TWI548874B - 監測及紀錄病毒感染歷程及篩選疫苗之方法及系統 - Google Patents

監測及紀錄病毒感染歷程及篩選疫苗之方法及系統 Download PDF

Info

Publication number
TWI548874B
TWI548874B TW100102179A TW100102179A TWI548874B TW I548874 B TWI548874 B TW I548874B TW 100102179 A TW100102179 A TW 100102179A TW 100102179 A TW100102179 A TW 100102179A TW I548874 B TWI548874 B TW I548874B
Authority
TW
Taiwan
Prior art keywords
host cell
virus
polymer material
water gel
shape variable
Prior art date
Application number
TW100102179A
Other languages
English (en)
Other versions
TW201231973A (en
Inventor
吳志偉
吳彰哲
黃士豪
張聖平
Original Assignee
國立台灣海洋大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立台灣海洋大學 filed Critical 國立台灣海洋大學
Priority to TW100102179A priority Critical patent/TWI548874B/zh
Priority to US13/185,996 priority patent/US20120190007A1/en
Priority to US13/547,323 priority patent/US20120276526A1/en
Publication of TW201231973A publication Critical patent/TW201231973A/zh
Application granted granted Critical
Publication of TWI548874B publication Critical patent/TWI548874B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

監測及紀錄病毒感染歷程及篩選疫苗之方法及系統
本發明係關於一種監測及紀錄病毒於宿主細胞之感染歷程以及篩選疫苗之方法及系統。
病毒感染細胞大致可分成三個階段:(1)入侵期:找到目標並進入細胞內;(2)複製期:複製病毒所需之核酸及蛋白質;(3)傳播期:脫離受感染細胞進而感染其他細胞。充分瞭解病毒感染歷程不僅能作為開發抗病毒藥物或疫苗之依據,亦有助於準確的提供用藥的時機,有效的治療疾病。然而,現有病毒檢測技術,包括反轉錄聚合酶鏈結反應(Reverse Transcriptase-Polymerase Chain Reaction,RT-PCR)、病毒分離培養、酵素聯結免疫吸附分析(ELISA)、聚合酶連鎖反應(PCR)等技術及近來發展的微型懸臂樑生物感測技術,大多是以特異性分子結合反應(例如,專一性引子/探針或蛋白質抗體抗原結合反應)分析而得知特定病毒的存在與否,但並無法用以記錄病毒感染細胞之完整歷程。
此外,疫苗是防治病毒感染的主要方法之一,然而在疫苗篩選技術上,現有技術仍多以細胞或動物實驗為主,非常費時且沒有效率,無法達到快速篩選之目的。
本發明係關於一種檢測技術,可監測及紀錄病毒於宿主細胞中之感染歷程以及篩選有效疫苗,其特徵在於利用一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區,使宿主細胞固定於該高分子材料中,再使含待測病毒或疫苗之樣本與固定於該高分子材料的宿主細胞接觸進行檢測產生形變量,並紀錄以獲得一形變量變化模式(profile),作為判斷基礎。
因此,在一方面,本發明提供一種監測及紀錄待測病毒於宿主細胞感染歷程的方法,其包括:
(a)提供一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區;其中該高分子材料具親水性及生物相容性;
(b)加入宿主細胞使其與該高分子材料接觸,固定於該高分子材料中;及
(c)進行一檢測,其包括加入一含待測病毒之樣本,使其與前述固定於該高分子材料的宿主細胞接觸,使該病毒感染該宿主細胞,因而該微型懸臂樑產生一形變量;在一定期間內測量並紀錄一定時間間隔之各時間點之形變量,以獲得形變量變化模式(profile),用以判斷該待測病毒於該宿主細胞之感染歷程。
此外,在另一方面,本發明又提供一種檢測一待測疫苗是否具有抑制病毒感染宿主細胞之功效的方法,其包括:
