TWI545437B - Rram, and methods of storing and retrieving information for rram - Google Patents

Rram, and methods of storing and retrieving information for rram Download PDF

Info

Publication number
TWI545437B
TWI545437B TW103108017A TW103108017A TWI545437B TW I545437 B TWI545437 B TW I545437B TW 103108017 A TW103108017 A TW 103108017A TW 103108017 A TW103108017 A TW 103108017A TW I545437 B TWI545437 B TW I545437B
Authority
TW
Taiwan
Prior art keywords
memory
bit
memory cells
random access
cells
Prior art date
Application number
TW103108017A
Other languages
Chinese (zh)
Other versions
TW201502784A (en
Inventor
亞當 強生
Original Assignee
美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美光科技公司 filed Critical 美光科技公司
Publication of TW201502784A publication Critical patent/TW201502784A/en
Application granted granted Critical
Publication of TWI545437B publication Critical patent/TWI545437B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/74Masking faults in memories by using spares or by reconfiguring using duplex memories, i.e. using dual copies
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/005Read using potential difference applied between cell electrodes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0088Write with the simultaneous writing of a plurality of cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/32Material having simple binary metal oxide structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)

Description

電阻式隨機存取記憶體及儲存與擷取電阻式隨機存取記憶體之資訊之方法 Resistive random access memory and method for storing and extracting information of resistive random access memory

本發明係關於RRAM及儲存與擷取RRAM之資訊之方法。 The present invention relates to RRAM and methods of storing and capturing information from RRAM.

記憶體係積體電路之一種類型,且係使用在用於儲存資料之系統中。通常記憶體被製造成個別記憶體單元之一個或多個陣列。一記憶體位元係在一記憶體陣列中保留之最小資訊單位。每一記憶體單元可對應於具有兩個不同可選狀態之一單一記憶體位元。在一二進制系統中,該等狀態可視為一「0」或一「1」。 A type of memory system integrated circuit that is used in systems for storing data. Typically memory is fabricated into one or more arrays of individual memory cells. A memory bit is the smallest unit of information that is retained in a memory array. Each memory cell can correspond to a single memory bit having one of two different selectable states. In a binary system, the states can be treated as a "0" or a "1".

電阻式隨機存取記憶體(RRAM)係被關注用於現有及未來資料儲存需求之一種類型的記憶體。RRAM利用在電阻率中彼此不同之兩個或多個穩定狀態之可程式化材料。可在RRAM中利用之記憶體單元之實例類型係相變記憶體(PCM)單元、可程式化金屬化單元(PMC)、導電橋接式隨機存取記憶體(CBRAM)單元、奈米橋記憶體單元、電解質記憶體單元、二元氧化物單元及多層氧化物單元(舉例而言,利用多價氧化物之單元)。該等記憶體單元類型並非相互排斥。舉例而言,CBRAM與PMC係重疊分類組。 Resistive Random Access Memory (RRAM) is a type of memory that is focused on existing and future data storage needs. RRAM utilizes two or more stable state programmable materials that differ from each other in resistivity. Examples of memory cells that can be utilized in RRAM are phase change memory (PCM) cells, programmable metallization cells (PMC), conductive bridged random access memory (CBRAM) cells, and nanobridge memory. A unit, an electrolyte memory unit, a binary oxide unit, and a multilayer oxide unit (for example, a unit utilizing a polyvalent oxide). These memory unit types are not mutually exclusive. For example, CBRAM and PMC are overlapping classification groups.

圖1中展示在兩個記憶體狀態之間過渡之一實例先前技術之RRAM單元10。該等記憶體狀態之一者係一高電阻狀態(HRS)及其他 係一低電阻狀態(LRS)。該記憶體單元包括在一對電極12與14之間之可程式化材料16。該可程式化材料可係一單一均質組合物(如展示)或可包括兩個或多個離散層。 An example of a prior art RRAM cell 10 is shown in FIG. 1 for transitioning between two memory states. One of these memory states is a high resistance state (HRS) and others. A low resistance state (LRS). The memory cell includes a programmable material 16 between a pair of electrodes 12 and 14. The programmable material can be a single homogeneous composition (as shown) or can include two or more discrete layers.

電極12係連接至電路18,及電極14係連接至電路22。電路18及22可包含耦合至該等電極之感測線及/或存取線,且經組態在讀/寫操作期間提供跨該記憶體單元之適當電場。在一些實施例中,該提到之記憶體單元可係一記憶體陣列之複數個記憶體單元之一者,且電路18及22可係用以唯一地定址該陣列之該等記憶體單元之各者之一電路組態之部分。在一些實施例中,鄰近記憶體單元10提供一「選擇」裝置(未展示)以在利用在一記憶體陣列之該記憶體單元期間減少至及/或自該記憶體單元之非期望之電流洩露。實例選擇裝置包含二極體、電晶體、雙向定限開關等等。 Electrode 12 is coupled to circuit 18 and electrode 14 is coupled to circuit 22. Circuits 18 and 22 can include sense lines and/or access lines coupled to the electrodes and are configured to provide an appropriate electric field across the memory unit during read/write operations. In some embodiments, the memory unit referred to can be one of a plurality of memory cells of a memory array, and circuits 18 and 22 can be used to uniquely address the memory cells of the array. One of the circuit configuration parts of each. In some embodiments, a "select" device (not shown) is provided adjacent memory unit 10 to reduce to and/or undesired current from the memory cell during use of the memory cell in a memory array. Give way. The example selection device includes a diode, a transistor, a bidirectional limit switch, and the like.

跨記憶體單元10之電場EF(+)之應用形成延伸通過材料16之電流傳導過渡結構20。過渡結構20提供通過單元10之一低電阻電流傳導路徑;且因此形成結構20將該單元過渡至LRS組態。 The application of the electric field EF(+) across the memory cell 10 forms a current conducting transition structure 20 that extends through the material 16. The transition structure 20 provides a low resistance current conduction path through one of the cells 10; and thus the structure 20 is formed to transition the cell to the LRS configuration.

電場EF(-)之應用降級結構20,且將單元10返回至HRS組態。電場EF(-)具有與電場EF(+)相反極性。 The application of the electric field EF(-) degrades the structure 20 and returns the unit 10 to the HRS configuration. The electric field EF(-) has a polarity opposite to the electric field EF(+).

取決於該記憶體單元之性質及該可程式化材料之性質及取決於形成該過渡結構涉及之化學及物理,過渡結構20可具有許多組態。舉例而言,該過渡結構可係一傳導電流之離子微粒細絲(該離子微粒可係超離子簇、個別離子等等)。如另一實例,該過渡結構可包括經改變之相、經改變之空位濃度、經改變之離子濃度(舉例而言,經改變之氧離子濃度)等等之一區域;其可或不可係一細絲之部分。 Depending on the nature of the memory cell and the nature of the programmable material and the chemical and physical aspects involved in forming the transition structure, the transition structure 20 can have many configurations. For example, the transition structure can be an ion particle filament that conducts current (the ion particle can be a superion cluster, an individual ion, etc.). As another example, the transition structure can include a region of altered phase, altered vacancy concentration, altered ion concentration (eg, altered oxygen ion concentration), etc.; Part of the filament.

