TWI547768B - Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method - Google Patents

Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
TWI547768B
TWI547768B TW103113227A TW103113227A TWI547768B TW I547768 B TWI547768 B TW I547768B TW 103113227 A TW103113227 A TW 103113227A TW 103113227 A TW103113227 A TW 103113227A TW I547768 B TWI547768 B TW I547768B
Authority
TW
Taiwan
Prior art keywords
light
optical system
crucible
outer side
tapered surface
Prior art date
Application number
TW103113227A
Other languages
Chinese (zh)
Other versions
TW201443577A (en
Inventor
大阪昇
福岡亮介
吉岡均
Original Assignee
佳能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳能股份有限公司 filed Critical 佳能股份有限公司
Publication of TW201443577A publication Critical patent/TW201443577A/en
Application granted granted Critical
Publication of TWI547768B publication Critical patent/TWI547768B/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Microscoopes, Condenser (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

稜鏡光學系統、照明光學系統、曝光設備、和製造裝置的方法 Optical system, illumination optical system, exposure apparatus, and method of manufacturing the same

本發明涉及稜鏡光學系統、照明光學系統、曝光設備和裝置製造方法。 The present invention relates to a krypton optical system, an illumination optical system, an exposure apparatus, and a device manufacturing method.

當製造半導體裝置、液晶顯示裝置及其他裝置時,在光刻步驟中,使用曝光設備來利用照明光學系統照射遮罩(分劃板(reticle))並且通過投影光學系統將遮罩圖案的影像投影到基板上。在基板上形成光致抗蝕劑層。在這種曝光設備中,為了在保留高解析度的同時確保焦深,根據遮罩圖案,最佳化有效光源分佈(照明條件)。有效光源分佈是在照明光學系統中的光瞳面上的光強度分佈,並且還是進入照明光學系統中的遮罩(待照射面)的光的角度分佈。 When manufacturing a semiconductor device, a liquid crystal display device, and other devices, in a photolithography step, an exposure device is used to illuminate a mask (reticle) with an illumination optical system and project an image of the mask pattern through a projection optical system Onto the substrate. A photoresist layer is formed on the substrate. In such an exposure apparatus, in order to secure a depth of focus while preserving high resolution, an effective light source distribution (lighting condition) is optimized according to a mask pattern. The effective light source distribution is the light intensity distribution on the pupil plane in the illumination optical system, and is also the angular distribution of light entering the mask (the surface to be illuminated) in the illumination optical system.

日本專利申請公開案No.2002-343715討論通過使用圓錐稜鏡或角錐稜鏡改變光通量的截面形狀以便形成環狀 的有效光源分佈(環狀照明)的方法。日本專利申請公開No.11-271619討論使用一對圓錐稜鏡和一對角錐稜鏡形成環狀照明或四重(quadruple)照明的方法。 Japanese Patent Application Publication No. 2002-343715 discusses changing the cross-sectional shape of a luminous flux by using a conical or pyramidal cone to form a ring shape. The method of effective light source distribution (annular illumination). Japanese Patent Application Publication No. 11-271619 discusses a method of forming an annular illumination or quadruple illumination using a pair of conical ridges and a pair of pyramidal ridges.

此外,國際公開(PCT申請案的翻譯)No.99-25009討論將從圓錐稜鏡發射的光引導到用於使照明光均勻的光學系統以便形成均勻光強度分佈的環狀照明的方法。用於使照明光均勻的光學系統包括柱狀的反射部件和圓筒狀的反射部件。 In addition, International Publication (Translation of PCT Application) No. 99-25009 discusses a method of guiding light emitted from a cone to an optical system for uniformizing illumination light to form an annular illumination of a uniform light intensity distribution. An optical system for making illumination light uniform includes a columnar reflecting member and a cylindrical reflecting member.

圖13示出具有使用稜鏡的照明光學系統的曝光設備,如例如在日本專利申請公開No.2002-343715和日本專利申請公開案No.11-271619中描述的。曝光設備包括照明光學系統IL和投影光學系統PO。光源1是發射旋轉對稱的光分佈的光的光源。從光源1發射的光穿過光學系統2、圓錐稜鏡3和光學系統4,並且進入遮罩M。從遮罩M射出的衍射光進入投影光學系統PO,穿過孔徑光闌(NA光闌)5,並且在基板P上形成影像。圓錐稜鏡3被佈置在相對於遮罩M的傅立葉變換平面上。有效光源分佈從圓形形狀變為環形形狀。使用實線和虛線示出這個樣子。虛線示出在不設置圓錐稜鏡3的情況下的通過光的狀態。實線示出在設置圓錐稜鏡3的情況下的通過光的狀態。應當理解光通量由於圓錐稜鏡3的作用而擴展,並且光以比虛線示出的入射角大的入射角進入遮罩M。結果,光的一部分被投影光學系統PO中的孔徑光闌5阻擋,並且基板P的曝光的量減少。換句話說,不使用來自照明光 學系統IL的光的一部分,並且這意味著光利用效率降低。 Fig. 13 shows an exposure apparatus having an illumination optical system using a crucible as described in, for example, Japanese Patent Application Laid-Open No. 2002-343715 and Japanese Patent Application Laid-Open No. Hei No. 11-271619. The exposure apparatus includes an illumination optical system IL and a projection optical system PO. Light source 1 is a light source that emits light of a rotationally symmetric light distribution. Light emitted from the light source 1 passes through the optical system 2, the cone 3 and the optical system 4, and enters the mask M. The diffracted light emitted from the mask M enters the projection optical system PO, passes through the aperture stop (NA stop) 5, and forms an image on the substrate P. The conical dome 3 is arranged on a Fourier transform plane with respect to the mask M. The effective light source distribution changes from a circular shape to a circular shape. This is shown using solid lines and dashed lines. The broken line shows the state of the passing light in the case where the cone 3 is not provided. The solid line shows the state of the passing light in the case where the cone 3 is provided. It should be understood that the luminous flux expands due to the action of the conical ridge 3, and the light enters the mask M at an incident angle larger than the incident angle shown by the broken line. As a result, a part of the light is blocked by the aperture stop 5 in the projection optical system PO, and the amount of exposure of the substrate P is reduced. In other words, not using illumination from the light Part of the light of the system IL, and this means that the light utilization efficiency is reduced.

如上所述,在傳統的圓錐稜鏡3中,光通量擴展,並且光的一部分被佈置在圓錐稜鏡3後方的遮光部件阻擋,並且防止光的一部分進入佈置在圓錐稜鏡3後方的光學元件。這使得光利用效率降低。 As described above, in the conventional conical crucible 3, the luminous flux is expanded, and a part of the light is blocked by the light shielding member disposed behind the conical crucible 3, and a part of the light is prevented from entering the optical element disposed behind the conical crucible 3. This makes the light utilization efficiency lower.

此外,當使用在國際公開(PCT申請案的翻譯)No.99/25009中討論的用於使照明光均勻的光學系統時,從光學系統發射的光的角度分佈比進入光學系統的光的角度分佈更寬。這阻止光的一部分進入後續的光學元件並且使得光利用效率降低。 Further, when an optical system for making illumination light uniform as discussed in International Publication (Translation of PCT Application) No. 99/25009 is used, the angular distribution of light emitted from the optical system is larger than the angle of light entering the optical system. The distribution is wider. This prevents a portion of the light from entering the subsequent optical elements and degrading the light utilization efficiency.

本發明涉及提供能夠在基板被暴露於從用於改變光通量的截面形狀的稜鏡來的光時抑制光利用效率降低的照明光學系統。 The present invention is directed to providing an illumination optical system capable of suppressing a decrease in light use efficiency when a substrate is exposed to light from a crucible for changing a cross-sectional shape of a light flux.

根據本發明一個方面,一種照明光學系統包括稜鏡,該稜鏡被配置為改變光通量的截面形狀,該照明光學系統被配置為照射待照射面。該稜鏡包括光入射表面、光出射表面以及從光入射表面側延伸到光出射表面側的外側面。該光入射表面包括凹錐面,該光出射表面包括凸錐面,以及該外側面包括用於反射從光入射表面進入該外側面的光的反射表面。 According to an aspect of the invention, an illumination optical system includes a crucible configured to change a cross-sectional shape of a luminous flux, the illumination optical system being configured to illuminate a surface to be illuminated. The crucible includes a light incident surface, a light exit surface, and an outer side surface extending from the light incident surface side to the light exit surface side. The light incident surface includes a concave tapered surface, the light exit surface including a convex tapered surface, and the outer side surface includes a reflective surface for reflecting light entering the outer side from the light incident surface.