(a)提供一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區;其中該高分子材料具親水性及生物相容性;
(b)加入宿主細胞使其與高分子材料接觸,固定於該水膠材料中;
(c)進行第一檢測,其包括加入含該病毒之第一樣本,使其與前述固定於該高分子材料的宿主細胞接觸,而使該病毒感染該宿主細胞,因而該微型懸臂樑產生第一形變量;在一定期間內測量並紀錄一定時間間隔之各時間點之第一形變量,以獲得第一形變量變化模式(profile),其具有第一斜率;
(d)另進行第二檢測,其包括加入含該病毒及該待測疫苗之第二樣本,使其與前述步驟(b)固定於該高分子材料的宿主細胞接觸,使該待測疫苗與該病毒或該宿主細胞作用,因而該微型懸臂樑產生第二形變量;再於步驟(c)相同之一定期間內測量並紀錄一定時間間隔之各時間點之第二形變量,以獲得第二形變量變化模式(profile),其具有第二斜率;及
(e)比較步驟(c)所得之第一形變量變化模式之第一斜率與步驟(d)所得之第二形變量變化模式之第二斜率;其中如第二斜率小於第一斜率,表示該測試疫苗具有抑制病毒感染宿主細胞之功效。
再者,本發明尚提供一種監測及紀錄待測病毒於宿主細胞之感染歷程的系統,其包括:
(a)一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區及一檢測區域,其中該高分子材料具親水性及生物相容性;當該高分子材料用於固定宿主細胞,且當待測病毒與固定於該高分子材料的宿主細胞接觸進而感染該宿主細胞時,該微型懸臂樑會因此產生一形變量;
(b)一訊號檢測裝置,包括接收形變量訊號及輸出之元件;及
(c)一訊號處理裝置,其接受前述訊號並換算出前述微型懸臂樑之形變量,在一測量期間形成一形變量變化模式,用以判斷該病毒於該宿主細胞之感染歷程。
下文中將詳細描述本發明的各種具體實施例。本發明的其他特徵將藉由下列有關各種具體實施例的詳細說明以及申請專利範圍而清楚呈現。
相信在本發明所屬技術領域中具通常知識者在不需進一步說明之情況下可根據此處的描述利用本發明至其最廣範圍。因此,下列描述應被當作例示之目的而非以任何方式作為本發明之範圍的限制。
除非另有說明,否則此處使用之全部技術和科學名詞與本發明所屬技術領域之技藝人士通常所瞭解的意義相同。
此處所使用的冠詞「一」係指該冠詞的一或一個以上(即,至少一個)的文法受詞。
本發明係關於一種利用微型懸臂樑檢測技術進行監測及紀錄病毒於宿主細胞中之感染歷程以及篩選有效疫苗之方法及系統。
在一方面,本發明提供一種監測及紀錄病毒於宿主細胞之感染歷程的方法,其包括:
(a)提供一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區;其中該高分子材料具親水性及生物相容性;
(b)加入宿主細胞使其與該高分子材料接觸,固定於該高分子材料中;及
(c)進行一檢測,其包括加入一含待測病毒之樣本,使其與前述固定於該高分子材料的宿主細胞接觸,使該病毒感染該宿主細胞,因而該微型懸臂樑產生一形變量;在一定期間內測量並紀錄一定時間間隔之各時間點之形變量,以獲得形變量變化模式(profile),用以判斷該待測病毒於該宿主細胞之感染歷程。
參照圖1,根據本發明之一具體實施例,微型懸臂樑感測裝置101包括微型懸臂樑2,該微型懸臂樑具有接觸區4,在該接觸區上附有高分子材料6。
此處所使用的「高分子材料」係具具有親水性(hydrophilic)及生物相容性(biocompatible)的高分子材料,其可用於固定細胞,而不對細胞產生毒性。在一具體實例中,該高分子材料係一水膠材料。
此處所使用的「水膠材料」係可吸水性之膠體,水膠材料置於水中可吸水產生膨潤,且可維持其三維結構,其具有親水性(hydrophilic)及生物相容性(biocompatible)。可使用的水膠材料類型繁多,包括但不限於聚甲基丙烯酸羟乙脂(PHEMA)水膠,聚乙二醇二丙烯酸(PEGDA)水膠,明膠丙烯酸酯(gelatin methacrylate,GelMA)水膠,褐藻膠(alginate)水膠,褐藻膠(alginate)水膠,幾丁聚醣(chitosan)水膠及瓊膠(agarose)水膠等。為使水膠材料固定於微型懸臂樑上,典型地,可於水膠材料溶液添加交聯劑與光起始劑,使水膠材料溶液具有曝光微成型之能力,然後以曝光方式使水膠材料固化於微型懸臂樑之接觸區。
此處所使用的「微型懸臂樑」可為一般用於檢測的微型懸臂樑感測器,其可因微小的力量變化產生結構上的形變,例如,偏折,而基於此微小的形變可進行高靈敏的檢測。在一具體實施例中,該微型懸臂樑係π型結構,其具有較良好的抗扭矩力(Torsion Force)之能力。參照圖2,在一特定實例中,本發明之微型懸臂樑係π型微型懸臂樑22,選擇水膠材料作為固定細胞用的高分子材料,在π型微型懸臂樑22中央設計為水膠材料曝光區域8,水膠材料之曝光尺寸依微型懸臂樑之線寬設計為200 μm x 200 μm之方塊,π型微型懸臂樑兩側10,12可做為雷射光點入射與反射之光學檢測區,避免光線直接照射於不甚平坦之水膠材料上,或造成折射使後續位移感測器難以接收光點訊號導致訊號量測不準確,也可避免高能之雷射光束對細胞造成傷害。
