TWI546516B - Micro-liquid cooler - Google Patents

Micro-liquid cooler Download PDF

Info

Publication number
TWI546516B
TWI546516B TW103136618A TW103136618A TWI546516B TW I546516 B TWI546516 B TW I546516B TW 103136618 A TW103136618 A TW 103136618A TW 103136618 A TW103136618 A TW 103136618A TW I546516 B TWI546516 B TW I546516B
Authority
TW
Taiwan
Prior art keywords
liquid
micro
controller
temperature
heat
Prior art date
Application number
TW103136618A
Other languages
Chinese (zh)
Other versions
TW201616085A (en
Inventor
wen-xian Xu
Original Assignee
Habor Precise Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Habor Precise Ind Co Ltd filed Critical Habor Precise Ind Co Ltd
Priority to TW103136618A priority Critical patent/TWI546516B/en
Publication of TW201616085A publication Critical patent/TW201616085A/en
Application granted granted Critical
Publication of TWI546516B publication Critical patent/TWI546516B/en

Links

Description

微型液體冷卻機 Micro liquid cooler

本發明是有關於一種冷卻機,特別是指一種微型液體冷卻機。 This invention relates to a cooler, and more particularly to a micro-liquid cooler.

習知的一種針對電腦資訊產業相關的關鍵零件(例如CPU…)的冷卻方法,是使用小體積的風扇進行強制對流,但是,近年來隨著電腦處理性能的提升,相關的關鍵零件之發熱功率(即負荷)也隨之迅速增大,再者,關鍵零件製造過程的發熱功率也同樣朝著變大的趨勢發展,例如單塊電子晶片之封裝的發熱功率約可達到150W以上,因此,採用風扇的冷卻效果不佳,且此方法不能依據電腦關鍵零件的發熱功率而自動精密調整冷卻能力。 A conventional cooling method for key parts (such as CPU...) related to the computer information industry is to use a small-volume fan for forced convection. However, in recent years, with the improvement of computer processing performance, the heating power of related key parts (ie, the load) has also increased rapidly. Moreover, the heating power of the key parts manufacturing process is also moving toward a larger trend. For example, the heating power of a single electronic chip package can reach about 150 W or more. The cooling effect of the fan is not good, and this method cannot automatically adjust the cooling capacity according to the heating power of the key parts of the computer.

習知的另一種冷卻方法是使用一電子熱電晶片,其原理是運用皮爾特效應(Peltier effect),當直流電源通過該電子熱電晶片內多對的n型及p型半導體材料時,該電子熱電晶片兩邊的陶瓷表面(分別為冷面、熱面)將產生溫度差,並可利用此溫差以移除電腦關鍵零件的熱量,雖然此方法能透過調整直流電源的大小來調整冷卻能力,但是,該電子熱電晶片仍存有以下的缺失: Another conventional cooling method is to use an electronic thermoelectric wafer, the principle of which is to use the Peltier effect, which is used when a DC power source passes through a plurality of pairs of n-type and p-type semiconductor materials in the electronic thermoelectric wafer. The ceramic surfaces on both sides of the wafer (cold surface, hot surface, respectively) will create a temperature difference, and this temperature difference can be used to remove the heat of key parts of the computer, although this method can adjust the cooling capacity by adjusting the size of the DC power supply, however, The electronic thermoelectric chip still has the following defects:

一、目前一般市售的電子熱電晶片的性能係數(Coefficient of Performance,COP)仍不高,COP甚至可能小 於1.0,冷卻效率不佳,因此比較耗能。 1. The coefficient of performance (COP) of the currently commercially available electronic thermoelectric wafers is still not high, and the COP may even be small. At 1.0, the cooling efficiency is not good, so it is relatively energy intensive.

二、雖可透過調整直流電源的大小來調整冷卻能力,然而目前的市售產品卻不能達到精準的流體溫度熱補償控制效果(實際值與設定值的誤差達±1.0℃以上)。 Second, although the cooling capacity can be adjusted by adjusting the size of the DC power supply, the current commercial products cannot achieve the precise fluid temperature thermal compensation control effect (the error between the actual value and the set value is above ±1.0 °C).

三、為了維持該電子熱電晶片的冷卻效果,需要將一散熱片(例如鋁材散熱片)及一風扇置於該熱面,藉此將該熱面的熱量移除,但是,即使已經在該熱面與該散熱片之間塗抹散熱膏,該熱面與該散熱片之間仍會存在相當程度的接觸熱阻,進而導致該電子熱電晶片的冷卻效果降低,甚至容易因該熱面的溫度過高而燒毀。 3. In order to maintain the cooling effect of the electronic thermoelectric chip, it is necessary to place a heat sink (for example, an aluminum heat sink) and a fan on the hot surface, thereby removing the heat of the hot surface, but even if it is already A thermal grease is applied between the hot surface and the heat sink, and a relative thermal resistance between the hot surface and the heat sink is still present, thereby causing a decrease in the cooling effect of the electronic thermoelectric wafer, and even a temperature due to the hot surface. Too high and burned.

針對醫療領域的冷卻應用,為了減緩病人身體局部(即負荷)的不舒適感,一般會使用一種裝有液體(例如水)且體積微小的冷熱敷袋。進行熱敷前,必須先將該冷熱敷袋放置在熱源(例如熱水)內以增加溫度,而進行冷敷前,則必須先將該冷熱敷袋放置在冷源(例如冰箱)內以降低溫度。 For cooling applications in the medical field, in order to alleviate the discomfort of the body part (ie, load) of the patient, a cold and hot bag containing a liquid (for example, water) and having a small volume is generally used. Before the hot pack, the hot and cold pack must be placed in a heat source (such as hot water) to increase the temperature. Before the cold pack, the hot pack must be placed in a cold source (such as a refrigerator) to lower the temperature.