可藉由提供跨該記憶體單元之適當電壓以自HRS組態過渡至LRS組態(或反之亦然)而程式化記憶體單元10。可藉由提供跨該記憶體單元之適當電壓以判定通過該記憶體單元之一電阻同時將該電壓限制至 並不造成該記憶體單元之程式化之一位準來讀取該記憶體單元。 The memory unit 10 can be programmed by providing an appropriate voltage across the memory unit to transition from the HRS configuration to the LRS configuration (or vice versa). By limiting the voltage across the memory cell to determine the resistance through one of the memory cells while limiting the voltage to It does not cause one of the stylized bits of the memory unit to read the memory unit.

歸因於跨一RRAM陣列之單元之操作特性之變化,故在該RRAM陣列之該等記憶體單元之操作期間可能會遇到困難。期望開發解決此等困難之方法及結構。 Due to variations in the operational characteristics of the cells across an RRAM array, difficulties may be encountered during operation of the memory cells of the RRAM array. It is desirable to develop methods and structures that address these difficulties.

10‧‧‧RRAM單元 10‧‧‧RRAM unit

12‧‧‧電極 12‧‧‧ electrodes

14‧‧‧電極 14‧‧‧Electrode

16‧‧‧可程式化材料 16‧‧‧Programmable materials

18‧‧‧電路 18‧‧‧ Circuitry

20‧‧‧過渡結構 20‧‧‧Transitional structure

22‧‧‧電路 22‧‧‧ Circuitry

30‧‧‧圖表 30‧‧‧ Chart

32‧‧‧曲線 32‧‧‧ Curve

34‧‧‧曲線 34‧‧‧ Curve

35‧‧‧區域 35‧‧‧Area

40‧‧‧圖表 40‧‧‧Chart

42‧‧‧曲線 42‧‧‧ Curve

44‧‧‧曲線 44‧‧‧ Curve

46‧‧‧感測窗 46‧‧‧Sensing window

50‧‧‧記憶體陣列 50‧‧‧ memory array

52‧‧‧記憶體單元 52‧‧‧ memory unit

52a‧‧‧記憶體單元 52a‧‧‧ memory unit

52b‧‧‧記憶體單元 52b‧‧‧ memory unit

54‧‧‧選擇裝置 54‧‧‧Selection device

56‧‧‧單一記憶體位元 56‧‧‧Single memory bit

60‧‧‧實例實施例記憶體陣列 60‧‧‧Example embodiment memory array

62‧‧‧場效電晶體 62‧‧‧ Field Effect Crystal

bl0‧‧‧位元線 Bl0‧‧‧ bit line

bl1‧‧‧位元線 Bl1‧‧‧ bit line

bl2‧‧‧位元線 Bl2‧‧‧ bit line

bl3‧‧‧位元線 Bl3‧‧‧ bit line

bl4‧‧‧位元線 Bl4‧‧‧ bit line

HRS‧‧‧高電阻狀態 HRS‧‧‧high resistance state

LRS‧‧‧低電阻狀態 LRS‧‧‧Low resistance state

src‧‧‧源線 Src‧‧‧ source line

wl0‧‧‧字線 Wl0‧‧‧ word line

wl1‧‧‧字線 Wl1‧‧‧ word line

wl2‧‧‧字線 Wl2‧‧‧ word line

wl3‧‧‧字線 Wl3‧‧‧ word line

圖1圖解繪示一先前技術記憶體單元之兩個可互換之記憶體狀態。 Figure 1 illustrates two interchangeable memory states of a prior art memory cell.

圖2以圖式繪示兩群記憶體單元,其中該等群之一者係處於一高電阻狀態中及該等群之另一者係處於一低電阻狀態中。 2 graphically illustrates two groups of memory cells, wherein one of the groups is in a high resistance state and the other of the groups is in a low resistance state.

圖3以圖式繪示兩群記憶體單元及含有成對之記憶體單元之兩群記憶體位元。 Figure 3 is a diagram showing two groups of memory cells and two groups of memory cells containing pairs of memory cells.

圖4係一實例實施例RRAM陣列之程式化操作之一實例實施例之一圖解電路圖。 4 is a diagrammatic circuit diagram of one of the example embodiments of a stylized operation of an example embodiment RRAM array.

圖5係圖4之該實例實施例RRAM陣列之讀取操作之一實例實施例之一圖解電路圖。 5 is a diagrammatic circuit diagram of one of the example embodiments of the read operation of the RRAM array of the example embodiment of FIG. 4.

圖6係一實例實施例RRAM陣列之程式化操作之一實例實施例之一圖解電路圖。 6 is a diagrammatic circuit diagram of one of the example embodiments of a stylized operation of an example embodiment RRAM array.

圖7係圖6之該實例實施例RRAM陣列之讀取操作之一實例實施例之一圖解電路圖。 7 is a diagrammatic circuit diagram of one of the example embodiments of the read operation of the RRAM array of the example embodiment of FIG. 6.

圖1之先前技術記憶體單元10繪示可以可選擇地程式化入該記憶體單元中且在一讀取操作期間可理想地容易區分彼此之兩個記憶體狀態(HRS及LRS)。然而,一RRAM陣列可具有在HRS組態中之一大群單元及在LRS組態中之另一大群單元,且可存在跨該等各自群之該等單元之HRS及LRS特徵之實質變化。圖2以圖式繪示一實例實施例RRAM之各種記憶體單元。特定言之,圖2包括描繪通過個別記憶體單元之 電流性質(如以任意單位a.u.測量及如在圖表30之x軸上之一對數標度上展示)對在具有此性質之該群中之記憶體單元數量(如以SIGMA描繪)之一圖表30。在該圖表上展示兩群記憶體單元,其中一第一群係應處於LRS組態之記憶體單元,且由曲線32展示;及一第二群係應處於HRS組態之記憶體單元,且由曲線34展示。 The prior art memory unit 10 of FIG. 1 illustrates two memory states (HRS and LRS) that can be selectively programmed into the memory unit and that are ideally readily distinguishable from one another during a read operation. However, an RRAM array can have one large group of cells in the HRS configuration and another large group of cells in the LRS configuration, and there can be substantial changes in the HRS and LRS characteristics of the cells across the respective groups. FIG. 2 is a diagram showing various memory cells of an example embodiment RRAM. In particular, Figure 2 includes depicting through individual memory cells. The nature of the current (as measured in arbitrary units au and as shown on a logarithmic scale on the x-axis of graph 30) is a graph 30 of the number of memory cells in the group (as depicted by SIGMA) having this property. . Two groups of memory cells are shown on the chart, one of which should be in the memory unit of the LRS configuration and shown by curve 32; and a second group should be in the memory unit of the HRS configuration, and Shown by curve 34.