經螢光顯微鏡同步觀察證實,根據本發明測得的微型懸臂樑之形變量變化模式可代表病毒於該宿主細胞之感染歷程。典型地,病毒於宿主細胞該感染歷程包括入侵期、複製期及傳播期。在一具體實例中,當微型懸臂樑之形變量達最大值時,代表複製期結束,即將進入傳播期。
參照圖3,根據本發明之一具體實施例,選擇水膠材料作為固定細胞用的高分子材料,使水膠材料溶液經紫外光照射而固化於微型懸臂樑上,接著,通入一含有宿主細胞之樣本,使宿主細胞貼附於水膠材料上,此時微型懸臂樑產生一形變量h1。隨後通入一含病毒之樣本,使得該病毒感染該宿主細胞,而隨著病毒接觸細胞(入侵期)、於細胞內複製(複製期)、脫離細胞(傳播期),微型懸臂樑將產生隨時間變化之形變量h2、h3及h0,其中h2代表病毒吸附於細胞表面之時期,h3代表病毒進入細胞並繁殖之時期,以及h0代表病毒繁殖完成後脫離水膠材料之時期,其中h3>h2>h1,以及h0<h3,表示形變量達到最大值後開始回復。
微型懸臂樑產生之形變量的檢測可用一般檢測方法進行,包括但不限於光學檢測法、聲學檢測法、電學檢測法、或磁學檢測法。
在一具體實例中,本發明之微型懸臂樑感測裝置可進一步包括一微流道,其可供前述樣本由該微流道通入所述微型懸臂樑之接觸區之高分子材料上,使宿主細胞固定於高分子材料上以及使該病毒感染固定於高分子材料上的宿主細胞。
關於本發明之微型懸臂樑感測裝置之製作,典型地,微型懸臂樑可以沉積低應力氮化矽之四吋矽晶圓進行製作,在沉積低應力氮化矽之矽晶圓上旋塗光阻,進行曝光顯影定義微型懸臂樑之圖形(Pattern)後,使用反應離子乾蝕刻系統將未定義光阻部分之低應力氮化矽蝕刻移除,其後利用氫氧化鉀化學蝕刻液,對底層矽基材進行濕蝕刻,使微型懸臂樑能夠順利懸浮,以完成微型懸臂樑晶片之釋放並予以切割。另一方面,在矽晶圓基材塗覆光阻,經過光阻曝前烤、曝光、曝後烤顯影之程序完成微流道系統母模之製作。接著,將調配好的聚二甲基矽氧烷(PDMS)溶液澆注於微流道系統母模上,經固化、脫模、裁切及打孔,即完成PDMS微流道系統晶片,隨後將明膠其塗佈於PDMS微流道之上壁面,待明膠乾燥後,形成明膠犧牲層,再利用氧電漿接合技術與微型懸臂樑晶片封裝接合。最後,製備水膠材料溶液,經由微流道通入微型懸臂樑晶片,利用曝光固化之方式將水膠固化於微型懸臂樑上;最後沖洗殘餘水膠溶液及移除明膠犧牲層後,即可完成本發明之微型懸臂樑感測裝置。參照圖4,在一具體實例中,本發明之微型懸臂樑感測裝置101包括微型懸臂樑2、附在其接觸端的水膠材料6、PDMS微流道14、矽晶圓基材16、微流道注入口141及微流道排出口142。
此外,本發明之微型懸臂樑感測裝置亦可用以篩選疫苗。當加入含有宿主細胞之樣本,使宿主細胞固定於微型懸臂樑上之高分子材料後,進行另一檢測,包括加入含病毒及待測疫苗之樣本,如該待測疫苗具有抑制病毒侵入宿主細胞之效果,則預期在相同期間所測得微型懸臂樑的形變量不會持續變大,即形變量變化模式之斜率將傾向持平。
因此,在另一方面,本發明提供一種檢測一待測疫苗是否具有抑制病毒感染宿主細胞之功效的方法,其包括:
(a)提供一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區;其中該高分子材料具親水性及生物相容性;
(b)加入宿主細胞使其與高分子材料接觸,固定於該高分子材料中;
(c)進行第一檢測,其包括加入含該病毒之第一樣本,使其與前述固定於該高分子材料的宿主細胞接觸,而使該病毒感染該宿主細胞,因而該微型懸臂樑產生第一形變量;在一定期間內測量並紀錄一定時間間隔之各時間點之第一形變量,以獲得第一形變量變化模式(profile),其具有第一斜率;
(d)另進行第二檢測,其包括加入含該病毒及該待測疫苗之第二樣本,使其與前述步驟(b)固定於該高分子材料的宿主細胞接觸,使該待測疫苗與該病毒或該宿主細胞作用,因而該微型懸臂樑產生第二形變量;在與步驟(c)相同之一定期間內測量並紀錄一定時間間隔之各時間點之第二形變量,以獲得第二形變量變化模式(profile),其具有第二斜率;及
(e)比較步驟(c)所得之第一形變量變化模式之第一斜率與步驟(d)所得之第二形變量變化模式之第二斜率;其中如第二斜率小於第一斜率,表示該測試疫苗具有抑制病毒感染宿主細胞之功效。
再者,又一方面,本發明尚提供一種監測及紀錄病毒於宿主細胞之感染歷程的系統,其包括:
(a)一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區及一訊號檢測區域,其中該高分子材料具親水性及生物相容性;當該高分子材料用於固定宿主細胞,且當待測病毒與固定於該高分子材料的宿主細胞接觸進而感染該宿主細胞時,該微型懸臂樑會因此產生一形變量;
(b)一訊號檢測裝置,包括接收形變量訊號及輸出之元件;及