然而,由於該冷熱敷袋會受到室溫、液體初始溫度及病患體溫等因素影響,造成該冷熱敷袋可提供熱敷、冷敷的時間無法長久(約數十分鐘),也就是每隔一段時間就必須再次進行蓄熱或蓄冷的動作,實為耗時且不方便。 However, since the hot and cold pack is affected by factors such as room temperature, initial liquid temperature, and patient temperature, the hot and cold pack can provide heat and cold for a long time (about tens of minutes), that is, at intervals. It is necessary to perform the operation of storing heat or storing cold again, which is time consuming and inconvenient.

因此,本發明之目的,即在提供一種可長時間精準地供應需求溫度之液體,且體積小,又方便攜帶的微 型液體冷卻機。 Therefore, the object of the present invention is to provide a liquid which can accurately supply a liquid of a required temperature for a long time, and which is small in size and convenient to carry. Liquid cooler.

於是,本發明微型液體冷卻機,適用於對一負荷穩定地提供經過溫度熱補償控制的液體,滿足需求的溫度。該微型液體冷卻機包含一殼體單元、一冷凍系統、一液體循環系統及一自動控制系統。 Therefore, the micro liquid cooler of the present invention is suitable for stably providing a temperature-thermally compensated liquid to a load to satisfy a required temperature. The micro liquid cooler includes a housing unit, a refrigeration system, a liquid circulation system, and an automatic control system.

該殼體單元包括數個散熱空氣入口、數個散熱空氣出口、一液體入口及一液體出口。 The housing unit includes a plurality of heat dissipating air inlets, a plurality of cooling air outlets, a liquid inlet, and a liquid outlet.

該冷凍系統設置於該殼體單元內,並包括一微型直流無刷壓縮機、一鄰近該等散熱空氣入口與該等散熱空氣出口的冷凝器、一乾燥器、一膨脹器、一蒸發器、一風扇及數支冷媒管。 The refrigeration system is disposed in the housing unit and includes a miniature DC brushless compressor, a condenser adjacent to the cooling air inlets and the cooling air outlets, a dryer, an expander, an evaporator, A fan and several refrigerant tubes.

該風扇將環境空氣自該等散熱空氣入口引入並通過該冷凝器,再經由該散熱空氣出口排回至環境中,形成散熱空氣的循環。 The fan introduces ambient air from the heat-dissipating air inlets and through the condenser, and then discharges back to the environment via the heat-dissipating air outlet to form a circulation of the heat-dissipating air.

該等冷媒管串接該微型直流無刷壓縮機、該冷凝器、該乾燥器、該膨脹器及該蒸發器。 The refrigerant tubes are connected in series to the micro DC brushless compressor, the condenser, the dryer, the expander, and the evaporator.

該液體循環系統設置於該殼體單元內,並包括一泵浦、一加熱器、一供該蒸發器、該加熱器與液體容置的液體容器,與一連接該泵浦、該液體容器並經由該液體入口及該液體出口連接至該負荷的液體管。 The liquid circulation system is disposed in the housing unit, and includes a pump, a heater, a liquid container for the evaporator, the heater and the liquid, and a pump, the liquid container A liquid tube connected to the load via the liquid inlet and the liquid outlet.

該自動控制系統設置於該殼體單元的正面,並包括一控制器、一電連接該控制器與該微型直流無刷壓縮機的驅動器、一電連接該控制器與該加熱器的致動器,與一通過溫度訊號線連接該控制器的感溫器。 The automatic control system is disposed on a front surface of the housing unit, and includes a controller, a driver electrically connecting the controller and the micro DC brushless compressor, and an actuator electrically connecting the controller and the heater And a temperature sensor connected to the controller through a temperature signal line.

本發明之功效在於:藉由該控制器的邏輯運算之後,同時調整該驅動器及該致動器的輸出,使得該微型直流無刷壓縮機、該蒸發器及該加熱器能夠提供該液體容器內之液體適合的熱交換效果,達到精準熱補償控制液體溫度的功效,且該微型液體冷卻機的體積小,使用時不佔用空間,又具有方便攜帶的優點。 The effect of the invention is that, after the logic operation of the controller, the output of the driver and the actuator are simultaneously adjusted, so that the micro DC brushless compressor, the evaporator and the heater can be provided in the liquid container The suitable heat exchange effect of the liquid achieves the effect of precise heat compensation for controlling the temperature of the liquid, and the micro liquid cooler is small in size, does not occupy space when used, and has the advantages of being convenient to carry.

