TWI544749B - Analog-digital converter controller and digital calibration method for the same - Google Patents

Analog-digital converter controller and digital calibration method for the same Download PDF

Info

Publication number
TWI544749B
TWI544749B TW103112733A TW103112733A TWI544749B TW I544749 B TWI544749 B TW I544749B TW 103112733 A TW103112733 A TW 103112733A TW 103112733 A TW103112733 A TW 103112733A TW I544749 B TWI544749 B TW I544749B
Authority
TW
Taiwan
Prior art keywords
digital
analog
signal
correction
circuit
Prior art date
Application number
TW103112733A
Other languages
Chinese (zh)
Other versions
TW201539988A (en
Inventor
邱進峯
羅文裕
張文旭
謝志成
林晉毅
蘇聖航
Original Assignee
財團法人國家實驗研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家實驗研究院 filed Critical 財團法人國家實驗研究院
Priority to TW103112733A priority Critical patent/TWI544749B/en
Publication of TW201539988A publication Critical patent/TW201539988A/en
Application granted granted Critical
Publication of TWI544749B publication Critical patent/TWI544749B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)

Description

類比數位轉換控制器及數位校正方法 Analog digital conversion controller and digital correction method

本發明是關於一種類比數位轉換控制器及校正方法,特別是應用在小面積的應用領域,例如通用逐漸趨近式類比數位轉換器、影像感測器中的行列式類比數位轉換器以及生醫系統中的類比數位轉換器。 The invention relates to an analog digital conversion controller and a correction method, in particular to a small-area application field, such as a general-purpose approaching analog-like digital converter, a determinant analog-to-digital converter in an image sensor, and a raw Analog to digital converter in medical systems.

參考第1圖繪示一習知的二進位類比數位轉換器的轉換電路示意圖。如第1圖所示,該轉換電路是透過多個電容相互並聯來達成將類比訊號轉換為數位訊號。然而,若要實現N位元的類比數位轉換器,其所需要的電容總數為2(N+1)個。對於小型化的應用領域來說,降低電容的數量以便縮小轉換器的面積是需要解決的問題。 Referring to FIG. 1 , a schematic diagram of a conventional conversion circuit of a binary analog-to-digital converter is shown. As shown in FIG. 1, the conversion circuit converts the analog signal into a digital signal by connecting a plurality of capacitors in parallel with each other. However, to implement an N-bit analog-to-digital converter, the total number of capacitors required is 2 (N+1) . For miniaturized applications, reducing the amount of capacitors in order to reduce the area of the converter is a problem that needs to be solved.

參考第2圖繪示一習知的2階數位類比轉換器的轉換電路示意圖。在左邊為MSB(最高有效位元)陣列,其由n個位元所組成,而右邊為LSB(最低有效位元)陣列,其由m個位元所組成,這兩個電容陣列藉由串聯電容115而形成一個n+m位元的數位類比轉換器,如要實現N位元的數位類比轉換器,其需要的電容總數為若要實現N位元的類比數位轉換器,其所需要的電容總數為2(n+)+2(n+1)+1個。其中多出來的一個電容為該串聯電容138。同時,在串聯電容138與接地間產生的第一寄生電容CP1與在串聯電容138兩端產生的第二寄生電容CP2會造成輸出數位碼的非線性,造成該數位類比轉換 器的DNL(微分非線性)值的產生。 Referring to FIG. 2, a schematic diagram of a conventional second-order digital-to-digital converter conversion circuit is shown. On the left is the MSB (most significant bit) array, which consists of n bits, and the right side is the LSB (Least Significant Bit) array, which consists of m bits, which are connected in series by Capacitor 115 forms a n+m bit digital analog converter. For a N-bit digital analog converter, the total number of capacitors required is an analog digital converter for N bits. The total number of capacitors is 2 (n+) +2 (n+1) +1. One of the more capacitors is the series capacitor 138. At the same time, the first parasitic capacitance C P1 generated between the series capacitor 138 and the ground and the second parasitic capacitance C P2 generated across the series capacitor 138 cause nonlinearity of the output digital code, resulting in the DNL of the digital analog converter ( Differential nonlinearity) generation of values.