(c)一訊號處理裝置,其接受前述訊號並換算出前述微型懸臂樑之形變量,在一測量期間形成一形變量變化模式,用以判斷該病毒於該宿主細胞之感染歷程。
根據本發明,該訊號檢測裝置可為基於光學檢測法、聲學檢測法、電學檢測法、或磁學檢測法而建立的檢測裝置。在一具體實例中,該訊號檢測裝置是一光學檢測裝置,其包括雷射光源、空間濾波器、聚焦透鏡組、折射透鏡、位移感測器,其中該雷射光源提供光束經過該空間濾波器形成均勻光束,然後經過該聚焦透鏡組成為平行光束,再經由該折射透鏡產生反射光束,對焦至前述微型懸臂樑感測裝置之光學檢測區域,最後由位移感測器接收該反射光束及輸出電訊號。
在一實例中,該光學測量裝置進一步包括電荷耦合裝置,其用以觀察經該折射透鏡產生之反射光束是否對焦至該微型懸臂樑感測裝置之光學檢測區域。在另一實例中,該電荷耦合裝置亦可用以觀察該宿主細胞之狀態。
參照圖5,在一具體實例中,本發明之系統為光學檢測系統,包括氦氖雷射光源102、空間濾波器104、聚光針孔(pinhole)105、聚焦透鏡106、折射透鏡108、位移感測器110、微型懸臂樑感測裝置101及訊號處理裝置112。
在一特定實例中,本發明提供一種監測及紀錄病毒於宿主細胞之感染歷程的系統,其包括:
(a)一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區及一光學檢測區域,其中該高分子材料具親水性及生物相容性;當該高分子材料用於固定宿主細胞,且當待測病毒與固定於該水膠材料的宿主細胞接觸進而感染該宿主細胞時,該微型懸臂樑會因此產生一形變量;
(b)一光學檢測裝置,包括雷射光源、空間濾波器、聚焦透鏡組、折射透鏡、位移感測器,其中該雷射光源提供光束經過該空間濾波器形成均勻光束,然後經過該聚焦透鏡組成為平行光束,再經由該折射透鏡產生反射光束,對焦至前述微型懸臂樑感測裝置之光學檢測區域,最後由位移感測器接收該反射光束及輸出電訊號;及
(c)一訊號處理裝置,其接受前述電訊號並換算出前述微型懸臂樑之形變量,在一測量期間形成一形變量變化模式,其表示該病毒於該宿主細胞之感染歷程。
本發明之各個具體實例的細節說明如後。本發明之技術特徵將會經由以下各個具體實例中的詳細說明及申請專利範圍而更清楚呈現。
實例 實例1:微型懸臂樑感測裝置之設計及製備 1.1. 微型懸臂樑晶片
本研究選用沉積低應力氮化矽層之四吋矽晶圓作為基材。將完成清潔之矽晶圓基材置於旋塗機中,將適量之AZ4620正光阻滴於矽晶圓中心位置並啟動旋塗機開始旋塗光阻。接著,進行軟烤程序,將有機溶劑及水分稍做去除。對光阻照射365 nm波長之紫外光,將設計完成之光罩圖形轉印至光阻上。在曝光完成後,將矽晶圓表面曝光完成之光阻放入稀釋後之AZ400K顯影液中進行顯影,去除鍵結疏離之光阻後便完成圖形之定義。再進行硬烤程序,使光阻內之有機溶劑與水等成份完全去除,使光阻圖形更加固定。
使用反應離子蝕刻機,通入SF6氣體,形成SF6電漿,對材料進行非等向性蝕刻反應,以丙酮將AZ4620光阻保護層去除,完成乾蝕刻製程。接者以氫氧化鉀蝕刻液進行濕蝕刻製程,待氮化矽層下之矽材料被蝕刻掏空後,使微型懸臂樑完成懸浮。接著,以去離子水沖洗去除蝕刻液,取出晶片稍作加熱,使晶片完成乾燥,便完成微型懸臂樑之釋放。經過裁切成適當大小後,即完成微型懸臂樑晶片。
1.2 聚二甲基矽氧烷(PDMS)微流道系統晶片
將矽晶圓基材清洗後,將SU-8光阻旋塗於矽晶圓基材上,接著進行曝前烤,然後照射紫外光進行曝光程序,再將塗有光阻之基材置於加熱板上進行曝後烤。曝後烤之目的在藉由烘烤過程增加SU-8光阻經紫外光照射後的交聯反應,此製程除加速交聯反應外,亦可避免SU-8光阻因溫差產生過大內應力而導致龜裂或掀起之現象。完成曝後烤製程後,將基材置入SU-8顯影液(PGMEA)中,顯影完成後利用異丙醇沖洗表面以避免光阻殘留,此時便完成微流道系統母模之製作。
將PDMS的主劑和硬化劑混合,然後將PDMS溶液緩慢澆注於微流道系統母模上,將多餘氣泡去除後,把PDMS與母模一併加熱使其固化。最後,進行脫模處理,裁切及打孔後即完成PDMS微流道系統晶片。
1.3 晶片組裝
將明膠加熱使其溶解後加水稀釋,塗佈於PDMS微流道之上壁面,乾燥後形成明膠犧牲層。將塗佈有明膠犧牲層之PDMS微流道系統晶片及微型懸臂樑晶片利用氧電漿轟擊進行表面改質,改質完成後將兩片晶片接合並以重物加壓,即完成封裝接合,如圖6所示。
1.4水膠材料之固定 1.4.1 水膠材料溶液
使用聚甲基丙烯酸羟乙脂(PHEMA)做為製作水膠材料溶液之材料。PHEMA水膠材料溶液的製備方法為將光起始劑溶於DMSO中,待光起始劑完全溶解,再加入水膠單體,交聯劑,與去離子水,然後混合均勻即可。
1.4.2 水膠溶液曝光成型
將製備完成之PHEMA水膠材料溶液經由微流道通入微型懸臂樑晶片,並利用光罩對其進行對準與使用紫外光曝光,使曝光成型之水膠材料固定於微型懸臂樑之曝光區域上,且符合光罩設計之200μm x 200μm之大小;將殘餘未反應之水膠去除後,利用熱水對明膠犧牲層進行沖洗去除,即完成本發明之微型懸臂樑感測裝置。接著,以滅菌釜對水膠材料進行加熱滅菌之程序,以進行後續實驗。