1‧‧‧殼體單元 1‧‧‧Sheet unit

11‧‧‧散熱空氣入口 11‧‧‧Thermal air inlet

12‧‧‧散熱空氣出口 12‧‧‧heating air outlet

13‧‧‧液體入口 13‧‧‧Liquid inlet

14‧‧‧液體出口 14‧‧‧Liquid exports

15‧‧‧控制器安裝口 15‧‧‧Controller mounting port

16‧‧‧電源輸入口 16‧‧‧Power input port

161‧‧‧端子 161‧‧‧ terminals

17‧‧‧液面視窗口 17‧‧‧Liquid view window

2‧‧‧冷凍系統 2‧‧‧ refrigeration system

21‧‧‧微型直流無刷壓縮機 21‧‧‧Micro DC Brushless Compressor

22‧‧‧冷凝器 22‧‧‧Condenser

23‧‧‧乾燥器 23‧‧‧ Dryer

24‧‧‧膨脹器 24‧‧‧Expander

25‧‧‧蒸發器 25‧‧‧Evaporator

26‧‧‧風扇 26‧‧‧Fan

27‧‧‧冷媒管 27‧‧‧ refrigerant tube

3‧‧‧液體循環系統 3‧‧‧Liquid circulation system

31‧‧‧泵浦 31‧‧‧ pump

32‧‧‧加熱器 32‧‧‧heater

33‧‧‧液體容器 33‧‧‧Liquid container

331‧‧‧加液口 331‧‧‧Adding port

332‧‧‧排液口 332‧‧‧Draining port

333‧‧‧液面視窗 333‧‧‧Liquid window

34‧‧‧液體管 34‧‧‧Liquid tube

4‧‧‧自動控制系統 4‧‧‧Automatic Control System

41‧‧‧控制器 41‧‧‧ Controller

411‧‧‧比較器 411‧‧‧ comparator

412‧‧‧運算器 412‧‧‧Operator

413‧‧‧溫度設定鍵 413‧‧‧Temperature setting button

414‧‧‧電源鍵 414‧‧‧Power button

415‧‧‧顯示面板 415‧‧‧ display panel

416‧‧‧上下鍵部 416‧‧‧Up and down button

417‧‧‧設定鍵部 417‧‧‧Setting key

42‧‧‧驅動器 42‧‧‧ drive

43‧‧‧致動器 43‧‧‧Actuator

44‧‧‧感溫器 44‧‧‧temperature sensor

45‧‧‧溫度訊號線 45‧‧‧Temperature signal line

9‧‧‧負荷 9‧‧‧ load

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一示意圖,說明本發明微型液體冷卻機的一實施例;圖2是一側視圖,說明該實施例的一殼體單元;圖3是該實施例的一後視圖;圖4是該實施例的一立體圖,其中,圖中省略該殼體單元的部分元件,並將該實施例的一乾燥器、一膨脹器、一蒸發器及數支冷媒管以假想線表示;圖5是一方塊流程示意圖,說明該實施例的一自動控制系統、一冷凍系統及一液體循環系統之間的訊號傳輸方式;及圖6是一正視圖,說明該實施例之一控制器的外觀。 Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: FIG. 1 is a schematic diagram illustrating an embodiment of a micro-liquid cooler of the present invention; FIG. 2 is a side view illustrating A housing unit of the embodiment; FIG. 3 is a rear view of the embodiment; FIG. 4 is a perspective view of the embodiment, in which parts of the housing unit are omitted, and one of the embodiments is The dryer, an expander, an evaporator and a plurality of refrigerant tubes are represented by imaginary lines; FIG. 5 is a block flow diagram illustrating signals between an automatic control system, a freezing system and a liquid circulation system of the embodiment. Transmission mode; and Fig. 6 is a front view showing the appearance of a controller of this embodiment.

參閱圖1至圖3,本發明微型液體冷卻機適用於對一負荷9(例如:醫療領域使用的冷熱敷袋、電腦CPU 零件等)穩定地提供經過溫度熱補償控制的液體,滿足需求的溫度。該微型液體冷卻機的一實施例包含一殼體單元1、一冷凍系統2、一液體循環系統3及一自動控制系統4。 Referring to FIG. 1 to FIG. 3, the micro liquid cooler of the present invention is suitable for a load 9 (for example, a cold heat pack used in the medical field, a computer CPU) Parts, etc.) stably supply liquid that has been subjected to temperature thermal compensation to meet the required temperature. An embodiment of the micro liquid cooler includes a housing unit 1, a refrigeration system 2, a liquid circulation system 3, and an automatic control system 4.

該殼體單元1包括數個散熱空氣入口11、數個散熱空氣出口12、一液體入口13、一液體出口14、一控制器安裝口15、一電源輸入口16及一液面視窗口17。 The housing unit 1 includes a plurality of heat dissipating air inlets 11, a plurality of heat dissipating air outlets 12, a liquid inlet 13, a liquid outlet 14, a controller mounting port 15, a power input port 16, and a liquid level viewing window 17.

該電源輸入口16具有一與該冷凍系統2、該液體循環系統3及該自動控制系統4電連接的端子161。 The power input port 16 has a terminal 161 electrically connected to the refrigeration system 2, the liquid circulation system 3, and the automatic control system 4.

參閱圖1及圖4,該冷凍系統2設置於該殼體單元1內,並包括一微型直流無刷壓縮機21(體積約300cm3)、一鄰近該等散熱空氣入口11與該等散熱空氣出口12的冷凝器22、一乾燥器23、一膨脹器24、一蒸發器25、一風扇26及數支冷媒管27。 Referring to FIG. 1 and FIG. 4, the refrigeration system 2 is disposed in the housing unit 1 and includes a miniature DC brushless compressor 21 (approximately 300 cm 3 in volume), a heat dissipating air inlet 11 adjacent to the cooling air, and the cooling air. The condenser 22 of the outlet 12, a dryer 23, an expander 24, an evaporator 25, a fan 26 and a plurality of refrigerant tubes 27.

該等冷媒管27串接該微型直流無刷壓縮機21、該冷凝器22、該乾燥器23、該膨脹器24及該蒸發器25。 The refrigerant tubes 27 are connected in series to the micro DC brushless compressor 21, the condenser 22, the dryer 23, the expander 24, and the evaporator 25.