從以下參考附圖的示例性實施例的描述中本發明更多 的特徵將變得清晰。 The present invention is more in the following description from the exemplary embodiments with reference to the accompanying drawings The characteristics will become clear.

1‧‧‧光束 1‧‧‧beam

2‧‧‧光束 2‧‧‧beam

3‧‧‧光束 3‧‧‧ Beam

4‧‧‧光束 4‧‧‧ Beam

5‧‧‧光束 5‧‧‧ Beam

6‧‧‧光束 6‧‧‧ Beam

23‧‧‧縫隙 23‧‧‧ gap

101‧‧‧光源 101‧‧‧Light source

102‧‧‧橢圓反射鏡 102‧‧‧Oval mirror

104‧‧‧稜鏡(光學系統) 104‧‧‧稜鏡 (optical system)

104A‧‧‧稜鏡 104A‧‧‧稜鏡

104A1‧‧‧凹錐面 104A1‧‧‧ concave cone

104A2‧‧‧平坦表面(第一表面) 104A2‧‧‧flat surface (first surface)

104A3‧‧‧凸錐面 104A3‧‧‧ convex cone

104A4‧‧‧平坦表面(第二表面) 104A4‧‧‧flat surface (second surface)

104A5‧‧‧內表面 104A5‧‧‧ inner surface

104A6‧‧‧外側面 104A6‧‧‧Outside

104B‧‧‧光學元件組 104B‧‧‧Optical component group

104B1‧‧‧光學元件(第一光學元件) 104B1‧‧‧Optical components (first optical component)

104B2‧‧‧光學元件(第二光學元件) 104B2‧‧‧Optical components (second optical components)

104C‧‧‧光學元件組 104C‧‧‧Optical component group

104C1‧‧‧光學元件 104C1‧‧‧Optical components

104C2‧‧‧光學元件(第三光學元件) 104C2‧‧‧Optical components (third optical component)

104D‧‧‧光學元件組 104D‧‧‧Optical component group

104D1‧‧‧光學元件 104D1‧‧‧Optical components

104E‧‧‧稜鏡 104E‧‧‧稜鏡

104E1‧‧‧光學元件 104E1‧‧‧Optical components

104E2‧‧‧光學元件 104E2‧‧‧Optical components

104E11‧‧‧凹錐面 104E11‧‧‧ concave cone

104E12‧‧‧凸錐面 104E12‧‧‧ convex cone

104E22‧‧‧內表面 104E22‧‧‧ inner surface

104E13‧‧‧外側面 104E13‧‧‧Outside

105‧‧‧第一光學系統 105‧‧‧First optical system

106‧‧‧稜鏡 106‧‧‧稜鏡

107‧‧‧偏轉反射鏡 107‧‧‧ deflection mirror

108‧‧‧平面 108‧‧‧ plane

109‧‧‧蠅眼光學系統 109‧‧‧Flying eye optical system

110‧‧‧σ光闌 110‧‧‧σ光阑

111‧‧‧視場光闌 111‧‧‧ Field of view

112‧‧‧稜鏡變換器 112‧‧‧稜鏡 converter

113‧‧‧σ光闌變換器 113‧‧‧σ optical converter

113A‧‧‧σ光闌 113A‧‧‧σ光阑

113B‧‧‧σ光闌 113B‧‧‧σ光阑

113C‧‧‧σ光闌 113C‧‧‧σ光阑

114‧‧‧光學棒 114‧‧‧Optical rod

120‧‧‧光源單元 120‧‧‧Light source unit

131‧‧‧透鏡單元 131‧‧‧ lens unit

132‧‧‧透鏡單元 132‧‧‧ lens unit

140‧‧‧第二光學系統 140‧‧‧Second optical system

150‧‧‧第三光學系統 150‧‧‧ Third optical system

160‧‧‧第四光學系統 160‧‧‧Fourth optical system

1061‧‧‧外凸錐面 1061‧‧‧Convex cone

1062‧‧‧內凸錐面 1062‧‧‧Convex cone

1063‧‧‧凹錐面 1063‧‧‧ concave cone

IL‧‧‧照明光學系統 IL‧‧‧Lighting Optical System

JS‧‧‧測量裝置 JS‧‧‧Measuring device

M‧‧‧遮罩 M‧‧‧ mask

O‧‧‧光軸 O‧‧‧ optical axis

P‧‧‧基板 P‧‧‧Substrate

PO‧‧‧投影光學系統 PO‧‧‧Projection Optical System

PS‧‧‧基板台 PS‧‧‧ substrate table

圖1是示出根據第一示例性實施例的照明光學系統的示意性結構視圖。 FIG. 1 is a schematic structural view showing an illumination optical system according to a first exemplary embodiment.

圖2是示出蠅眼(fly-eye)光學系統的示意性結構視圖。 Fig. 2 is a schematic structural view showing a fly-eye optical system.

圖3是示出視場光闌(field stop)的示意性結構視圖。 Fig. 3 is a schematic structural view showing a field stop.

圖4A、圖4B和圖4C示出根據第一示例性實施例的稜鏡。 4A, 4B, and 4C illustrate a crucible according to the first exemplary embodiment.

圖5A、圖5B、圖5C和圖5D示出根據第一示例性實施例的稜鏡的效果。 5A, 5B, 5C, and 5D illustrate effects of the cymbal according to the first exemplary embodiment.

圖6示出根據第二示例性實施例的稜鏡。 FIG. 6 shows a UI according to a second exemplary embodiment.

圖7示出根據第三示例性實施例的稜鏡。 Fig. 7 shows a crucible according to a third exemplary embodiment.

圖8示出根據第四示例性實施例的稜鏡。 FIG. 8 shows a UI according to a fourth exemplary embodiment.

圖9是示出根據第二示例性實施例的曝光設備的示意性結構視圖。 FIG. 9 is a schematic structural view showing an exposure apparatus according to a second exemplary embodiment.

圖10示出六邊形的光學棒(optical rod)。 Figure 10 shows a hexagonal optical rod.

圖11A和圖11B示出根據第二示例性實施例的稜鏡。 11A and 11B illustrate a crucible according to a second exemplary embodiment.

圖12是σ光闌變換器(changer)的示意性結構視圖。 Fig. 12 is a schematic structural view of a σ pupil transducer.

圖13示出傳統的稜鏡中的問題。 Figure 13 shows the problem in the conventional cymbal.

圖14示出根據第五示例性實施例的稜鏡。 Fig. 14 shows a UI according to a fifth exemplary embodiment.

下面將參考附圖來詳細描述本發明的各個示例性實施例、特徵以及方面。 Various exemplary embodiments, features, and aspects of the invention are described in detail below with reference to the drawings.

參考圖1-8描述根據本發明的第一示例性實施例的照明光學系統的結構。 The structure of an illumination optical system according to a first exemplary embodiment of the present invention will be described with reference to Figs. 1-8.

例如在曝光設備中使用根據示例性實施例的照明光學系統。照明光學系統是用於將從光源發射的光引導到作為待照射目標的遮罩(分劃板)的設備。在遮罩上形成圖案。曝光設備通過使用來自遮罩的圖案的衍射光利用投影光學系統形成影像,並且將遮罩的圖案的影像投影在基板(例如,晶圓(wafer)和玻璃板)上以便使基板曝光。 An illumination optical system according to an exemplary embodiment is used, for example, in an exposure apparatus. The illumination optical system is a device for guiding light emitted from a light source to a mask (reticle) as a target to be illuminated. A pattern is formed on the mask. The exposure apparatus forms an image by using a projection optical system using diffracted light from a pattern of the mask, and projects an image of the pattern of the mask onto a substrate (for example, a wafer and a glass plate) to expose the substrate.

圖1是示出根據示例性實施例的照明光學系統的示意性結構視圖。光源單元120包括光源101和橢圓反射鏡(elliptical mirror)102。照明光學系統包括稜鏡(光學系統)104、第一光學系統105、偏轉反射鏡107、第二光學系統140、蠅眼光學系統109、σ光闌110、第三光學系統150、視場光闌111和第四光學系統160。照明光學系統照射在待照射面上的遮罩M。 FIG. 1 is a schematic structural view illustrating an illumination optical system according to an exemplary embodiment. The light source unit 120 includes a light source 101 and an elliptical mirror 102. The illumination optical system includes a pupil (optical system) 104, a first optical system 105, a deflection mirror 107, a second optical system 140, a fly's eye optical system 109, an σ diaphragm 110, a third optical system 150, and a field diaphragm. 111 and fourth optical system 160. The illumination optical system illuminates the mask M on the surface to be illuminated.