實例2:光學檢測系統之設計及建置
為進行監測及紀錄病毒於宿主細胞之感染歷程,設計並建置含有前述微型懸臂樑感測裝置之光學檢測系統。
利用低功率之氦氖雷射作為光源,經由空間濾波器與精密針孔,將雷射光強度均勻化並將光通量縮減,可藉此解決光源中心光強度較強,周圍光強度較弱之問題。當光點聚集成設定的大小後,經由折射透鏡將光路徑改變往下折射,接著對焦至微型懸臂樑的光學檢測區域,接著透過光槓桿原理使光線反射至四象限位移感測器(Position-Sensitive detector,PSD)並接收其光訊號,藉由四象限位移感測器量測此反射光的位移量d,再由此位移量d推算出微型懸臂樑感測器之形變量,如圖7所示。
微型懸臂樑感測器之形變量ΔZ可由光槓桿原理及三角幾何公式推導得出:
d:雷射光點反射於四象限位移感測器上的距離差值
h:微型懸臂樑感測器與四象限位移感測器之距離
L:微型懸臂樑感測器長度
在本發明之光學檢測系統中,亦使用電荷耦合裝置(Charge-coupled Device,CCD),觀察雷射光點是否透過光路設計準確聚焦於微型懸臂樑之光學檢測區上。其後四象限位移感測器接收之訊號會透過同組之放大器將訊號放大並由電腦執行記錄訊號之工作。此外,在本發明之光學檢測系統中,亦可使用螢光顯微鏡CCD鏡頭,同時觀察水膠材料上細胞生長型態的變化,可進一步了解病毒感染細胞之完整過程,並與傳統之病毒感染檢測互相比較印證其實驗結果。
本發明之光學檢測系統的實際架設如圖8所示。
實例3:監測及紀錄病毒於宿主細胞之感染歷程 3.1 細胞培養液之製備
本實例使用之細胞株為倉鼠幼兒腎臟細胞株BHK-21(Baby hamster kidney cell line,ATCC CCL-10),培養方法為將其培養於加入胰蛋白酶與乙烯二胺四乙酸(Ethylenediaminetetraacetic acid,EDTA)之培養液中,並培養於37℃之環境中,使細胞株能順利貼附於培養盤中,並行其分裂增生之功能。
3.2 通入細胞培養液及檢測微型懸臂量之形變量
將含有BHK-21細胞之培養液(濃度為1.6 x 106細胞/毫升)通入含有固化水膠的微型懸臂樑感測裝置進行細胞貼附,時間為7小時,並同時以光學檢測系統量測微型懸臂樑之形變量。
如圖9所示,本發明之光學檢測系統成功測得貼附於微型懸臂樑上之水膠材料所產生的形變量訊號。
此外,以螢光顯微鏡(OLYMPUS BX51)進行細胞之定性觀察,並染上螢光染劑,以細胞螢光訊號判斷,可發現細胞的確貼附於水膠材料表面並且為大部分皆為健康存活之狀態。
3.3 通入病毒樣本進行感染歷程之監測及紀錄
細胞貼附7小時後,以含有日本腦炎病毒之磷酸緩衝液通入微流道系統中,使病毒感染貼附於微型懸臂樑感測器水膠材料上之細胞。病毒感染細胞之感染狀況以M.O.I.(Multiplicity Of Infection)表示。M.O.I為病毒數量比上被感染細胞之數量,當M.O.I等於0.1時之感染情況,即為一隻病毒感染十顆細胞,本實驗採用之M.O.I值為1,即為一隻病毒感染一顆細胞。日本腦炎病毒進入細胞並進行複製與脫離之循環約為6小時,本實驗於細胞感染病毒後擷取7小時之微型懸臂樑感測器形變量訊號,以此形變量判斷病毒感染細胞之過程。
如圖10所示,當通入含有日本腦炎病毒之磷酸緩衝液,使病毒感染貼附於微型懸臂樑感測器水膠材料上之細胞後,微型懸臂樑開始持續向下變形,可推估在此階段病毒開始持續感染細胞,且開始於細胞內進行複製及組裝之程序。數據顯示在通入病毒感染細胞4小時40分鐘時,產生615nm之形變量變化,而在於此時間點之後,微型懸臂樑之形變量訊號已開始有些許之減小,推估於此時間點病毒已完成其複製及組裝之程序,開始脫離細胞,並於後續兩小時之時間中,微型懸臂樑感測器之形變量持續上升220nm,推估病毒完成複製組裝之程序後持續脫離細胞。
為確認細胞狀態,以螢光顯微鏡進行細胞感染病毒4小時與7小時後之定性觀察。如圖11所示,控制組之BHK-21細胞於貼附水膠材料11小時且沒有感染日本腦炎病毒,螢光定性觀察之結果為細胞大多健康存活且貼附於水膠材料表面(a);實驗組之BHK-21細胞於貼附於水膠材料7小時後,加入病毒,並分別於感染4小時(b)與感染7小時(c)之不同時間點進行螢光定性觀察,觀察可得知細胞逐漸因病毒感染而死亡,也因為細胞死亡進而導致細胞膜失去與水膠材料貼附固定之能力,導致細胞脫離水膠材料表面,此可印證上述微型懸臂樑形變量之減小的結果;以及於病毒感染7小時後使用磷酸緩衝溶液對微流道系統進行沖洗,觀察到發現幾乎全數細胞因病毒感染而死亡並且失去其貼附於水膠材料表面之能力,而被沖走脫離水膠材料表面(d)。