參考第3圖、第4圖以及第5圖。第3圖繪示一習知的3階類比數位轉換器的轉換電路示意圖;第4圖繪示第3圖的類比數位訊號的類比數位轉換曲線圖;第5圖繪示第4圖中的DNL值與數位碼的對應圖。此三階的中間是MSB陣列而兩邊是LSB陣列,各階的位元數從MSB陣列到LSB陣列依序為3(1C、2C、4C)、4(1C、2C、4C、8C)、3(1C、2C、4C)位元(當中的C為單位電容值)。在這個架構下,第一串聯電容2381和第二串聯電容2382的寄生電容都會影響到數位類比轉換器的DNL,但是越靠近MSB陣列的串聯電容影響越大,也就是第一串聯電容2381的寄生電容會比第二串聯電容2382的寄生電容有更嚴重的影響,理想上第一串聯電容2381的電容值應該為16C/15,但是因為第一串聯電容2381串聯的寄生電容或者第一串聯電容2381本身的製程飄移(亦即因為製作不良而產生的誤差),會使其無法剛好具有16C/15的電容值而造成數位類比轉換器的DNL變差。假如我們將第一串聯電容2381設定為0.9C時,其數位類比轉換曲線如第4圖所示,一未經校正的類比數位轉換訊號248與一標準的線性訊號245相比,因為MSB陣列為3位元,因此會產生23-1=7個斷點,而且這些斷點是往上偏移的正值,造成其DNL如第5圖所示,在第4圖中每一個往上偏移的位置在第5圖當中都有對應的DNL值,有7個位置有正的DNL值。該DNL值往上偏移的結果導致該未經校正的類比數位轉換訊號248完全沒有任何重疊的部分,因此在類比輸入電壓0.105~0.130(伏特)都會對應到130(數位碼)。亦即,在該類比數位轉換器解完以後,一個數位碼代表多個類比輸入電壓值,因此數位碼無法反推出實際的類比輸入電壓值,因此呈現部分區間無法解析。故此情況下將無法使用 數位方式校正,僅能透過類比校正的方式來調整。由上述2階與3階的數位類比轉換器說明可知,藉由不斷的增加轉換電路的階數的確可以有效地降低電容總數,然而在相對應增加的每個串聯電容周圍都會產生相對應的寄生電容進而在類比數位訊號轉換時產生DNL值。因此如何解決因為串聯電容而產生的DNL值是需要解決的問題。 Refer to Figures 3, 4, and 5. 3 is a schematic diagram of a conventional three-stage analog-to-digital converter conversion circuit; FIG. 4 is a diagram showing an analog-to-digital conversion curve of the analog digital signal of FIG. 3; and FIG. 5 is a diagram showing the DNL of FIG. A map of values and digit codes. The middle of the third order is the MSB array and the two sides are the LSB array. The number of bits in each order is from the MSB array to the LSB array in the order of 3 (1C, 2C, 4C), 4 (1C, 2C, 4C, 8C), 3 ( 1C, 2C, 4C) bits (where C is the unit capacitance value). Under this architecture, the parasitic capacitance of the first series capacitor 2381 and the second series capacitor 2382 affect the DNL of the digital analog converter, but the closer to the MSB array, the greater the influence of the series capacitance, that is, the parasitic capacitance of the first series capacitor 2381. The capacitance will have a more serious effect than the parasitic capacitance of the second series capacitor 2382. Ideally, the capacitance of the first series capacitor 2381 should be 16C/15, but because of the parasitic capacitance of the first series capacitor 2381 in series or the first series capacitor 2381 The drift of the process itself (that is, the error caused by poor fabrication) will make it impossible to have a capacitance value of 16C/15 and cause the DNL of the digital analog converter to deteriorate. If we set the first series capacitor 2381 to 0.9C, the digital analog conversion curve is as shown in FIG. 4, and an uncorrected analog digital conversion signal 248 is compared with a standard linear signal 245 because the MSB array is 3 bits, so 2 3 -1=7 breakpoints are generated, and these breakpoints are positive values of the upward offset, resulting in their DNL as shown in Figure 5, each of which is offset upwards in Figure 4 The shifted position has a corresponding DNL value in Figure 5, and 7 positions have a positive DNL value. As a result of the upward shift of the DNL value, the uncorrected analog digital conversion signal 248 has no overlapping portion at all, so the analog input voltage is 0.105~0.130 (volts) corresponding to 130 (digital code). That is, after the analog-to-digital converter is solved, one digit code represents a plurality of analog input voltage values, so the digital code cannot derivate the actual analog input voltage value, so the presentation partial interval cannot be resolved. Therefore, digital mode correction cannot be used and can only be adjusted by analog correction. It can be seen from the above description of the second-order and third-order digital analog converters that the total number of capacitors can be effectively reduced by continuously increasing the order of the conversion circuit, but corresponding parasitics are generated around each of the corresponding series capacitors that are correspondingly increased. The capacitor in turn generates a DNL value when analog digital signal is converted. Therefore, how to solve the DNL value generated by the series capacitor is a problem to be solved.

參考第6圖,繪示一習知具有類比校正電路的類比數位轉換器的轉換電路示意圖。其中每個基礎電容Cc都需要額外增加一個可變電容Ccn用以補償寄生電容所產生的DNL。因此,除了原來的轉換電路之外,還需要很多可變電容Ccn,而這些可變電容Ccn會使得整個類比數位轉換器設計變複雜,面積變龐大。因而無法在小面積的前提下有效的提升類比數位轉換器的效能。 Referring to FIG. 6, a schematic diagram of a conventional conversion circuit of an analog digital converter having an analog correction circuit is shown. Each of the base capacitors Cc requires an additional variable capacitor Ccn to compensate for the DNL generated by the parasitic capacitance. Therefore, in addition to the original conversion circuit, a large number of variable capacitors Ccn are required, and these variable capacitors Ccn make the entire analog-to-digital converter design complicated and the area becomes large. Therefore, it is impossible to effectively improve the performance of the analog digital converter under a small area.

為解決上述習知技術的問題。本發明之一主要目的在於提供一種類比數位轉換控制器。該類比數位轉換控制器包括一類比數位轉換器以及一數位校正電路。 To solve the above problems of the prior art. One of the main objects of the present invention is to provide an analog digital conversion controller. The analog to digital conversion controller includes an analog to digital converter and a digital correction circuit.

