TWI543750B - Microwave imaging method and microwave imaging system and bone-assessment method using the same - Google Patents

Microwave imaging method and microwave imaging system and bone-assessment method using the same Download PDF

Info

Publication number
TWI543750B
TWI543750B TW103106223A TW103106223A TWI543750B TW I543750 B TWI543750 B TW I543750B TW 103106223 A TW103106223 A TW 103106223A TW 103106223 A TW103106223 A TW 103106223A TW I543750 B TWI543750 B TW I543750B
Authority
TW
Taiwan
Prior art keywords
tested
dielectric coefficient
microwave
characteristic
trend
Prior art date
Application number
TW103106223A
Other languages
Chinese (zh)
Other versions
TW201532594A (en
Inventor
尤崇智
蔡銘芳
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW103106223A priority Critical patent/TWI543750B/en
Publication of TW201532594A publication Critical patent/TW201532594A/en
Application granted granted Critical
Publication of TWI543750B publication Critical patent/TWI543750B/en

Links

Description

微波成像方法及應用其之成像系統與骨質評估方法 Microwave imaging method and imaging system and bone evaluation method thereof

本發明是有關於一種成像方法及其應用,且特別是有關於一種微波成像方法及應用其之成像系統與骨質評估方法。 The present invention relates to an imaging method and application thereof, and in particular to a microwave imaging method and an imaging system and bone evaluation method using the same.

近年來,在現有的骨質評估技術中,為了能夠準確地評估出體內骨組織的狀況(諸如骨密度、骨結構、強度和易骨折位置),已經有許多不同能量形式的掃描/成像方式(如超音波、X-ray、MRI)被廣泛的嘗試使用。 In recent years, in the existing bone evaluation techniques, in order to be able to accurately assess the condition of bone tissue in the body (such as bone density, bone structure, strength and easy fracture location), there have been many different forms of energy scanning/imaging methods (eg Ultrasonic, X-ray, MRI) are widely used.

但多數情況下,所述成像方式沒有完整的針對骨質特性的數據做出一致性的分析。此外,就目前的技術而言,大多數技術採用的信號處理技術係以簡化方式來取得可用的數據,實驗數據的信號對聲噪比(SNR)相對較差。其中最主要的因素為骨密度資訊不足,如軟組織和肌肉組織之影響以及高成本的成像手段。 In most cases, however, the imaging modality does not provide a consistent analysis of the complete data for bone characteristics. In addition, as far as current technology is concerned, most of the techniques used in signal processing techniques are used to obtain available data in a simplified manner, and the signal-to-noise ratio (SNR) of the experimental data is relatively poor. The most important factor is the lack of information on bone density, such as the effects of soft tissue and muscle tissue, and high-cost imaging.

本發明提供一種微波成像方法及應用其之成像系統與骨質評估方法,其可採用非游離輻射式的微波掃描方式來獲得高準確度的骨質組成特性與三維斷層影像。 The invention provides a microwave imaging method and an imaging system and a bone evaluation method thereof, which can adopt a non-free radiation type microwave scanning method to obtain high-accuracy bone composition characteristics and three-dimensional tomographic images.

本發明的微波成像方法包括以下步驟:發射具有不同頻率的多個微波訊號;接收基於所述多個微波訊號所產生之多個散射場資料;依據各個散射場資料計算待測物體在對應的頻率下的介電係數分佈,其中對應於不同頻率的介電係數分佈分別具有不同的解析深度;依據各個介電係數分佈產生對應的斷層影像資料;以及基於多個所述斷層影像資料建立待測物體的三維斷層影像。 The microwave imaging method of the present invention comprises the steps of: transmitting a plurality of microwave signals having different frequencies; receiving a plurality of scattered field data generated based on the plurality of microwave signals; calculating the object to be measured at a corresponding frequency according to each of the scattered field data Dielectric coefficient distribution, wherein the dielectric coefficient distributions corresponding to different frequencies have different resolution depths; corresponding tomographic image data are generated according to respective dielectric coefficient distributions; and the object to be measured is established based on the plurality of tomographic images Three-dimensional tomographic image.

在本發明一實施例中,所發射的所述多個微波訊號的頻率範圍介於1GHz~10GHz之間。 In an embodiment of the invention, the plurality of microwave signals transmitted have a frequency range between 1 GHz and 10 GHz.

在本發明一實施例中,各個散射場資料包括於不同接收位置所接收的多個散射訊號。依據各個散射場資料計算待測物體在對應的頻率下的介電係數分佈的步驟包括:當在第一頻率下接收到所述多個散射訊號時,分別對所述多個散射訊號進行傅立葉轉換(Fourier transform),藉以產生待測物體相對於對應的接收位置上的導納函數;依據導納函數計算待測物體於對應的接收位置的介電係數;以及依據所述多個接收位置上的介電係數建立待測物體於第一頻率下的介電係數分佈。 In an embodiment of the invention, each of the scattered field data includes a plurality of scattered signals received at different receiving locations. The step of calculating the dielectric coefficient distribution of the object to be tested at the corresponding frequency according to each of the scattered field data includes: performing Fourier transform on the plurality of scattered signals respectively when the plurality of scattered signals are received at the first frequency (Fourier transform), thereby generating an admittance function of the object to be tested with respect to the corresponding receiving position; calculating a dielectric coefficient of the object to be tested at the corresponding receiving position according to the admittance function; and according to the plurality of receiving positions The dielectric constant establishes a distribution of dielectric coefficients of the object to be measured at the first frequency.

在本發明一實施例中,所述的微波成像方法更包括以下步驟:選取三維斷層影像的目標區域(region of interest,ROI); 調整所發射的所述多個微波訊號的訊號特性;取得目標區域於不同訊號特性下所對應的介電係數分佈;以及依據目標區域內的介電係數分佈建立待測物體的介電係數特性趨勢。 In an embodiment of the invention, the microwave imaging method further comprises the steps of: selecting a region of interest (ROI) of the three-dimensional tomographic image; Adjusting signal characteristics of the plurality of microwave signals transmitted; obtaining a distribution of dielectric coefficients corresponding to different signal characteristics of the target region; and establishing a trend of dielectric coefficient characteristics of the object to be tested according to a distribution of dielectric coefficients in the target region .

在本發明一實施例中,所述的微波成像方法更包括以下步驟:取得異常介電係數特性趨勢;以及依據待測物體的介電係數特性趨勢與異常介電係數特性趨勢,判斷待測物體的組成是否正常。 In an embodiment of the invention, the microwave imaging method further comprises the steps of: obtaining a trend of abnormal dielectric constant characteristics; and determining an object to be measured according to a trend of a dielectric coefficient characteristic of the object to be measured and a trend of an abnormal dielectric coefficient characteristic; Is the composition normal?

在本發明一實施例中,依據待測物體的介電係數特性趨勢與異常介電係數特性趨勢,判斷待測物體的組成是否正常的步驟包括:計算介電係數特性趨勢與異常介電係數特性趨勢的相關程度;判斷相關程度是否大於等於臨界標準;當相關程度大於等於臨界標準時,判定待測物體的組成為異常;以及當相關程度小於臨界標準時,判定待測物體的組成為正常。 In an embodiment of the invention, the step of determining whether the composition of the object to be tested is normal according to the trend of the dielectric coefficient characteristic of the object to be measured and the trend of the abnormal dielectric coefficient characteristic comprises: calculating a characteristic of the dielectric coefficient characteristic and an abnormal dielectric constant characteristic The degree of correlation of the trend; whether the degree of correlation is greater than or equal to the critical criterion; when the degree of correlation is greater than or equal to the critical criterion, the composition of the object to be tested is determined to be abnormal; and when the degree of correlation is less than the critical criterion, the composition of the object to be tested is determined to be normal.

在本發明一實施例中,所述訊號特性包括所述多個微波訊號的波長、振幅以及功率至少其中之一。 In an embodiment of the invention, the signal characteristic includes at least one of a wavelength, an amplitude, and a power of the plurality of microwave signals.

在本發明一實施例中,微波訊號的頻率與解析深度呈負相關。 In an embodiment of the invention, the frequency of the microwave signal is inversely related to the resolution depth.