光源101是高壓汞燈。可替代地,作為光源101,例如可以使用氙氣燈和準分子雷射器。橢圓反射鏡102是用於收集從光源101發射的光的光會聚光學系統。橢圓反射鏡102採取橢圓的一部分的形狀。光源101被佈置在橢圓 的兩個焦點位置之一處。 Light source 101 is a high pressure mercury lamp. Alternatively, as the light source 101, for example, a xenon lamp and a quasi-molecular laser can be used. The elliptical mirror 102 is a light concentrating optical system for collecting light emitted from the light source 101. The elliptical mirror 102 takes the shape of a portion of the ellipse. The light source 101 is arranged in an ellipse One of the two focus positions.

從光源101發射且由橢圓反射鏡102反射的光被會聚到佈置在橢圓的另一焦點位置附近的稜鏡104。稜鏡104透射入射光,改變入射光的光通量的截面形狀並且發射光。穿過稜鏡104的光由第一光學系統105引導到偏轉反射鏡107,並且由偏轉反射鏡107反射。 Light emitted from the light source 101 and reflected by the elliptical mirror 102 is concentrated to a crucible 104 disposed near another focus position of the ellipse. The crucible 104 transmits incident light, changes the cross-sectional shape of the luminous flux of the incident light, and emits light. Light passing through the crucible 104 is directed by the first optical system 105 to the deflecting mirror 107 and reflected by the deflecting mirror 107.

在這個示例性實施例中,兩個光源單元120被設置,並且為每一個光源單元佈置偏轉反射鏡107。取決於光源的數量,偏轉反射鏡的佈置不同。光源的數量可以是一個或三個或更多個。 In this exemplary embodiment, two light source units 120 are disposed, and a deflection mirror 107 is disposed for each of the light source units. The arrangement of the deflecting mirrors is different depending on the number of light sources. The number of light sources may be one or three or more.

平面108被設定為佔據基本上相對於稜鏡104的出射表面成傅立葉變換關係的位置。因此,稜鏡104的出射表面上的環狀的光強度分佈變為進入平面108的光的角度分佈。圖1示出對於從稜鏡104的出射表面出射的光的角度分佈(平面108上的光強度分佈)中的光束。來自平面108的光由第二光學系統140引導到蠅眼光學系統109。在第二光學系統140中,蠅眼光學系統109的入射表面被設定為佔據基本上相對於平面108成傅立葉變換關係的位置。 The plane 108 is set to occupy a position that is substantially Fourier transformed with respect to the exit surface of the crucible 104. Thus, the annular light intensity distribution on the exit surface of the crucible 104 becomes the angular distribution of light entering the plane 108. Figure 1 shows the beam in the angular distribution (light intensity distribution on plane 108) of the light emerging from the exit surface of the crucible 104. Light from plane 108 is directed by second optical system 140 to fly's eye optical system 109. In the second optical system 140, the incident surface of the fly's eye optical system 109 is set to occupy a position that is substantially in a Fourier transform relationship with respect to the plane 108.

圖2示出蠅眼光學系統109。如圖2中所示出的,蠅眼光學系統109包括具有以平面狀態接合的許多平凸型透鏡的兩個透鏡單元131和132。這些透鏡的彎曲表面被佈置為彼此面對,使得在構成透鏡單元131和132的每個平凸型透鏡的焦點位置處,對應的平凸型透鏡被成對地放 置。蠅眼光學系統109的使用在蠅眼光學系統109的出射表面側處形成二次光源分佈(有效光源分佈)。 FIG. 2 shows a fly's eye optical system 109. As shown in FIG. 2, the fly's eye optical system 109 includes two lens units 131 and 132 having a plurality of plano-convex lenses joined in a planar state. The curved surfaces of these lenses are arranged to face each other such that at the focus position of each of the plano-convex lenses constituting the lens units 131 and 132, the corresponding plano-convex lenses are placed in pairs Set. The use of the fly's eye optical system 109 forms a secondary light source distribution (effective light source distribution) at the exit surface side of the fly's eye optical system 109.

從蠅眼光學系統109的出射表面發射的光通量經過σ光闌110由第三光學系統150引導到視場光闌111。σ光闌110通過孔形狀調節有效光源分佈的形狀。在第三光學系統150中,視場光闌111的位置被設定為基本上相對於蠅眼光學系統109的出射表面110成傅立葉變換關係。由於在蠅眼光學系統109的出射表面側處形成二次光源分佈,在視場光闌111上可以獲得均勻光強度分佈。 The luminous flux emitted from the exit surface of the fly's eye optical system 109 is directed by the third optical system 150 to the field stop 111 through the σ stop 110. The σ diaphragm 110 adjusts the shape of the effective light source distribution through the shape of the holes. In the third optical system 150, the position of the field stop 111 is set to be substantially Fourier-transformed with respect to the exit surface 110 of the fly's eye optical system 109. Since a secondary light source distribution is formed at the exit surface side of the fly's eye optical system 109, a uniform light intensity distribution can be obtained on the field stop 111.

圖3是示出視場光闌111的結構視圖。在視場光闌111上,形成弧形形狀縫隙(開口)23,並且阻擋除縫隙23以外的光。第三光學系統160利用透過縫隙23的弧形光通量均勻地照射遮罩M。視場光闌111的縫隙的形狀是弧形形狀。可替代地,可以使用其他形狀,例如矩形形狀。 FIG. 3 is a structural view showing the field stop 111. On the field stop 111, an arc-shaped slit (opening) 23 is formed, and light other than the slit 23 is blocked. The third optical system 160 uniformly illuminates the mask M with the curved light flux transmitted through the slit 23. The shape of the slit of the field diaphragm 111 is an arc shape. Alternatively, other shapes, such as a rectangular shape, may be used.

將描述稜鏡104的示例性實施例。 An exemplary embodiment of the UI 104 will be described.

圖4A、圖4B和圖4C示出根據第一示例性實施例的稜鏡104A。圖4A是示出稜鏡104A的透視圖。圖4B是沿著包括稜鏡104A的光軸的平面截取的截面圖以及從右側看的側視圖。在稜鏡104A中,基於柱狀的光學棒,一側的中心周圍的部分被配置為形成如示出為表面104A1的凹錐面,並且在另一側的中心周圍的部分被配置為形成如示出為表面104A3的凸錐面。連接凹錐面104A1的頂點和凸錐面104A3的頂點的軸是光軸。 4A, 4B, and 4C illustrate a crucible 104A according to a first exemplary embodiment. FIG. 4A is a perspective view showing the crucible 104A. 4B is a cross-sectional view taken along a plane including the optical axis of the crucible 104A and a side view as seen from the right side. In the crucible 104A, based on the columnar optical rod, a portion around the center of one side is configured to form a concave tapered surface as shown as the surface 104A1, and a portion around the center of the other side is configured to form as Shown as a convex tapered surface of surface 104A3. The axis connecting the apex of the concave tapered surface 104A1 and the apex of the convex tapered surface 104A3 is the optical axis.

在照明光學系統中,稜鏡104A的凹錐面104A1被佈置在光源側,並且凸錐面104A2被佈置在光源側的另一側。稜鏡104A的外側面、光出射表面和光入射表面被形成為一個光學元件。稜鏡104A的光入射表面包括凹錐面104A1以及在凹錐面104A1周圍形成的環狀的平坦表面104A2(第一表面)。具體地,在光入射表面上,第一表面104A2被佈置在如從凹錐面104A1的中心軸看的外側。凹錐面104A1相對於穿過頂點的中心軸(光軸)旋轉對稱。光出射表面包括凸錐面104A3以及在凸錐面104A3周圍形成的環狀表面104A4(第二表面)。具體地,在光出射表面上,第二表面104A4被佈置在如從凸錐面104A3的中心軸看的外側。凸錐面104A3相對於穿過頂點的中心軸(光軸)旋轉對稱。光出射表面包括在凸錐面104A3和表面104A4之間的柱狀的內表面104A5。內表面104A5被形成為連接如從凸錐面104A3的中心軸看的最外周和第二表面104A4的內周邊。內表面104A5是佈置為圍繞凸錐面104A3的柱狀的側面。稜鏡104A還包括從光入射表面側延伸到光出射表面側的外側面104A6。外側面104A6被形成為連接光入射表面的第一表面104A2的外周和光出射表面的第二表面104A4的外周。 In the illumination optical system, the concave tapered surface 104A1 of the crucible 104A is disposed on the light source side, and the convex tapered surface 104A2 is disposed on the other side of the light source side. The outer side surface, the light exit surface, and the light incident surface of the crucible 104A are formed as one optical element. The light incident surface of the crucible 104A includes a concave tapered surface 104A1 and an annular flat surface 104A2 (first surface) formed around the concave tapered surface 104A1. Specifically, on the light incident surface, the first surface 104A2 is disposed on the outer side as viewed from the central axis of the concave tapered surface 104A1. The concave tapered surface 104A1 is rotationally symmetrical with respect to a central axis (optical axis) passing through the apex. The light exit surface includes a convex tapered surface 104A3 and an annular surface 104A4 (second surface) formed around the convex tapered surface 104A3. Specifically, on the light exit surface, the second surface 104A4 is disposed on the outer side as viewed from the central axis of the convex tapered surface 104A3. The convex tapered surface 104A3 is rotationally symmetrical with respect to a central axis (optical axis) passing through the apex. The light exit surface includes a cylindrical inner surface 104A5 between the convex cone surface 104A3 and the surface 104A4. The inner surface 104A5 is formed to connect the outermost circumference as viewed from the central axis of the convex tapered surface 104A3 and the inner periphery of the second surface 104A4. The inner surface 104A5 is a columnar side surface that is disposed to surround the convex tapered surface 104A3. The crucible 104A further includes an outer side surface 104A6 that extends from the light incident surface side to the light exit surface side. The outer side surface 104A6 is formed to connect the outer circumference of the first surface 104A2 of the light incident surface and the outer circumference of the second surface 104A4 of the light exit surface.