該類比數位轉換器,包括一複數階轉換電路,該類比數位轉換器用於接收一類比訊號產生一數位訊號。該數位校正電路,接收該數位訊號,並產生一最終數位訊號;其中該數位訊號中對應該每一階轉換電路至少有一個微分非線性(DNL)值,且每一個該微分非線性值為負值。 The analog-to-digital converter includes a complex-order conversion circuit for receiving a type of analog signal to generate a digital signal. The digital correction circuit receives the digital signal and generates a final digital signal; wherein the digital signal corresponds to each of the conversion circuits having at least one differential nonlinearity (DNL) value, and each of the differential nonlinearities is negative value.

該數位校正電路進一步包括:一校正編碼表以及一加法器。 The digital correction circuit further includes: a correction code table and an adder.

該校正編碼表用於儲存一複數校正編碼。用於藉由該校正編碼表中擷取相對應的該些校正編碼校正該數位訊號相對應的區段。 The correction code table is used to store a complex correction code. And a segment for correcting the digital signal by extracting the corresponding correction codes in the correction code table.

該類比數位轉換器包括至少一個串聯電容串接於每兩階轉換電路之間。該些串聯電容用於調整每個該微分非線性值為負值。 The analog to digital converter includes at least one series capacitor connected in series between each two-stage conversion circuit. The series capacitors are used to adjust each of the differential nonlinear values to a negative value.

為解決上述問題,本發明知另一目的在於提供一種數位校正方法。輸入一第一類比訊號至一類比數位轉換器,產生一第一數位訊號,該類比數位轉換器包含複數階轉換電路,且每兩階轉換電路之間串接至少一串聯電容,該方法包含:首先,儲存一複數校正編碼於一數位校正電路之中。接著,輸入一第二類比訊號至該類比數位轉換器,產生一第二數位訊號,該第一類比訊號與該第二類比訊號的大小相同。接著,輸入該第二數位訊號至該數位校正電路。接著,藉由該數位校正電路組合該些校正編碼校正該第二數位訊號相對應的區段。最後,產生一最終數位訊號,其中該第一數位訊號與該第二數位訊號中對應該每一階轉換電路至少有一個負值的微分非線性(DNL)值。 In order to solve the above problems, another object of the present invention is to provide a digital correction method. Inputting a first analog signal to an analog-to-digital converter to generate a first digital signal, the analog digital converter includes a complex-order conversion circuit, and each two-stage conversion circuit is connected in series with at least one series capacitor, the method includes: First, a complex correction code is stored in a digital correction circuit. Then, a second analog signal is input to the analog digital converter to generate a second digital signal, and the first analog signal is the same size as the second analog signal. Then, the second digital signal is input to the digital correction circuit. Then, the digital correction circuit combines the correction codes to correct the segment corresponding to the second digital signal. Finally, a final digital signal is generated, wherein the first digital signal and the second digital signal have a differential nonlinearity (DNL) value corresponding to at least one negative value of each of the conversion circuits.

其中儲存該些校正編碼的步驟包括將該些校正編碼儲存於該數位校正電路的一校正編碼表中。組合該些校正編碼的步驟包括將該些校正編碼分別乘以相對應的係數再相加後用於校正該第二數位訊號。 The step of storing the correction codes includes storing the correction codes in a correction code table of the digital correction circuit. The step of combining the correction codes includes multiplying the correction codes by corresponding coefficients and adding them to correct the second digital signals.

在本發明的一實施例中,該方法進一步包括比較該第一數位訊號與一標準的線性訊號以得到該些校正編碼。 In an embodiment of the invention, the method further includes comparing the first digital signal with a standard linear signal to obtain the correction codes.

在本發明的另一實施例中,該方法進一步包括調整每兩階轉換電路之間的該至少一個串聯電容的電容值以使每一個該微分非線性值為負值。 In another embodiment of the invention, the method further includes adjusting a capacitance value of the at least one series capacitor between each two-stage conversion circuit such that each of the differential nonlinear values is a negative value.

相較於習知技術,本發明透過調整串聯電容的數值使每一個 DNL值皆為負,進而使後續的校正可以藉由數位校正方法進行而不會有習知類比校正方法所需要額外設置的電容的問題產生。 Compared to the prior art, the present invention makes each of the values by adjusting the values of the series capacitors. The DNL values are all negative, so that subsequent corrections can be made by the digital correction method without the problem of the additional capacitance required by the conventional analog correction method.