應處於HRS組態之該記憶體單元群皆具有高電阻(即,用於圖表30之該x軸標度上之相對低電流)。相反地,應處於LRS組態之該記憶體單元群涵蓋一廣泛電阻率範圍。沿曲線32之大多數記憶體單元具有低電阻率(即,用於圖表30之該x軸標度上之相對高電流)。然而,沿曲線32之一些記憶體單元具有高電阻率,至存在於其處應處於LRS組態中之一小數量記憶體單元具有與應處於HRS組態中之單元重疊之電阻率之一區域35(利用虛線圖解繪示)之程度。 The memory cell group that should be in the HRS configuration has a high resistance (i.e., a relatively low current for the x-axis scale of chart 30). Conversely, the memory cell group that should be in the LRS configuration covers a wide range of resistivity. Most of the memory cells along curve 32 have a low resistivity (i.e., a relatively high current for the x-axis scale of chart 30). However, some of the memory cells along curve 32 have a high resistivity, to the extent that a small number of memory cells that are present in the LRS configuration have one of the resistivity overlaps with the cells that should be in the HRS configuration. 35 (illustrated by the dotted line diagram).

由於任何若干理由,應處於LRS組態中之該等記憶體單元可具有高電阻率。舉例而言,此等記憶體單元可能從來未完整地形成與LRS組態相關聯之一適當之導電過渡結構(例如,類似於在圖1中展示之結構20之一結構)。替代地,或另外,此過渡結構可能已經降級以減少通過該等單元之導電率。不管具有應處於LRS組態中具有太高電阻率之記憶體單元之該理由,此等記憶體單元可在此等單元之該高電阻率將指示在一讀取操作期間單元係處於HRS組態中而非在預期之LRS組態中上係有問題的。 The memory cells that should be in the LRS configuration can have high resistivity for any number of reasons. For example, such memory cells may never completely form one of the appropriate conductive transition structures associated with the LRS configuration (eg, similar to one of the structures 20 shown in FIG. 1). Alternatively, or in addition, this transition structure may have been degraded to reduce the conductivity through the cells. Regardless of the reason that there is a memory cell that should have too high resistivity in the LRS configuration, the high resistivity of the memory cells at these cells will indicate that the cell is in the HRS configuration during a read operation. Not in the expected LRS configuration.

應處於LRS組態中但具有高電阻率(且因此係在區域35內)之該等記憶體單元可視為對應於代表應處於LRS組態中之該單元群之曲線32上之一「尾部」。換言之,具有有問題之高電阻率之應處於LRS組態中之該等記憶體單元僅係應處於LRS組態中之該總單元群之一小部分。 The memory cells that should be in the LRS configuration but have a high resistivity (and therefore are within region 35) can be considered to correspond to one of the "tails" on the curve 32 representing the group of cells that should be in the LRS configuration. . In other words, the memory cells with the problematic high resistivity that should be in the LRS configuration are only a small fraction of the total cell group that should be in the LRS configuration.

在一些實施例中,補償在曲線32之該「尾部」中之該等記憶體 單元之高電阻率之一方法利用由此「尾部」代表之有問題之記憶體單元之該相對小部分。特定言之,記憶體位元係經組態以包括兩個或多個記憶體單元。舉例而言,在一些應用中,該等記憶體位元可經組態以各包括耦合在一起之兩個記憶體單元。在一讀取操作期間總計自該等耦合之記憶體單元之輸出。由於應處於LRS組態中之該記憶體單元群僅含有具有有問題之高電阻率之一小部分,故多半具有問題之高電阻率之單元與具有低電阻率之其他單元結合而非與彼此結合。該等記憶體單元可係經並聯配置於該等記憶體位元內使得通過一個別記憶體位元之該電流係在該記憶體位元內之該等記憶體單元之一電流總數(即,在該記憶體位元內之該等記憶體單元之該等電阻率之一並聯組合)。因此,只要在該記憶體位元中之該等單元之一者具有低電阻率,則通過該記憶體位元之總電阻率將係低的。 In some embodiments, the memory in the "tail" of curve 32 is compensated One of the methods of high resistivity of a cell utilizes this relatively small portion of the problematic memory cell represented by the "tail". In particular, a memory bit is configured to include two or more memory cells. For example, in some applications, the memory bits can be configured to each include two memory cells coupled together. The output from the coupled memory cells is totaled during a read operation. Since the memory cell group that should be in the LRS configuration contains only a small fraction of the problematic high resistivity, most of the problematic high resistivity cells are combined with other cells having low resistivity rather than with each other. Combine. The memory cells may be arranged in parallel in the memory cells such that the current through one of the other memory cells is the total number of currents of the memory cells within the memory cell (ie, in the memory) One of the resistivities of the memory cells within the body position is combined in parallel). Thus, as long as one of the cells in the memory bit has a low resistivity, the total resistivity through the memory bit will be low.

將多個單元耦合至個別記憶體位元中之一缺點係該記憶體陣列之總儲存密度將減少。舉例而言,若每一記憶體位元包括兩個記憶體單元,則接著該記憶體陣列之該儲存密度將減少至若每一記憶體位元僅包括一單一記憶體單元之該記憶體陣列之該儲存密度之一半。更通常地,若一RRAM陣列包括X個記憶體單元,且Y個記憶體單元係被併入每一記憶體位元中,則該RRAM將具有不超過X/Y個記憶體位元。相反地,在每一記憶體位元中包括一單一記憶體單元一先前技術RRAM陣列將包括X個記憶體位元。 One disadvantage of coupling multiple cells to individual memory bits is that the total storage density of the memory array will be reduced. For example, if each memory bit includes two memory cells, then the storage density of the memory array is reduced to the memory array if each memory bit includes only a single memory cell. One and a half storage density. More generally, if an RRAM array includes X memory cells and Y memory cells are incorporated into each memory bit, the RRAM will have no more than X/Y memory bits. Conversely, a single memory cell is included in each memory bit. A prior art RRAM array will include X memory bits.

藉由將多個記憶體單元耦合至單一記憶體位元中實現該改良之可靠性可在一些應用中補償減少之儲存密度之該缺點。在一些實施例中,在每一記憶體位元內之記憶體單元之該耦合可視為相較於僅利用在記憶體位元中之單一記憶體單元改良信號雜訊比。 Achieving this improved reliability by coupling multiple memory cells into a single memory bit can compensate for this disadvantage of reduced storage density in some applications. In some embodiments, the coupling of the memory cells within each memory bit can be viewed as improving the signal to noise ratio compared to using only a single memory cell in the memory bit.