另以BHK-21細胞濃度2.4 x 106細胞/毫升,日本腦炎病毒M.O.I值為1,測量並記錄時間共計為16小時15分的微型懸臂量之形變量變化模式。如圖12所示,在時間點9:55:31 AM通入細胞並開始記錄,在細胞貼附時間共約6小時38分之期間,測得形變量變化模式之斜率為m1(-4.96);然後在時間點4:33:55AM沖洗細胞培養液5 ml,洗去未貼附於水膠材料之細胞,穩定後測得形變量變化模式之斜率為m2(-2.16),此步驟可確認後續之懸臂樑形變量是由後續之病毒感染造成,而不是由懸浮細胞貼附水膠材料所造成;在時間點7:40:36PM通入病毒樣本,再洗去多餘病毒前,測得形變量變化模式之斜率為m3(-5.31);接著在時間點8:37:48PM沖洗細胞培養液5 ml,洗去多餘病毒,此步驟可確認後續之懸臂樑形變量是由後續之病毒複製造成,而不是由懸浮病毒感染細胞所造成。穩定後測得形變量變化模式之斜率為m4(-1.42),表示病毒進入細胞並持續複製而導致形變量持續變大;最後,在時間點01:16:16AM測到微型懸臂量向上形變,表示病毒離開細胞。
此外,為進行疫苗之篩選,可進行另一實驗,在細胞完成貼附後,通入含病毒及待測疫苗的樣本,在相同時間測得微型懸臂樑之形變量變化模式,如該待測疫苗可抑制病毒入侵細胞,則預期形變量將不會持續變大,即形變量變化模式之斜率將持平,或小於前述斜率m3。
以上結果顯示,本發明提出的技術方案可用以監測及紀錄病毒於宿主細胞之感染歷程,亦可用以篩選有效疫苗。
無須進一步的闡述,咸相信本發明所屬技術領域中具有通常知識者基於前述說明即可利用本發明至最廣的程度。因此,可以理解以下的說明僅僅是作為例示說明之用,而非以任何方式限制其餘的揭露內容。此外,所有在此引述的公開文獻在此併入本文作為參考文獻。
2...微型懸臂樑
4...接觸區
6...高分子材料或水膠材料
8...曝光區域
10...π型微型懸臂樑一側
12...π型微型懸臂樑一側
14...PDMS微流道
16...矽晶圓基材
22...π型微型懸臂樑
101...微型懸臂樑感測裝置
102...氦氖雷射光源
141...微流道注入口
142...微流道排出口
104...空間濾波器
105...聚光針孔
106...聚焦透鏡
108...折射透鏡
109...雷射光點
110...位移感測器
112...訊號處理裝置
圖1顯示根據本發明之微型懸臂樑感測裝置之一具體實施例。
圖2顯示根據本發明之微型懸臂樑感測裝置之一特定實施(π型微型懸臂樑)。
圖3顯示根據本發明之一具體實施例,使用本發明之檢測技術監測及紀錄病毒於宿主細胞中之感染歷程的示意圖,其中表示流體流動方向,表示水膠材料,表示紫外光,表示細胞,▲表示病毒,(a)表示加入水膠材料溶液;(b)表示利用紫外光曝光;(c)表示水膠材料固化並通入宿主細胞,微型懸臂樑產生形變量h1;(d)表示通入病毒樣本;(e)表示病毒吸附於膠體材料中的宿主細胞,微型懸臂樑產生形變量h2;(f)表示病毒進入宿主細胞並複製,微型懸臂樑產生形變量h3;以及(g)表示病毒完成複製脫離水膠材料,微型懸臂樑形變量恢復至h0。
圖4顯示根據本發明之微型懸臂樑感測裝置101之一具體實施例,其包括微型懸臂樑2、附在其接觸端的水膠材料6、PDMS微流道14、矽晶圓基材16、微流道注入口141及微流道排出口142。
圖5顯示根據本發明之檢測系統之一具體實施例,其包括氦氖雷射光源102、空間濾波器104、聚光針孔(pinhole)105、聚焦透鏡106、折射透鏡108、位移感測器110、微型懸臂樑感測裝置101及訊號處理裝置112。
圖6是上述實例1完成微流道系統晶片及微型懸臂樑晶片之封裝接合的實體圖片。
圖7是微型懸臂樑感測器形變量計算示意圖,其中雷射光點109對焦至微型懸臂樑2之光學檢測區域,接著使光線反射至四象限位移感測器110,然後量測出反射光的位移量d,再由此位移量d推算出微型懸臂樑感測器之形變量△Z,其中d表示雷射光點反射於四象限位移感測器上的距離差值;h表示微型懸臂樑感測器與四象限位移感測器之距離;以及L表示微型懸臂樑感測器長度。
圖8是根據本發明之一特定實例之光學檢測系統的實際架設圖。
圖9顯示在實例3中,在細胞附著於微型懸臂樑上之水膠材料的階段,根據本發明所測得微型懸臂樑的形變量變化模式。
圖10顯示在實例3中,在病毒感染宿主細胞的階段,根據本發明所測得微型懸臂樑的形變量變化模式。
圖11顯示在實例3中,根據本發明之光學檢測系統以螢光顯微鏡同步檢驗細胞貼附水膠材料及病毒感染宿主細胞之狀態,其中(a)是控制組(未加入病毒),顯示細胞貼附於水膠材料11小時的情形;以及(b)、(c)及(d)是實驗組(加入病毒),其中(b)及(c)分別是在細胞貼附於水膠材料7小時後,以病毒感染細胞4小時及7小時的情形,以及(d)是病毒感染細胞7小時後以磷酸緩衝溶液沖洗後的情形。比例尺500 μm。
圖12是顯示在實例3中,根據本發明所測得微型懸臂樑的形變量變化模式,其中(a)表示時間點9:55:31 AM,通入細胞並開始記錄;(b)表示時間點4:33:55AM,沖洗細胞培養液5 ml;(c)表示時間點7:40:36PM,通入日本腦炎病毒樣本;(d)表示時間點8:37:48PM,沖洗細胞培養液5 ml;(e)表示時間點01:16:16AM。