138、438‧‧‧串聯電容 138, 438‧‧‧ series capacitor

2381‧‧‧第一串聯電容 2381‧‧‧First series capacitor

2382‧‧‧第二串聯電容 2382‧‧‧Second series capacitor

245、445‧‧‧標準的線性訊號 245, 445‧‧‧ standard linear signals

248、448‧‧‧未經校正的類比數位轉換訊號 248, 448‧‧‧Uncorrected analog digital conversion signal

400‧‧‧類比數位轉換控制器 400‧‧‧ analog digital conversion controller

410‧‧‧類比訊號 410‧‧‧ analog signal

430‧‧‧類比數位轉換器 430‧‧‧ Analog Digital Converter

435‧‧‧轉換電路 435‧‧‧Transition circuit

440‧‧‧第一數位訊號 440‧‧‧first digit signal

470‧‧‧數位校正電路 470‧‧‧Digital Correction Circuit

475‧‧‧校正編碼表 475‧‧‧Correction code list

479‧‧‧加法器 479‧‧‧Adder

490‧‧‧最終數位訊號 490‧‧‧ final digital signal

601~603‧‧‧差值 601~603‧‧‧ difference

Code 1~3‧‧‧校正編碼 Code 1~3‧‧‧Correction code

(1)~(3)‧‧‧方程式 (1)~(3)‧‧‧ equation

第1圖繪示一習知的二進位類比數位轉換器的轉換電路示意圖。 FIG. 1 is a schematic diagram showing a conversion circuit of a conventional binary analog-to-digital converter.

第2圖繪示一習知的2階數位類比轉換器的轉換電路示意圖。 FIG. 2 is a schematic diagram showing a conversion circuit of a conventional second-order digital analog converter.

第3圖繪示一習知的3階類比數位轉換器的轉換電路示意圖。 FIG. 3 is a schematic diagram showing a conversion circuit of a conventional third-order analog-to-digital converter.

第4圖繪示第3圖的類比數位訊號的類比數位轉換曲線圖。 Figure 4 is a graph showing the analog-to-digital conversion curve of the analog digital signal of Figure 3.

第5圖繪示第4圖中的DNL值與數位碼的對應圖。 Figure 5 is a diagram showing the correspondence between the DNL value and the digit code in Figure 4.

第6圖繪示一習知具有類比校正電路的類比數位轉換器的轉換電路示意圖。 FIG. 6 is a schematic diagram showing a conversion circuit of an analog analog converter with an analog correction circuit.

第7圖繪示本發明的第一實施例的類比數位轉換控制器的結構示意圖。 FIG. 7 is a schematic structural diagram of an analog digital conversion controller according to a first embodiment of the present invention.

第8圖繪示本發明的第一實施例的數位類比轉換器的結構圖。 Fig. 8 is a view showing the configuration of a digital analog converter of the first embodiment of the present invention.

第9圖繪示本發明的第一實施例的數位校正電路示意圖。 Figure 9 is a diagram showing the digital correction circuit of the first embodiment of the present invention.

第10圖繪示本發明第一實施例的類比數位訊號的轉換曲線圖。 FIG. 10 is a graph showing a conversion curve of an analog digital signal according to the first embodiment of the present invention.

第11圖繪示第10圖中的DNL值與數位碼的對應圖。 Figure 11 is a diagram showing the correspondence between the DNL value and the digit code in Figure 10.

第12圖繪示本發明第一實施例的校正編碼表。 Fig. 12 is a view showing a correction code table of the first embodiment of the present invention.

第13圖繪示本發明的的數位校正方法。 Figure 13 is a diagram showing the digital correction method of the present invention.

以下各實施例的說明是參考圖式,用以說明本發明可用以實施的特定實施例。本發明所提到的方向用語,例如「上」、「下」、「前」、「後」、「左」、「右」、「內」、「外」、「側面」等,僅是參考圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。 The following description of various embodiments is presented to illustrate the specific embodiments The directional terms mentioned in the present invention, such as "upper", "lower", "before", "after", "left", "right", "inside", "outside", "side", etc., are merely references. The direction of the schema. Therefore, the directional terminology used is for the purpose of illustration and understanding of the invention.

參考第7圖以及第8圖。第7圖繪示本發明的第一實施例的類比數位轉換控制器400的結構示意圖。一類比數位轉換控制器400包括一類比數位轉換器430以及一數位校正電路470。第8圖繪示本發明的第一實施例的類比數位轉換控制器400中數位類比轉換器430的結構圖。 Refer to Figure 7 and Figure 8. FIG. 7 is a block diagram showing the structure of the analog-to-digital conversion controller 400 of the first embodiment of the present invention. An analog to digital conversion controller 400 includes an analog to digital converter 430 and a digital correction circuit 470. FIG. 8 is a block diagram showing the digital analog converter 430 in the analog-to-digital conversion controller 400 of the first embodiment of the present invention.

該類比數位轉換器430包括3階轉換電路435。一類比訊號410(包括第一類比訊號與第二類比訊號)傳送至該類比數位轉換器430之中,經過該3階轉換電路435後產生的一數位訊號440(包括第一數位訊號與第二數位訊號)中包含有2(3.1)-1個DNL值。每一階轉換電路435的中間皆設置一串聯電容438,該串聯電容438的大小設定原則是必須讓每一個DNL值為負值。 The analog to digital converter 430 includes a third order conversion circuit 435. A type of analog signal 410 (including the first analog signal and the second analog signal) is transmitted to the analog-to-digital converter 430, and a digital signal 440 (including the first digital signal and the second) generated after the third-order conversion circuit 435 is generated. The digital signal contains 2 (3.1) - 1 DNL values. A series capacitor 438 is disposed in the middle of each of the conversion circuits 435. The series capacitor 438 is sized to make each DNL value a negative value.