圖3展示具有與圖2之圖表30相同之軸之一圖表40,且圖解繪示可藉由將兩個記憶體單元耦合至每一記憶體位元中實現之改良。在圖 3之圖表中展示參考圖2描述之該兩個記憶體單元群,其中一個群係應處於LRS組態中之記憶體單元,且由曲線32展示;及另一群係應處於HRS組態中之記憶體單元,且由曲線34展示。亦展示兩個記憶體位元群,其中個別記憶體位元含有成對之記憶體單元且具有對應於該成對記憶體單元之電阻率並聯組合之電阻率。可藉由自曲線32之成對記憶體單元來形成該等記憶體位元群之一者。此群應係一低電阻率狀態之記憶體位元群,且係由曲線42展示。可藉由自曲線34之成對記憶體單元來形成該等記憶體位元群之另一者。此群應係一高電阻率狀態之記憶體位元群,且係由曲線44展示。 3 shows a chart 40 having the same axis as chart 30 of FIG. 2, and graphically illustrates an improvement that can be achieved by coupling two memory cells into each memory bit. In the picture The two memory cell groups described with reference to FIG. 2 are shown in the graph of 3, one of which should be in the memory unit in the LRS configuration and shown by curve 32; and the other group should be in the HRS configuration. The memory unit is shown by curve 34. Two memory bit groups are also shown, wherein the individual memory bits contain a pair of memory cells and have a resistivity corresponding to the parallel combination of resistivity of the pair of memory cells. One of the groups of memory bits can be formed by pairing the memory cells from the curve 32. This group should be a memory bit group of low resistivity states and is shown by curve 42. The other of the groups of memory bits can be formed by pairing the memory cells from the curve 34. This group should be a memory bit group of a high resistivity state and is shown by curve 44.

在曲線44之該高電阻率群中之所有該等記憶體位元具有高電阻,且曲線44相對於對應於該等個別記憶體單元之曲線34僅係適度變化。 All of the memory locations in the high resistivity group of curve 44 have high resistance, and curve 44 varies only modestly with respect to curve 34 corresponding to the individual memory cells.

在曲線42之該低電阻率群中之所有該等記憶體位元係具有足夠低之電阻率以與在曲線44之該高電阻率群之記憶體位元區分。換言之,圖2之有問題之重疊區域35相對於曲線42及44之該等記憶體位元群並不存在;且因此,曲線42之所有該等低電阻率記憶體位元可與曲線44之該等高電阻率記憶體位元區分。在沿曲線42之該最高電阻率記憶體位元與沿曲線44之該最低電阻率記憶體位元之間之一差異可視為係適用於在一讀取操作期間判定在高電阻率記憶體位元與低電阻率記憶體位元之間之差異之一感測窗46。將多個記憶體單元耦合至個別記憶體位元中已產生相較於缺少耦合之記憶體單元之先前技術記憶體位元至少改良(即,擴寬)約一數量級之一感測窗。 All of the memory bitlines in the low resistivity group of curve 42 have a sufficiently low resistivity to distinguish from the memory bit of the high resistivity group of curve 44. In other words, the problematic overlap region 35 of FIG. 2 does not exist with respect to the memory bit groups of curves 42 and 44; and therefore, all of the low resistivity memory bits of curve 42 can be compared to curve 44. High resistivity memory bit distinction. One difference between the highest resistivity memory bit along curve 42 and the lowest resistivity memory bit along curve 44 can be considered to be suitable for determining high resistivity memory bits and low during a read operation. A sensing window 46 is one of the differences between the resistivity memory bits. Coupling a plurality of memory cells to a prior art memory bit in an individual memory bit that has resulted in a memory cell that is less than coupled lacks at least improves (ie, broadens) one of the sense windows.

可透過任何適當之架構耦合該等記憶體單元以形成圖3之該等記憶體位元。圖4展示利用一架構之一實例程式化操作,其中字線係經成對以產生包括成對之記憶體單元之記憶體位元。利用一記憶體陣列50之一電路圖繪示圖4之該操作。該記憶體陣列包括複數個位元線 (bl0至bl4)、源線(src)及字線(wl0至wl4)。該記憶體陣列包括代表為電阻器之記憶體單元52(僅其等之一些係經標記的),及包括選擇裝置54(僅其等之一些係經標記的)。該等選擇裝置可係任何適當之裝置;包含(例如)場效電晶體、雙極型接面電晶體、二極體、雙向定限開關等等。提供該等選擇裝置以緩解有問題之洩露電流。在一些實施例中,若洩露電流並不成問題,則可省略該等選擇裝置。 The memory cells can be coupled by any suitable architecture to form the memory bits of FIG. 4 shows an example stylization operation using an architecture in which word lines are paired to produce memory bits including pairs of memory cells. This operation of Figure 4 is illustrated using a circuit diagram of a memory array 50. The memory array includes a plurality of bit lines (bl0 to bl4), source line (src), and word line (wl0 to wl4). The memory array includes memory cells 52, which are represented as resistors (only some of which are labeled), and include selection means 54 (only some of which are labeled). The selection means can be any suitable means; including, for example, field effect transistors, bipolar junction transistors, diodes, bidirectional limit switches, and the like. These selection devices are provided to alleviate the problematic leakage current. In some embodiments, if the leakage current is not a problem, the selection means can be omitted.

兩個字線wl1及wl2係成對在一起,且如由在該等字線之各者處之一星號(*)圖解繪示,沿兩個字線提供一電脈衝。同樣地,如由在位元線bl2處之一星號(*)圖解繪示,沿此位元線提供一電脈衝。沿wl1、wl2及bl2之該等電脈衝使該等記憶體單元之兩者(繪示為記憶體單元52a及52b)被程式化至一特定狀態中,而並不程式化該等剩餘之記憶體單元。可將該等記憶體單元52a及52b程式化至與彼此相同之狀態中,且特定言之,實質上可同時改變記憶體單元52a及52b之各者之該電阻率,使得兩個記憶體單元可係實質上同時經程式化至一HRS組態中,或使得兩個記憶體單元可係實質上同時經程式化至一LRS組態中。該術語「實質上同時」包含操作,其中耦合之記憶體單元係曝露於程式化條件及同時在操作限制及測量限制內之程式或歸因於在程式化操作期間之記憶體單元之隨機性並不完全同時之程式。在一些實施例中,可完全分離彼此程式化一記憶體位元之該等耦合之記憶體單元,且因此,可以一方式程式化該等個別耦合之記憶體單元,使得並不同時或甚至不實質上同時相對於彼此程式化該等記憶體單元。 The two word lines wl1 and wl2 are paired together and, as illustrated by an asterisk (*) at each of the word lines, provide an electrical pulse along the two word lines. Similarly, an electrical pulse is provided along this bit line as illustrated by an asterisk (*) at bit line bl2. The electrical pulses along wl1, wl2, and bl2 cause both of the memory cells (shown as memory cells 52a and 52b) to be programmed into a particular state without stylizing the remaining memories Body unit. The memory cells 52a and 52b can be programmed into the same state as each other, and in particular, the resistivity of each of the memory cells 52a and 52b can be substantially changed simultaneously, so that the two memory cells It can be programmed substantially simultaneously into an HRS configuration, or two memory cells can be programmed into an LRS configuration at substantially the same time. The term "substantially simultaneously" encompasses operations in which coupled memory cells are exposed to stylized conditions and programs within operational limits and measurement limits or due to randomness of memory cells during stylized operations and Not exactly the same program. In some embodiments, the coupled memory cells of a memory bit can be completely separated from each other, and thus, the individually coupled memory cells can be programmed in a manner such that they are not simultaneously or even insubstantially The memory cells are also programmed relative to each other.