Claims (22)

  1. 一種監測及紀錄待測病毒於宿主細胞之感染歷程的方法,其包括:(a)提供一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區;其中該高分子材料具親水性及生物相容性,以供宿主細胞之固定及存活,其中該高分子材料係水膠材料;(b)加入宿主細胞使其與該高分子材料接觸,固定於該高分子材料中;(c)進行一檢測,其包括加入一含待測病毒之樣本,使其與前述固定於該高分子材料的宿主細胞接觸,使該病毒感染該宿主細胞,因而該微型懸臂樑產生一形變量;在一定期間內測量並紀錄一定時間間隔之各時間點之形變量,以獲得形變量變化模式(profile),用以判斷該待測病毒於該宿主細胞之感染歷程;其中該病毒之感染歷程包括入侵期、複製期及傳播期。
  2. 如申請專利範圍第1項之方法,其中該水膠材料係選自由聚甲基丙烯酸羟乙脂(PHEMA)水膠、聚乙二醇二丙烯酸(PEGDA)水膠、明膠丙烯酸酯(gelatin methacrylate,GelMA)水膠、褐藻膠(alginate)水膠、幾丁聚醣(chitosan)水膠及瓊膠(agarose)水膠所組成之群。
  3. 如申請專利範圍第1項之方法,其中該微型懸臂樑係π型結構。
  4. 如申請專利範圍第1項之方法,其中該形變量達最大值時,表示複製期結束,即將進入傳播期。
  5. 如申請專利範圍第1項之方法,其中該形變量係由光學檢測法、聲學檢測法、電學檢測法、或磁學檢測法而測量。
  6. 如申請專利範圍第1項之方法,其中該微型懸臂樑感測 裝置進一步包括一微流道,其中該含待測病毒之樣本可經由該微流道通入所述微型懸臂樑之接觸區之高分子材料而使該病毒感染該宿主細胞。
  7. 一種檢測一待測疫苗是否具有干擾病毒感染宿主細胞之歷程之功效的方法,其包括:(a)提供一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區;其中該高分子材料具親水性及生物相容性,以供宿主細胞之固定及存活,其中該高分子材料係水膠材料;(b)加入宿主細胞使其與該高分子材料接觸,固定於該高分子材料中;(c)進行第一檢測,其包括加入含該病毒之第一樣本,使其與前述固定於該高分子材料的宿主細胞接觸,而使該病毒感染該宿主細胞,因而該微型懸臂樑產生第一形變量;在一定期間內測量並紀錄一定時間間隔之各時間點之第一形變量,以獲得第一形變量變化模式(profile),其具有第一斜率;(d)另進行第二檢測,其包括加入含該病毒及該待測疫苗之第二樣本,使其與前述步驟(b)固定於該高分子材料的宿主細胞接觸,使該待測疫苗與該病毒或該宿主細胞作用,因而該微型懸臂樑產生第二形變量;在與步驟(c)相同之一定期間內測量並紀錄一定時間間隔之各時間點之第二形變量,以獲得第二形變量變化模式(profile),其具有第二斜率;(e)比較步驟(c)所得之第一形變量變化模式之第一斜率與步驟(d)所得之第二形變量變化模式之第二斜率;其中如第二斜率小於第一斜率,表示該測試疫苗具有干擾病毒感染宿主細胞之歷程之功效;其中該病毒之感染歷程包括入侵期、複製期及傳播期。
  8. 如申請專利範圍第7項之方法,其中該水膠材料係選自由聚甲基丙烯酸羟乙脂(PHEMA)水膠、聚乙二醇二丙 烯酸(PEGDA)水膠、明膠丙烯酸酯(gelatin methacrylate,GelMA)水膠、褐藻膠(alginate)水膠、幾丁聚醣(chitosan)水膠及瓊膠(agarose)水膠所組成之群。
  9. 如申請專利範圍第7項之方法,其中該微型懸臂樑係π型結構。
  10. 如申請專利範圍第7項之方法,其中第一形變量及第二形變量係由光學檢測法、聲學檢測法、電學檢測法、或磁學檢測法而測量。
  11. 如申請專利範圍第7項之方法,其中該病毒感染宿主細胞之歷程包括病毒複製期。
  12. 一種用於實施如請求項1所述之監測及紀錄待測病毒於宿主細胞之感染歷程的方法的系統,其包括:(a)一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區及一訊號檢測區域,其中該高分子材料具親水性及生物相容性;當宿主細胞固定於該高分子材料,且當待測病毒與固定於該高分子材料的宿主細胞接觸進而感染該宿主細胞時,該微型懸臂樑會因此產生一形變量,其中該高分子材料係水膠材料;(b)一訊號檢測裝置,包括接收形變量訊號及輸出之元件;及(c)一訊號處理裝置,其接受前述訊號並換算出前述微型懸臂樑之形變量,在一測量期間形成一形變量變化模式,用以判斷該病毒於該宿主細胞之感染歷程。
  13. 如申請專利範圍第12項之系統,其中該訊號檢測裝置可為基於光學檢測法、聲學檢測法、電學檢測法、或磁學檢測法而建立的檢測裝置。
  14. 如申請專利範圍第12項之系統,其中該訊號檢測裝置為一光學檢測裝置,包括雷射光源、空間濾波器、聚焦透鏡組、折射透鏡、位移感測器,其中該雷射光源提供光束經過該空間 濾波器形成均勻光束,然後經過該聚焦透鏡組成為平行光束,再經由該折射透鏡產生反射光束,對焦至前述微型懸臂樑感測裝置之光學檢測區域,最後由位移感測器接收該反射光束及輸出電訊號。
  15. 一種用於實施如請求項1所述之監測及紀錄待測病毒於宿主細胞之感染歷程的方法的系統,其包括:(a)一微型懸臂樑感測裝置,其包括一微型懸臂樑,該微型懸臂樑具有一附上高分子材料之接觸區及一光學檢測區域,其中該高分子材料具親水性及生物相容性;當宿主細胞固定於該高分子材料,且當待測病毒與固定於該高分子材料的宿主細胞接觸進而感染該宿主細胞時,該微型懸臂樑會因此產生一形變量,其中該高分子材料係水膠材料;(b)一光學檢測裝置,包括雷射光源、空間濾波器、聚焦透鏡組、折射透鏡、位移感測器,其中該雷射光源提供光束經過該空間濾波器形成均勻光束,然後經過該聚焦透鏡組成為平行光束,再經由該折射透鏡產生反射光束,對焦至前述微型懸臂樑感測裝置之光學檢測區域,最後由位移感測器接收該反射光束及輸出電訊號;及(c)一訊號處理裝置,其接受前述電訊號並換算出前述微型懸臂樑之形變量,在一測量期間形成一形變量變化模式,其表示該病毒於該宿主細胞之感染歷程。
  16. 如申請專利範圍第12、13、14或15項之系統,其中該水膠材料係選自由聚甲基丙烯酸羟乙脂(PHEMA)水膠、聚乙二醇二丙烯酸(PEGDA)水膠、明膠丙烯酸酯(gelatin methacrylate,GelMA)水膠、褐藻膠(alginate)水膠、幾丁聚醣(chitosan)水膠及瓊膠(agarose)水膠所組成之群。
  17. 如申請專利範圍第12、13、14或15項之系統,其中該微型懸臂樑係π型結構。
  18. 如申請專利範圍第12、13、14或15項之系統,其中 該微型懸臂樑感測裝置進一步包括微流道,用以使含待測病毒之樣本經由該微流道通入該微型懸臂樑之該接觸區之高分子材料而使該病毒與該宿主細胞接觸進而感染之。
  19. 如申請專利範圍第14項之系統,其中該光學檢測裝置進一步包括電荷耦合裝置,其用以觀察經該折射透鏡產生之反射光束是否對焦至該微型懸臂樑感測裝置之光學檢測區域。
  20. 如申請專利範圍第15項之系統,其中該光學檢測裝置進一步包括電荷耦合裝置,其用以觀察經該折射透鏡產生之反射光束是否對焦至該微型懸臂樑感測裝置之光學檢測區域。
  21. 如申請專利範圍第19項之系統,其中該電荷耦合裝置亦可用以觀察該宿主細胞之狀態。
  22. 如申請專利範圍第20項之系統,其中該電荷耦合裝置亦可用以觀察該宿主細胞之狀態。
TW100102179A 2011-01-20 2011-01-20 監測及紀錄病毒感染歷程及篩選疫苗之方法及系統 TWI548874B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW100102179A TWI548874B (zh) 2011-01-20 2011-01-20 監測及紀錄病毒感染歷程及篩選疫苗之方法及系統
US13/185,996 US20120190007A1 (en) 2011-01-20 2011-07-19 Method and system for monitoring and recording a viral infection process and that for screening vaccines
US13/547,323 US20120276526A1 (en) 2011-01-20 2012-07-12 Method and system for monitoring and recording viral infection process and screening for agents that inhibit virus infection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102179A TWI548874B (zh) 2011-01-20 2011-01-20 監測及紀錄病毒感染歷程及篩選疫苗之方法及系統