參考第9~12圖,第9圖繪示本發明的第一實施例的數位校正電路470示意圖。一數位校正電路470包括一校正編碼表475以及一加法器479。第10圖繪示本發明第一實施例的類比 數位訊號轉換曲線圖。第11圖繪示第10圖中的DNL值與數位碼的對應圖。第12圖繪示本發明第一實施例的校正編碼表475。該加法器479透過沒有經過校正的該第一數位訊號440與一標準的線性訊號445經過計算後產生的3組校正編碼:第一校正編碼Code1、第二校正編碼Code2以及第三校正編碼Code3。同時參考第12圖的校正編碼表與第10圖的類比數位轉換曲線。舉例來說,當訊號位於128~255(數位碼)時,該標準的線性訊號445與該沒有經過校正的該第一數位訊號440的第一差值601等於第一校正編碼Code1;當訊號位於256~383(數位碼)時,該標準的線性訊號445與該沒有經過校正的該第一數位訊號440的第二差值等於第一校正編碼Code1+第二校正編碼Code2;當訊號位於512~639(數位碼)時,該標準的線性訊號445與該沒有經過校正的該第一數位訊號440的第三差值603等於2*第一校正編碼Code1+第二校正編碼Code2+第三校正編碼Code3。請參考以下方程式:第一差值=第一校正編碼---(1) Referring to Figures 9 through 12, FIG. 9 is a schematic diagram of a digital bit correction circuit 470 of the first embodiment of the present invention. The digital bit correction circuit 470 includes a correction code table 475 and an adder 479. Figure 10 is a diagram showing the analogy of the first embodiment of the present invention. Digital signal conversion graph. Figure 11 is a diagram showing the correspondence between the DNL value and the digit code in Figure 10. Fig. 12 is a diagram showing a correction code table 475 of the first embodiment of the present invention. The adder 479 passes through the three sets of correction codes generated after the first digital signal 440 that has not been corrected and a standard linear signal 445 is calculated: a first correction code Code1, a second correction code Code2, and a third correction code Code3. Reference is also made to the correction code table of Fig. 12 and the analog digital conversion curve of Fig. 10. For example, when the signal is located at 128~255 (digit code), the first difference 601 between the standard linear signal 445 and the uncorrected first digital signal 440 is equal to the first correction code Code1; when the signal is located 256~383 (digit code), the second difference between the standard linear signal 445 and the uncorrected first digital signal 440 is equal to the first correction code Code1+the second correction code Code2; when the signal is located at 512~639 (Digital code), the standard linear signal 445 and the third difference 603 of the uncorrected first digital signal 440 are equal to 2* first correction code Code1 + second correction code Code2+ third correction code Code3. Please refer to the following equation: first difference = first correction code --- (1)

第二差值=第一校正編碼+第二校正編碼---(2) Second difference = first correction code + second correction code - (2)

第三差值=2*第一校正編碼+第二校正編碼+第三校正編碼---(3) Third difference = 2 * first correction code + second correction code + third correction code - (3)

在第一差值601、第二差值602與第三差值603是已知的前提,可以透過簡單的運算得到該些校正編碼。若是使用更多階數的類比數位轉換器,一樣可以透過校正編碼表與類比數位轉換曲線得到校正編碼。 The first difference 601, the second difference 602, and the third difference 603 are known, and the correction codes can be obtained by a simple operation. If an analog digital converter with more orders is used, the correction code can be obtained by correcting the coding table and the analog digital conversion curve.

接著輸入該第二類比訊號410產生該第二數位訊號440,接該數位校正電路組合該些校正編碼校正該第二數位訊號440相對應的區段後便可得到一最終數位訊號(未圖示)。 Then inputting the second analog signal 410 to generate the second digital signal 440, and the digital correction circuit combines the correction codes to correct the corresponding segment of the second digital signal 440 to obtain a final digital signal (not shown). ).