本發明的微波成像系統包括訊號收發模組、控制單元以及顯示單元。訊號收發模組用以發射具有不同頻率的多個微波訊號,並且接收基於所述多個微波訊號所產生之多個散射場資料。控制單元用以控制訊號收發模組的運作,並且根據所述多個散射場資料產生待測物體的三維斷層影像。顯示單元用以顯示三維斷 層影像。控制單元依據各個散射場資料計算待測物體在對應的頻率下的介電係數分佈,再依據不同頻率的介電係數分佈分別產生具有對應的解析深度的斷層影像資料,從而基於多個所述斷層影像資料建立待測物體的三維斷層影像。 The microwave imaging system of the present invention comprises a signal transceiving module, a control unit and a display unit. The signal transceiver module is configured to transmit a plurality of microwave signals having different frequencies, and receive a plurality of scattered field data generated based on the plurality of microwave signals. The control unit is configured to control the operation of the signal transceiving module, and generate a three-dimensional tomographic image of the object to be tested according to the plurality of scattered field data. Display unit for displaying three-dimensional breaks Layer image. The control unit calculates the dielectric coefficient distribution of the object to be tested at the corresponding frequency according to each scattered field data, and then generates tomographic image data having a corresponding resolution depth according to the dielectric coefficient distribution of different frequencies, thereby based on the plurality of said faults The image data establishes a three-dimensional tomographic image of the object to be measured.

在本發明一實施例中,訊號收發模組所發射的微波訊號的頻率範圍介於1GHz~10GHz之間。 In an embodiment of the invention, the frequency of the microwave signal transmitted by the signal transceiver module ranges from 1 GHz to 10 GHz.

在本發明一實施例中,訊號收發模組包括訊號處理單元、發射天線以及接收天線。訊號處理單元用以產生具有不同頻率的所述多個微波訊號。發射天線從訊號處理單元接收並且依序發射所述多個微波訊號。接收天線相對於發射天線配置,用以接收基於所述多個微波訊號所產生之所述多個散射場資料,並且將所述多個散射場資料回傳給控制單元。 In an embodiment of the invention, the signal transceiver module includes a signal processing unit, a transmitting antenna, and a receiving antenna. The signal processing unit is configured to generate the plurality of microwave signals having different frequencies. The transmit antenna receives from the signal processing unit and sequentially transmits the plurality of microwave signals. The receiving antenna is configured relative to the transmitting antenna to receive the plurality of scattered field data generated based on the plurality of microwave signals, and transmit the plurality of scattered field data back to the control unit.

在本發明一實施例中,微波成像系統更包括定位平台。定位平台,接收天線活動地設置於定位平台上,並且接收天線受控於控制單元而於定位平台上沿掃描路徑移動,藉以接收於掃描路徑上之不同接收位置的多個散射訊號。控制單元以接收天線於第一頻率下所接收到的所述多個散射訊號作為對應第一頻率的散射場資料。 In an embodiment of the invention, the microwave imaging system further includes a positioning platform. The positioning platform is configured to be movably disposed on the positioning platform, and the receiving antenna is controlled by the control unit to move along the scanning path on the positioning platform, thereby receiving a plurality of scattered signals at different receiving positions on the scanning path. The control unit uses the plurality of scattered signals received by the receiving antenna at the first frequency as the scattered field data corresponding to the first frequency.

在本發明一實施例中,當控制單元在第一頻率下接收到所述多個散射訊號時,控制單元分別對所述多個散射訊號進行傅立葉轉換,藉以產生待測物體相對於對應的接收位置上的導納函數,依據導納函數計算待測物體於對應的接收位置的介電係數, 並且依據所述多個接收位置上的介電係數建立待測物體於第一頻率下的介電係數分佈。 In an embodiment of the invention, when the control unit receives the plurality of scattered signals at the first frequency, the control unit respectively performs Fourier transform on the plurality of scattered signals, thereby generating an object to be tested relative to the corresponding receiving The admittance function at the position calculates the dielectric coefficient of the object to be tested at the corresponding receiving position according to the admittance function. And establishing a dielectric coefficient distribution of the object to be tested at the first frequency according to the dielectric coefficients at the plurality of receiving locations.

在本發明一實施例中,訊號收發模組調整所發射的所述多個微波訊號的訊號特性,藉以令控制單元取得目標區域於不同訊號特性下所對應的介電係數分佈,從而建立待測物體的介電係數特性趨勢。 In an embodiment of the invention, the signal transceiver module adjusts the signal characteristics of the plurality of microwave signals transmitted, so that the control unit obtains the distribution of the dielectric coefficients corresponding to the target regions under different signal characteristics, thereby establishing a test to be tested. The trend of the dielectric coefficient characteristics of an object.

在本發明一實施例中,控制單元依據待測物體的介電係數特性趨勢與異常介電係數特性趨勢,判斷待測物體的組成是否正常。 In an embodiment of the invention, the control unit determines whether the composition of the object to be tested is normal according to the trend of the dielectric coefficient characteristic of the object to be measured and the trend of the abnormal dielectric coefficient characteristic.

在本發明一實施例中,控制單元計算介電係數特性趨勢與異常介電係數特性趨勢的相關程度,再判斷相關程度是否大於等於臨界標準;當相關程度大於等於臨界標準時,判定待測物體的組成為異常;以及當相關程度小於臨界標準時,判定待測物體的組成為正常。 In an embodiment of the invention, the control unit calculates the correlation degree between the trend of the dielectric coefficient characteristic and the trend of the abnormal dielectric coefficient characteristic, and then determines whether the correlation degree is greater than or equal to the critical criterion; when the correlation degree is greater than or equal to the critical criterion, determining the object to be tested The composition is abnormal; and when the degree of correlation is less than the critical criterion, it is determined that the composition of the object to be tested is normal.

在本發明一實施例中,訊號特性包括所述多個微波訊號的波長、振幅以及功率至少其中之一。 In an embodiment of the invention, the signal characteristic includes at least one of a wavelength, an amplitude, and a power of the plurality of microwave signals.

本發明的骨質評估方法包括以下步驟:對待測物體發射微波訊號;依據基於微波訊號所產生的散射場資料,計算待測物體的介電係數分佈,並據以建立待測物體的三維斷層影像;調整所發射的所述多個微波訊號的訊號特性;取得三維斷層影像於不同訊號特性下所對應的介電係數分佈;依據所取得的所述多個介電係數分佈建立待測物體的介電係數特性趨勢;以及依據待測物 體的介電係數特性趨勢與異常介電係數特性趨勢,判斷待測物體的骨質組成是否正常。 The bone quality evaluation method of the present invention comprises the following steps: transmitting a microwave signal to the object to be measured; calculating a dielectric coefficient distribution of the object to be tested according to the scattered field data generated by the microwave signal, and establishing a three-dimensional tomographic image of the object to be tested according to the method; Adjusting a signal characteristic of the plurality of microwave signals to be transmitted; obtaining a dielectric coefficient distribution corresponding to the three-dimensional tomographic image under different signal characteristics; establishing a dielectric of the object to be tested according to the obtained plurality of dielectric coefficient distributions Coefficient characteristic trend; and based on the object to be tested The tendency of the dielectric coefficient characteristic and the characteristic of the abnormal dielectric coefficient, and determine whether the bone composition of the object to be tested is normal.

在本發明一實施例中,所述的骨質評估方法更包括以下步驟:選取三維斷層影像的骨組織(osseous tissue)區域;取得骨組織區域於不同訊號特性下所對應的介電係數分佈;以及依據骨組織區域內的介電係數分佈建立待測物體的介電係數特性趨勢。 In an embodiment of the present invention, the bone evaluation method further comprises the steps of: selecting an osseous tissue region of the three-dimensional tomographic image; and obtaining a dielectric coefficient distribution corresponding to the different signal characteristics of the bone tissue region; The dielectric coefficient characteristic trend of the object to be tested is established according to the distribution of the dielectric coefficient in the bone tissue region.

