 2002-10-30 2006-08-08 Advanpack Solutions Pte. Ltd. Method for fabricating a flip chip package with pillar bump and no flow underfill
TWI460845B (en) * 2010-07-19 2014-11-11 Tessera Inc Stackable molded microelectronic packages with area array unit connectors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698527B1 (en) * 2005-08-11 2007-03-22 삼성전자주식회사 Chip stack package having pillar bump using metal bump and manufacturing method thereof
CN100481420C (en) * 2005-09-08 2009-04-22 南茂科技股份有限公司 Stack type chip packaging structure, chip packaging body and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087458B2 (en) * 2002-10-30 2006-08-08 Advanpack Solutions Pte. Ltd. Method for fabricating a flip chip package with pillar bump and no flow underfill
TWI240342B (en) * 2004-09-23 2005-09-21 Taiwan Semiconductor Mfg Aluminum cap for reducing scratch and wire-bond bridging of bond pads
TWI460845B (en) * 2010-07-19 2014-11-11 Tessera Inc Stackable molded microelectronic packages with area array unit connectors

Also Published As

Publication number Publication date
CN106206556A (en) 2016-12-07
TW201639104A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
US9449941B2 (en) Connecting function chips to a package to form package-on-package
US20180114786A1 (en) Method of forming package-on-package structure
US20070254406A1 (en) Method for manufacturing stacked package structure
US10121736B2 (en) Method of fabricating packaging layer of fan-out chip package
US20140284817A1 (en) Semiconductor device and manufacturing method of the same
US11600545B2 (en) Semiconductor devices including a lower semiconductor package, an upper semiconductor package on the lower semiconductor package, and a connection pattern between the lower semiconductor package and the upper semiconductor package
CN105990267A (en) Semiconductor device
TW201351579A (en) High density 3D package
US8008765B2 (en) Semiconductor package having adhesive layer and method of manufacturing the same
US11869829B2 (en) Semiconductor device with through-mold via
CN107946291B (en) Semiconductor device with a plurality of semiconductor chips
US20130256915A1 (en) Packaging substrate, semiconductor package and fabrication method thereof
TWI688067B (en) Semiconductor device and its manufacturing method
TWI550805B (en) Multi-chip stack package structure
US10008441B2 (en) Semiconductor package
JP6486855B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2010073771A (en) Mounting structure for semiconductor device
KR101607989B1 (en) Package on package and method for manufacturing the same
TWM548889U (en) Embedded substrate package structure
JPWO2016199437A1 (en) Semiconductor device
CN212342601U (en) Multi-chip ultrathin fan-out packaging structure
US20240079366A1 (en) Semiconductor package
JP2004006482A (en) Semiconductor device and its manufacturing method
CN107731759A (en) Semiconductor package
TWI585924B (en) Dram chip package structure