該等記憶體單元52a及52b係經成對在一起至一單一記憶體位元56中。其他記憶體單元52可類似地係經成對至記憶體位元中。因此,陣列50可係視為細分為複數個記憶體位元,其中每一記憶體位元包括兩個記憶體單元。儘管該等繪示之記憶體位元包括兩個記憶體單元,但在其他實施例中,記憶體位元可經組態以包括超過兩個記憶體單元。 The memory cells 52a and 52b are paired together into a single memory bit 56. Other memory cells 52 can similarly be paired into memory bits. Thus, array 50 can be considered to be subdivided into a plurality of memory bits, where each memory bit includes two memory cells. Although the memory cells depicted include two memory cells, in other embodiments, the memory cells can be configured to include more than two memory cells.

參考圖5,藉由提供沿wl1、wl2及bl2之適當之電脈衝(如由星號(*)圖解繪示)讀取記憶體位元56之該等記憶體單元52a及52b,其中該等讀取脈衝係具有適當之持續時間及量值以判定在未變更記憶體位元56之程式化狀態的情況下通過記憶體單元52a及52b之一總電流。可藉由使電流沿延伸通過所有該等耦合之記憶體單元之一路徑通過完成該等耦合之記憶體單元之該讀取以從而判定該總電流(如展示)。替代地,在一些實施例中,可分離彼此讀取該等「耦合」之記憶體單元(即,電流沿並不延伸通過所有該等總單元之路徑通過個別記憶體單元)且稍後藉由邏輯(及/或透過其他程式化電路或操作)將該等電流加一起以產生該等耦合之記憶體單元之該總電流。若電流係沿延伸通過一位元之所有該等耦合之記憶體單元之一路徑通過,則該位元之耦合之記憶體單元可係視為彼此同時被讀取;且若電流係通過該位元之每一記憶體單元且稍後用一額外操作總計該等電流,則該位元之耦合之記憶體單元可係視為在一非同時操作中被讀取。 Referring to FIG. 5, the memory cells 52a and 52b of the memory bit 56 are read by providing appropriate electrical pulses along w1, wl2, and bl2 (as illustrated by an asterisk (*) diagram), wherein the readings are performed. The pulse train has an appropriate duration and magnitude to determine the total current through one of the memory cells 52a and 52b without changing the stylized state of the memory bit 56. The total current (as shown) can be determined by causing current to flow through one of all of the coupled memory cells by completing the reading of the coupled memory cells. Alternatively, in some embodiments, the "coupled" memory cells can be read from each other (ie, the current passes through the individual memory cells along a path that does not extend through all of the total cells) and is later passed by The logic (and/or through other stylized circuits or operations) adds the currents together to produce the total current of the coupled memory cells. If the current is passed along one of the paths of all of the coupled memory cells extending through the one-bit element, the coupled memory cells of the bit can be considered to be read simultaneously with each other; and if the current is passed through the bit Each memory cell of the cell and later summing the currents with an additional operation, the coupled memory cells of the bit can be considered to be read in a non-simultaneous operation.

記憶體陣列50之該繪示之組態具有複數個記憶體單元52,其等之各者係藉由一字線及位元線之組合唯一地定址。在該展示之實施例中,藉由成對字線wl1及wl2及單一位元線bl2定址記憶體位元56之該等記憶體單元。在其他實施例中,可藉由成對位元線及單一字線定址類似記憶體位元。 The illustrated configuration of memory array 50 has a plurality of memory cells 52, each of which is uniquely addressed by a combination of word lines and bit lines. In the illustrated embodiment, the memory cells of memory bit 56 are addressed by paired word lines wl1 and wl2 and a single bit line bl2. In other embodiments, similar memory bits can be addressed by pairs of bit lines and a single word line.

圖4及圖5整體地繪示選擇裝置54。圖6及圖7各自圖解繪示包括作為該等選擇裝置之場效電晶體62(僅其等之一些係經標記的)之一實例實施例記憶體陣列60之程式化及讀取操作。為該等程式化及讀取操作圖解展示在wl1及wl2上之該等脈衝。為該等程式化及讀取操作,該繪示之實施例在wl1上利用與在W12上相同之持續時間及量值的脈衝。在其他實施例中,為該等程式化操作、該讀取操作或為等程式化及讀取操作之兩者,在wl1上利用之該脈衝可係不同於在wl2上利用之該脈 衝。 4 and 5 collectively illustrate the selection device 54. 6 and 7 each illustrate a stylized and read operation of an example embodiment memory array 60 including field effect transistors 62 (only some of which are labeled) of the selection devices. These pulses are shown on wl1 and wl2 for these stylized and read operations. For such stylized and read operations, the illustrated embodiment utilizes the same duration and magnitude of pulses as on W12 on wl1. In other embodiments, for the stylized operations, the read operations, or both of the stylized and read operations, the pulse utilized on wl1 may be different from the pulse utilized on wl2. Rush.

上文討論之該等記憶體陣列可係併入電子系統中。此等電子系統可係用於(例如)記憶體模組、裝置驅動器、電力模組、通訊數據機、處理器模組及特定應用模組,且可包含多層、多晶片模組。該等電子系統可係一廣泛系統範圍中之任何一者,諸如,時鐘、電視、手機、個人電腦、汽車、工業控制系統、飛機等等。 The memory arrays discussed above can be incorporated into an electronic system. Such electronic systems can be used, for example, in memory modules, device drivers, power modules, communication data units, processor modules, and application specific modules, and can include multi-layer, multi-chip modules. The electronic systems can be any of a wide range of systems, such as clocks, televisions, cell phones, personal computers, automobiles, industrial control systems, aircraft, and the like.

在該等圖式中之各種實施例之該特定方向僅係為繪示說明之目的,且可相對於在一些應用中之該等展示之方向旋轉該等實施例。本文提供之該描述及隨附之該等申請專利範圍係關於具有在各種特徵之間之所描述之關係的任何結構,不管該等結構是否係在該等圖式之該特定方向上或是否係相對於此方向被旋轉。 The particular orientation of the various embodiments in the figures is for illustrative purposes only and the embodiments may be rotated relative to those shown in some applications. The description and the accompanying claims are hereby incorporated by reference to the entire disclosure of the disclosure of the disclosure of It is rotated relative to this direction.

該等附圖之橫截面圖僅展示在該等橫截面之平面內之特徵,且為簡化該等圖式,並不展示在該等橫截面之平面後之材料。 The cross-sectional views of the drawings show only features in the plane of the cross-sections, and to simplify the drawings, the material after the plane of the cross-sections is not shown.

一些實施例包含儲存與擷取X個記憶體單元之一RRAM陣列之資料之一方法,其中Y個記憶體單元係在每一記憶體位元中耦合至彼此,使得該RRAM陣列具有不超過X/Y個記憶體位元。每一記憶體位元之該等耦合之記憶體單元係在讀取及寫入操作期間係維持於彼此共同之一電阻狀態。具有耦合之記憶體單元之該等記憶體位元相較於僅具有單一記憶體單元之記憶體位元提供提升之可靠性。 Some embodiments include a method of storing and extracting data from an RRAM array of one of the X memory cells, wherein Y memory cells are coupled to each other in each memory bit such that the RRAM array has no more than X/ Y memory bits. The coupled memory cells of each memory bit are maintained in a mutual resistance state during reading and writing operations. The memory cells with coupled memory cells provide improved reliability compared to memory cells having only a single memory cell.