該冷凍系統2的運作原理如下:該等冷媒管27中的低壓氣態冷媒通過該微型直流無刷壓縮機21之後,該微型直流無刷壓縮機21提高該等冷媒管27中氣態冷媒(圖未示)的壓力,並驅動該高壓氣態冷媒流至該冷凝器22,該冷凝器22透過該風扇26將環境空氣自該等散熱空氣入口11引入,並且該環境空氣將通過該冷凝器22,以散除該冷凝器22內高壓氣態冷媒的高溫熱量,使該高壓氣態冷媒在該冷凝器22中散熱冷凝成高 壓液態冷媒,而該環境空氣再經由該等散熱空氣出口12排放回到環境中。 The operating principle of the refrigeration system 2 is as follows: after the low-pressure gaseous refrigerant in the refrigerant tubes 27 passes through the micro-DC brushless compressor 21, the micro-DC brushless compressor 21 increases the gaseous refrigerant in the refrigerant tubes 27 (Fig. The pressure of the high pressure gaseous refrigerant is driven to the condenser 22, and the condenser 22 introduces ambient air from the heat dissipation air inlets 11 through the fan 26, and the ambient air will pass through the condenser 22 to Dissipating the high-temperature heat of the high-pressure gaseous refrigerant in the condenser 22 to cause the high-pressure gaseous refrigerant to condense and condense in the condenser 22 to a high temperature The liquid refrigerant is pressurized and the ambient air is discharged back to the environment via the cooling air outlets 12.

接著,該高壓液態冷媒進入該乾燥器23,讓該乾燥器23吸收該高壓液態冷媒中的水氣之後,繼續流至該膨脹器24,該膨脹器24運用摩擦原理降低該高壓液態冷媒的壓力,然後,該低壓液態冷媒會在該蒸發器25中熱交換吸收液體從該負荷9內熱交換帶來的熱量,並蒸發變成低壓氣態冷媒。最後,該低壓氣態冷媒會再被該微型直流無刷壓縮機21吸入,並如此重複上述的循環過程,以形成該冷凍系統2。 Then, the high-pressure liquid refrigerant enters the dryer 23, and the dryer 23 absorbs the water vapor in the high-pressure liquid refrigerant, and then continues to flow to the expander 24, and the expander 24 reduces the pressure of the high-pressure liquid refrigerant by using the friction principle. Then, the low-pressure liquid refrigerant exchanges heat in the evaporator 25 to absorb heat from the heat exchange in the load 9, and evaporates into a low-pressure gaseous refrigerant. Finally, the low pressure gaseous refrigerant is again drawn into the micro DC brushless compressor 21, and the above cycle is repeated to form the refrigeration system 2.

在本實施例中,該膨脹器24為一由銅材質所製成的毛細管。 In the present embodiment, the expander 24 is a capillary made of copper.

該液體循環系統3設置於該殼體單元1內,並包括一泵浦31、一加熱器32、一供該蒸發器25、該加熱器32與液體容置的液體容器33,與一連接該泵浦31、該液體容器33並經由該液體入口13及該液體出口14連接至該負荷9的液體管34。該液體容器33具有一加液口331、一排液口332及一液面視窗333。 The liquid circulation system 3 is disposed in the housing unit 1 and includes a pump 31, a heater 32, a liquid container 33 for the evaporator 25, the heater 32 and the liquid, and a connection with the liquid The pump 31, the liquid container 33 is connected to the liquid tube 34 of the load 9 via the liquid inlet 13 and the liquid outlet 14. The liquid container 33 has a liquid supply port 331, a liquid discharge port 332, and a liquid level window 333.

該液體循環系統3的運作原理如下:該泵浦31帶動經由該負荷9流出的液體,使得該液體能從該液體入口13經由該液體管34進入到該液體容器33內,進行熱補償的工作,也就是使該液體容器33內的液體與該液體容器33內的加熱器32進行熱交換而吸熱升溫,或者是與該蒸發器25進行熱交換而放熱冷卻,如 此交互熱補償溫度控制以滿足該負荷9不同的發熱量,最後,該液體會因為該泵浦31的帶動而從該液體容器33內經過該液體出口14流回到該負荷9,並在該負荷9內進行熱交換的動作。該液體依循上述過程反覆循環流動,以形成該液體循環系統3。 The operation principle of the liquid circulation system 3 is as follows: the pump 31 drives the liquid flowing out through the load 9 so that the liquid can enter the liquid container 33 from the liquid inlet 13 via the liquid tube 34 for thermal compensation work. That is, the liquid in the liquid container 33 is exchanged with the heater 32 in the liquid container 33 to increase the heat absorption, or the heat is exchanged with the evaporator 25 to release the heat. The interactive thermal compensation temperature control meets the different heat generation of the load 9. Finally, the liquid will flow from the liquid container 33 through the liquid outlet 14 back to the load 9 due to the pump 31, and The operation of performing heat exchange within the load 9. The liquid flows cyclically in accordance with the above process to form the liquid circulation system 3.

參閱圖1、圖4及圖5,該自動控制系統4設置於該殼體單元1,並包括一安裝於該控制器安裝口15的控制器41、一電連接該控制器41與該微型直流無刷壓縮機21的驅動器42、一電連接該控制器41與該加熱器32的致動器43,與一通過一溫度訊號線45連接該控制器41且與該蒸發器25、該加熱器32置於同一液體容器33內的感溫器44。 Referring to FIG. 1 , FIG. 4 and FIG. 5 , the automatic control system 4 is disposed on the housing unit 1 and includes a controller 41 mounted on the controller mounting port 15 , electrically connecting the controller 41 and the micro DC. a driver 42 of the brushless compressor 21, an actuator 43 electrically connected to the controller 41 and the heater 32, and a controller 41 connected to the evaporator through a temperature signal line 45, and the heater 32 is placed in the same liquid container 33 as the temperature sensor 44.