基於上述,本發明實施例提出一種微波成像方法及應用其之成像系統與骨質評估方法。所述微波成像方法可藉由計算不同微波頻率下之散射場資料的介電常數分佈的方式,建構出待測物體的三維斷層影像及組成特性資訊。藉此,本發明實施例的微波成像方法可藉由不傷害人體的非游離輻射的檢測方式分析出待測物體的組成特性與三維斷層影像。此外,本發明實施例的骨質評估方法可藉由調整微波訊號之訊號特性的方式來建立出被測骨質的介電係數特性趨勢,從而可更準確地判斷出被測骨質是否為正常。 Based on the above, the embodiment of the present invention provides a microwave imaging method and an imaging system and a bone evaluation method thereof. The microwave imaging method can construct a three-dimensional tomographic image and composition characteristic information of the object to be tested by calculating the dielectric constant distribution of the scattered field data at different microwave frequencies. Thereby, the microwave imaging method of the embodiment of the invention can analyze the composition characteristics of the object to be tested and the three-dimensional tomographic image by detecting the non-free radiation of the human body. In addition, the bone evaluation method of the embodiment of the present invention can establish the trend of the dielectric coefficient characteristic of the bone to be tested by adjusting the signal characteristics of the microwave signal, thereby more accurately determining whether the bone quality to be tested is normal.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、600‧‧‧微波成像系統 100, 600‧‧‧ microwave imaging system

110、610‧‧‧訊號收發模組 110, 610‧‧‧ Signal Transceiver Module

112、614‧‧‧發射天線 112, 614‧‧‧ transmit antenna

114、616‧‧‧接收天線 114, 616‧‧‧ receiving antenna

120、620‧‧‧控制單元 120, 620‧‧‧ control unit

130、630‧‧‧顯示單元 130, 630‧‧‧ display unit

612‧‧‧訊號處理單元 612‧‧‧Signal Processing Unit

640‧‧‧定位平台 640‧‧‧Targeting platform

CP1、CP2‧‧‧介電係數特性趨勢 Trend of dielectric coefficient characteristics of CP1, CP2‧‧

DUT‧‧‧待測物體 DUT‧‧‧ objects to be tested

D1‧‧‧介電係數 D1‧‧‧Dielectric coefficient

f1~fn‧‧‧頻率 F1~fn‧‧‧frequency

TG1~TGn、TGa1~TGam‧‧‧斷層影像 TG1~TGn, TGa1~TGam‧‧‧ tomographic images

3DTG、3DTG1’~3DTGm’‧‧‧三維斷層影像 3DTG, 3DTG1'~3DTGm'‧‧‧3D tomography

ROI‧‧‧目標區域 ROI‧‧ target area

S210~S250、S410~S460‧‧‧步驟 S210~S250, S410~S460‧‧‧ steps

x、y‧‧‧接收位置 x, y‧‧‧ receiving location

圖1為本發明一實施例的微波成像系統的功能方塊示意圖。 1 is a functional block diagram of a microwave imaging system according to an embodiment of the present invention.

圖2為本發明一實施例的微波成像方法的步驟流程圖。 2 is a flow chart showing the steps of a microwave imaging method according to an embodiment of the present invention.

圖3為應用圖2實施例之步驟流程建立待測物體之三維斷層影像的示意圖。 FIG. 3 is a schematic diagram of establishing a three-dimensional tomographic image of an object to be tested by using the step flow of the embodiment of FIG. 2. FIG.

圖4為本發明一實施例的骨質評估方法的步驟流程圖。 4 is a flow chart showing the steps of a bone evaluation method according to an embodiment of the present invention.

圖5A與圖5B為應用圖4實施例之步驟流程進行骨質評估的示意圖。 5A and 5B are schematic diagrams of bone evaluation using the step flow of the embodiment of FIG. 4.

圖6為本發明一實施例的微波成像系統的系統架構示意圖。 FIG. 6 is a schematic structural diagram of a system of a microwave imaging system according to an embodiment of the present invention.

為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。 In order to make the disclosure of the present disclosure easier to understand, the following specific embodiments are examples of the disclosure that can be implemented. In addition, wherever possible, the same elements, components, and steps in the drawings and embodiments are used to represent the same or similar components.

圖1為本發明一實施例的微波成像系統的功能方塊示意圖。請參照圖1,本實施例的微波成像系統100可用以藉微波掃描的方式取得待測物體DUT的斷層影像資料,並且根據所取得的斷層影像資料建立出待測物體DUT的三維斷層影像,藉以利用圖像的方式呈現出待測物體DUT的組成。所述微波成像系統100可用於人體的骨質檢測/評估、工業材料(例如螺絲、橡膠、墊片等)的材質結構特性檢測、農產品成分檢測(例如肉品脂肪含量檢測、水果內部非破壞檢測)或者其他非侵入式的生理檢測應用中。 1 is a functional block diagram of a microwave imaging system according to an embodiment of the present invention. Referring to FIG. 1 , the microwave imaging system 100 of the present embodiment can acquire the tomographic image data of the DUT of the object to be tested by means of microwave scanning, and establish a three-dimensional tomographic image of the DUT of the object to be tested according to the obtained tomographic image data, thereby The composition of the DUT of the object to be tested is presented by means of an image. The microwave imaging system 100 can be used for bone quality detection/evaluation of human body, material structure property detection of industrial materials (such as screws, rubber, gaskets, etc.), and detection of agricultural product components (for example, meat fat content detection, fruit internal non-destructive detection) Or other non-invasive physiological testing applications.

微波成像系統100包括訊號收發模組110、控制單元120以及顯示單元130。在本實施例中,訊號收發模組110可用以透過 發射天線112來朝向待測物體DUT發射微波訊號,其中所發射之微波訊號會根據待測物體DUT的尺寸及組成而發生穿透/散射,從而產生關聯於待測物體DUT之組成特性的多個散射訊號。訊號收發模組110接著會藉由接收天線114接收所述多個散射訊號,藉以作為對應之微波頻率下的散射場資料,再將所散射場資料傳送給後端的控制單元120進行處理。於此,所述之發射天線112與接收天線114可例如為單極天線、線形天線、矩陣天線或其他類型之天線,本發明不以此為限。 The microwave imaging system 100 includes a signal transceiving module 110, a control unit 120, and a display unit 130. In this embodiment, the signal transceiver module 110 can be used to transmit The transmitting antenna 112 transmits a microwave signal toward the object to be tested DUT, wherein the transmitted microwave signal is penetrated/scattered according to the size and composition of the DUT of the object to be tested, thereby generating a plurality of characteristic characteristics associated with the DUT of the object to be tested. Scattering signal. The signal transceiver module 110 then receives the plurality of scattered signals by the receiving antenna 114 as the scattered field data at the corresponding microwave frequency, and then transmits the scattered field data to the control unit 120 at the back end for processing. The transmit antenna 112 and the receive antenna 114 may be, for example, a monopole antenna, a linear antenna, a matrix antenna, or other types of antennas, and the invention is not limited thereto.

控制單元120可用以控制訊號收發模組110的運作,並且根據所述散射場資料來進行運算,藉以獲取關聯於待測物體DUT的介電係數。其後,控制單元120會根據所計算出的介電係數來進行影像還原分析,藉以產生待測物體DUT的三維斷層影像。其中,所述控制單元120可例如為中央處理器(CPU)、微控制器(MCU)等具有邏輯運算能力之硬體電路,本發明不以此為限。 The control unit 120 can be used to control the operation of the signal transceiving module 110 and perform operations according to the scattered field data to obtain a dielectric coefficient associated with the DUT of the object to be tested. Thereafter, the control unit 120 performs image restoration analysis according to the calculated dielectric coefficient, thereby generating a three-dimensional tomographic image of the DUT of the object to be tested. The control unit 120 can be a hardware circuit with a logic operation capability, such as a central processing unit (CPU), a microcontroller (MCU), and the like, and the invention is not limited thereto.

顯示單元130耦接控制單元120,用以顯示控制單元120所建立出的三維斷層影像。其中,所述顯示單元130可例如為平面顯示器(如LCD顯示器、LED顯示器)或投影顯示器等,本發明不以此為限。此外,在一範例實施例中,顯示單元130還可具有觸控感測的功能。使用者可藉由點選顯示單元130所顯示之三維斷層影像中的特定目標區域(region of interest,ROI),從而令控制單元120反應於使用者的觸控操作而將目標區域的影像/資料 呈現於顯示單元130上,但本發明同樣不以此為限。 The display unit 130 is coupled to the control unit 120 for displaying the three-dimensional tomographic image established by the control unit 120. The display unit 130 can be, for example, a flat panel display (such as an LCD display, an LED display) or a projection display, and the like, and the invention is not limited thereto. In addition, in an exemplary embodiment, the display unit 130 may also have a function of touch sensing. The user can click on a specific region of interest (ROI) in the three-dimensional tomographic image displayed by the display unit 130, so that the control unit 120 can reflect the image/data of the target region in response to the touch operation of the user. It is presented on the display unit 130, but the invention is also not limited thereto.

底下進一步以圖2說明以上述微波成像系統100進行成像的步驟流程。其中,圖2為本發明一實施例的微波成像方法的步驟流程圖。 The flow of the steps of imaging with the microwave imaging system 100 described above will be further described below with reference to FIG. 2 is a flow chart of steps of a microwave imaging method according to an embodiment of the present invention.