Publications (2)

Publication Number Publication Date
TW201231973A TW201231973A (en) 2012-08-01
TWI548874B true TWI548874B (zh) 2016-09-11

Family

ID=46544429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102179A TWI548874B (zh) 2011-01-20 2011-01-20 監測及紀錄病毒感染歷程及篩選疫苗之方法及系統

Country Status (2)

Country Link
US (1) US20120190007A1 (zh)
TW (1) TWI548874B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965069A (zh) * 2015-05-27 2015-10-07 中国科学技术大学 细胞活性在线检测和药物筛选方法及装置
CN109864706A (zh) * 2019-01-08 2019-06-11 廖旺才 用户状态信息的提示方法、装置、计算机设备和存储介质
CN110307892A (zh) * 2019-07-08 2019-10-08 上海交通大学 利用生物材料的光学信号发生变化来实现声波探测的方法与声波传感器
JP7039632B2 (ja) * 2020-01-24 2022-03-22 株式会社Kokusai Electric 基板処理装置、基板処理方法およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248318A1 (en) * 2003-01-30 2004-12-09 Ciphergen Biosystems, Inc. Apparatus for microfluidic processing and reading of biochip arrays
US20100196285A1 (en) * 2009-01-07 2010-08-05 Thomas Bayerl Use of Deuterium Oxide to Treat Virus-Based Diseases of the Respiratory Tract
US20100243904A1 (en) * 2007-09-17 2010-09-30 The Regents Of The University Of California Chitin-based cantilever bimorphs and readout devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040248318A1 (en) * 2003-01-30 2004-12-09 Ciphergen Biosystems, Inc. Apparatus for microfluidic processing and reading of biochip arrays
US20100243904A1 (en) * 2007-09-17 2010-09-30 The Regents Of The University Of California Chitin-based cantilever bimorphs and readout devices
US20100196285A1 (en) * 2009-01-07 2010-08-05 Thomas Bayerl Use of Deuterium Oxide to Treat Virus-Based Diseases of the Respiratory Tract

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Micro & Nano Letters, 2008, Vol. 3, No. 1, pp. 12–17. *
Terrence M. Dobrowsky et al., "Monitoring Early Fusion Dynamics of Human Immunodeficiency Virus Type 1 at Single-Molecule Resolution", Journal of Virology, July 2008, p. 7022-7033. 李應崇,利用懸臂樑結構設計與製作之CMOS-MEMS微質量感測器,國立清華大學碩士論文,2006年07月 *

Also Published As

Publication number Publication date
US20120190007A1 (en) 2012-07-26
TW201231973A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
Aung et al. 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout
TWI548874B (zh) 監測及紀錄病毒感染歷程及篩選疫苗之方法及系統
Zhao et al. Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies
US20090130384A1 (en) Chip Provided with film Having Hole Pattern with the Use of Thermoresponsive Polymer and Method of Producing the Same
US20100279886A1 (en) Two-dimensional photonic bandgap structures for ultrahigh-sensitivity biosensing
Hosseini et al. Polymethacrylate coated electrospun PHB fibers: An exquisite outlook for fabrication of paper-based biosensors
Chen et al. Surface‐Micromachined Microfiltration Membranes for Efficient Isolation and Functional Immunophenotyping of Subpopulations of Immune Cells
EP2312393A1 (en) Method for producing microparticles
Bukatin et al. Fabrication of high-aspect-ratio microstructures in polymer microfluid chips for in vitro single-cell analysis
US20100099076A1 (en) Sensitive and rapid detection of viral particles in early viral infection by laser tweezers
JP2003344433A (ja) マイクロアレイ、マイクロアレイシステム及び被検物質の測定方法
Das et al. Fracture in microscale SU-8 polymer thin films
JP2014219261A (ja) マイクロチャンバーチップの製造方法
JPWO2018105608A1 (ja) 粒子捕捉デバイス
US9340417B2 (en) Magnetic recovery method of magnetically responsive high-aspect ratio photoresist microstructures
Kim et al. Patterning of a nanoporous membrane for multi-sample DNA extraction
US20120276526A1 (en) Method and system for monitoring and recording viral infection process and screening for agents that inhibit virus infection
JP2004028793A (ja) 薄膜の物性値測定装置
US20220411885A1 (en) Method for detecting virus using ssdna functionalized sensor
JP2008298771A (ja) 蛍光顕微鏡用全反射バイオチップ及びその製法、並びに蛍光顕微鏡用全反射バイオチップアセンブリ
Toppi et al. Photolithographic patterning of fluoracryl for biphilic microwell-based digital bioassays and selection of bacteria
Vanherberghen et al. Microwell-based live cell imaging of NK cell dynamics to assess heterogeneity in motility and cytotoxic response
US8846412B2 (en) Multiple substances-responsive gel, method for producing same, and utilization of same
JP2009219480A (ja) マイクロウェルアレイチップ
Mortelmans et al. A nanofluidic device for rapid and multiplexed SARS-CoV-2 serological antibody detection