在本實施例中,串聯電容438設定為理想串聯電容的1.1倍時,則該數位類比轉換曲線會如第10圖所示,一樣有7個斷點,但是這些斷點是下偏移的負值。同時參考第11圖,在第10圖中每一個往下偏移的位置在第11圖當中都有對應的DNL值,有7個位置有負的DNL值。這些負值的DNL導致一未經校正的類比數位轉換訊號448在每個斷點都有重疊的部份,該重疊的部份導致當輸入類比電壓0.12~0.16(伏特)時,雖然也是對應到128(數位碼)。但是在輸入類比電壓達到0.16(伏特)之前,每一個輸入類比電壓都有對應到單一的數位碼。因此,當輸入類比電壓達到0.16(伏特)時,便可以透過簡易的邏輯判斷只有輸入類比電壓為0.16(伏特)時是對應到128(數位碼),而非輸入類比電壓0.12~0.16(伏特)都是對應到128(數位碼)。因此當所有DNL值皆為負值時,多個類比輸入電壓對應到同一個數位碼的情形是可以被解析成為每一個類比電壓可以對應單一的數位碼。參考第12圖,當中該第二數位訊號相對應的區段是依照數位碼區分。本發明的較佳實施例中,舉例來說,數位碼128~255的區段所需要的校正編碼是第一校正編碼Code1;數位碼384~511的區段所需要的校正編碼是2*第一校正編碼Code1+第二校正編碼Code2;數位碼768~895的區段所需要的校正編碼是3*第一校正 編碼Code1+2*第二校正編碼Code2+第三校正編碼Code3;參考第13圖繪示本發明的數位校正方法。首先在步驟S01中輸入一第一類比訊號410至一類比數位轉換器430,產生一第一數位訊號440。接著在步驟S02中比較該第一數位訊號440與一標準的線性訊號445得到至少一校正編碼。舉例來說,當該類比數位轉換器430是3階,就會產生3個校正編碼。換句話說,校正編碼的數量會與該類比數位轉換器430的階數相同。在步驟S03中儲存該至少一校正編碼於一數位校正電路470之中詳細來說,儲存該校正編碼於該數位校正電路470的一校正編碼表472中。假如已經曾經處理過與該第一類比訊號410相同的一訊號,也就是說該校正編碼表472已經有了相對應的校正編碼,而在步驟S01執行完畢後省略步驟S02而執行步驟S03。在步驟S04中輸入一第二類比訊號410至該類比數位轉換器430,產生一第二數位訊號440。該第一類比訊號410與該第二類比訊號410其實是大小相同的訊號,因此透過該第一類比訊號410所產生的校正編碼是可以使用在該第二類比訊號410的校正上。在尚未校正之前,該第一數位訊號440與該第二數位訊號440都至少有一個微分非線性(DNL)值。本發明的特點在於調整該類比數位轉換器430的每一階之間串聯的每一串聯電容的數值以便使每一個該微分非線性值為負值,以便所有的微分非線性值都可以透過數位的方式進行校正。接著在步驟S05中輸入該第二數位訊號440至該數位校正電路470。接著在步驟S06中組合校正編碼校正 該第二數位訊號。舉例來說,當該類比數位轉換器430是3階,產生了3個校正編碼。詳細來說,將該校正編碼透過該數位校正電路的一加法器與該第一訊號相加。進一步參考第12圖可以知道比如說在數位碼128~255的區段,所需的校正編碼是第一校正編碼Code1;在數位碼640~767的區段,所需的校正編碼是3*第一校正編碼Code1+第二校正編碼Code2+第三校正編碼Code3。最後在步驟S07中產生一最終數位訊號490。 In this embodiment, when the series capacitor 438 is set to 1.1 times the ideal series capacitance, the digital analog conversion curve will have 7 breakpoints as shown in FIG. 10, but these breakpoints are negative of the lower offset. value. Referring also to Fig. 11, each of the downward offset positions in Fig. 10 has a corresponding DNL value in Fig. 11, and seven positions have a negative DNL value. These negative DNLs result in an uncorrected analog digital conversion signal 448 having overlapping portions at each breakpoint, which results in an input analog voltage of 0.12 to 0.16 (volts), although corresponding to 128 (digit code). However, before the input analog voltage reaches 0.16 (volts), each input analog voltage corresponds to a single digital code. Therefore, when the input analog voltage reaches 0.16 (volts), it can be judged by simple logic that only the input analog voltage is 0.16 (volts) corresponds to 128 (digital code), and the input analog voltage is 0.12 to 0.16 (volts). Both correspond to 128 (digit code). Therefore, when all DNL values are negative, the case where multiple analog input voltages correspond to the same digital code can be resolved so that each analog voltage can correspond to a single digital code. Referring to FIG. 12, the section corresponding to the second digit signal is distinguished according to the digit code. In a preferred embodiment of the present invention, for example, the correction code required for the segment of the digital code 128 to 255 is the first correction code Code1; the correction code required for the segment of the digital code 384 to 511 is 2* A correction code Code1 + second correction code Code2; the correction code required for the segment of the digital code 768~895 is 3* first correction Encoding Code1+2* second correction code Code2+ third correction code Code3; referring to Fig. 13, the digital bit correction method of the present invention is illustrated. First, a first analog signal 410 to an analog-to-digital converter 430 is input in step S01 to generate a first digital signal 440. Then, in step S02, the first digital signal 440 is compared with a standard linear signal 445 to obtain at least one correction code. For example, when the analog to digital converter 430 is 3rd order, 3 correction codes are generated. In other words, the number of correction codes will be the same as the order of the analog to digital converter 430. The at least one correction code is stored in a digital bit correction circuit 470 in step S03. In detail, the correction code is stored in a correction code table 472 of the digital bit correction circuit 470. If the same signal as the first analog signal 410 has been processed, that is, the correction code table 472 already has a corresponding correction code, and after the step S01 is completed, the step S02 is omitted and the step S03 is executed. A second analog signal 410 is input to the analog-to-digital converter 430 in step S04 to generate a second digital signal 440. The first analog signal 410 and the second analog signal 410 are actually the same size signals. Therefore, the correction code generated by the first analog signal 410 can be used for the correction of the second analog signal 410. The first digital signal 440 and the second digital signal 440 both have at least one differential nonlinearity (DNL) value before being corrected. The present invention is characterized in that the value of each series capacitor connected in series between each order of the analog-to-digital converter 430 is adjusted so that each of the differential nonlinear values is negative so that all differential nonlinear values can pass through the digits. The way to correct. Then, the second digit signal 440 is input to the digit correction circuit 470 in step S05. Then combined correction correction correction in step S06 The second digit signal. For example, when the analog to digital converter 430 is 3rd order, 3 correction codes are generated. In detail, the correction code is added to the first signal by an adder of the digital correction circuit. Further referring to Fig. 12, it can be known that, for example, in the segment of the digital code 128~255, the required correction code is the first correction code Code1; in the segment of the digital code 640~767, the required correction code is 3* A correction code Code1 + second correction code Code2+ third correction code Code3. Finally, a final digital signal 490 is generated in step S07.