請同時參照圖1與圖2,首先,訊號收發模組110會朝向待測物體DUT發射具有不同頻率的多個微波訊號(步驟S210),其中每一頻率下的微波訊號會基於待測物體DUT的形狀與組成而產生一組對應的散射場資料。而訊號收發模組110會接收基於微波訊號所產生之多個散射場資料(步驟S220),並且將散射場資料回傳給控制單元120。 Referring to FIG. 1 and FIG. 2 simultaneously, first, the signal transceiver module 110 transmits a plurality of microwave signals having different frequencies toward the object DUT to be tested (step S210), wherein the microwave signal at each frequency is based on the DUT of the object to be tested. The shape and composition produce a corresponding set of scattering field data. The signal transceiver module 110 receives the plurality of scattered field data generated based on the microwave signal (step S220), and transmits the scattered field data back to the control unit 120.

接著,控制單元120在接收到散射場資料後,其會依據各組散射場資料計算出待測物體DUT在對應的頻率下的介電係數分佈(步驟S230),再依據各介電係數分佈產生對應的斷層影像資料(步驟S240)。基此,控制單元120即可根據所產生的斷層影像資料建立出三維斷層影像(步驟S250)。 Then, after receiving the scattered field data, the control unit 120 calculates the dielectric coefficient distribution of the DUT of the object to be tested at the corresponding frequency according to each set of scattered field data (step S230), and then generates according to the distribution of the respective dielectric coefficients. Corresponding tomographic image data (step S240). Based on this, the control unit 120 can create a three-dimensional tomographic image based on the generated tomographic image data (step S250).

詳細而言,不同頻率的微波訊號具有不同的穿透能力,而穿透能力的差異會使得控制單元120基於散射場資料所解析出的介電係數分佈有不同的解析深度。藉由所述解析深度的差異,控制單元120即可在不同的微波訊號頻率下產生不同深度的斷層影像資料。更具體地說,在本實施例中,訊號收發模組110所發射的微波訊號的頻率範圍大致介於1GHz~10GHz之間。於此頻率範圍內,介電係數分佈的解析深度與微波訊號的頻率大致上呈負 相關,亦即頻率越高,微波訊號之穿透能力越低,使得控制單元120基於介電係數分佈所能分析出的待測物體DUT深度越淺。 In detail, the microwave signals of different frequencies have different penetration capabilities, and the difference in penetration capability causes the control unit 120 to have different resolution depths based on the distribution of the dielectric coefficients resolved by the scattered field data. By the difference in the resolution depth, the control unit 120 can generate tomographic images of different depths at different microwave signal frequencies. More specifically, in the embodiment, the frequency range of the microwave signal transmitted by the signal transceiver module 110 is substantially between 1 GHz and 10 GHz. In this frequency range, the resolution depth of the dielectric coefficient distribution is substantially negative with the frequency of the microwave signal. Correlation, that is, the higher the frequency, the lower the penetration capability of the microwave signal, so that the depth of the DUT of the object to be tested that the control unit 120 can analyze based on the dielectric coefficient distribution is shallower.

舉例來說,當訊號收發模組110發射10GHz的微波訊號時,控制單元120可依據散射場資料計算出指示距待測物體DUT表面約1公分深度的介電係數分佈。反之,當訊號收發模組110所發射的微波訊號的頻率越來越低時,則微波訊號的穿透能力會隨之增強,使得對應頻率下的介電係數分佈所能指示之解析深度逐漸增加。因此,控制單元120即可據此獲得不同深度的斷層影像資料。 For example, when the signal transceiver module 110 transmits a microwave signal of 10 GHz, the control unit 120 may calculate a dielectric coefficient distribution indicating a depth of about 1 cm from the surface of the DUT of the object to be tested according to the scattered field data. On the other hand, when the frequency of the microwave signal transmitted by the signal transceiver module 110 is getting lower and lower, the penetration capability of the microwave signal is enhanced, so that the resolution depth of the dielectric coefficient distribution at the corresponding frequency is gradually increased. . Therefore, the control unit 120 can obtain tomographic image data of different depths accordingly.

換言之,在本實施例中,訊號收發模組110可透過掃頻(frequency scanning)的方式來發射不同頻率的微波訊號,藉以令控制單元120可獲得具有不同解析深度的介電係數分佈。基此,控制單元120即可根據代表待測物體DUT在不同深度下的組成特性的介電係數分佈而計算得出待測物體DUT在不同深度下的斷層影像資料,從而建立出待測物體DUT的三維斷層影像。 In other words, in the present embodiment, the signal transceiver module 110 can transmit microwave signals of different frequencies by means of frequency scanning, so that the control unit 120 can obtain a dielectric coefficient distribution having different resolution depths. Therefore, the control unit 120 can calculate the tomographic image data of the DUT of the object to be tested at different depths according to the distribution of the dielectric coefficients representing the composition characteristics of the object DUT at different depths, thereby establishing the DUT of the object to be tested. Three-dimensional tomographic image.

由於本發明實施例的微波成像系統及方法並非採用游離輻射式的偵測方式,因此相較於傳統的游離輻射式之成像方法(例如X光掃描、電腦斷層掃描(CT))而言,所述微波成像系統及方法可除去輻射對於人體的危害。此外,相較於其他如超音波等非游離輻射式成像方法而言,所述微波成像系統由於係藉偵測不同微波頻率下的介電係數分佈而產生對應的斷層影像資料,因此對於待測物體DUT的組成特性具有較高的分辨率及解析度。 Since the microwave imaging system and method of the embodiment of the present invention does not use the free-radiation detection method, compared with the conventional free-radiation imaging method (for example, X-ray scanning, computed tomography (CT)), The microwave imaging system and method can remove the harm of radiation to the human body. In addition, compared with other non-free radiation imaging methods such as ultrasonic waves, the microwave imaging system generates corresponding tomographic image data by detecting the distribution of dielectric coefficients at different microwave frequencies, and thus The composition characteristics of the object DUT have higher resolution and resolution.

為了更清楚地說明上述的微波成像方法,圖3為應用圖2實施例之步驟流程建立待測物體之三維斷層影像的示意圖。 In order to more clearly illustrate the above-described microwave imaging method, FIG. 3 is a schematic diagram of establishing a three-dimensional tomographic image of an object to be tested by using the step flow of the embodiment of FIG. 2.

請參照圖3,首先,訊號收發模組110中的發射天線112會朝向待測物體DUT發出頻率為f1的微波訊號Smic,接收天線114會於不同接收位置接收到多個穿透待測物體DUT後所產生的散射訊號Ssca,而所述多個不同接收位置所接收到的散射訊號Ssca即可組成一組對應頻率f1的散射場資料。 Referring to FIG. 3, first, the transmitting antenna 112 in the signal transmitting and receiving module 110 sends a microwave signal Smic with a frequency f1 toward the object DUT, and the receiving antenna 114 receives multiple DUTs penetrating the object to be tested at different receiving positions. The resulting scattered signal Ssca, and the scattered signals Ssca received by the plurality of different receiving locations can form a set of scattered field data corresponding to the frequency f1.

控制單元120在頻率f1下接收到一組散射場資料時,控制單元120會分別對每一接收位置所對應的散射訊號Ssca進行傅立葉轉換,藉以產生待測物體DUT相對於對應的接收位置上的導納函數。接著,控制單元120會依據導納函數來計算待測物體DUT於對應的接收位置的介電係數。例如:在接收位置(x,y)上可計算出待測物體DUT的介電係數為D1。 When the control unit 120 receives a set of scattered field data at the frequency f1, the control unit 120 performs Fourier transform on the scattered signal Ssca corresponding to each receiving position, thereby generating the DUT of the object to be tested relative to the corresponding receiving position. Admittance function. Next, the control unit 120 calculates the dielectric coefficient of the object to be tested DUT at the corresponding receiving position according to the admittance function. For example, the dielectric coefficient of the DUT of the object to be tested can be calculated as D1 at the receiving position (x, y).

藉由上述計算介電係數之方式,控制單元120可逐一地在接收天線114上的每一接收位置計算出對應的介電係數,從而建立出待測物體DUT於頻率f1下之介電係數分佈。因此,控制單元120即可根據所建立出的介電係數分佈而產生對應於頻率f1下的斷層影像資料(於此係以對應的斷層影像TG1表示)。 By calculating the dielectric coefficient, the control unit 120 can calculate the corresponding dielectric coefficient at each receiving position on the receiving antenna 114 one by one, thereby establishing the dielectric coefficient distribution of the DUT of the object to be tested at the frequency f1. . Therefore, the control unit 120 can generate tomographic image data corresponding to the frequency f1 according to the established dielectric coefficient distribution (this is represented by the corresponding tomographic image TG1).