參閱圖5及圖6,該控制器41具有一比較器411、一電連接該比較器411、該驅動器42與該致動器43的運算器412、一電連接該比較器411並可設定需求液體溫度的溫度設定鍵413、一電源鍵414,及一顯示液體溫度的顯示面板415。 Referring to FIG. 5 and FIG. 6, the controller 41 has a comparator 411, an operator 412 electrically connected to the comparator 411, the driver 42 and the actuator 43, an electrical connection of the comparator 411, and a setting requirement. A temperature setting button 413 for the liquid temperature, a power button 414, and a display panel 415 for displaying the temperature of the liquid.

該溫度設定鍵413具有一上下鍵部416及一設定鍵部417。 The temperature setting key 413 has a vertical key portion 416 and a setting key portion 417.

在本實施例中,該致動器43為一固態電驛,也可以是一矽控整流器。 In this embodiment, the actuator 43 is a solid state power supply, and may also be a voltage controlled rectifier.

參閱圖1、圖2及圖6,實際操作時,使用者先將液體(例如水)由該加液口331加入該液體容器33內,並從該液面視窗口17觀察該液面視窗333的液位,約加入 八分滿的液體即可,然後把供應市電的電源線(圖未示)接上該電源輸入口16的該端子161,並按下該控制器41的該電源鍵414之後,即可提供電力給該冷凍系統2、該液體循環系統3及該自動控制系統4。 Referring to FIG. 1 , FIG. 2 and FIG. 6 , in actual operation, the user first adds a liquid (for example, water) from the liquid filling port 331 into the liquid container 33 , and observes the liquid surface window 333 from the liquid surface viewing window 17 . Liquid level, about join Eight minutes of full liquid can be used, and then the power supply line (not shown) for supplying the mains is connected to the terminal 161 of the power input port 16, and the power button 414 of the controller 41 is pressed to provide power. The refrigeration system 2, the liquid circulation system 3, and the automatic control system 4 are supplied.

接著,使用者透過該控制器41的該上下鍵部416及該設定鍵部417輸入需求的液體溫度(以下稱為設定溫度值),該顯示面板415即可顯示出該設定溫度值,且該設定溫度值會同時傳輸至該比較器411(見圖5)。 Next, the user inputs a required liquid temperature (hereinafter referred to as a set temperature value) through the up and down key portion 416 of the controller 41 and the setting key portion 417, and the display panel 415 can display the set temperature value, and the display panel 415 can display the set temperature value. The set temperature value is simultaneously transmitted to the comparator 411 (see Fig. 5).

參閱圖1及圖5,經由該感溫器44感測該液體管34中的實際液體溫度(以下稱為實際溫度值)之後,可透過該溫度訊號線45傳輸至該控制器41,再於該顯示面板415顯示出該實際溫度值,且該實際溫度值同時也會傳輸至該比較器411。 Referring to FIG. 1 and FIG. 5, after sensing the actual liquid temperature (hereinafter referred to as the actual temperature value) in the liquid tube 34 via the temperature sensor 44, the temperature signal line 45 can be transmitted to the controller 41 through the temperature signal line 45, and then The display panel 415 displays the actual temperature value and the actual temperature value is also transmitted to the comparator 411.

使用者所輸入的該設定溫度值與該感溫器44在該液體管34中所感測的該實際溫度值在經過該比較器411處理之後,如果該設定溫度值與該實際溫度值存在有差值,該比較器411會將該差值傳輸給該運算器412進行邏輯運算。值得一提的是,該運算器412依據PID控制法則進行邏輯運算。 The set temperature value input by the user and the actual temperature value sensed by the temperature sensor 44 in the liquid tube 34 are processed by the comparator 411, if the set temperature value is different from the actual temperature value. The comparator 411 will transmit the difference to the operator 412 for logical operation. It is worth mentioning that the arithmetic unit 412 performs logical operations according to the PID control law.

當該比較器411處理之後的差值是該實際溫度值大於該設定溫度值的情形時,該運算器412會將該差值經由邏輯運算之後的訊號提供給該驅動器42,再經由該驅動器42驅動該微型直流無刷壓縮機21,使該微型直流無刷壓縮機21反覆依據該運算器412的運算結果而採取合適的 速度運轉,進而即時調整該蒸發器25與該液體容器33內之液體的熱交換效果,便可實現該蒸發器25能夠應付在該負荷9不同的發熱量條件時,對於該液體容器33內的液體進行熱交換吸熱降溫的溫度控制,使該實際溫度值可以緩和地降低並精準地追蹤該設定溫度值,進而長時間穩定提供該實際溫度值與該設定溫度值介於±0.1~0.2℃之間變化的液體給該負荷9。 When the difference after the comparison by the comparator 411 is that the actual temperature value is greater than the set temperature value, the operator 412 provides the difference to the driver 42 via the signal after the logic operation, and then via the driver 42. Driving the micro DC brushless compressor 21 so that the micro DC brushless compressor 21 is repeatedly adapted according to the calculation result of the arithmetic unit 412 The speed is operated to adjust the heat exchange effect of the evaporator 25 and the liquid in the liquid container 33, so that the evaporator 25 can cope with the heat generation condition of the load 9 and the liquid container 33 can be handled. The liquid is subjected to temperature control of heat exchange endothermic cooling, so that the actual temperature value can be gently reduced and accurately tracked, and the actual temperature value is stably provided for a long time and the set temperature value is between ±0.1 and 0.2 °C. The varying liquid gives the load 9.