因此為了配合製程微縮有利於數位電路的設計,因此本發明選擇使用數位的方式來校正類比數位轉換器的線性度,因此,為了確保本發明所提出的校正方法可以正確操作,其要求每一串聯電容438的電容值需要比其理想值更大,使得數位類比轉換器的DNL值都為負值。至於其他串聯電容438的寄生電容雖然也會影響類比數位轉換器的線性度,但是在本設計的三階數位類比轉換器中,其製程產生的標移的最大最小值都會使DNL小於0.5LSB,因此不需要做校正,但如有需要,本發明也可以應用於其他串聯電容438的校正。此種校正方式,只需要額外x(x<N)組記憶體來記憶code1到codex和一組加法器,就可以校正逐漸趨近式類比數位轉換器的線性度。因此本發明的類比數位轉換控制器可以相較習知技術同時具備小面積以及高線性度兩種優點。 Therefore, in order to facilitate the design of the digital circuit in accordance with the process miniaturization, the present invention selects a digital manner to correct the linearity of the analog digital converter. Therefore, in order to ensure that the correction method proposed by the present invention can operate correctly, it requires each serial connection. The capacitance of capacitor 438 needs to be larger than its ideal value, so that the DNL value of the digital analog converter is negative. As for the parasitic capacitance of other series capacitors 438, although it also affects the linearity of the analog digital converter, in the third-order digital analog converter of this design, the maximum and minimum value of the standard shift generated by the process will make the DNL less than 0.5LSB. Therefore no correction is required, but the invention can also be applied to the correction of other series capacitors 438 if desired. This type of correction requires only an additional x (x < N) set of memory to memorize code1 to codex and a set of adders to correct the linearity of the progressive approximation analog converter. Therefore, the analog-to-digital conversion controller of the present invention can have both advantages of small area and high linearity compared with the prior art.

以上僅是本發明的較佳實施方式,應當指出,對於熟悉本技術領域的技術人員,在不脫離本發明原理的前提 下,還可以做出若干改進和潤飾,這些改進和潤飾也應視為本發明的保護範圍。 The above is only a preferred embodiment of the present invention, and it should be noted that those skilled in the art will be able to do without departing from the principles of the present invention. Several modifications and retouchings are also possible, which should also be considered as protection of the present invention.

400‧‧‧類比數位轉換控制器 400‧‧‧ analog digital conversion controller

410‧‧‧類比訊號 410‧‧‧ analog signal

430‧‧‧類比數位轉換器 430‧‧‧ Analog Digital Converter

435‧‧‧轉換電路 435‧‧‧Transition circuit

440‧‧‧第一數位訊號 440‧‧‧first digit signal

470‧‧‧數位校正電路 470‧‧‧Digital Correction Circuit

490‧‧‧最終數位訊號 490‧‧‧ final digital signal

Claims (8)