在控制單元120建立完頻率f1下的斷層影像資料後,訊號收發模組110會接續地將微波訊號Smic的頻率依序調整為f2~fn(n為正整數),並且控制單元120會重複地基於上述的動作而建立出對應於頻率f2~fn下的斷層影像資料及其斷層影像 TG2~TFn。據此,控制單元120即可根據對應於斷層影像TG1~TGn的斷層影像資料而建立出待測物體DUT的三維斷層影像3DTG。 After the control unit 120 establishes the tomographic image data at the frequency f1, the signal transceiver module 110 successively adjusts the frequency of the microwave signal Smic to f2~fn (n is a positive integer), and the control unit 120 repeats Based on the above actions, tomographic image data corresponding to the frequency f2~fn and its tomographic image are established. TG2~TFn. Accordingly, the control unit 120 can establish the three-dimensional tomographic image 3DTG of the object DUT to be measured according to the tomographic image data corresponding to the tomographic images TG1 to TGn.

所述微波成像系統及方法可進一步地應用於骨質評估方法中,其具體步驟流程如圖4所示。圖4為本發明一實施例的骨質評估方法的步驟流程圖。 The microwave imaging system and method can be further applied to a bone evaluation method, and the specific step flow thereof is shown in FIG. 4 . 4 is a flow chart showing the steps of a bone evaluation method according to an embodiment of the present invention.

請同時參照圖1與圖4,在本實施例中,首先訊號收發模組110會對待測物體DUT(於此例如為人體)發射微波訊號(步驟S410),接著控制單元120會依據基於微波訊號所產生的散射場資料,計算待測物體DUT的介電係數分佈,並據以建立待測物體DUT的三維斷層影像(步驟S420)。其中,上述步驟S410與S420之建立待測物體DUT的三維斷層影像的具體動作可參照上述圖1至圖3的說明。 Referring to FIG. 1 and FIG. 4 simultaneously, in this embodiment, first, the signal transceiver module 110 transmits a microwave signal to the object DUT (here, for example, a human body) (step S410), and then the control unit 120 is based on the microwave signal. The generated scattered field data is used to calculate a dielectric coefficient distribution of the DUT of the object to be measured, and a three-dimensional tomographic image of the DUT of the object to be tested is established (step S420). For the specific operations of the above-mentioned steps S410 and S420 for establishing the three-dimensional tomographic image of the object DUT to be tested, reference may be made to the description of FIG. 1 to FIG. 3 above.

其後,訊號收發模組110會受控於控制單元120而調整所發射的微波訊號的訊號特性(步驟S430),使得控制單元120取得三維斷層影像於不同訊號特性下所對應的介電係數分佈(步驟S440)。於此所述之訊號特性可例如為微波訊號的波長、振幅及/或功率等。 Thereafter, the signal transceiver module 110 is controlled by the control unit 120 to adjust the signal characteristics of the transmitted microwave signals (step S430), so that the control unit 120 obtains the dielectric coefficient distribution corresponding to the three-dimensional tomographic image under different signal characteristics. (Step S440). The signal characteristics described herein may be, for example, the wavelength, amplitude, and/or power of the microwave signal.

在取得三維斷層影像於不同訊號特性下所對應的介電係數分佈後,控制單元120會進一步地依據所取得之不同訊號特性下的介電係數分佈建立待測物體DUT的介電係數特性趨勢(步驟S450),並且依據待測物體DUT的介電係數特性趨勢與一異常介電係數特性趨勢來判斷待測物體的骨質組成是否正常(步驟 S460)。 After obtaining the corresponding dielectric coefficient distribution of the three-dimensional tomographic image under different signal characteristics, the control unit 120 further establishes the dielectric coefficient characteristic trend of the DUT of the object to be tested according to the obtained dielectric coefficient distribution under different signal characteristics ( Step S450), and determining whether the bone composition of the object to be tested is normal according to the trend of the dielectric coefficient characteristic of the DUT of the object to be tested and the trend of an abnormal dielectric coefficient characteristic (step S460).

在本實施例中,所述異常介電係數特性趨勢可藉由臨床實驗的方式取得骨質疏鬆病患在相同處理條件下所得的一連串介電係數分佈特性而建立出,但本發明不僅限於此。 In the present embodiment, the tendency of the abnormal dielectric constant characteristic can be established by a clinical experiment to obtain a series of dielectric coefficient distribution characteristics obtained by osteoporosis patients under the same processing conditions, but the present invention is not limited thereto.

為了更清楚地說明上述的微波成像方法,圖5A與圖5B為應用圖4實施例之步驟流程進行骨質評估的示意圖。 In order to more clearly illustrate the microwave imaging method described above, FIGS. 5A and 5B are schematic diagrams of bone evaluation using the step flow of the embodiment of FIG. 4.

請先參照圖5A,在本實施例中,控制單元120會藉由改變訊號收發模組110所發射之微波訊號的訊號特性來取得所選取的目標區域在不同狀態下的三維斷層影像3DTG1’~3DTGm’(m為正整數)。 Referring to FIG. 5A, in the embodiment, the control unit 120 obtains the three-dimensional tomographic image 3DTG1' of the selected target region in different states by changing the signal characteristics of the microwave signal transmitted by the signal transceiver module 110. 3DTGm' (m is a positive integer).

其中,使用者可在建立出待測物體DUT的三維斷層影像3DTG後,選取感興趣之區域作為目標區域ROI。更具體地說,在骨質評估方法中,由於所建立出的三維骨質影像不僅指示了骨組織(osseous tissue)的組成特性,其尚包含有其他各種組織成分。因此使用者可藉由選取骨組織區域作為目標區域ROI,使得控制單元120能夠針對目標區域ROI內的介電係數分佈進行分析,以獲得較為有效的骨質資料。於此,以所選取的目標區域ROI的介電係數分佈係對應至斷層影像TGa為例。 The user can select the region of interest as the target region ROI after establishing the three-dimensional tomographic image 3DTG of the DUT of the object to be tested. More specifically, in the bone evaluation method, since the established three-dimensional bone image not only indicates the compositional characteristics of the osseous tissue, it also contains various other tissue components. Therefore, the user can select the bone tissue region as the target region ROI, so that the control unit 120 can analyze the dielectric coefficient distribution in the target region ROI to obtain more effective bone material. Here, the dielectric coefficient distribution of the selected target region ROI corresponds to the tomographic image TGa as an example.

在使用者選取特定的目標區域ROI後,控制單元120會進一步取得不同訊號特性下的三維斷層影像3DTG1’~3DTGm’的目標區域ROI中的介電係數分佈(對應斷層影像TGa1~TGam)。接著,在取得目標區域於不同訊號特性下所對應的介電係數分佈 後,控制單元120即可根據介電係數分佈建立出待測物體的介電係數特性趨勢。 After the user selects a specific target area ROI, the control unit 120 further obtains the dielectric coefficient distribution (corresponding to the tomographic images TGa1 to TGam) in the target area ROI of the three-dimensional tomographic images 3DTG1'~3DTGm' under different signal characteristics. Then, the distribution of the dielectric coefficients corresponding to the different signal characteristics of the target region is obtained. After that, the control unit 120 can establish a trend of the dielectric coefficient characteristics of the object to be tested according to the distribution of the dielectric coefficient.

更具體地說,由於結構正常之骨質會具有較緊密的骨組織結構,亦即骨組織間的孔隙率/孔洞量會較少;反之,對於骨質疏鬆症患者而言,其骨組織間的孔隙率/孔洞量則會較高。因此,相對於異常骨質而言,正常骨質應會具有較高的介電係數。基於此特性下,控制單元120即可依據待測物體DUT的介電係數特性趨勢與異常介電係數特性趨勢,而判斷出待測物體DUT的骨質組成是否正常。 More specifically, since the structurally normal bone has a tighter bone structure, that is, the porosity/hole volume between the bone tissues is less; on the contrary, for osteoporosis patients, the pores between the bone tissues The rate/hole volume will be higher. Therefore, normal bone should have a higher dielectric constant than abnormal bone. Based on this characteristic, the control unit 120 can determine whether the bone composition of the DUT of the object to be tested is normal according to the trend of the dielectric coefficient characteristic and the characteristic of the abnormal dielectric coefficient of the DUT of the object to be tested.

舉例來說,控制單元120可藉由機器學習方法(例如統計方法或類神經網路演算法等)計算介電係數特性趨勢與異常介電係數特性趨勢的相關程度,並且判斷所計算出的相關程度是否大於等於特定的臨界標準(可由設計者自行設定)。若控制單元120判斷所計算出的相關程度大於等於臨界標準時,則判定待測物體DUT的組成為異常;反之,若控制單元120判斷所計算出的相關程度小於臨界標準時,則判定待測物體DUT的組成為正常。 For example, the control unit 120 may calculate the degree of correlation between the trend of the dielectric coefficient characteristic and the trend of the abnormal dielectric coefficient characteristic by a machine learning method (for example, a statistical method or a neural network-like algorithm, etc.), and determine the calculated correlation degree. Whether it is greater than or equal to a specific critical criterion (can be set by the designer). If the control unit 120 determines that the calculated correlation degree is greater than or equal to the critical criterion, it determines that the composition of the object to be tested DUT is abnormal; otherwise, if the control unit 120 determines that the calculated correlation degree is less than the critical criterion, then determines the DUT of the object to be tested. The composition is normal.

如圖5B所示,以正常骨質的介電係數特性趨勢CP1與異常骨質的介電係數特性趨勢CP2為例。從正常骨質斷層影像與異常骨質斷層影像(骨質疏鬆症)可發現,正常骨質的骨組織密度較高(亦即骨組職的孔隙率/孔洞量較少),故正常骨質在不同頻率之下的介電係數特性趨勢CP1會平均地高於異常股值得介電係數特性趨勢CP2。是以,控制單元藉由比較圖5B所示之介電係數特 性趨勢CP1與CP2之差異性,即可準確地判斷出待測物體DUT的骨質是否為正常。 As shown in FIG. 5B, the trend of the dielectric coefficient characteristic CP1 of normal bone and the dielectric characteristic characteristic CP2 of abnormal bone are taken as an example. From normal bone tomography and abnormal bone tomography (osteoporosis), it can be found that the bone density of normal bone is higher (that is, the porosity/hole volume of the bone group is less), so the normal bone is below different frequencies. The dielectric coefficient characteristic trend CP1 will be higher than the abnormal stock value dielectric characteristic characteristic trend CP2. Therefore, the control unit compares the dielectric constant shown in FIG. 5B. The difference between the sexual trend CP1 and CP2 can accurately determine whether the bone of the DUT of the object to be tested is normal.

圖6為本發明一實施例的微波成像系統的系統架構示意圖。請參照圖6,本實施例的微波成像系統600包括訊號收發模組610、控制單元620、顯示單元630以及定位平台640。其中,訊號收發模組610又包括訊號處理單元612、發射天線614以及接收天線616。 FIG. 6 is a schematic structural diagram of a system of a microwave imaging system according to an embodiment of the present invention. Referring to FIG. 6 , the microwave imaging system 600 of the present embodiment includes a signal transceiving module 610 , a control unit 620 , a display unit 630 , and a positioning platform 640 . The signal transceiver module 610 further includes a signal processing unit 612, a transmitting antenna 614, and a receiving antenna 616.

訊號處理單元612可用以產生具有不同頻率的微波訊號Smic。發射天線614於此係繪示為矩陣天線為例(但不僅限於此),其從訊號處理單元612接收並依序發射不同頻率的微波訊號Smic。接收天線616於此係繪示為單極天線為例(但不僅限於此),其係相對於發射天線614活動地設置在定位平台640上。接收天線616可用以接收基於微波訊號Smic所產生之散射場資料(由多個散射訊號Ssca組成),並且將散射場資料回傳給控制單元620。 The signal processing unit 612 can be used to generate microwave signals Smic having different frequencies. The transmitting antenna 614 is illustrated as a matrix antenna (but not limited thereto), and receives the microwave signal Smic of different frequencies from the signal processing unit 612. The receiving antenna 616 is illustrated here as a monopole antenna, but is not limited thereto, and is movably disposed on the positioning platform 640 with respect to the transmitting antenna 614. The receiving antenna 616 can be configured to receive the scattered field data (composed of the plurality of scattered signals Ssca) generated based on the microwave signal Smic, and transmit the scattered field data back to the control unit 620.

在本實施例中,控制單元620會控制接收天線616於定位平台640上沿一特定的掃描路徑(如箭頭方向)移動,藉以依序接收掃描路徑上之不同接收位置的多個散射訊號Ssca。其中,控制單元620會以特定頻率下一次掃描路徑循環上所獲得的散射訊號Ssca作為一組散射場資料。 In this embodiment, the control unit 620 controls the receiving antenna 616 to move along a specific scanning path (such as an arrow direction) on the positioning platform 640, thereby sequentially receiving a plurality of scattered signals Ssca at different receiving positions on the scanning path. The control unit 620 uses the scattered signal Ssca obtained on the next scan path cycle at a specific frequency as a set of scattered field data.

於此值得一提的是,所述掃描路徑的設定係根據接收天線616的類型而可有所更動。舉例來說,若接收天線616為線形天線,則接收天線616僅需以直線的掃描路徑來接收散射訊號Ssca 即可接收到完整的散射場資料。又或者,若接收天線616為矩陣天線,則接收天線616可固定在定位平台640上而不需沿掃描路徑移動即可接收到完整的散射場資料。 It is worth mentioning here that the setting of the scan path can be changed according to the type of the receiving antenna 616. For example, if the receiving antenna 616 is a linear antenna, the receiving antenna 616 only needs to receive the scattered signal Ssca in a straight scanning path. The complete scattering field data can be received. Alternatively, if the receiving antenna 616 is a matrix antenna, the receiving antenna 616 can be fixed to the positioning platform 640 without receiving movement along the scanning path to receive the complete scattered field data.

本發明主要為使用非游離輻射方式來針對骨質健康情形進行診斷,利用微波影像所得到的骨質含量與立體影像,來進行骨質健康情形的判斷方法。 The invention mainly uses a non-free radiation method to diagnose the bone health condition, and uses the bone content and the stereoscopic image obtained by the microwave image to determine the bone health condition.

綜上所述,本發明實施例提出一種微波成像方法及應用其之成像系統與骨質評估方法。所述微波成像方法可藉由計算不同微波頻率下之散射場資料的介電常數分佈的方式,建構出待測物體的三維斷層影像及組成特性資訊。藉此,本發明實施例的微波成像方法可藉由不傷害人體的非游離輻射的檢測方式分析出待測物體的組成特性與三維斷層影像。此外,本發明實施例的骨質評估方法可藉由調整微波訊號之訊號特性的方式來建立出被測骨質的介電係數特性趨勢,從而可更準確地判斷出被測骨質是否為正常。 In summary, the embodiments of the present invention provide a microwave imaging method and an imaging system and a bone evaluation method thereof. The microwave imaging method can construct a three-dimensional tomographic image and composition characteristic information of the object to be tested by calculating the dielectric constant distribution of the scattered field data at different microwave frequencies. Thereby, the microwave imaging method of the embodiment of the invention can analyze the composition characteristics of the object to be tested and the three-dimensional tomographic image by detecting the non-free radiation of the human body. In addition, the bone evaluation method of the embodiment of the present invention can establish the trend of the dielectric coefficient characteristic of the bone to be tested by adjusting the signal characteristics of the microwave signal, thereby more accurately determining whether the bone quality to be tested is normal.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

S210~S250‧‧‧步驟 S210~S250‧‧‧Steps

Claims (20)

一種微波成像方法,包括:發射具有不同頻率的多個微波訊號;接收基於該些微波訊號所產生之多個散射場資料;依據各該散射場資料計算一待測物體在對應的頻率下的介電係數分佈,其中對應於不同頻率的介電係數分佈分別具有不同的解析深度;依據各該介電係數分佈產生一對應的斷層影像資料;以及基於該些斷層影像資料建立該待測物體的一三維斷層影像。 A microwave imaging method includes: transmitting a plurality of microwave signals having different frequencies; receiving a plurality of scattered field data generated based on the microwave signals; and calculating, based on the scattered field data, an object to be measured at a corresponding frequency An electric coefficient distribution, wherein the dielectric coefficient distributions corresponding to different frequencies respectively have different resolution depths; generating a corresponding tomographic image data according to each of the dielectric coefficient distributions; and establishing one of the objects to be tested based on the tomographic image data Three-dimensional tomographic image. 如申請專利範圍第1項所述的微波成像方法,其中所發射的該些微波訊號的頻率範圍介於1GHz~10GHz之間。 The microwave imaging method according to claim 1, wherein the frequency of the microwave signals emitted ranges from 1 GHz to 10 GHz. 如申請專利範圍第1項所述的微波成像方法,其中各該散射場資料包括於不同接收位置所接收的多個散射訊號,依據各該散射場資料計算該待測物體在對應的頻率下的介電係數分佈的步驟包括:當在一第一頻率下接收到該些散射訊號時,分別對該些散射訊號進行一傅立葉轉換(Fourier transform),藉以產生該待測物體相對於對應的接收位置上的一導納函數;依據該導納函數計算該待測物體於對應的接收位置的介電係數;以及依據該些接收位置上的介電係數建立該待測物體於該第一頻率下的介電係數分佈。 The microwave imaging method of claim 1, wherein each of the scattered field data comprises a plurality of scattered signals received at different receiving positions, and the object to be tested is calculated according to each of the scattered field data at a corresponding frequency. The step of the dielectric coefficient distribution includes: performing a Fourier transform on the scattered signals when receiving the scattered signals at a first frequency, thereby generating the object to be tested relative to the corresponding receiving position An admittance function; calculating a dielectric coefficient of the object to be tested at a corresponding receiving position according to the admittance function; and establishing the object to be tested at the first frequency according to the dielectric coefficient at the receiving positions Dielectric coefficient distribution. 如申請專利範圍第1項所述的微波成像方法,更包括:選取該三維斷層影像的一目標區域(region of interest,ROI);調整所發射的該些微波訊號的一訊號特性;取得該目標區域於不同訊號特性下所對應的介電係數分佈;以及依據該目標區域內的介電係數分佈建立該待測物體的一介電係數特性趨勢。 The microwave imaging method of claim 1, further comprising: selecting a region of interest (ROI) of the three-dimensional tomographic image; adjusting a signal characteristic of the transmitted microwave signals; and obtaining the target The distribution of the dielectric coefficient corresponding to the different signal characteristics of the region; and establishing a dielectric characteristic characteristic of the object to be tested according to the distribution of the dielectric coefficients in the target region. 如申請專利範圍第4項所述的微波成像方法,更包括:取得一異常介電係數特性趨勢;以及依據該待測物體的介電係數特性趨勢與該異常介電係數特性趨勢,判斷該待測物體的組成是否正常。 The microwave imaging method according to claim 4, further comprising: obtaining an abnormal dielectric constant characteristic trend; and determining the waiting according to the trend of the dielectric coefficient characteristic of the object to be tested and the characteristic of the abnormal dielectric coefficient characteristic Check if the composition of the object is normal. 如申請專利範圍第5項所述的微波成像方法,其中依據該待測物體的介電係數特性趨勢與該異常介電係數特性趨勢,判斷該待測物體的組成是否正常的步驟包括:計算該介電係數特性趨勢與該異常介電係數特性趨勢的一相關程度;判斷該相關程度是否大於等於一臨界標準;當該相關程度大於等於該臨界標準時,判定該待測物體的組成為異常;以及當該相關程度小於該臨界標準時,判定該待測物體的組成為正常。 The microwave imaging method according to claim 5, wherein the step of determining whether the composition of the object to be tested is normal according to the trend of the dielectric coefficient characteristic of the object to be tested and the trend of the abnormal dielectric coefficient characteristic comprises: calculating the a degree of correlation between a trend of the dielectric coefficient characteristic and a trend of the characteristic property of the abnormal dielectric coefficient; determining whether the correlation degree is greater than or equal to a critical criterion; and determining that the composition of the object to be tested is abnormal when the correlation degree is greater than or equal to the critical criterion; When the degree of correlation is less than the critical criterion, it is determined that the composition of the object to be tested is normal. 如申請專利範圍第4項所述的微波成像方法,其中該訊號 特性包括該些微波訊號的波長、振幅以及功率至少其中之一。 The microwave imaging method according to claim 4, wherein the signal is The characteristics include at least one of wavelength, amplitude, and power of the microwave signals. 如申請專利範圍第1項所述的微波成像方法,其中該微波訊號的頻率與該解析深度呈負相關。 The microwave imaging method according to claim 1, wherein the frequency of the microwave signal is negatively correlated with the depth of analysis. 一種微波成像系統,包括:一訊號收發模組,用以發射具有不同頻率的多個微波訊號,並且接收基於該些微波訊號所產生之多個散射場資料;一控制單元,用以控制該訊號收發模組的運作,並且根據該些散射場資料產生一待測物體的一三維斷層影像;以及一顯示單元,耦接該控制單元,用以顯示該三維斷層影像,其中,該控制單元依據各該散射場資料計算該待測物體在對應的頻率下的介電係數分佈,再依據不同頻率的介電係數分佈分別產生具有一對應的解析深度的斷層影像資料,從而基於該些斷層影像資料建立該待測物體的三維斷層影像。 A microwave imaging system includes: a signal transceiver module for transmitting a plurality of microwave signals having different frequencies, and receiving a plurality of scattered field data generated based on the microwave signals; and a control unit for controlling the signal The operation of the transceiver module, and generating a three-dimensional tomographic image of the object to be tested according to the scattered field data; and a display unit coupled to the control unit for displaying the three-dimensional tomographic image, wherein the control unit is configured according to each The scattering field data calculates a dielectric coefficient distribution of the object to be tested at a corresponding frequency, and then generates tomographic image data having a corresponding resolution depth according to the dielectric coefficient distribution of different frequencies, thereby establishing based on the tomographic image data. A three-dimensional tomographic image of the object to be tested. 如申請專利範圍第9項所述的微波成像系統,其中該訊號收發模組所發射的微波訊號的頻率範圍介於1GHz~10GHz之間。 The microwave imaging system of claim 9, wherein the frequency of the microwave signal emitted by the signal transceiver module ranges from 1 GHz to 10 GHz. 如申請專利範圍第9項所述的微波成像系統,其中該訊號收發模組包括:一訊號處理單元,用以產生具有不同頻率的該些微波訊號;一發射天線,耦接該訊號處理單元,從該訊號處理單元接收並且依序發射該些微波訊號;以及一接收天線,相對於該發射天線配置,用以接收基於該些微 波訊號所產生之該些散射場資料,並且將該些散射場資料回傳給該控制單元。 The microwave imaging system of claim 9, wherein the signal transceiver module comprises: a signal processing unit for generating the microwave signals having different frequencies; and a transmitting antenna coupled to the signal processing unit, Receiving and sequentially transmitting the microwave signals from the signal processing unit; and receiving antennas, relative to the transmit antenna configuration, for receiving the micro signals based on the The scattered field data generated by the wave signal, and the scattered field data is returned to the control unit. 如申請專利範圍第11項所述的微波成像系統,更包括:一定位平台,該接收天線活動地設置於該定位平台上,並且該接收天線受控於該控制單元而於該定位平台上沿一掃描路徑移動,藉以接收於該掃描路徑上之不同接收位置的多個散射訊號,其中,該控制單元以該接收天線於一第一頻率下所接收到的該些散射訊號作為對應該第一頻率的散射場資料。 The microwave imaging system of claim 11, further comprising: a positioning platform, the receiving antenna is movably disposed on the positioning platform, and the receiving antenna is controlled by the control unit on the positioning platform a scanning path is moved to receive a plurality of scattered signals at different receiving positions on the scanning path, wherein the control unit receives the scattered signals received by the receiving antenna at a first frequency as corresponding to the first Frequency scattering field data. 如申請專利範圍第12項所述的微波成像系統,其中當該控制單元在該第一頻率下接收到該些散射訊號時,該控制單元分別對該些散射訊號進行一傅立葉轉換,藉以產生該待測物體相對於對應的接收位置上的一導納函數,依據該導納函數計算該待測物體於對應的接收位置的介電係數,並且依據該些接收位置上的介電係數建立該待測物體於該第一頻率下的介電係數分佈。 The microwave imaging system of claim 12, wherein when the control unit receives the scattered signals at the first frequency, the control unit performs a Fourier transform on the scattered signals, thereby generating the Calculating, according to the admittance function, a dielectric coefficient of the object to be tested at a corresponding receiving position according to an admittance function on the corresponding receiving position, and establishing the waiting according to the dielectric coefficient at the receiving positions Measuring the dielectric coefficient distribution of the object at the first frequency. 如申請專利範圍第9項所述的微波成像系統,其中該訊號收發模組調整所發射的該些微波訊號的一訊號特性,藉以令控制單元取得一目標區域於不同訊號特性下所對應的介電係數分佈,從而建立該待測物體的一介電係數特性趨勢。 The microwave imaging system of claim 9, wherein the signal transceiver module adjusts a signal characteristic of the emitted microwave signals, so that the control unit obtains a corresponding region of the target region under different signal characteristics. The electric coefficient is distributed to establish a trend of a dielectric coefficient characteristic of the object to be tested. 如申請專利範圍第14項所述的微波成像系統,其中該控制單元依據該待測物體的介電係數特性趨勢與一異常介電係數特性趨勢,判斷該待測物體的組成是否正常。 The microwave imaging system of claim 14, wherein the control unit determines whether the composition of the object to be tested is normal according to a trend of a dielectric coefficient characteristic of the object to be tested and a trend of an abnormal dielectric coefficient characteristic. 如申請專利範圍第15項所述的微波成像系統,其中該控 制單元計算該介電係數特性趨勢與該異常介電係數特性趨勢的一相關程度,再判斷該相關程度是否大於等於一臨界標準;當該相關程度大於等於該臨界標準時,判定該待測物體的組成為異常;以及當該相關程度小於該臨界標準時,判定該待測物體的組成為正常。 The microwave imaging system of claim 15, wherein the control The unit calculates a correlation degree between the trend of the dielectric coefficient characteristic and the trend of the abnormal dielectric coefficient characteristic, and determines whether the correlation degree is greater than or equal to a critical criterion; when the correlation degree is greater than or equal to the critical criterion, determining the object to be tested The composition is abnormal; and when the degree of correlation is less than the critical criterion, it is determined that the composition of the object to be tested is normal. 如申請專利範圍第14項所述的微波成像系統,其中該訊號特性包括該些微波訊號的波長、振幅以及功率至少其中之一。 The microwave imaging system of claim 14, wherein the signal characteristic comprises at least one of a wavelength, an amplitude, and a power of the microwave signals. 一種骨質評估方法,包括:對一待測物體發射一微波訊號;依據基於該微波訊號所產生的一散射場資料,計算該待測物體的一介電係數分佈,並據以建立該待測物體的一三維斷層影像;調整所發射的該些微波訊號的一訊號特性;取得該三維斷層影像於不同訊號特性下所對應的介電係數分佈;依據所取得的該些介電係數分佈建立該待測物體的一介電係數特性趨勢;以及依據該待測物體的介電係數特性趨勢與一異常介電係數特性趨勢,判斷該待測物體的骨質組成是否正常。 A bone evaluation method includes: transmitting a microwave signal to an object to be tested; calculating a dielectric coefficient distribution of the object to be tested according to a scattering field data generated by the microwave signal, and establishing the object to be tested according to the method a three-dimensional tomographic image; adjusting a signal characteristic of the emitted microwave signals; obtaining a distribution of dielectric coefficients corresponding to the three-dimensional tomographic image under different signal characteristics; establishing the to-be-distributed according to the obtained distribution of the dielectric coefficients Measuring a dielectric characteristic characteristic trend of the object; and determining whether the bone composition of the object to be tested is normal according to the trend of the dielectric coefficient characteristic of the object to be tested and the trend of an abnormal dielectric coefficient characteristic. 如申請專利範圍第18項所述的骨質評估方法,更包括:選取該三維斷層影像的一骨組織(osseous tissue)區域;取得該骨組織區域於不同訊號特性下所對應的介電係數分佈;以及 依據該骨組織區域內的介電係數分佈建立該待測物體的介電係數特性趨勢。 The bone evaluation method according to claim 18, further comprising: selecting an osseous tissue region of the three-dimensional tomographic image; and obtaining a dielectric coefficient distribution corresponding to the different signal characteristics of the bone tissue region; as well as The dielectric coefficient characteristic trend of the object to be tested is established according to the dielectric coefficient distribution in the bone tissue region. 如申請專利範圍第18項所述的骨質評估方法,其中依據該待測物體的介電係數特性趨勢與該異常介電係數特性趨勢,判斷該待測物體的組成是否正常的步驟包括:計算該介電係數特性趨勢與該異常介電係數特性趨勢的一相關程度;判斷該相關程度是否大於等於一臨界標準;當該相關程度大於等於該臨界標準時,判定該待測物體的組成為異常;以及當該相關程度小於該臨界標準時,判定該待測物體的組成為正常。 The bone evaluation method according to claim 18, wherein the step of determining whether the composition of the object to be tested is normal according to the trend of the dielectric coefficient characteristic of the object to be tested and the trend of the abnormal dielectric coefficient characteristic comprises: calculating the a degree of correlation between a trend of the dielectric coefficient characteristic and a trend of the characteristic property of the abnormal dielectric coefficient; determining whether the correlation degree is greater than or equal to a critical criterion; and determining that the composition of the object to be tested is abnormal when the correlation degree is greater than or equal to the critical criterion; When the degree of correlation is less than the critical criterion, it is determined that the composition of the object to be tested is normal.
TW103106223A 2014-02-25 2014-02-25 Microwave imaging method and microwave imaging system and bone-assessment method using the same TWI543750B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103106223A TWI543750B (en) 2014-02-25 2014-02-25 Microwave imaging method and microwave imaging system and bone-assessment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103106223A TWI543750B (en) 2014-02-25 2014-02-25 Microwave imaging method and microwave imaging system and bone-assessment method using the same

Publications (2)

Publication Number Publication Date
TW201532594A TW201532594A (en) 2015-09-01
TWI543750B true TWI543750B (en) 2016-08-01

Family

ID=54694536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103106223A TWI543750B (en) 2014-02-25 2014-02-25 Microwave imaging method and microwave imaging system and bone-assessment method using the same

Country Status (1)

Country Link
TW (1) TWI543750B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683276B (en) * 2017-11-10 2020-01-21 太豪生醫股份有限公司 Focus detection apparatus and method therof
TWI804758B (en) * 2020-09-29 2023-06-11 國立陽明交通大學 Bone density measuring device and bone density measuring method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109009107B (en) * 2018-08-28 2021-12-14 深圳市一体医疗科技有限公司 Mammary gland imaging method and system and computer readable storage medium
JP2022525146A (en) * 2019-03-14 2022-05-11 エムビジョン・メディカル・デバイシーズ・リミテッド Hybrid medical imaging probes, devices and methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683276B (en) * 2017-11-10 2020-01-21 太豪生醫股份有限公司 Focus detection apparatus and method therof
US10650557B2 (en) 2017-11-10 2020-05-12 Taihao Medical Inc. Focus detection apparatus and method thereof
TWI804758B (en) * 2020-09-29 2023-06-11 國立陽明交通大學 Bone density measuring device and bone density measuring method

Also Published As

Publication number Publication date
TW201532594A (en) 2015-09-01

Similar Documents

Publication Publication Date Title
US9072493B1 (en) Ultrasonic diagnostic apparatus and elastic evaluation method
US20230243966A1 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
CN111031895B (en) Method for estimating a fat content fraction of a subject
JP6216736B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
US20160183926A1 (en) Diagnostic ultrasound apparatus and elasticity evaluation method
JP6987496B2 (en) Analyst
EP3463071A1 (en) A method and system for estimating fractional fact content of an object
CN109199381B (en) Holographic microwave elastography system and imaging method thereof
TWI543750B (en) Microwave imaging method and microwave imaging system and bone-assessment method using the same
JP2008073144A (en) Ultrasonic diagnostic apparatus
EP3841983B1 (en) Ultrasonic analysis device, ultrasonic analysis method, and ultrasonic analysis program
CN114502063B (en) Method and system for determining a material type of an object of interest
JP2016112285A (en) Ultrasonic diagnostic device
JP6651012B2 (en) Method, apparatus, and computer readable medium for assessing fit in a system for probing the internal structure of an object
JP2004033765A (en) Measuring instrument for measuring characteristics of elasticity of medium with ultrasonic images
Solimene et al. An incoherent radar imaging system for medical applications
Scorza et al. A texture analysis approach for objective uniformity evaluation in diagnostic ultrasound imaging: a preliminary study
JP6483659B2 (en) Beamforming technology for detection of microcalcifications by ultrasound
CN114502062B (en) Method and system for determining a parameter of a material of interest
TWI597052B (en) Microwave imaging system and control method thereof
JP2014193215A (en) Ultrasonic imaging apparatus and ultrasonic image display method
KR102627723B1 (en) Ultrasound imaging apparatus and control method for the same
Tresansky Statistical analysis of ultrasound signals for tissue characterization: the Homodyned K Distribution
WO2023178267A2 (en) Mobile ultrawideband radar for monitoring thoracic fluid levels and cardio-respiratory function
JP6810005B2 (en) Ultrasonic diagnostic equipment