一些實施例包含儲存與擷取一RRAM陣列之資料之一方法。該陣列係細分為複數個記憶體位元,其中每一記憶體位元包括至少兩個記憶體單元。藉由實質上同時改變在該記憶體位元內之所有記憶體單元之電阻狀態來程式化一記憶體位元。藉由判定通過在該記憶體位元內之所有記憶體單元之總電流來讀取該記憶體位元。 Some embodiments include a method of storing and capturing data from an RRAM array. The array is subdivided into a plurality of memory bits, wherein each memory bit includes at least two memory cells. A memory bit is programmed by substantially simultaneously changing the resistance state of all of the memory cells within the memory bit. The memory bit is read by determining the total current through all of the memory cells within the memory bit.

一些實施例包含RRAM,其包括複數個記憶體單元,其中透過一位元線/字線組合唯一地定址該等記憶體單元之各者。該等記憶體單 元包括具有可選擇地可互換電阻狀態之可程式化材料。記憶體位元包括耦合在一起之多個記憶體單元。在每一記憶體位元內之該等耦合之記憶體單元係彼此處於相同電阻狀態中。 Some embodiments include an RRAM that includes a plurality of memory cells in which each of the memory cells is uniquely addressed by a single bit line/word line combination. The memory list The element includes a programmable material having a selectively interchangeable resistance state. The memory bit includes a plurality of memory cells coupled together. The coupled memory cells within each memory bit are in the same resistive state with each other.

50‧‧‧記憶體陣列 50‧‧‧ memory array

52‧‧‧記憶體單元 52‧‧‧ memory unit

52a‧‧‧記憶體單元 52a‧‧‧ memory unit

52b‧‧‧記憶體單元 52b‧‧‧ memory unit

54‧‧‧選擇裝置 54‧‧‧Selection device

56‧‧‧單一記憶體位元 56‧‧‧Single memory bit

bl0‧‧‧位元線 Bl0‧‧‧ bit line

bl1‧‧‧位元線 Bl1‧‧‧ bit line

bl2‧‧‧位元線 Bl2‧‧‧ bit line

bl3‧‧‧位元線 Bl3‧‧‧ bit line

bl4‧‧‧位元線 Bl4‧‧‧ bit line

src‧‧‧源線 Src‧‧‧ source line

wl0‧‧‧字線 Wl0‧‧‧ word line

wl1‧‧‧字線 Wl1‧‧‧ word line

wl2‧‧‧字線 Wl2‧‧‧ word line

wl3‧‧‧字線 Wl3‧‧‧ word line

Claims (29)