一種類比數位轉換控制器,包括:一類比數位轉換器,包括一複數階轉換電路,該類比數位轉換器用於接收一類比訊號產生一數位訊號;及一數位校正電路,接收該數位訊號,並產生一最終數位訊號;其中該數位訊號中對應該每一階轉換電路至少有一個微分非線性(DNL)值,且每一個該微分非線性值為負值,其中該些串聯電容用於調整每個該微分非線性值為負值。 An analog-to-digital conversion controller includes: an analog-to-digital converter comprising a complex-order conversion circuit for receiving a analog signal to generate a digital signal; and a digital correction circuit for receiving the digital signal, and Generating a final digital signal; wherein the digital signal corresponds to each of the conversion circuits having at least one differential nonlinearity (DNL) value, and each of the differential nonlinearities is a negative value, wherein the series capacitances are used to adjust each The differential nonlinear value is a negative value. 如申請專利範圍第1項的所述類比數位控制器,其中該數位校正電路包括:一校正編碼表,用於儲存一複數校正編碼;一加法器,用於藉由該校正編碼表中擷取相對應的該些校正編碼校正該數位訊號相對應的區段。 The analog digital controller of claim 1, wherein the digital correction circuit comprises: a correction coding table for storing a complex correction code; and an adder for capturing the correction code table The corresponding correction codes correct the segments corresponding to the digital signals. 如申請專利範圍第1項的所述類比數位控制器,其中該類比數位轉換器包括至少一個串聯電容串接於每兩階轉換電路之間。 The analog digital controller of claim 1, wherein the analog digital converter comprises at least one series capacitor connected in series between each two-stage conversion circuit. 一種數位校正方法,特別是應用在一種類比數位控制器中,包括:輸入一第一類比訊號至一類比數位轉換器,產生一第一數位訊號,該類比數位轉換器包含複數階轉換電路,且每兩階轉換電路之間串接至少一串聯電容,該方法包含:儲存一複數校正編碼於一數位校正電路之中;輸入一第二類比訊號至該類比數位轉換器,產生一第二數位訊號,該第一類比訊號與該第二類比訊號的大小相同; 輸入該第二數位訊號至該數位校正電路;藉由該數位校正電路組合該些校正編碼校正該第二數位訊號相對應的區段;以及產生一最終數位訊號,其中該第一數位訊號與該第二數位訊號中對應該每一階轉換電路至少有一個負值的微分非線性(DNL)值。 A digital bit correction method, particularly for use in a type of digital controller, comprising: inputting a first analog signal to an analog to digital converter to generate a first digital signal, the analog digital converter comprising a complex digital conversion circuit, And connecting at least one series capacitor between each two-stage conversion circuit, the method comprising: storing a complex correction code in a digital correction circuit; inputting a second analog signal to the analog digital converter to generate a second digital position Signal, the first analog signal is the same size as the second analog signal; Inputting the second digit signal to the digit correction circuit; combining the correction codes to correct the segment corresponding to the second digit signal by the digit correction circuit; and generating a final digit signal, wherein the first digit signal and the The second digital signal has a differential nonlinearity (DNL) value corresponding to at least one negative value for each of the conversion circuits. 如申請專利範圍第4項的所述校正方法,該方法進一步包括比較該第一數位訊號與一標準的線性訊號以得到該些校正編碼。 The method of claim 4, wherein the method further comprises comparing the first digital signal with a standard linear signal to obtain the correction codes. 如申請專利範圍第4項的所述校正方法,其中儲存該些校正編碼的步驟包括將該些校正編碼儲存於該數位校正電路的一校正編碼表中。 The method of claim 4, wherein the storing the correction codes comprises storing the correction codes in a correction code table of the digital correction circuit. 如申請專利範圍第4項的所述校正方法,其中組合該些校正編碼的步驟包括將該些校正編碼分別乘以相對應的係數再相加後用於校正該第二數位訊號。 The method of claim 4, wherein the step of combining the correction codes comprises multiplying the correction codes by respective coefficients and adding them to correct the second digital signal. 如申請專利範圍第4項的所述校正方法,該方法進一步包括調整每兩階轉換電路之間的該至少一個串聯電容的電容值以使每一個該微分非線性值為負值。 The method of claim 4, wherein the method further comprises adjusting a capacitance value of the at least one series capacitor between each two-stage conversion circuit such that each of the differential nonlinear values is a negative value.
TW103112733A 2014-04-07 2014-04-07 Analog-digital converter controller and digital calibration method for the same TWI544749B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103112733A TWI544749B (en) 2014-04-07 2014-04-07 Analog-digital converter controller and digital calibration method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103112733A TWI544749B (en) 2014-04-07 2014-04-07 Analog-digital converter controller and digital calibration method for the same

Publications (2)

Publication Number Publication Date
TW201539988A TW201539988A (en) 2015-10-16
TWI544749B true TWI544749B (en) 2016-08-01

Family

ID=54851519

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103112733A TWI544749B (en) 2014-04-07 2014-04-07 Analog-digital converter controller and digital calibration method for the same

Country Status (1)

Country Link
TW (1) TWI544749B (en)

Also Published As

Publication number Publication date
TW201539988A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
US8223044B2 (en) INL correction circuitry and method for SAR ADC
US9041580B2 (en) Solid-state imaging apparatus and semiconductor device
US7142138B2 (en) Multi-step analog/digital converter and on-line calibration method thereof
US9071265B1 (en) Successive approximation analog-to-digital converter with linearity error correction
JP5589780B2 (en) A / D conversion circuit, electronic device, and A / D conversion method
US20120154194A1 (en) Successive approximation analog-to-digital converter having auxiliary prediction circuit and method thereof
US8653998B2 (en) D/A conversion circuit, A/D conversion circuit and electronic apparatus
US20150180498A1 (en) Successive approximation register analog-to-digital converter and associated control method
JP5884648B2 (en) AD converter and electronic device
US10171097B1 (en) Correcting device of successive approximation analog-to-digital conversion
US20130120625A1 (en) Solid-state imaging device
JP4811339B2 (en) A / D converter
TWI556585B (en) Analog-to-Digital Converting Device and Related Calibration Method and Calibration Module
US20180069563A1 (en) Analog to digital conversion circuit
JP4428349B2 (en) Digital / analog conversion circuit
JP5904240B2 (en) A / D conversion circuit, electronic device, and A / D conversion method
US11025266B2 (en) Digital-to-analog converter, conversion circuit and display device
US9380235B2 (en) AD conversion circuit
US9859912B2 (en) Charge-redistribution successive approximation ADC and control method thereof
TWI544749B (en) Analog-digital converter controller and digital calibration method for the same
TWI597711B (en) Source driver and operating method thereof
TWI568192B (en) Analog-to-Digital Converting Device, Related Calibration Method and Calibration Module
US8279097B2 (en) Background calibration of analog-to-digital converters
JP2013074401A (en) Pipeline type a/d converter
KR101186916B1 (en) Switched-capacitor cyclic digital to analog converter with capacitor mismatch compensation