當該比較器411處理之後的差值是該實際溫度值小於該設定溫度值的情形時,該運算器412會將該差值經由邏輯運算之後的訊號,同時提供給該驅動器42及該致動器43,再分別經由該驅動器42驅動該微型直流無刷壓縮機21,使該微型直流無刷壓縮機21降速運轉,以逐漸降低該蒸發器25與該液體容器33內之液體的熱交換效果,進而維持該等冷媒管27中之冷媒有一定的流速以利該微型直流無刷壓縮機21的回油需求,以及該液體的實際溫度值不至於有明顯的幅度變化,同時,該運算器412也經由該致動器43驅動該加熱器32,藉以針對該液體容器33內之液體同步進行精密的熱交換冷卻及熱交換升溫的溫度熱補償控制,使該實際溫度值可以緩和地升高以追蹤該設定溫度值,進而長時間穩定提供該實際溫度值與該設定溫度值介於±0.1~0.2℃之間變化的液體給該負荷9。 When the difference after the comparator 411 is processed, the actual temperature value is less than the set temperature value, the operator 412 provides the difference to the driver 42 and the actuation via the signal after the logic operation. The micro-DC brushless compressor 21 is further driven by the driver 42 to reduce the heat exchange between the evaporator 25 and the liquid in the liquid container 33. The effect is to maintain a certain flow rate of the refrigerant in the refrigerant tubes 27 to meet the oil return requirement of the micro DC brushless compressor 21, and the actual temperature value of the liquid does not have a significant amplitude change, and the operation The heater 412 also drives the heater 32 via the actuator 43 to perform precise heat exchange cooling and heat exchange temperature increase thermal compensation control for the liquid in the liquid container 33, so that the actual temperature value can be gently increased. The high value is used to track the set temperature value, and the liquid which is changed between the actual temperature value and the set temperature value between ±0.1 and 0.2 ° C is stably supplied for a long time.

另外,因為該控制器41是可以依據該負荷9的實際溫度值而精密調整冷卻熱交換量或升溫熱交換量,所以不需如習知的方法再經由額外的蓄熱或蓄冷的動作,加 上該微型直流無刷壓縮機21的馬達效率較一般習知交流壓縮機的馬達高15%左右,且構成之冷凍系統2的性能係數(COP)能大於2.5,因此對於節能減碳之貢獻顯著。 In addition, since the controller 41 can precisely adjust the cooling heat exchange amount or the temperature increase heat exchange amount according to the actual temperature value of the load 9, it is not necessary to add additional heat storage or cold storage action as in the conventional method. The motor efficiency of the micro-DC brushless compressor 21 is about 15% higher than that of the conventional AC compressor motor, and the refrigeration system 2 has a coefficient of performance (COP) of more than 2.5, so the contribution to energy saving and carbon reduction is remarkable. .

經由以上的說明,可將本發明的優點歸納如下: Through the above description, the advantages of the present invention can be summarized as follows:

一、本發明能依據該負荷9的需求,藉由該控制器41的邏輯運算之後,同時調整該驅動器42及該致動器43的輸出,使得該微型直流無刷壓縮機21、該蒸發器25及該加熱器32能夠提供該液體容器33內之液體合適的熱交換結果,進而達到精準的液體溫度熱補償控制之效果(該液體的該實際溫度值與該設定溫度值介於±0.1~0.2℃之間),如此有效改善習知採用風扇的冷卻效果不佳的缺失,同時改善習知的該電子熱電晶片的溫度控制效果不佳(誤差達±1.0℃以上)的缺失。 1. The present invention can adjust the output of the driver 42 and the actuator 43 simultaneously by the logic operation of the controller 41 according to the demand of the load 9, so that the micro DC brushless compressor 21 and the evaporator 25 and the heater 32 can provide a suitable heat exchange result of the liquid in the liquid container 33, thereby achieving an accurate liquid temperature thermal compensation control effect (the actual temperature value of the liquid and the set temperature value is between ±0.1~) Between 0.2 ° C), it is effective to improve the conventional lack of cooling effect of the fan, and at the same time improve the lack of the temperature control effect of the electronic thermoelectric wafer (error of ±1.0 ° C or more).

二、該微型直流無刷壓縮機21構成之冷凍系統2的性能係數(COP)大於2.5,優於習知的該電子熱電晶片(COP小於1.0),因此冷卻效率良好,對於節能有正面的貢獻。 2. The refrigeration system 2 of the micro DC brushless compressor 21 has a coefficient of performance (COP) of more than 2.5, which is superior to the conventional electronic thermoelectric wafer (COP is less than 1.0), so that the cooling efficiency is good and the energy contribution is positively contributed. .

三、使用時不需要經過反覆蓄熱或蓄冷等煩雜的過程,便可以連續使用,且長時間穩定精準地供應具有需求溫度之液體供該負荷9使用。 Third, the use does not require a complicated process such as reverse heat storage or cold storage, and can be continuously used, and the liquid having the required temperature is supplied stably and accurately for a long time for the load 9 to be used.

四、該微型直流無刷壓縮機21的體積小(約300cm3),使本發明的體積微型(寬158mm‧深320mm‧高306mm),因此,使用時不佔用空間,又具有方便攜帶的優 點。 4. The micro-DC brushless compressor 21 has a small volume (about 300 cm 3 ), so that the volume of the invention is small (width 158 mm ‧ deep 320 mm ‧ high 306 mm), so that it does not occupy space when used, and has the advantages of convenient carrying .