一種儲存與擷取X個記憶體單元之一電阻式隨機存取記憶體(RRAM)陣列之資料之方法,其包括:形成個別記憶體位元,每一個別記憶體位元具有Y個耦合之記憶體單元,其中Y為大於或等於2之一整數,使得該RRAM陣列具有不超過X/Y個記憶體位元;在讀取及寫入操作期間,每一記憶體位元之該等Y個耦合之記憶體單元係維持在彼此共同之一電阻狀態中;具有Y個耦合之記憶體單元之該等記憶體位元相較於僅具有單一記憶體單元之記憶體位元提供提升之可靠性;該X個記憶體單元之陣列被細分為複數個記憶體位元,每一記憶體位元具有一與Y相同之數目個耦合之記憶體單元,一給定記憶體位元包括Y個耦合之記憶體單元之每一組,該給定記憶體位元經組態以相關於包括Y個耦合之記憶體單元之其他組之獨立記憶體位元被分離地程式化;及分離地程式化相關於該記憶體位元之其他記憶體位元之一或多個該記憶體位元。 A method for storing and extracting data of a resistive random access memory (RRAM) array of X memory cells, comprising: forming individual memory bits, each of the individual memory bits having Y coupled memories a unit, where Y is an integer greater than or equal to 2 such that the RRAM array has no more than X/Y memory bits; during the read and write operations, the Y coupled memories of each memory bit The body cells are maintained in a mutual resistance state; the memory cells having Y coupled memory cells provide improved reliability compared to memory cells having only a single memory cell; the X memories The array of body units is subdivided into a plurality of memory bits, each memory bit having a number of coupled memory cells of the same number as Y, and a given memory bit comprising each of the Y coupled memory cells The given memory bit is configured to be separately programmed separately from independent memory bits associated with other groups of Y coupled memory cells; and separately programmed to be associated with the memory One other memory position of Yuan Yuan Yuan or more of the memory position. 如請求項1之方法,其中一記憶體位元之Y個記憶體單元係同時讀取。 The method of claim 1, wherein the Y memory cells of one memory bit are simultaneously read. 如請求項1之方法,其中一記憶體位元之Y個記憶體單元係實質上同時程式化。 The method of claim 1, wherein the Y memory cells of one memory bit are substantially simultaneously programmed. 如請求項1之方法,其中一記憶體位元之Y個記憶體單元係不同時程式化及/或讀取。 The method of claim 1, wherein the Y memory cells of one memory bit are not programmed and/or read at the same time. 如請求項1之方法,其中Y係二。 The method of claim 1, wherein Y is two. 如請求項5之方法,其中藉由一字線及一位元線之一組合唯一地定址每一記憶體單元;且其中藉由成對字線及個別位元線定址 記憶體位元之該等記憶體單元。 The method of claim 5, wherein each memory unit is uniquely addressed by a combination of a word line and a bit line; and wherein the addressing is performed by a pair of word lines and individual bit lines The memory cells of the memory bit. 如請求項5之方法,其中藉由一字線及一位元線之一組合唯一地定址每一記憶體單元;且其中藉由成對位元線及個別字線定址記憶體位元之該等記憶體單元。 The method of claim 5, wherein each memory cell is uniquely addressed by a combination of a word line and a bit line; and wherein the memory bit is addressed by the pair of bit lines and the individual word lines Memory unit. 如請求項1之方法,其中Y係大於二。 The method of claim 1, wherein the Y system is greater than two. 如請求項1之方法,其中該電阻式隨機存取記憶體包括相變記憶體。 The method of claim 1, wherein the resistive random access memory comprises phase change memory. 如請求項1之方法,其中該電阻式隨機存取記憶體包括多價金屬氧化物。 The method of claim 1, wherein the resistive random access memory comprises a polyvalent metal oxide. 如請求項1之方法,其中該電阻式隨機存取記憶體包括導電橋接隨機存取記憶體。 The method of claim 1, wherein the resistive random access memory comprises a conductive bridge random access memory. 如請求項1之方法,其中該電阻式隨機存取記憶體包括二元氧化物。 The method of claim 1, wherein the resistive random access memory comprises a binary oxide. 一種儲存與擷取一電阻式隨機存取記憶體(RRAM)陣列之資料之方法,其包括:將該電阻式隨機存取記憶體陣列細分為複數個記憶體位元,每一記憶體位元包括一組至少兩個耦合之記憶體單元,該複數個記憶體位元之每一記憶體位元在該組中具有一相同數目個記憶體單元,且相關於該複數個記憶體位元所包括之每一其他記憶體位元之記憶體單元組,每一組記憶體單元經組態以相關於該陣列中之其他組記憶體單元被分離地程式化;藉由實質上同時改變在該記憶體位元內之所有記憶體單元之電阻狀態程式化一記憶體位元;及藉由判定通過在該記憶體位元內之所有記憶體單元之總電流讀取該記憶體位元。 A method of storing and capturing data of a resistive random access memory (RRAM) array, the method comprising: subdividing the resistive random access memory array into a plurality of memory bits, each memory bit including a memory bit Having at least two coupled memory cells, each memory bit of the plurality of memory cells having an identical number of memory cells in the group, and associated with each of the plurality of memory bits Memory cell groups of memory bits, each set of memory cells being configured to be separately programmed separately with respect to other sets of memory cells in the array; by substantially simultaneously changing all of the memory bits The resistance state of the memory cell is programmed to a memory bit; and the memory bit is read by determining the total current through all of the memory cells within the memory bit. 如請求項13之方法,其中一記憶體位元之該等記憶體單元係同 時讀取。 The method of claim 13, wherein the memory cells of the one memory cell are the same Read when. 如請求項13之方法,其中一記憶體位元之該等記憶體單元係不同時讀取。 The method of claim 13, wherein the memory cells of a memory bit are not read at the same time. 如請求項13之方法,其中每一記憶體位元包括兩個記憶體單元;其中藉由一字線及一位元線之一組合唯一地定址每一記憶體單元;且其中藉由成對字線及個別位元線定址記憶體位元之該等記憶體單元。 The method of claim 13, wherein each memory bit comprises two memory cells; wherein each memory cell is uniquely addressed by a combination of a word line and a bit line; and wherein the pair of words are The lines and individual bit lines address the memory cells of the memory bit. 如請求項13之方法,其中每一記憶體位元包括兩個記憶體單元;其中藉由一字線及一位元線之一組合唯一地定址每一記憶體單元;且其中藉由成對位元線及個別字線定址記憶體位元之該等記憶體單元。 The method of claim 13, wherein each memory bit comprises two memory cells; wherein each memory cell is uniquely addressed by a combination of a word line and a bit line; and wherein the pair of bits is The memory lines of the memory bits are addressed by the meta-line and the individual word lines. 如請求項13之方法,其中該電阻式隨機存取記憶體包括相變記憶體。 The method of claim 13, wherein the resistive random access memory comprises phase change memory. 如請求項13之方法,其中該電阻式隨機存取記憶體包括多價金屬氧化物。 The method of claim 13, wherein the resistive random access memory comprises a polyvalent metal oxide. 如請求項13之方法,其中該電阻式隨機存取記憶體包括導電橋接隨機存取記憶體。 The method of claim 13, wherein the resistive random access memory comprises a conductive bridge random access memory. 如請求項13之方法,其中該電阻式隨機存取記憶體包括二元氧化物。 The method of claim 13, wherein the resistive random access memory comprises a binary oxide. 一種電阻式隨機存取記憶體,其包括:包括可程式化材料之複數個記憶體單元;該可程式化材料具有可選擇地可互換之電阻狀態;透過一位元線/字線組合唯一地定址該等記憶體單元之各者;及包括耦合在一起之多個記憶體單元之記憶體位元;在每一記憶體位元中之該等耦合之記憶體單元係一組記憶體單元且係彼此處於相同之電阻狀態中,每一組記憶體單元經組態以相關於 其他記憶體位元所包括之其他組記憶體單元被分離地程式化。 A resistive random access memory comprising: a plurality of memory cells including a programmable material; the programmable material having a selectively interchangeable resistance state; uniquely coupled by a bit line/word line combination Addressing each of the memory cells; and a memory bit comprising a plurality of memory cells coupled together; the coupled memory cells in each memory bit are a set of memory cells and are each other In the same resistance state, each group of memory cells is configured to be related to Other sets of memory cells included in other memory bits are separately programmed. 如請求項22之電阻式隨機存取記憶體,其中該等記憶體位元包括成對之記憶體單元;且其中藉由成對字線及個別位元線定址記憶體位元之該等成對之記憶體單元。 The resistive random access memory of claim 22, wherein the memory bits comprise a pair of memory cells; and wherein the pair of memory cells are addressed by a pair of word lines and individual bit lines Memory unit. 如請求項22之電阻式隨機存取記憶體,其中該等記憶體位元包括成對之記憶體單元;且其中藉由成對位元線及個別字線定址記憶體位元之該等成對之記憶體單元。 The resistive random access memory of claim 22, wherein the memory bits comprise a pair of memory cells; and wherein the pairs of memory cells are addressed by pairs of bit lines and individual word lines Memory unit. 如請求項22之電阻式隨機存取記憶體,其包括在每一記憶體位元中之超過兩個耦合之記憶體單元。 The resistive random access memory of claim 22, comprising more than two coupled memory cells in each memory bit. 如請求項22之電阻式隨機存取記憶體,其中該電阻式隨機存取記憶體包括相變記憶體。 The resistive random access memory of claim 22, wherein the resistive random access memory comprises phase change memory. 如請求項22之電阻式隨機存取記憶體,其中該電阻式隨機存取記憶體包括多價金屬氧化物。 The resistive random access memory of claim 22, wherein the resistive random access memory comprises a polyvalent metal oxide. 如請求項22之電阻式隨機存取記憶體,其中該電阻式隨機存取記憶體包括導電橋接隨機存取記憶體。 The resistive random access memory of claim 22, wherein the resistive random access memory comprises a conductive bridge random access memory. 如請求項22之電阻式隨機存取記憶體,其中該電阻式隨機存取記憶體包括二元氧化物。 The resistive random access memory of claim 22, wherein the resistive random access memory comprises a binary oxide.
TW103108017A 2013-04-02 2014-03-07 Rram, and methods of storing and retrieving information for rram TWI545437B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/855,208 US10157669B2 (en) 2013-04-02 2013-04-02 Method of storing and retrieving information for a resistive random access memory (RRAM) with multi-memory cells per bit

Publications (2)

Publication Number Publication Date
TW201502784A TW201502784A (en) 2015-01-16
TWI545437B true TWI545437B (en) 2016-08-11

Family

ID=51620707

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103108017A TWI545437B (en) 2013-04-02 2014-03-07 Rram, and methods of storing and retrieving information for rram

Country Status (7)