圖4C示出來自光源的各個光束穿過稜鏡104A內部的樣子。光束1進入第一表面104A2,並且被外側面104A6全反射。然後,光從第二表面104A4射出。光束2進入凹錐面104A1,並且從凸錐面104A3射出。光束3進 入凹錐面104A1,從凸錐面104A3射出,並且被內表面104A5反射。 Fig. 4C shows how the respective light beams from the light source pass through the inside of the crucible 104A. The beam 1 enters the first surface 104A2 and is totally reflected by the outer side 104A6. Light is then emitted from the second surface 104A4. The beam 2 enters the concave tapered surface 104A1 and exits from the convex tapered surface 104A3. Beam 3 The concave tapered surface 104A1 is emitted from the convex tapered surface 104A3 and is reflected by the inner surface 104A5.

如上所述,從光入射表面進入到外側面104A6的光被外側面104A6全反射。反射膜可以被形成在外側面104A6上以便形成反射表面。也就是說,外側面104A6包括反射從光入射表面進入到外側面的光的反射表面。因此,從光入射表面進入的光到外部的擴展以及發射可以被減少,並且入射側處的光通量的外直徑和出射側處的光通量的外直徑可以相同。因此,可以減少來自稜鏡104A並且被投影光學系統中的光瞳面上的光闌阻擋的光的量,或可以減少被踢出而不進入後續的光學元件的光的量。換句話說,可以在利用來自稜鏡104A的光使基板曝光時抑制光利用效率的降低。如果凹錐面104A1和凸錐面104A3具有類似的形狀並且第一表面和第二表面彼此平行,則相對於光軸的入射光的角度和射出光的角度相同並且被維持原樣。例如,與光軸平行進入的光與光軸平行地射出。 As described above, the light entering the outer side surface 104A6 from the light incident surface is totally reflected by the outer side surface 104A6. A reflective film may be formed on the outer side surface 104A6 to form a reflective surface. That is, the outer side surface 104A6 includes a reflective surface that reflects light entering from the light incident surface to the outer side surface. Therefore, the expansion and emission of light entering from the light incident surface to the outside can be reduced, and the outer diameter of the light flux at the incident side and the outer diameter of the light flux at the exit side can be the same. Therefore, the amount of light from the crucible 104A and blocked by the pupil on the pupil plane in the projection optical system can be reduced, or the amount of light that is kicked out without entering the subsequent optical element can be reduced. In other words, it is possible to suppress a decrease in light use efficiency when the substrate is exposed by light from the crucible 104A. If the concave tapered surface 104A1 and the convex tapered surface 104A3 have similar shapes and the first surface and the second surface are parallel to each other, the angle of the incident light with respect to the optical axis is the same as the angle of the emitted light and is maintained as it is. For example, light entering in parallel with the optical axis is emitted in parallel with the optical axis.

內表面104A5是由例如反射從凸錐面104A3出射的光的反射膜形成的反射表面。內表面104A5上的反射膜可以被省略。然而,通過形成反射膜,從凸錐面104A3出射的光被內表面104A5反射,並且在維持從稜鏡104A出射的光相對於光軸的角度的同時,可以減少光的擴展。 The inner surface 104A5 is a reflective surface formed of, for example, a reflective film that reflects light emitted from the convex tapered surface 104A3. The reflective film on the inner surface 104A5 can be omitted. However, by forming the reflective film, light emitted from the convex tapered surface 104A3 is reflected by the inner surface 104A5, and while maintaining the angle of the light emitted from the crucible 104A with respect to the optical axis, the spread of light can be reduced.

如果在內表面104A5上形成反射膜,則與進入稜鏡104A的光的擴展相比,可以減少從稜鏡104A出射的光的擴展。因此,在稜鏡104A後方的光學系統中,可以減少 阻擋的光的量並且可以進一步抑制光利用效率的降低。稜鏡104A的尺寸是ro=17.5,ri=17.5,t=35和d=52.5(尺寸的單位為mm),並且玻璃材料是合成的石英。 If the reflective film is formed on the inner surface 104A5, the expansion of the light emitted from the crucible 104A can be reduced as compared with the expansion of the light entering the crucible 104A. Therefore, in the optical system behind the 稜鏡104A, it can be reduced The amount of blocked light can further suppress the decrease in light utilization efficiency. The size of 稜鏡104A is ro=17.5, ri=17.5, t=35 and d=52.5 (the unit of size is mm), and the glass material is synthetic quartz.

例如,假設具有圖5A中示出的強度分佈的光從光源側進入到稜鏡104A的入射表面,其中光軸的方向處於與紙面垂直地穿過圖5A中的座標原點的方向。在這種條件中,如圖5B中所示出的,稜鏡104A的出射表面上的光強度分佈具有環狀的形狀。 For example, it is assumed that the light having the intensity distribution shown in FIG. 5A enters from the light source side to the incident surface of the crucible 104A, wherein the direction of the optical axis is in a direction perpendicular to the plane of the paper passing through the origin of the coordinates in FIG. 5A. In this condition, as shown in FIG. 5B, the light intensity distribution on the exit surface of the crucible 104A has an annular shape.

如果不使用稜鏡104A,為了產生環狀的光強度分佈,必須例如通過孔徑光闌將圖5A中示出的強度分佈切割成環狀形狀,並且使用獲得的光強度分佈。圖5C示出通過孔徑光闌從圖5A中的強度分佈切割成環狀形狀的光強度分佈。 If the crucible 104A is not used, in order to generate a circular light intensity distribution, the intensity distribution shown in Fig. 5A must be cut into an annular shape, for example, by an aperture stop, and the obtained light intensity distribution is used. Fig. 5C shows a light intensity distribution cut into an annular shape from the intensity distribution in Fig. 5A by an aperture stop.

圖5D示出沿著圖5B和圖5C中的虛線切割的截面中的能量分佈。圖5D中的實線示出圖5B中的情況,並且圖5D中的虛線示出圖5C中的情況。如果比較這些線,則在圖5B的情況(使用稜鏡104A)下蓄積的光能比在圖5C的情況下蓄積的光能高約60%。 FIG. 5D shows the energy distribution in the section cut along the broken line in FIGS. 5B and 5C. The solid line in Fig. 5D shows the case in Fig. 5B, and the broken line in Fig. 5D shows the case in Fig. 5C. When these lines are compared, the light energy accumulated in the case of Fig. 5B (using 稜鏡104A) is about 60% higher than the light energy accumulated in the case of Fig. 5C.

描述稜鏡104的第二示例性實施例。根據該示例性實施例的稜鏡104是包括分割的在第一示例性實施例中使用的稜鏡104A的光學元件組104B。 A second exemplary embodiment of the port 104 is described. The crucible 104 according to this exemplary embodiment is an optical element group 104B including a segmented crucible 104A used in the first exemplary embodiment.

圖6是示出包括光軸的光學元件組104B的截面圖。光學元件組104B包括兩個光學元件104B1和104B2。作為玻璃材料,作為示例,使用合成石英。光學元件(第一 光學元件)104B1具有通過將柱狀的光學棒的中心周圍挖空(hollow)而形成的形狀。光學元件104B1是空心的柱狀的光學棒,並且具有外側面104A6,該空心的柱狀的光學棒具有稜鏡104A的平坦表面104A2(第一表面)和平坦表面104A4(第二表面)分別作為底面和頂面。光學元件104B2(第二光學元件)是在一側具有凹錐面並且在另一側具有凸錐面的圓錐稜鏡。光學元件104B2中的凹錐面類似於凹錐面104A1,並且光學元件104B2中的凸錐面類似於凹錐面104A3。光學元件104B2被佈置在光學元件104B1的空心的部分中。 FIG. 6 is a cross-sectional view showing an optical element group 104B including an optical axis. Optical element group 104B includes two optical elements 104B1 and 104B2. As the glass material, synthetic quartz is used as an example. Optical component (first The optical element 104B1 has a shape formed by hollowing out the center of the columnar optical rod. The optical element 104B1 is a hollow cylindrical optical rod and has an outer side surface 104A6 having a flat surface 104A2 (first surface) of the crucible 104A and a flat surface 104A4 (second surface) as Bottom and top. The optical element 104B2 (second optical element) is a conical ridge having a concave tapered surface on one side and a convex tapered surface on the other side. The concave tapered surface in optical element 104B2 is similar to concave tapered surface 104A1, and the convex tapered surface in optical element 104B2 is similar to concave tapered surface 104A3. The optical element 104B2 is disposed in a hollow portion of the optical element 104B1.

光學元件組104B可以以與稜鏡104A類似的方式被佈置在照明光學系統100中,並且可以預期類似的效果。 The optical element group 104B may be disposed in the illumination optical system 100 in a similar manner to the crucible 104A, and a similar effect can be expected.

在製造稜鏡104A時,難以加工凸錐面和凹錐面。此外,在稜鏡104A中,期望的是在平面部分和錐面部分上施加透射膜,然而,難以均勻地施加該透射膜。另一方面,在光學元件組104B中,光學元件104B1和光學元件104B2被分離地製造和組裝,並且這可以解決上述問題。因此,光學元件組104B的製造比稜鏡104A的製造更容易,這可以增大製造成品率。 When the crucible 104A is manufactured, it is difficult to machine the convex taper surface and the concave taper surface. Further, in the crucible 104A, it is desirable to apply a transmissive film on the planar portion and the tapered portion, however, it is difficult to uniformly apply the transmissive film. On the other hand, in the optical element group 104B, the optical element 104B1 and the optical element 104B2 are separately manufactured and assembled, and this can solve the above problem. Therefore, the manufacture of the optical element group 104B is easier than the manufacture of the crucible 104A, which can increase the manufacturing yield.

此外,期望的是接合光學元件104B1和光學元件104B2以便製作光學元件組104B。在製造處理中,在光學元件104B1和光學元件104B2的接合表面上,可以以與要使用的光的波長類似的厚度形成具有比合成石英的折射率低的折射率的電介質膜。在這種情況下,在光學元件 104B1和光學元件104B2之間的邊界區域處,光被全反射,並且光的能量可以被維持。 Further, it is desirable to bond the optical element 104B1 and the optical element 104B2 to fabricate the optical element group 104B. In the manufacturing process, on the bonding surface of the optical element 104B1 and the optical element 104B2, a dielectric film having a refractive index lower than that of synthetic quartz can be formed at a thickness similar to the wavelength of light to be used. In this case, in the optical component At the boundary region between 104B1 and optical element 104B2, light is totally reflected and the energy of the light can be maintained.

描述稜鏡104的第三示例性實施例。根據該示例性實施例的稜鏡104是包括分割的在第一示例性實施例中使用的稜鏡104A的光學元件組104C。分割方法不同於光學元件組104B。 A third exemplary embodiment of the crucible 104 is described. The crucible 104 according to this exemplary embodiment is an optical element group 104C including a segmented crucible 104A used in the first exemplary embodiment. The segmentation method is different from the optical element group 104B.

圖7是示出包括光軸的光學元件組104C的截面圖。光學元件組104C包括兩個光學元件104C1和104C2。作為玻璃材料,作為示例,使用合成石英。光學元件(第四光學元件)104C1具有通過將柱狀的光學棒的中心周圍挖空而形成的形狀。光學元件104C1是空心的柱狀的棒,該空心的柱狀的棒在光出射表面側具有稜鏡104A的平坦表面104A4(第二表面),並且具有外側面104A6的一部分。光學元件(第三光學元件)104C2是具有稜鏡104A的凹錐面104A1、平坦表面104A2(第一表面)、凸錐面104A3、和外側面104A6的一部分的稜鏡。光學元件104C1在光學元件104C1的空心中具有光學元件104C2的凸錐面104A3。 FIG. 7 is a cross-sectional view showing an optical element group 104C including an optical axis. Optical element group 104C includes two optical elements 104C1 and 104C2. As the glass material, synthetic quartz is used as an example. The optical element (fourth optical element) 104C1 has a shape formed by hollowing out the center of the center of the columnar optical rod. The optical element 104C1 is a hollow columnar rod having a flat surface 104A4 (second surface) of the crucible 104A on the light exit surface side and having a portion of the outer side surface 104A6. The optical element (third optical element) 104C2 is a crucible having a concave tapered surface 104A1 of a crucible 104A, a flat surface 104A2 (first surface), a convex tapered surface 104A3, and a part of the outer side surface 104A6. Optical element 104C1 has a convex tapered surface 104A3 of optical element 104C2 in the hollow of optical element 104C1.

光學元件組104C可以以與稜鏡104A類似的方式被佈置在照明光學系統100中,並且可以預期類似的效果。類似於第二示例性實施例,同樣,光學元件組104C的製造比稜鏡104A的製造更容易。 The optical element group 104C may be disposed in the illumination optical system 100 in a similar manner to the crucible 104A, and a similar effect can be expected. Similar to the second exemplary embodiment, likewise, the manufacture of the optical element group 104C is easier than the manufacture of the crucible 104A.

類似於稜鏡104A中的內表面104A5,如果反射膜要被形成在光學元件104C1的內表面上,則由於光學元件組 104C包括多個光學元件,所以與稜鏡104A相比更易於在光學元件104C1的內表面上蒸發反射膜。此外,與光學元件104B1的內表面的一部分上的該膜的蒸發相比,光學元件104C1的整個內表面上的反射膜的蒸發更容易。 Similar to the inner surface 104A5 in the crucible 104A, if the reflective film is to be formed on the inner surface of the optical element 104C1, due to the optical element group The 104C includes a plurality of optical elements, so that it is easier to evaporate the reflective film on the inner surface of the optical element 104C1 than the crucible 104A. Furthermore, evaporation of the reflective film over the entire inner surface of the optical element 104C1 is easier than evaporation of the film on a portion of the inner surface of the optical element 104B1.

描述稜鏡104的第四示例性實施例。根據該示例性實施例的稜鏡104是包括分割的在第一示例性實施例中使用的稜鏡104A的光學元件組104D。 A fourth exemplary embodiment of the 稜鏡 104 is described. The crucible 104 according to this exemplary embodiment is an optical element group 104D including the divided crucible 104A used in the first exemplary embodiment.

圖8是示出包括光軸的光學元件組104D的截面圖。光學元件組104D包括三個光學元件104C1、104B2和104D1。 FIG. 8 is a cross-sectional view showing an optical element group 104D including an optical axis. Optical element group 104D includes three optical elements 104C1, 104B2, and 104D1.

光學元件104C1是在第三示例性實施例中描述的光學元件。光學元件104B2是在第二示例性實施例中描述的光學元件。光學元件104D1是空心的柱狀的光學棒,該空心的柱狀的光學棒具有稜鏡104A的平坦表面104A2(第一表面)和外側面104A6的一部分。 The optical element 104C1 is the optical element described in the third exemplary embodiment. The optical element 104B2 is the optical element described in the second exemplary embodiment. The optical element 104D1 is a hollow cylindrical optical rod having a flat surface 104A2 (first surface) of the crucible 104A and a portion of the outer side surface 104A6.

作為稜鏡104中的光學元件組的其他示例,本發明可以被應用於通過由穿過柱的中心軸的截面將光學元件104C1分割成兩個或四個或者通過根據各種其他分割方法分割光學元件104C1而獲得的光學元件組。 As other examples of the optical element group in the crucible 104, the present invention can be applied to divide the optical element 104C1 into two or four by a section passing through the central axis of the column or by dividing the optical element according to various other division methods. Optical element group obtained by 104C1.

包括這種稜鏡和光學元件組的稜鏡104可以同樣在諸如環狀照明之類的離軸照明中抑制光利用效率的降低和待照射面上的照度的降低。 The crucible 104 including such a crucible and optical element group can also suppress a decrease in light utilization efficiency and a decrease in illumination on the surface to be illuminated in off-axis illumination such as ring illumination.

在這個示例性實施例中,圓錐面被用在稜鏡104中。可替代地,可以使用矩形柱面。在這種情況下,可以使用 圓形的或矩形柱的凹面和凸面。在這個示例性實施例中,稜鏡104的側面是圓柱。然而,可替代地,可以使用矩形柱。 In this exemplary embodiment, a conical surface is used in the crucible 104. Alternatively, a rectangular cylinder can be used. In this case, you can use Concave and convex of a circular or rectangular column. In this exemplary embodiment, the side of the crucible 104 is a cylinder. Alternatively, however, a rectangular column can be used.

此外,例如,為了增大由投影光學系統捕獲的光的量,可以增大光瞳面中的孔徑光闌的開口的直徑。然而,如果增大孔徑光闌5的開口的直徑,則投影光學系統的數值孔徑(NA)也增大並且焦深減小,使得處理裕度在曝光設備中被損失。 Further, for example, in order to increase the amount of light captured by the projection optical system, the diameter of the opening of the aperture stop in the pupil plane may be increased. However, if the diameter of the opening of the aperture stop 5 is increased, the numerical aperture (NA) of the projection optical system also increases and the depth of focus decreases, so that the processing margin is lost in the exposure apparatus.

描述稜鏡104的第五示例性實施例。圖14是沿著包括稜鏡104E的光軸的平面截取的截面圖以及從稜鏡104E的右側看的側視圖。稜鏡104E包括光學元件104E1和光學元件104E2。光學元件104E1包括圓形的凹錐面104E11、圓形的凸錐面104E12、以及連接圓形的凹錐面104E11的外周和圓形的凸錐面104E12的外周的外側面104E13。光學元件104E2是空心的柱狀的部件,並且包括內表面104E22。在內表面104E22上,提供反射膜。內表面104E22是佈置為圍繞圓形的凸錐面104E12的柱狀的側面。光束1E進入圓形的凹錐面104E11,穿過光學元件104E1,並且從圓形的凸錐面104E12射出。光束2E進入圓形的凹錐面104E11,穿過光學元件104E1,並且從圓形的凸錐面104E12射出。此外,光束被內表面104E22反射,並且從稜鏡104E射出。也就是說,光束2E以相對於光軸沿外側方向的角度進入圓形的凹錐面104E11,並且從圓形的凸錐面104E12射出。然後,光束被內表面 104E22反射,並且沿內側方向射出。光束3E進入圓形的凹錐面104E11,在穿過光學元件104E1的中間被外側面104E13全反射。然後,該光束從圓形的凸錐面104E12射出。如上所述,外側面104E13具有用於全反射光的反射表面的功能。光束3E被圓形的凹錐面104E11沿外側方向折射,並且被外側面104E13全反射,並且因此,光束3E沿內側方向行進。因此,外側面104E13和內表面104E22減少從稜鏡104E射出的光的擴展。如果圓形的凹錐面104E11和圓形的凸錐面104E12的錐面具有類似的形狀,並且外側面104E13和內表面104E22平行於光軸。射出光以與入射光類似的角度被出射。 A fifth exemplary embodiment of the 稜鏡 104 is described. Figure 14 is a cross-sectional view taken along a plane including the optical axis of the crucible 104E and a side view as seen from the right side of the crucible 104E. The crucible 104E includes an optical element 104E1 and an optical element 104E2. The optical element 104E1 includes a circular concave tapered surface 104E11, a circular convex tapered surface 104E12, and an outer circumferential surface 104E13 connecting the outer circumference of the circular concave tapered surface 104E11 and the outer circumference of the circular convex tapered surface 104E12. Optical element 104E2 is a hollow cylindrical member and includes an inner surface 104E22. On the inner surface 104E22, a reflective film is provided. The inner surface 104E22 is a cylindrical side surface that is disposed to surround the circular convex tapered surface 104E12. The beam 1E enters a circular concave tapered surface 104E11, passes through the optical element 104E1, and exits from the circular convex tapered surface 104E12. The beam 2E enters a circular concave tapered surface 104E11, passes through the optical element 104E1, and exits from the circular convex tapered surface 104E12. In addition, the light beam is reflected by the inner surface 104E22 and is emitted from the crucible 104E. That is, the light beam 2E enters the circular concave tapered surface 104E11 at an angle in the outer direction with respect to the optical axis, and is emitted from the circular convex tapered surface 104E12. Then the beam is covered by the inner surface 104E22 reflects and exits in the medial direction. The beam 3E enters the circular concave tapered surface 104E11 and is totally reflected by the outer side surface 104E13 in the middle through the optical element 104E1. The beam is then ejected from a circular convex cone surface 104E12. As described above, the outer side surface 104E13 has a function of a reflecting surface for totally reflecting light. The light beam 3E is refracted in the outer direction by the circular concave tapered surface 104E11, and is totally reflected by the outer side surface 104E13, and therefore, the light beam 3E travels in the inner side direction. Therefore, the outer side surface 104E13 and the inner surface 104E22 reduce the spread of light emitted from the crucible 104E. If the circular concave tapered surface 104E11 and the circular convex tapered surface 104E12 have similar shapes, the outer side surface 104E13 and the inner surface 104E22 are parallel to the optical axis. The emitted light is emitted at an angle similar to the incident light.

參考圖9,描述根據本發明的第二示例性實施例的投影曝光設備。在附圖中使用的相同附圖標記被類似地應用,並且省略了描述的一部分。 Referring to Fig. 9, a projection exposure apparatus according to a second exemplary embodiment of the present invention will be described. The same reference numerals are used in the drawings, and a part of the description is omitted.

照明光學系統包括根據第一示例性實施例的稜鏡104A、圖10中示出的六邊形的光學棒114以及圖11中示出的稜鏡106。照明光學系統還包括稜鏡變換器112,該稜鏡變換器112用於把這些光學元件帶到光路中和帶出光路以便在光路中選擇性地設置一個光學部件。 The illumination optical system includes a crucible 104A according to the first exemplary embodiment, a hexagonal optical rod 114 illustrated in FIG. 10, and a crucible 106 illustrated in FIG. The illumination optics further includes a chirp converter 112 for carrying the optical components into and out of the optical path to selectively provide an optical component in the optical path.

如圖11A中所示出的,稜鏡106在光入射表面上包括外凸錐面1061和內凸錐面1062。照明光學系統還在光出射表面上包括凹錐面1063,並且中心部分是空心的。圖11B示出穿過稜鏡106的光束。當凸錐面被佈置在入射表面上並且凹錐面被佈置在出射表面側時,光束4進入凸錐 面1061並且變得更接近光軸O。然而,在光束5和光束6穿過空心的區域並且在其中不設置折射表面的情況下,如附圖中所示出的,不影響光傳播路徑。因此,當使用稜鏡106時,出射光通量的直徑可以小於入射光通量的直徑。 As shown in FIG. 11A, the crucible 106 includes a convex conical surface 1061 and an inner convex conical surface 1062 on the light incident surface. The illumination optics also includes a concave tapered surface 1063 on the light exit surface and the central portion is hollow. FIG. 11B shows the light beam passing through the crucible 106. When the convex cone surface is disposed on the incident surface and the concave tapered surface is disposed on the exit surface side, the light beam 4 enters the convex cone Face 1061 and becomes closer to optical axis O. However, in the case where the light beam 5 and the light beam 6 pass through the hollow region and no refractive surface is provided therein, as shown in the drawing, the light propagation path is not affected. Thus, when helium 106 is used, the diameter of the exiting light flux can be less than the diameter of the incident light flux.

為了減少要形成在照明光學系統中的光瞳面上的光強度分佈(有效光源分佈)的擴展,必須例如利用σ光闌切割有效光源分佈的外周部分。然而,在這種情況下,光利用效率降低。然而,通過使用稜鏡106,可以使有效光源形狀變窄,並且可以抑制光利用效率的降低。 In order to reduce the spread of the light intensity distribution (effective light source distribution) to be formed on the pupil plane in the illumination optical system, it is necessary to cut the peripheral portion of the effective light source distribution, for example, using an σ pupil. However, in this case, the light utilization efficiency is lowered. However, by using the crucible 106, the effective light source shape can be narrowed, and the reduction in light utilization efficiency can be suppressed.

照明光學系統在蠅眼光學系統109的出射表面周圍包括σ光闌變換器113,該σ光闌變換器113能夠選擇性地佈置具有不同開口形狀的多個σ光闌。 The illumination optical system includes an σ-optical transducer 113 around the exit surface of the fly-eye optical system 109, which is capable of selectively arranging a plurality of σ pupils having different opening shapes.

圖12是σ光闌變換器113的示意性結構視圖。例如,當稜鏡變換器112被驅動為將光學棒114佈置在光路中時,σ光闌變換器113被驅動為使得σ光闌113A被佈置在蠅眼光學系統109的出射表面周圍。當稜鏡變換器112被驅動為將稜鏡104佈置在光路中時,σ光闌變換器113被驅動為使得σ光闌113B被佈置在蠅眼光學系統109的出射表面周圍。當稜鏡變換器112被驅動為將稜鏡106佈置在光路中時,σ光闌變換器113被驅動為使得σ光闌113C被佈置在蠅眼光學系統109的出射表面周圍。 FIG. 12 is a schematic structural view of the σ diaphragm converter 113. For example, when the helium transducer 112 is driven to dispose the optical rod 114 in the optical path, the sigma-iris transducer 113 is driven such that the σ diaphragm 113A is disposed around the exit surface of the fly-eye optical system 109. When the chirp converter 112 is driven to dispose the crucible 104 in the optical path, the σ diaphragm converter 113 is driven such that the σ diaphragm 113B is disposed around the exit surface of the fly's eye optical system 109. When the 稜鏡 transducer 112 is driven to arrange the 稜鏡 106 in the optical path, the σ-iridium transducer 113 is driven such that the σ pupil 113C is disposed around the exit surface of the fly-eye optical system 109.

根據示例性實施例的投影曝光設備可以使用稜鏡變換器112和σ光闌變換器113來形成多個類型的有效光源分佈(照明條件)。因此,根據遮罩M的圖案,選擇有效 光源分佈來照射遮罩M。投影曝光設備通過投影光學系統PO將遮罩M的圖案投影到基板P上以便使基板P曝光。在根據示例性實施例的投影曝光設備中,根據遮罩M的圖案,可以選擇具有高圖案解析度的有效光源分佈來照射遮罩M以便使基板曝光。因此,可以增大生產率。 The projection exposure apparatus according to an exemplary embodiment may use the sigma converter 112 and the sigma transducer 113 to form a plurality of types of effective light source distributions (lighting conditions). Therefore, according to the pattern of the mask M, the selection is effective The light source is distributed to illuminate the mask M. The projection exposure apparatus projects a pattern of the mask M onto the substrate P through the projection optical system PO to expose the substrate P. In the projection exposure apparatus according to the exemplary embodiment, according to the pattern of the mask M, an effective light source distribution having a high pattern resolution may be selected to illuminate the mask M to expose the substrate. Therefore, productivity can be increased.

根據示例性實施例的投影曝光設備包括用於測量進入基板P的光的角度分佈(有效光源分佈)的測量裝置JS。測量裝置JS被佈置在保持基板並且移動的基板台PS中。測量裝置JS包括其上形成有1mm或更小的直徑的針孔(pinhole)的針孔板、以及在與針孔分隔約100mm的位置處的電荷耦合器件(CCD)照相機。在測量進入基板P的光的角度分佈中,測量裝置JS在曝光區域中被移動以便將針孔佈置在像面上,並且利用CCD照相機捕獲透過針孔的光的光分佈的影像。使用由CCD照相機捕獲的影像資料,可以計算進入基板P的光的角度分佈。然後,使用所計算的角度分佈,稜鏡104的位置和取向被調節為使得進入基板P的光的角度分佈變為期望的角度分佈。測量裝置JS可以還被用於投影光學系統中的遠心的調節。 The projection exposure apparatus according to an exemplary embodiment includes a measuring device JS for measuring an angular distribution (effective light source distribution) of light entering the substrate P. The measuring device JS is disposed in the substrate stage PS that holds the substrate and moves. The measuring device JS includes a pinhole plate on which a pinhole having a diameter of 1 mm or less is formed, and a charge coupled device (CCD) camera at a position separated from the pinhole by about 100 mm. In measuring the angular distribution of the light entering the substrate P, the measuring device JS is moved in the exposure region to arrange the pinhole on the image plane, and an image of the light distribution of the light transmitted through the pinhole is captured by the CCD camera. Using the image data captured by the CCD camera, the angular distribution of light entering the substrate P can be calculated. Then, using the calculated angular distribution, the position and orientation of the crucible 104 are adjusted such that the angular distribution of light entering the substrate P becomes a desired angular distribution. The measuring device JS can also be used for the adjustment of the telecentricity in the projection optical system.

在下文中,描述第三示例性實施例。描述使用上述的曝光設備製造裝置(半導體積體電路裝置、液晶顯示裝置等)的方法。使用上述的曝光設備在使其上施加有感光材料的基板(例如,晶圓和玻璃基板)曝光、使基板(感光材料)顯影和其他已知步驟的步驟中製造裝置。其他已知步驟包括例如蝕刻、抗蝕劑剝離、切粒(dice)、接合和 封裝。根據裝置製造方法,可以製造具有優於已知裝置的品質的裝置。 In the following, a third exemplary embodiment will be described. A method of using the above-described exposure apparatus manufacturing apparatus (semiconductor integrated circuit device, liquid crystal display device, etc.) will be described. The apparatus is manufactured using the above-described exposure apparatus in the steps of exposing a substrate (for example, a wafer and a glass substrate) to which a photosensitive material is applied, developing a substrate (photosensitive material), and other known steps. Other known steps include, for example, etching, resist stripping, dice, bonding, and Package. According to the device manufacturing method, a device having a quality superior to that of the known device can be manufactured.

根據上述的示例性實施例,當通過使用來自用於改變光通量的截面形狀的稜鏡的光使基板曝光時可以抑制光利用效率的降低。 According to the above-described exemplary embodiment, the decrease in light use efficiency can be suppressed when the substrate is exposed by using light from a crucible for changing the cross-sectional shape of the luminous flux.

雖然已經參考示例性實施例描述了本發明,但是應當理解,本發明不限於所公開的示例性實施例。以下申請專利範圍的範圍將被給予最寬的解釋從而包括所有這樣的修改、等同的結構與功能。 While the invention has been described with reference to exemplary embodiments thereof, it is understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the

104A1‧‧‧凹錐面 104A1‧‧‧ concave cone

104A2‧‧‧平坦表面(第一表面) 104A2‧‧‧flat surface (first surface)

104A3‧‧‧凸錐面 104A3‧‧‧ convex cone

104A4‧‧‧平坦表面(第二表面) 104A4‧‧‧flat surface (second surface)

104A5‧‧‧內表面 104A5‧‧‧ inner surface

104A6‧‧‧外側面 104A6‧‧‧Outside

Claims (11)

一種照明光學系統,用於照明待照明之平面,該照明光學系統包括被建構成具有稜鏡用於改變光通量之截面形狀的光學系統,其中該稜鏡包括光入射表面、光出射表面、以及從光入射表面側延伸到光出射表面側的外側面,該光入射表面包括凹錐面,該光出射表面包括凸錐面,以及該外側面包括用於反射從該光入射表面入射在該外側面的光的反射表面,其中該光入射表面包括相對於穿過該凹錐面的頂點的中心軸線佈置在該凹錐面的外側的第一表面、以及該光出射表面包括相對於穿過該凸錐面的頂點的中心軸線佈置在該凸錐面的外側的第二表面,和其中該照明光學系統引導該光以便進入該光入射表面的該凹錐面和該第一表面。 An illumination optical system for illuminating a plane to be illuminated, the illumination optical system comprising an optical system constructed to have a cross-sectional shape for changing a luminous flux, wherein the crucible includes a light incident surface, a light exit surface, and a The light incident surface side extends to an outer side of the light exit surface side, the light incident surface includes a concave tapered surface, the light exit surface includes a convex tapered surface, and the outer side surface includes a reflection from the light incident surface incident on the outer side a reflective surface of light, wherein the light incident surface includes a first surface disposed outside the concave tapered surface with respect to a central axis passing through the apex of the concave tapered surface, and the light exiting surface includes opposite to the through A central axis of the apex of the tapered surface is disposed on a second surface of the outer side of the convex tapered surface, and wherein the illumination optical system directs the light to enter the concave tapered surface of the light incident surface and the first surface. 根據申請專利範圍第1項所述的照明光學系統,其中該反射表面將從該光入射表面進入的光完全反射。 The illumination optical system of claim 1, wherein the reflective surface totally reflects light entering from the light incident surface. 根據申請專利範圍第1項所述的照明光學系統,其中該反射表面是其上形成有反射膜的表面。 The illumination optical system according to claim 1, wherein the reflective surface is a surface on which a reflective film is formed. 根據申請專利範圍第1項所述的照明光學系統,其中該稜鏡是藉由接合多個光學元件而形成的,以及在該等光學元件的接合表面上,形成折射率比該等光學元件的折射率還低的膜。 The illumination optical system according to claim 1, wherein the crucible is formed by joining a plurality of optical elements, and on the bonding surface of the optical elements, forming a refractive index ratio of the optical elements A film with a low refractive index. 根據申請專利範圍第1項所述的照明光學系統,其中該稜鏡具有空心柱狀光學元件,其具有分別作為底面和頂面的第一表面和第二表面,並且具有該外側面、以及在該空心柱狀光學元件的空心部分中具有該凹錐面和該凸錐面的光學元件。 The illumination optical system of claim 1, wherein the crucible has a hollow cylindrical optical element having a first surface and a second surface as bottom and top surfaces, respectively, and having the outer side, and The hollow cylindrical optical element has an optical element having the concave tapered surface and the convex tapered surface in the hollow portion. 根據申請專利範圍第1項所述的照明光學系統,其中該稜鏡包括具有該凹錐面、該第一表面、該凸錐面和該外側面的光學元件,以及具有該第二表面和該外側面的空心柱狀光學元件,其中該凸錐面被設置在該空心柱狀光學元件的空心部分。 The illumination optical system of claim 1, wherein the crucible comprises an optical element having the concave tapered surface, the first surface, the convex tapered surface, and the outer side surface, and having the second surface and the A hollow cylindrical optical element on the outer side, wherein the convex tapered surface is disposed in a hollow portion of the hollow cylindrical optical element. 一種照明光學系統,用於照明待照明之平面,該照明光學系統包括被建構成具有稜鏡用於改變光通量之截面形狀的光學系統,其中該稜鏡包括光入射表面、光出射表面、以及從光入射表面側延伸到光出射表面側的外側面,該光入射表面包括凹錐面,該光出射表面包括凸錐面,以及該外側面包括用於反射從該光入射表面入射在該外側面的光的反射表面,其中該光學系統具有該稜鏡,其包括用於將從該凸錐面出射的光反射的反射表面。 An illumination optical system for illuminating a plane to be illuminated, the illumination optical system comprising an optical system constructed to have a cross-sectional shape for changing a luminous flux, wherein the crucible includes a light incident surface, a light exit surface, and a The light incident surface side extends to an outer side of the light exit surface side, the light incident surface includes a concave tapered surface, the light exit surface includes a convex tapered surface, and the outer side surface includes a reflection from the light incident surface incident on the outer side a reflective surface of light, wherein the optical system has the haptic comprising a reflective surface for reflecting light emerging from the convex cone. 根據申請專利範圍第7項所述的照明光學系統, 其中用於將從該凸錐面出射的光反射的該反射表面被形成在佈置為圍繞該凸錐面的柱狀側面上。 According to the illumination optical system described in claim 7 of the patent application, The reflective surface for reflecting light emerging from the convex tapered surface is formed on a cylindrical side surface disposed to surround the convex tapered surface. 一種照明光學系統,用於照明待照明之平面,該照明光學系統包括被建構成具有稜鏡用於改變光通量之截面形狀的光學系統,其中該稜鏡包括光入射表面、光出射表面、以及從光入射表面側延伸到光出射表面側的外側面,該光入射表面包括凹錐面,該光出射表面包括凸錐面,以及該外側面包括用於反射從該光入射表面入射在該外側面的光的反射表面,其中該光學系統具有該稜鏡,其包括具有該凹錐面、該凸錐面和該外側面的光學元件,以及空心柱狀光學元件,具有形成在內側面上的用於將從該凸錐面出射的光反射的反射表面。 An illumination optical system for illuminating a plane to be illuminated, the illumination optical system comprising an optical system constructed to have a cross-sectional shape for changing a luminous flux, wherein the crucible includes a light incident surface, a light exit surface, and a The light incident surface side extends to an outer side of the light exit surface side, the light incident surface includes a concave tapered surface, the light exit surface includes a convex tapered surface, and the outer side surface includes a reflection from the light incident surface incident on the outer side a reflective surface of light, wherein the optical system has the crucible, comprising an optical element having the concave tapered surface, the convex tapered surface and the outer side surface, and a hollow cylindrical optical element having a surface formed on the inner side a reflective surface that reflects light that exits the convex cone surface. 一種曝光設備,包括:根據申請專利範圍第1至9項中任一項所述的照明光學系統,用於照射遮罩;以及投影光學系統,用於將該遮罩的圖案影像投影到基板上。 An exposure apparatus comprising: the illumination optical system according to any one of claims 1 to 9 for illuminating a mask; and a projection optical system for projecting a pattern image of the mask onto the substrate . 一種製造裝置的方法,包括:使用根據申請專利範圍第10項所述的曝光設備使基板曝光,以及 使曝光後的基板顯影。 A method of manufacturing a device, comprising: exposing a substrate using an exposure apparatus according to claim 10 of the patent application; The exposed substrate is developed.
TW103113227A 2013-04-23 2014-04-10 Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method TWI547768B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013090796 2013-04-23
JP2014040968A JP5843905B2 (en) 2013-04-23 2014-03-03 Illumination optical system, exposure apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
TW201443577A TW201443577A (en) 2014-11-16
TWI547768B true TWI547768B (en) 2016-09-01

Family

ID=52124078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103113227A TWI547768B (en) 2013-04-23 2014-04-10 Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method

Country Status (2)

Country Link
JP (1) JP5843905B2 (en)
TW (1) TWI547768B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217851A (en) * 1992-01-31 1993-08-27 Nikon Corp Projection aligner
JPH09196856A (en) * 1996-01-23 1997-07-31 Tsubakimoto Chain Co Surface inspecting method, and device and prism therefor
JP2009244881A (en) * 2008-03-28 2009-10-22 Nikon Corp Optical member, light routing unit, and exposure apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260708A (en) * 1998-03-10 1999-09-24 Nikon Corp Projection aligner and manufacture of semiconductor device using the aligner
JP3984821B2 (en) * 2001-11-19 2007-10-03 株式会社 液晶先端技術開発センター Illumination optical apparatus and exposure apparatus using the same
JP2006133609A (en) * 2004-11-08 2006-05-25 Sony Corp Light guiding path
JP4865270B2 (en) * 2005-07-28 2012-02-01 キヤノン株式会社 Exposure apparatus and device manufacturing method using the same
JP2007212694A (en) * 2006-02-09 2007-08-23 Sony Corp Beam splitter
JP2009130091A (en) * 2007-11-22 2009-06-11 Canon Inc Illumination optical device, aligner, and device manufacturing method
JP6178588B2 (en) * 2013-02-28 2017-08-09 キヤノン株式会社 Illumination optical system, exposure apparatus, device manufacturing method, and optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217851A (en) * 1992-01-31 1993-08-27 Nikon Corp Projection aligner
JPH09196856A (en) * 1996-01-23 1997-07-31 Tsubakimoto Chain Co Surface inspecting method, and device and prism therefor
JP2009244881A (en) * 2008-03-28 2009-10-22 Nikon Corp Optical member, light routing unit, and exposure apparatus

Also Published As

Publication number Publication date
TW201443577A (en) 2014-11-16
JP2014225641A (en) 2014-12-04
JP5843905B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
KR100731255B1 (en) Illumination optical system and exposure apparatus using the same
KR20030017431A (en) Illuminaire optical apparatus, exposure apparatus, exposure method, and method for fabricating micro device
JPH1154426A (en) Lighting device and aligner using the same
JP2009093175A (en) Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method
EP2253997A2 (en) Illumination system for a microlithographic contact and proximity exposure apparatus
TWI815848B (en) Exposure device and exposure method
KR101493536B1 (en) Optical integrator system, illumination optical apparatus, exposure apparatus, and device manufacturing method
TW200839460A (en) Exposure apparatus and semiconductor device fabrication method
KR20070092144A (en) Exposure apparatus and device manufacturing method
JP6651124B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP6494339B2 (en) Illumination optical system, exposure apparatus, and article manufacturing method
KR101506748B1 (en) Optical integrator, illuminating optical device, exposure apparatus and device manufacturing method
JP2021047444A (en) Illumination apparatus and method, exposure apparatus and method, and device manufacturing method
JP2009130091A (en) Illumination optical device, aligner, and device manufacturing method
TWI547768B (en) Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method
KR101782672B1 (en) Prism optical system, illumination optical system, exposure apparatus, and device manufacturing method
JP4838430B2 (en) Exposure apparatus and device manufacturing method
JPH0766121A (en) Projection aligner and fabrication of semiconductor element employing it
JP2005150174A (en) Illumination optical system and exposure system using it
KR101999553B1 (en) Illumination optical device, exposure apparatus, and method of manufacturing article
TWI805936B (en) Exposure device and manufacturing method of article
JP7340167B2 (en) Illumination optical system, exposure equipment, and device manufacturing method
JPH0684760A (en) Formation of zonal luminous flux and illuminating optical device
WO2013018799A1 (en) Illumination device
JP2002025898A (en) Illuminating optical device, and aligner provided with the illuminating optical device