五、該致動器43在該負荷9的發熱量變小時(甚至趨近於沒有發熱量的情況下),能夠驅動該加熱器32,藉以針對液體容器33內之液體進行精密的熱交換升溫的溫度控制,使該實際溫度值可以精準地升高以追蹤該設定溫度值,進而長時間穩定提供實際溫度值與設定溫度值介於±0.1~0.2℃之間變化的液體予該負荷9,達到精準溫度熱補償控制的效果。 5. The actuator 43 can drive the heater 32 when the heat generation amount of the load 9 becomes small (even in the case of no heat generation), thereby performing precise heat exchange heating on the liquid in the liquid container 33. The temperature control allows the actual temperature value to be accurately increased to track the set temperature value, thereby stably providing the liquid with the actual temperature value and the set temperature value between ±0.1 and 0.2 °C for a long time to reach the load 9 The effect of precise temperature thermal compensation control.

綜上所述,本發明藉由該控制器41的邏輯運算之後,可精密地同步調整該驅動器42及該致動器43的輸出,使得該微型直流無刷壓縮機21、該蒸發器25及該加熱器32能夠提供該液體容器33內之液體最合適的熱交換結果,達到精準溫度熱補償控制的效果,且本發明的體積小,使用時不佔用空間,又具有方便攜帶的優點,故確實能達成本發明之目的。 In summary, after the logic operation of the controller 41, the output of the driver 42 and the actuator 43 can be precisely adjusted synchronously, so that the micro DC brushless compressor 21, the evaporator 25 and The heater 32 can provide the most suitable heat exchange result of the liquid in the liquid container 33, and achieve the effect of precise temperature thermal compensation control, and the invention has the advantages of small volume, no space occupation during use, and convenient carrying. It is indeed possible to achieve the object of the invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 However, the above is only the embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and the patent specification of the present invention are still It is within the scope of the patent of the present invention.

1‧‧‧殼體單元 1‧‧‧Sheet unit

11‧‧‧散熱空氣入口 11‧‧‧Thermal air inlet

12‧‧‧散熱空氣出口 12‧‧‧heating air outlet

13‧‧‧液體入口 13‧‧‧Liquid inlet

14‧‧‧液體出口 14‧‧‧Liquid exports

15‧‧‧控制器安裝口 15‧‧‧Controller mounting port

16‧‧‧電源輸入口 16‧‧‧Power input port

17‧‧‧液面視窗口 17‧‧‧Liquid view window

2‧‧‧冷凍系統 2‧‧‧ refrigeration system

21‧‧‧微型直流無刷壓縮機 21‧‧‧Micro DC Brushless Compressor

22‧‧‧冷凝器 22‧‧‧Condenser

23‧‧‧乾燥器 23‧‧‧ Dryer

24‧‧‧膨脹器 24‧‧‧Expander

25‧‧‧蒸發器 25‧‧‧Evaporator

26‧‧‧風扇 26‧‧‧Fan

27‧‧‧冷媒管 27‧‧‧ refrigerant tube

3‧‧‧液體循環系統 3‧‧‧Liquid circulation system

31‧‧‧泵浦 31‧‧‧ pump

32‧‧‧加熱器 32‧‧‧heater

33‧‧‧液體容器 33‧‧‧Liquid container

331‧‧‧加液口 331‧‧‧Adding port

332‧‧‧排液口 332‧‧‧Draining port

34‧‧‧液體管 34‧‧‧Liquid tube

4‧‧‧自動控制系統 4‧‧‧Automatic Control System

41‧‧‧控制器 41‧‧‧ Controller

42‧‧‧驅動器 42‧‧‧ drive

43‧‧‧致動器 43‧‧‧Actuator

44‧‧‧感溫器 44‧‧‧temperature sensor

45‧‧‧溫度訊號線 45‧‧‧Temperature signal line

9‧‧‧負荷 9‧‧‧ load

Claims (7)