Country Link
US (4) US10157669B2 (en)
EP (1) EP2981895B1 (en)
JP (1) JP6560189B2 (en)
KR (1) KR20150137109A (en)
CN (1) CN105122217B (en)
TW (1) TWI545437B (en)
WO (1) WO2014163862A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10157669B2 (en) 2013-04-02 2018-12-18 Micron Technology, Inc. Method of storing and retrieving information for a resistive random access memory (RRAM) with multi-memory cells per bit
US9484094B2 (en) * 2015-01-21 2016-11-01 Ememory Technology Inc. Control method of resistive random-access memory
FR3037722B1 (en) * 2015-06-16 2018-08-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives METHOD FOR READING AN ELECTRONIC MEMORY DEVICE
CN106856101B (en) * 2015-12-08 2019-03-19 华邦电子股份有限公司 Resistive memory and its memory cell
US11270769B2 (en) 2016-01-11 2022-03-08 Crossbar, Inc. Network router device with hardware-implemented lookups including two-terminal non-volatile memory
US9887004B2 (en) 2016-06-28 2018-02-06 Western Digital Technologies, Inc. Bi-directional RRAM decoder-driver
GB2552014B (en) * 2016-07-07 2020-05-13 Advanced Risc Mach Ltd Reconfigurable artificial neural networks comprising programmable non-volatile memory elements
US9997244B1 (en) * 2016-11-29 2018-06-12 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM-based authentication circuit
CN109522753B (en) * 2017-09-18 2020-11-06 清华大学 Circuit structure and driving method thereof, chip and authentication method thereof, and electronic device
US10699785B2 (en) 2017-09-29 2020-06-30 Crossbar, Inc. Computing memory architecture
JP6599494B2 (en) * 2018-02-14 2019-10-30 ウィンボンド エレクトロニクス コーポレーション Semiconductor memory device
US10880101B2 (en) 2018-04-11 2020-12-29 Taiwan Semiconductor Manufacturing Co., Ltd. Method and circuit for de-biasing PUF bits
US10896726B2 (en) 2019-04-02 2021-01-19 Junsung KIM Method for reading a cross-point type memory array comprising a two-terminal switching material
US11270767B2 (en) 2019-05-31 2022-03-08 Crossbar, Inc. Non-volatile memory bank with embedded inline computing logic
CN110211618B (en) * 2019-06-12 2021-08-24 中国科学院计算技术研究所 Processing device and method for block chain
KR102657583B1 (en) * 2019-07-19 2024-04-15 삼성전자주식회사 variable resistance memory device
US11711926B2 (en) * 2020-09-18 2023-07-25 Macronix International Co., Ltd. Memory array and memory structure
US11508436B2 (en) * 2020-09-29 2022-11-22 Sharp Semiconductor Innovation Corporation Memory device
US11605418B2 (en) 2020-10-26 2023-03-14 Micron Technology, Inc. Memory device architecture using multiple physical cells per bit to improve read margin and to alleviate the need for managing demarcation read voltages

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781483A (en) 1996-12-31 1998-07-14 Micron Technology, Inc. Device and method for repairing a memory array by storing each bit in multiple memory cells in the array
JPH1196782A (en) 1997-09-18 1999-04-09 Sanyo Electric Co Ltd Non-volatile semiconductor memory
JP2001057096A (en) 1999-06-11 2001-02-27 Hitachi Ltd Multiplexed memory, and sensor and control system using the memory
JP2001043691A (en) 1999-07-28 2001-02-16 Hitachi Ltd Non-volatile storage circuit and microcomputer
US6574129B1 (en) 2002-04-30 2003-06-03 Hewlett-Packard Development Company, L.P. Resistive cross point memory cell arrays having a cross-couple latch sense amplifier
JP4469649B2 (en) 2003-09-17 2010-05-26 株式会社ルネサステクノロジ Semiconductor flash memory
US6849891B1 (en) 2003-12-08 2005-02-01 Sharp Laboratories Of America, Inc. RRAM memory cell electrodes
TW200527656A (en) 2004-02-05 2005-08-16 Renesas Tech Corp Semiconductor device
WO2006027920A1 (en) 2004-09-08 2006-03-16 Nec Corporation Nonvolatile semiconductor storage device
US8179711B2 (en) 2004-10-26 2012-05-15 Samsung Electronics Co., Ltd. Semiconductor memory device with stacked memory cell and method of manufacturing the stacked memory cell
US7002874B1 (en) * 2005-03-16 2006-02-21 United Memories, Inc. Dual word line mode for DRAMs
US20080059816A1 (en) 2006-08-30 2008-03-06 Frank Patrick Paniagua Power supply capable of receiving digital communications from electronic devices
KR100791341B1 (en) 2006-09-04 2008-01-03 삼성전자주식회사 Write method of nonvolatile memory device and nonvolatile memory device using the same
KR100827702B1 (en) 2006-11-01 2008-05-07 삼성전자주식회사 Resistive semiconductor memory device
JP4653833B2 (en) * 2008-11-04 2011-03-16 シャープ株式会社 Nonvolatile semiconductor memory device and control method thereof
US8040713B2 (en) 2009-01-13 2011-10-18 Seagate Technology Llc Bit set modes for a resistive sense memory cell array
US7944729B2 (en) 2009-01-28 2011-05-17 Seagate Technology Llc Simultaneously writing multiple addressable blocks of user data to a resistive sense memory cell array
US8098507B2 (en) 2009-07-13 2012-01-17 Seagate Technology Llc Hierarchical cross-point array of non-volatile memory
US8625339B2 (en) 2011-04-11 2014-01-07 Grandis, Inc. Multi-cell per memory-bit circuit and method
US8482955B2 (en) 2011-02-25 2013-07-09 Micron Technology, Inc. Resistive memory sensing methods and devices
US10157669B2 (en) * 2013-04-02 2018-12-18 Micron Technology, Inc. Method of storing and retrieving information for a resistive random access memory (RRAM) with multi-memory cells per bit

Also Published As

Publication number Publication date
US20180122475A1 (en) 2018-05-03
US10157669B2 (en) 2018-12-18
EP2981895A1 (en) 2016-02-10
US20180122476A1 (en) 2018-05-03
EP2981895B1 (en) 2020-08-05
US10170183B1 (en) 2019-01-01
EP2981895A4 (en) 2016-11-30
JP6560189B2 (en) 2019-08-14
CN105122217B (en) 2018-10-09
TW201502784A (en) 2015-01-16
WO2014163862A1 (en) 2014-10-09
US20140293674A1 (en) 2014-10-02
KR20150137109A (en) 2015-12-08
CN105122217A (en) 2015-12-02
JP2016522527A (en) 2016-07-28
US20180358095A1 (en) 2018-12-13
US10304532B2 (en) 2019-05-28
US10157673B2 (en) 2018-12-18

Similar Documents

Publication Publication Date Title
TWI545437B (en) Rram, and methods of storing and retrieving information for rram
KR101514125B1 (en) Memory cell with decoupled read/write path
US8395929B2 (en) Signal margin improvement for read operations in a cross-point memory array
JP7471422B2 (en) Tri-state programming of memory cells
US9837149B2 (en) Low read current architecture for memory
US7149100B2 (en) Serial transistor-cell array architecture
US8014219B2 (en) Semiconductor memory device
KR101402205B1 (en) Hierarchical cross-point array of non-volatile memory
JP2011060389A (en) Semiconductor memory device
TW201533739A (en) Magnetoresistive memory device
US20130044533A1 (en) Memory array with co-planar waveguide based memory element selection
JP4483540B2 (en) Storage device
JP2023551495A (en) Non-volatile resistance change memory logic device