一種微型液體冷卻機,適用於對一負荷提供經過溫度熱補償的液體,該微型液體冷卻機包含:一殼體單元,包括數個散熱空氣入口、數個散熱空氣出口、一液體入口及一液體出口;一冷凍系統,設置於該殼體單元內,並包括一微型直流無刷壓縮機、一鄰近該等散熱空氣入口與該等散熱空氣出口的冷凝器、一乾燥器、一膨脹器、一蒸發器、一風扇及數支冷媒管,該風扇將環境空氣自該等散熱空氣入口引入並通過該冷凝器,再經由該等散熱空氣出口排回至環境中,該等冷媒管串接該微型直流無刷壓縮機、該冷凝器、該乾燥器、該膨脹器及該蒸發器,該膨脹器為一由銅材質所製成的毛細管;一液體循環系統,設置於該殼體單元內,並包括一泵浦、一加熱器、一供該蒸發器、該加熱器與液體容置的液體容器,與一連接該泵浦、該液體容器並經由該液體入口及該液體出口連接至該負荷的液體管;及一自動控制系統,設置於該殼體單元,並包括一控制器、一電連接該控制器與該微型直流無刷壓縮機的驅動器、一電連接該控制器與該加熱器的致動器,及一通過一溫度訊號線連接該控制器的感溫器。 A micro liquid cooler for providing a temperature-heat-compensated liquid to a load, the micro-liquid cooler comprising: a housing unit including a plurality of heat-dissipating air inlets, a plurality of heat-dissipating air outlets, a liquid inlet, and a liquid An outlet system is disposed in the housing unit and includes a miniature DC brushless compressor, a condenser adjacent to the cooling air inlet and the cooling air outlet, a dryer, an expander, and a An evaporator, a fan and a plurality of refrigerant tubes, the fan introducing ambient air from the heat-dissipating air inlets and passing through the condenser, and then discharging the heat-dissipating air outlets to the environment, wherein the refrigerant tubes are connected in series with the micro-tubes a DC brushless compressor, the condenser, the dryer, the expander and the evaporator, the expander is a capillary made of copper material; a liquid circulation system is disposed in the housing unit, and The utility model comprises a pump, a heater, a liquid container for the evaporator, the heater and the liquid, and a pump, the liquid container and the liquid inlet The liquid outlet is connected to the liquid tube of the load; and an automatic control system is disposed on the housing unit, and includes a controller, a driver electrically connecting the controller and the micro DC brushless compressor, and an electrical connection The controller and the actuator of the heater, and a temperature sensor connected to the controller through a temperature signal line. 如請求項1所述的微型液體冷卻機,其中,該控制器具有一比較器與一電連接該比較器、該驅動器及該致動器的運算器。 A micro-liquid cooler according to claim 1, wherein the controller has a comparator and an operator electrically connected to the comparator, the driver and the actuator. 如請求項2所述的微型液體冷卻機,其中,該控制器還具有一可設定需求液體溫度的溫度設定鍵、一電源鍵及一顯示液體溫度的顯示面板,該溫度設定鍵具有一上下鍵部及一設定鍵部。 The micro liquid cooler according to claim 2, wherein the controller further has a temperature setting button for setting a required liquid temperature, a power button, and a display panel for displaying a liquid temperature, the temperature setting button having a up and down button And a setting button. 如請求項1所述的微型液體冷卻機,其中,該殼體單元還包括一供該控制器安裝的控制器安裝口、一具有一端子的電源輸入口及一液面視窗口,該端子與該冷凍系統、該液體循環系統及該自動控制系統電連接。 The micro liquid cooler according to claim 1, wherein the housing unit further comprises a controller mounting port for the controller, a power input port having a terminal, and a liquid level viewing window, the terminal and the The refrigeration system, the liquid circulation system, and the automatic control system are electrically connected. 如請求項1所述的微型液體冷卻機,其中,該液體容器具有一加液口、一排液口及一液面視窗。 The micro liquid cooler according to claim 1, wherein the liquid container has a liquid supply port, a liquid discharge port, and a liquid level window. 如請求項1所述的微型液體冷卻機,其中,該致動器為一固態電驛。 The micro liquid cooler of claim 1, wherein the actuator is a solid state electric power. 如請求項1所述的微型液體冷卻機,其中,該致動器為一矽控整流器。 A micro-liquid cooler according to claim 1, wherein the actuator is a controlled rectifier.
TW103136618A 2014-10-23 2014-10-23 Micro-liquid cooler TWI546516B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103136618A TWI546516B (en) 2014-10-23 2014-10-23 Micro-liquid cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103136618A TWI546516B (en) 2014-10-23 2014-10-23 Micro-liquid cooler

Publications (2)

Publication Number Publication Date
TW201616085A TW201616085A (en) 2016-05-01
TWI546516B true TWI546516B (en) 2016-08-21

Family

ID=56508521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103136618A TWI546516B (en) 2014-10-23 2014-10-23 Micro-liquid cooler

Country Status (1)

Country Link
TW (1) TWI546516B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107816836A (en) * 2016-09-12 2018-03-20 澄光绿能科技有限公司 Can accurate temperature control cooling machining medium cooling recirculation system

Also Published As

Publication number Publication date
TW201616085A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
TWI569023B (en) Temperature of the test apparatus and temperature control method of the adapter
TWI534573B (en) Wide range temperature control apparatus
US9736962B2 (en) Efficient temperature forcing of semiconductor devices under test
US9677822B2 (en) Efficient temperature forcing of semiconductor devices under test
CN105737439A (en) Air conditioner system utilizing solar energy and thermoelectricity supercooling device
Nikam et al. A Review on use of Peltier Effects
CN201322491Y (en) Novel durable multi-function semiconductor refrigerating-and-heating box
TWI546516B (en) Micro-liquid cooler
CN204576313U (en) The permanent low temperature automatic control device of a kind of electronic equipment
TWM497252U (en) Micro liquid cooling machine
TW201101011A (en) Heat-dissipative device for multi-task heat-dissipative module using the heat-dissipative device
US11835285B2 (en) Chiller and energy storage system
Nandini Peltier based cabinet cooling system using heat pipe and liquid based heat sink
CN204141922U (en) Avoid evaporating the refrigerator of device frosting
JP6320897B2 (en) Temperature control method
TWI517479B (en) Electric battery battery temperature system and its constant temperature method
CN208688101U (en) A kind of multistage overlay semiconductor ultralow temperature rapid cooling device
CN202869114U (en) Novel simple and efficient dual-purpose semiconductor refrigerating and heating storage box
CN209420946U (en) A kind of semiconductor chip refrigeration-type filter-stick forming device sealer
CN202016654U (en) A new structure and multifunction semiconductor box serving dual purposes of cold storage and warm storage
CN202041018U (en) Semiconductor refrigerating and heating device
CN201973955U (en) Novel structure semiconductor refrigerating and heating box
CN201401876Y (en) Micro DC air-conditioning cooling machine
CN205738810U (en) A kind of wind circulating device
CN101769664A (en) Novel durable multi-function semiconductor heating/refrigerating dual-use container

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees