TWI541673B - 使用基因演變動態來選擇治療法的電腦實施之方法、軟體及治療法選擇系統 - Google Patents
使用基因演變動態來選擇治療法的電腦實施之方法、軟體及治療法選擇系統 Download PDFInfo
- Publication number
- TWI541673B TWI541673B TW101141792A TW101141792A TWI541673B TW I541673 B TWI541673 B TW I541673B TW 101141792 A TW101141792 A TW 101141792A TW 101141792 A TW101141792 A TW 101141792A TW I541673 B TWI541673 B TW I541673B
- Authority
- TW
- Taiwan
- Prior art keywords
- cell
- states
- population
- state
- data
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/50—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Algebra (AREA)
- Probability & Statistics with Applications (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Description
此申請案請求在2011年11月11日提申之美國臨時申請案第61/558,902號、在2011年12月2日提申之第61/566,396號以及在2012年8月2日提申之第61/678,790號之權益。此等申請案之全部在此併入本案以為參考。
本發明有關個人化策略性癌症治療技術。
在習用癌症治療方案中,醫事從業人員用一或多種細胞毒性之化學治療藥劑治療病人,目的是減少或除掉一或多種癌症腫瘤中之總癌細胞群體。此治療典型地為非專一性的,因此其等會(藉由如損害細胞之DNA)殺死任何快速分裂的細胞,包括在治療期間發生快速分裂之非癌細胞。此等治療方案有些微效用,在一些情況下延長病人的生命,偶而治療病人。然而,由於此等治療之毒性引起之副作用,可能從不受歡迎至生命威脅之程度。
一些習用癌症治療方案藉由修改治療方案以對付個別癌症間之異質性,提供更有效,具較少副作用之標靶療法(“個人化癌症藥物”)。例如,實務上,個人化癌症治療方案係以廣泛特徵化病人之腫瘤的分子組成的方式設定。依照病人腫瘤之獨特分子特徵,施用起初精準地考慮
腫瘤類型而設計的特定的藥物。此等治療方案當與傳統化療法結合使用時某種程度上有效,且常常大部分有效。個人化癌症治療方案在欲進行治療之腫瘤為基因型簡單的情況下特別有效(如,慢性骨髓性白血病、β-raf突變黑色素瘤)。個人化癌症治療方案之副作用典型地較少,但可能仍顯著。
製造完全有效的個人化癌症治療方案有一些困難的因素。一個因素是癌腫瘤典型地包括異質細胞類型。例如,在人類基因體中,大約30,000個基因中,有至少100個基因已知為癌症之驅動者。癌腫瘤可包括20,000至30,000個突變,沒有一個突變存在超過腫瘤的一小部分。此外,基因間之交互作用係很多的、複雜的,且在許多情況下係未知的。此等因素不僅可導致腫瘤間之異質性(目前個人化醫學範例對付的),且導致腫瘤內部個別細胞間之異質性。再者,想要獲得腫瘤組織,然後簡述該腫瘤組織之基因狀態可能會有困難。例如,一些腫瘤不能在沒有引起病人不可逆的傷害之情況下作活組織切片檢查。
在許多腫瘤類型之治療法中,已顯示出由各種基因以及非基因機制引起之動態抗性。在用埃羅替尼(erlotinib)或吉非替尼(gefitinib)治療之非小細胞肺癌(NSCLC)方面,抗性突變常在標的EGF受體(EGFR)中發生。其它抗性機制包括透過擴大作用(其有時由配位子引起)活化平行的訊號途徑,諸如cMet。很重要地,當埃羅替尼或吉非替尼抗性建立起來,藥物的戒斷可能會促動腫瘤回
復,顯示低於檢測限度之敏感性亞群體持續著。對克唑替尼(crizotinib;一種標靶至涉及NSCLC中之間變性淋巴瘤激酶之獨特的融合蛋白之藥物)具抗性,經文件證明係由於標的中之突變、標的之擴增、喪失導向融合蛋白之原始轉位、EGFR途徑之訊號增加(包括1 EGFR活性突變)、c-Kit擴增以及KRAS突變,在相同病人中有時超過一種抗性機制。在慢性骨髓性白血病方面,大部分的治療抗性係由於標的BCR-ABL融合蛋白中產生突變,所以組合治療可能對延遲多種抗性細胞之出現很重要。非遺傳性抗性機制會發生在腫瘤中且可能為立即的,因為其等連接至訊號途徑中之反饋迴路。最近的例子包括結直腸癌細胞對威羅菲尼(vemurafenib)具抗性以及經由向上調節上游訊號途徑而對PI3激酶抑制劑具抗性。
考慮到此等動態狀況,有需要將可能的未來狀態列入考慮,或許在事前先思考許多治療策略。
在一態樣中,概略而言有關一種個人化癌症治療之新的方法,其使用併入基因演變動態學以及單一細胞異質性之數學模型。超過3百萬個可評估的“病人”之例示案例以及虛擬臨床試驗之分析證實,與目前個人化醫學方法相比,加強(有時違反直覺的)非標準個人化醫學策略可引起較好的病人結果。目前個人化醫學策略一般是治療法搭配診斷時以及腫瘤復發或進展時之腫瘤分子簡述,通常著重在
檢體之平均、靜態以及目前的特性。在一些範例,非標準策略額外地考量微小的次株、動態以及預測的未來腫瘤狀態。該新的方法提供一種系統性地評估非標準個人化醫學策略之方式。
在另一態樣中,概略而言有關一種針對個體決定特定治療計劃之方法,其使用至少部分根據從個體而來之檢體或測量值(如,組織、體液檢體、掃描檢查),對一組治療劑具不同抗性類型之細胞亞群體的時間演變之預估,以及決定投與依照一標準選定之劑的治療計劃,該標準係至少部分根據取決於一或多種亞群體之演變之因素。
在另一態樣中,概略而言有關一種治療法選擇之方法,包括接受特徵化從一個體而來之檢體(如,組織、血液)之數種細胞狀態之群體之數據。之後決定數種治療策略中每一種之效用。各治療策略代表一欲導入該個體之治療劑之順序之選擇(以及其等之劑量)。此決定該效用之步驟,係根據引入不同治療劑之例子時,預期或期待的生長以及數種狀態間之轉變之表述(如,貯存數學模型之參數之數據)。之後依照所決定的效用選擇治療策略。
於另一態樣中,概略而言有關一種治療法選擇之方法,其包括接受至少部分根據個體的腫瘤之測量值(如,組織檢體、體液檢體或分子影像)特徵化數種細胞狀態之群體之數據。該數種細胞狀態視為總群體,而包括第一細胞狀態(如,優勢狀態)之細胞狀態為最大的細胞狀態之群體。亦接受數種治療策略中每一種之說明。各治療策略表示一
欲導入該個體之治療劑之順序之選擇。至少一些治療策略係在沒有標靶該第一細胞狀態或該數種細胞狀態之總群體之情況下,標靶至除了該第一細胞狀態外之細胞狀態(如,與縮小尺寸或減低淨生長速率相關)。例如,此治療策略可能不是直覺的或符合習用治療方法。數種治療策略中每一種之效用,係根據在引入數種治療劑之不同劑後,特徵化數種狀態之預期生長以及數種狀態間之轉變之數據(如,定量速率;包括特徵化該數種細胞狀態之群體演變之電腦數據)來作決定。之後根據該決定的效用選擇治療策略。
具體例可具有一或多種下列特徵。
該特徵化數種細胞狀態之群體之數據,另外係根據與未檢測目前狀態相關之機率資訊或以根據有關癌症演變之基本的了解和/或實驗數據之可能的未來狀態。
該特徵化數種細胞群體之數據,另外係根據組織檢體、體液檢體以及分子影像之至少一種中之數種細胞狀態之群體的測量值。
測量數種細胞狀態之群體,包括使用分子測量技術,例如,聚合酶鏈反應技術。
該決定進一步包括根據該數種細胞狀態之測量的群體尺寸以及該數種細胞狀態之推論的群體尺寸,評估該數種細胞狀態中各群體之尺寸。
該特徵化數種狀態之預期生長以及數種狀態間之轉變之數據,包括由試管中和/或活體內實驗測定之數據。
該特徵化數種狀態之預期生長以及數種狀態間
之轉變之數據,包括由在病人而來之生物材料上進行活體外實驗測定之資訊。
該特徵化群體之演變之電腦數據,包括使用數值模擬方法。
具體例可具有一或多個下列優點。
該方法可鑑定出可對付抗性細胞群體之生長之治療策略,即使歷時一段時間後此策略並不適合對付總群體大小。例如,一些事實上最有效的策略,可能與目前護理常規之實務相反。
在此所述之方法可在不需花錢發展新藥物之情況下,更有效的使用既存之藥物,提供更改善的存活率。例如,以前未認可之劑之順序可經鑑定,提供超過目前治療策略所達到之效用。
個人化治療策略或計劃之改良,係藉由著重在不同群體狀態分佈的詳情,而不是僅在於腫瘤之總或平均行為。具相同的腫瘤平均特徵之不同的個體,假如各種狀態之分佈不同,則事實下具有非常不同的適合策略。
一般而言,習用個人化醫學治療方案採取直覺方法來治療癌症,目的是減少腫瘤之總細胞群體和/或優勢細胞類型之群體。相反的,以上所述之系統以及方法可產生反直覺的治療策略,容許該腫瘤之總細胞群體和/或優勢細胞類型之群體增加,然而導致該腫瘤內較小的細胞群體減少。在某些情況下,此反直覺的策略可產生較長的病人夀命。
因為以下說明以及申請專利範圍,本發明之其它
特徵以及優點將顯而易見。
100‧‧‧系統
102、106、110、114‧‧‧步驟
104、108、112、116‧‧‧方塊
200‧‧‧狀態圖表
R1‧‧‧狀態R1
R2‧‧‧狀態R2
S‧‧‧狀態S
R12‧‧‧狀態R12
D1‧‧‧藥劑1
D2‧‧‧藥劑2
N‧‧‧總細胞群體
圖1是個人化策略癌症治療系統之方塊圖。
圖2是狀態轉變圖表。
圖3以及4是細胞群體隨時間變化之標繪圖。
習用個人化癌症治療方案常使用從該個體(如,人類個體)而來之(如,活組織切片獲得)之腫瘤檢體之平均分子特性來設計,且僅在當檢測到腫瘤進展或復發時作改變。然而,活組織切片(其可能含有十億或更多的腫瘤細胞)中每一個腫瘤細胞可能具有獨特的基因組成(即,單一癌腫瘤中之細胞群體可能為異質的)。因此,活組織切片之平均分子特性,不必然係用於選擇癌症治療之最佳的特徵根據。有關此一方法之問題的例子,相對小型的抗性細胞亞群體之出現,最終可能會支配治療之效用,且此一作用可能無法從腫瘤之平均特徵或檢體對治療劑之平均反應得到證實。
此外,增變理論說明癌症一般係基因不安定的。習用個人化癌症治療方案典型地係根據最近的腫瘤檢體,其在許多案例中係一開始診斷時使用之檢體,且該療法係明示或默示地根據腫瘤之總特徵會保持靜態,同時腫瘤之尺寸預期會縮小之假設。然而,腫瘤之特性可能因活組織
切片之不同而不同,導致根據一開始之活組織切片之個人化癌症治療方案變得過時,而需要選擇新的療法或作調整。
為對付習用個人化癌症治療方案之此等缺點,在此所述之策略性個人化癌症治療方案,使用數種亞群體對癌腫瘤之標靶療法之時間演變的數學模型。大體而言,該模型考慮基因動態(諸如突變以及染色體重排)以及單一細胞異質性,以及在各種治療劑之存在下,群體大小改變之速率。在一些範例中,該模型係用於模擬腫瘤中不同細胞群體之行為(如,生長以及轉變)以及決定最適合達到預定的目標之一治療劑之順序,例如,使總群體之尺寸最小,同時使某些細胞群體對某些治療之抗性最小。
參照圖1,一種策略性個人化癌症治療系統100之方塊圖,活組織切片102作為輸入,產生模擬結果114,其經醫事從業人員之評估,用於選擇適當的治療策略。
將活組織切片102提供給細胞群體測量裝置104(如,聚合酶鏈反應設備),其測量在活組織切片102中存在之細胞群體中每一個的尺寸。一般而言,在撰寫此說明書的時候,細胞群體測量裝置104能夠檢測僅該等大於某尺寸閾值之群體。其它群體未測出。例如,某些細胞群體測量裝置104可在具10,000之總細胞群體中,檢測到群體尺寸為1之細胞。
將從細胞群體測量裝置104輸出之測量的細胞群體106,送到細胞群體評估器108中,其亦可接受知識數據116,其在一些範例中包括機率資訊(如,未檢測的目前狀
態或可能的未來狀態之機率)和/或有關癌細胞群體之演變的實驗數據。
根據測量的細胞群體106以及知識數據116,細胞群體評估器108產生活組織切片腫瘤中細胞群體的評估值。此評估值係病人腫瘤之起始病況110。
將病人腫瘤之起始病況110送到模擬器112中,其使用數學模型來模擬腫瘤中之細胞群體經受不同抗癌治療之組合處理後之演變。由模擬器112產生之模擬結果114以可由醫事從業人員(諸如腫瘤科醫師)評估之形式輸出。該醫事從業人員可根據模擬結果114選擇適當的治療策略。
系統100之輸出使得腫瘤科醫師不僅能建立施用於癌腫瘤之目前狀態的治療方案,亦可以建立將癌腫瘤之未來的評估值列入考慮之治療策略。此治療策略可增加病人的存活時間。此外,在一些範例中,正常情況下醫事從業人員不會實行的反直覺治療策略顯示出,產生比習用治療方案更長的病人存活時間。
在一些範例中,使用數學最佳化、自動控制理論、博奕理論、窮舉法或其它自動方法,根據該數學模型以及所欲目標(如,效用函數),決定治療劑施用之順序以及時間。
注意,雖然範例係以固體腫瘤以及活組織切片之情況作說明,但其它類型的癌症,諸如血液腫瘤,可使用基本上相同的方法對付(如,包括個體之血液檢體)。
在各種範例中,可使用不同的方法將總細胞群體分配成個別建模的亞群體。一種方法係在分子層次個別地建製不同的會遺傳或短暫狀態之模型。雖然具足夠的知識和/或數據之情況下,此一方法係可行的,但另一個方法(將在下文中說明)使用一組表型狀態。特別是,該狀態係依照其等對不同治療劑組合之反應定義的。例如,一組N劑可能有2N種不同的表型狀態。
參照圖2,單一模型表示其中可利用二種治療劑之狀況,因此有四種(即,22)細胞亞群體(即,四種不同的表型),其在狀態圖表200中記述為四種狀態。讀者應可認知到,在許多實務情況下,狀態空間的尺寸可能非常的大,且可能具有不同類型的轉變結構。各狀態表示對二種治療劑(如,抗癌藥物或組合藥物):d 1 以及d 2 ,具不同層度之敏感性之細胞群體。狀態S係對二種治療劑d 1 以及d 2 均具敏感性(如,被殺死或使其等之生長慢下來)之腫瘤細胞群體。狀態R 1 是對治療劑d 2 具敏感性,但對治療劑d 1 具抗性(如,沒被殺死或生長沒有慢下來)之腫瘤細胞群體。狀態R 2 是對治療劑d 1 具敏感性,但對治療劑d 2 具抗性之腫瘤細胞群體。狀態R 1-2 是對治療劑d 1 以及d 2 二者均具抗性之腫瘤細胞群體。注意,各表型狀態可能為數百個分子狀態以及轉變功能亞狀態之混合體,各代表相同的表型。
如狀態圖表中箭頭所例示的,當用抗癌藥物治療病人時,一狀態之細胞群體可為會從一種狀態轉變成另一種狀態(即,增長或衰退)。例如,狀態S之群體中之細胞,
可隨著時間進行而突變,變成對治療劑d 1 具有抗性,從而導致該細胞轉變成狀態R 1 之群體。再者,在各群體中之細胞生長以及細胞死亡(以及總群體為一整體)會以劑量依賴方式受藥物的影響。在一些範例中,可能發生部分抗性。
一種預測各癌細胞類型之群體生長速率之方法,可依以下所述之不同的方程式建立模型。為簡化下列說明,假設有二種“藥物”,d 1 以及d 2 (應了解,“藥物”可以藥物之組合或其它形式之治療相等地代替)可用於治療癌症,且可選擇其等劑量之任何的組合供治療。然而,二種藥物之總劑量受毒性之限制;一般而言,組合之藥物不能給與像個別投與時一樣的劑量。在以下範例中,二種劑量之總和不能超過1種之正常的劑量。如圖2所示,癌腫瘤經二種藥物之治療後可見四種不相交的腫瘤細胞類型。
■細胞類型S是對二種藥物均具敏感性。
■細胞類型R 1 是對藥物1具抗性而對藥物2具敏感性。
■細胞類型R 2 是對藥物2具抗性而對藥物1具敏感性。
■細胞類型R 1-2 是對二種藥物均具抗性。
在一些範例中,屬性“具敏感性”以及“具抗性”,係數量上由治療引起之細胞死亡率以及自然生長率之比例所定義。假設各細胞類型之群體生長率取決於(1)自然生長率、(2)治療(即,依照在時間t時存在之選定的劑)引起之細胞死亡率,以及(3)由於突變率從其它極相關的細胞類型匯入該群體。
吾人設定四分量向量,=(x S ,x R1,x R2,x R1-2),作為各種類之細胞群體。吾人假設在無治療時,細胞死亡率為零,所有的細胞具有相同的生長率,以及藥物作用會增加細胞死亡。針對各種類,i {S,R 1,R 2,R 1-2},淨生長率係g 0 x i +Σ j≠i T(i,j)g 0 x j -(S a (i,1)d 1+S a (i,2)d 2)x i :第一項對應於細胞類型i之生長率,全部的細胞類型共享g0率。第二項對應於從全部其它細胞類型之轉變,在此T(i,j)明確說明從細胞類型j轉變至i之比率(每細胞每代)。吾人假設(i)可忽略從具抗性轉變成具敏感性細胞類型之轉變率,(ii)獲得對一種藥物之抗性之轉變率,與該抗性表型對另一藥物沒有相關,以及(iii)忽略在一步驟中獲得雙抗性之轉變率。因此,T(R 1,S)=T(R 1-2,R 2)、T(R 2,S)=T(R 1-2,R 1)以及所有其它T之元為0。第三項對應於治療引起的細胞死亡,在此(d 1,d 2) T ≡代表二種藥物之正規化劑量(d 1是藥物1,而d 2是藥物2),限制條件0 d 1;d 2,d 1+d 2 1以及S a (i,1),S a (i,2)代表細胞類型i對藥物1以及藥物2之敏感性。四種細胞類型之群體的動態可簡潔地用矩陣微分方程式表示:
在此I設定為4×4單位矩陣,而diag(.)設定為將向量分量放在零矩陣之對角元上之算子。假如其等小於1,則U(-1)設定分量值為0;即,x<1,U(-1)=0,以及x≧1,U(-1)=1。此項規定分數的細胞數(小於1個細胞)不會促成細胞分裂。
假如(t)係分段常數,則可得到以上方程式之分析解。此係實務治療之情況,因為劑量僅在固定的時間間隔或當現行的治療方案失敗之時改變。假設時間間隔[0,T](t)≡係常數。假如所有的分量>1,則以上方程式之後簡化成一級線性矩陣微分方程式
此方程式之解答很簡單地為該矩陣隨著起始群體呈指數增加exp(At)(0)。此解答與(t)一樣保持恆定以及所有的分量>1。
假如一些分量<1(如,<1)),此第二方程式不再等於該第一方程式。U(-1)設定分數細胞數量為0,因此阻斷了其等對生長率的貢獻。在此情況下,吾人定義矩陣B,如此對應於該分數群體之列為0,剩下之列等於該等A的。因此,第一方程式變成
且解答為exp(Bt)(0)。此第三方程式僅在各細胞類型之群體不會橫過一種細胞之邊界(從x<1增加至x>1,反之亦然)時有效。當發生橫過邊界時,必須更新常數矩陣B,以及在邊界橫過之前的群體被視為新微分方程式之起始群體。
各群體之預測概要整理如下:
1.將時間分成固定的間隔(在此申請案中為45天)。各間隔內之(t)為常數,但容許在間隔之間變動。
2.在各間隔之開頭處,藉由以新劑量組合取代(t),以及設定起始群體為之前間隔之計算群體,更新方程式1。
3.從[(I+T)g 0-diag(S a )]U(-1)≡A以及目前間隔之起始群體,建構常數項矩陣B。設定對應於分數群體之B的列為0。
4.設定(T i )為間隔[T i ,T i+1)之起始群體,而B i 為方程式3中之對應常數項矩陣。假如(t)元沒有橫過單一細胞邊界,則t [T i ,T i+1)之解答為(t)=exp(B i (t-T i ))(T i )。
5.假如在τ [T i ,T i+1]上發生邊界橫過,則據此更新B i ,且設定方程式3之起始群體為(τ)。
6.持續矩陣以及起始群體更新至總考慮的時間結束(在此研究中為5年)。
為了預測群體之演變,使用起始病況。概略而言,此起始病況係根據個體之活組織切片之結果。於一些範例中,該起始病況之設定不必然等於在活組織檢體中觀察到之群體,例如,考慮到可能非零但低於檢測某些狀態中之群體之閾值。在一些範例中,個體的腫瘤之特定的特徵(如,基因特質),以及相似腫瘤之演變原因之實驗以及基本知識,可用於決定模型之參數和/或起始病況。
注意,在此範例中係使用確定性模型來預測不同狀態之群體的演變。於其它範例中,可於模型中引入隨機分量,例如,透過模型參數(如,生長、死亡以及轉變率)中之不確定性和/或透過建制預測的導數中之隨機擾動(“驅動雜訊”)之模型。相似地,起始病況中之不確定性亦可為考慮到從個體之檢體獲得之不完美知識之模型。
在一些範例中,該方法使用提供模型參數之局部或集中式數據庫電腦來源。於一些範例中,匹配組織檢體至模型參數或起始病況係使用此集中式來源。
通過使用可結合從起始(以及之後)組織檢體獲得之知識以及群體之預測演變的知識之數學模型,可使用各種用於治療法之選擇的方法。治療法之特徵化之例子為,如一固定的期間間隔之順序,在其等之每一個期間引入固定劑量之特定治療劑(或可能無新試劑),在此等間隔之瞬間改變試劑以及劑量。
治療策略包括用於選擇治療法之方法。一種方法係具有一組預建立的策略,然後依照模型,選擇最佳的策略。此方法藉由使用博奕理論領域中之數學技術得到動機,且於一些實施中即使用遊戲理論領域中之數學技術。其它方法可根據考慮到模型以及起始評估中之不確定性之最適合技術和/或最理想的控制技術。
在一些範例中,使用啟發式目標(heuristic goals)來設計以及模擬治療策略。啟發式策略之一些例子為:
■選擇一使腫瘤中預定的細胞總群體減至最小之藥物組合順序。
■選擇一使無法治癒的細胞發展之風險最小之藥物組合順序(除非有立即死亡之風險)。
■使腫瘤中預測的細胞總群體的風險最小,除非該模
型預測第一不可治癒的細胞會在下一間隔中出現,在該情況下使不可治癒細胞出現之機率最小。
■評估不可治癒性或死亡之時間,以及對最接近的威脅作出反應,只要有治癒的機會。
概略而言,用模型評估預定策略組(其可包括習知策略)中之每一個,然後選擇最佳的策略。根據此方法,吾人可證明策略為主的治療法(依照預測風險調整藥物劑量)之優點,超越目前個人化醫學之範例(根據占優勢的亞群體之分子特性選擇治療法,然後當檢測到腫瘤進展或復發時改變藥物)。(吾人注意到,諸如以下之更複雜的個人化策略亦為個人化醫學,只是不是目前實施的)。為達成此目的,吾人於模擬研究中執行6個治療策略。吾人假設在此模擬中,細胞類型S對藥物1(d1)比藥物2(d2)敏感,以及R 2對藥物d1比R 1對d2敏感。因此,d1係從頭到尾係最好的藥物。
策略0:現行的個人化醫學策略。假如,(即,R 1 群體不會支配腫瘤),一開始單獨用d1治療。否則單獨用d2治療病人。最低點係時間系列量變曲線當中總群體之局部最小值,在此維持現行的治療。維持現行的治療直到發生下列事件中之一個:(a)總群體到達最低群體的二倍(RECIST腫瘤進展按比例增加至表現出腫瘤體積,而不是單一線性維度),或(b)總群體從低於檢測閾值(109)之位準再度出現(復發)。假如(a)或(b)發生,則轉成其它藥物。策略0模仿個人化醫學之現行的例子,因
為起始治療係依優勢群體之分子特徵選擇,以及分類成4種細胞類型中之一種。
策略1:使預測的總群體最小。每45天,藉由維持(假設)治療持續“考慮到將來之時間”之期間,調整(t)至使預測的總群體最小。d 1以及d 2在0與1之間以0.01之間隔變化。針對每一個劑量組合,用目前觀察到之各細胞類型群體之起始群體、固定至指定劑量組合之(t)以及考慮到將來之時間之期間(45或60天)解方程式1,評估該預測的總群體。選擇使該預測之總群體最小之劑量組合。
策略2:使不可治癒的細胞發展最小,除非有立即死亡之威脅。每45天,假如總群體沒有超過閾值,則調整(t)至使該預測的R 1-2群體最小。R 1-2是對二種藥物均具有抗性,因此其時常是不可治癒的。所有的模擬以R 1-2群體為0開始。藉由預防R 1-2之形成,維持長期疾病控制和/或治癒之可能性。假如總群體超過閾值,則將(t)調整至使該預測的總群體最小。吾人在模擬研究中實行二個閾值:策略2.1:109,策略2.2:1011。策略2是將雙抗性突變R 1-2之預防,放在比總群體之減少優先的位置,除非總群體已經達到閾值而威脅到病人的生命。基本理由係抑制R 1-2可能有機會治療病人。
策略3:使預測的總群體最小,除非有預測到該第一不可治癒的細胞會在45天內形成。每45天,假如預測的R 1-2群體<1,則調整(t)至使該預測的總群體最小。否則調整(t)至使該預測的R 1-2群體最小。然而,假如當時x R12 1
以及R 1-2不是可治癒的(g 0-S a (R 1-2,1)-S a (R 1-2,2)>1),則使該預測的總群體最小。基本理由係僅在假如R 1-2出現之預測的風險顯著時,轉換成預防R 1-2。假如已出現R 1-2,則在無關R 1-2預防之情況下,使總群體最小。假定吾人容許“相對的”抗性,則R 1-2可能不是不可治療的,但在吾人之大部分的參數設定中,其係不可治癒的。
策略4:評估不可治癒性或死亡之時間,以及對最接近的威脅作出反應,只要有治癒的希望。每45天,評估由S、R 1、R 2以及R 1-2群體之生長演算而得之不可治療性(x R1-2 1)以及死亡率(群體1013)之預測期間。針對各劑量組合,定義τ inc ()為以起始群體為條件,當時觀察的群體達到不可治療性之預測期間,藥物劑量固定為。定義τ S ()為以起始群體為條件,當時觀察的群體x S 達到死亡(x S 1013)之預測期間,藥物劑量固定為。可以相同的方式定義τ R1,τ R2,τ R1-2。假如當時x R12<1或R 12係可治癒的(存在有一些,如此各分量為diag(S a )>g 0),則改變至使min(τ inc ,τ S ,τ R1,τ R2,τ R1-2)最大,限制是min(τ S ,τ R1,τ R2,τ R12)>45天。假如此劑量組合不會存在,則使min(τ S ,τ R1,τ R2,τ R1-2)最大。假如當時x R1-2 1以及R 1-2不是可治癒的,則使min(τ S ,τ R1,τ R2,τ R1-2)最大。基本理由係以不可治癒性或死亡率之預測的期間,定量各細胞類型引起之風險,以及找出使風險最小之劑量組合。
於其它範例中,數學最適化技術可用於決定藥
物組合之最佳的順序(如,有限或無限時域中全面最佳的)。效用函數之例子係病人的存活時間。在一些範例中,亦引入可能的治療法之限制,例如,考慮劑劑之毒性,從而避免會傷害個體之策略或劑量。在不一定考慮方法之計算複雜性之情況下,至少概念上,可列舉所有的治療法(即,試劑之順序、限定或連續位準設定之劑量),以決定考慮到效用測度之全面最佳的條件,其一般而言取決於總群體以及特定狀態之群體二者。最佳化和/或最佳控制領域之數學技術,可用於減少,例如,在一些達到接近最理想的治療法之案子中所需之電腦運算。
在一些範例中,諸如博奕理論之技術可用於定量評估以及策略選擇性之選擇。
參照圖3,說明癌細胞群體尺寸隨著習用個人化醫學治療方案之進程而發展之例子之圖表,該方案包括二種藥物d 1 以及d 2 。該圖表繪製細胞群體尺寸之數目對時間之圖,包括針對總細胞群體尺寸N之標繪線,以及針對亞群體S、R 1 、R 2 、R 1-2 之標繪線。
在此習用個人化醫學治療之範例中,由於發現1cm 3的癌團塊,病人就診於個人化醫學腫瘤科醫師。腫瘤科醫師作該團塊之活組織切片,且該活組織切片指出該團塊僅包括類型S之細胞(即,對治療d 1 以及d 2 二者均具敏感性之細胞)。在一些範例中,該活組織切片中包括之細胞類型係使用分子測試法決定,例如,非限制性地,使用聚合酶
鏈反應(PCR)技術。在撰寫此說明書時,此一分子測試法觀念上能夠在10,000個總細胞中找出1個非-S類型細胞。在一些範例中,使用較不敏感的分子測試法。
針對此範例,假設藥物d 2 能夠有效地殺死S類型細胞,且可完全的根除包括大部分S細胞之可檢測的腫瘤。亦假設藥物d 1 在治療S類型細胞上效率較低,僅減慢其等之生長。
考慮以上之假設以及從活組織切片而來之資訊,腫瘤科醫師鑑定d 2 為用於治療病人腫瘤之最佳藥物。從S細胞類型之曲線可見,以藥物d 2 治療之病人,S類型細胞之群體在五個月內大幅地減少。此外,總腫瘤尺寸,N,減少至使用CAT掃描不再檢測得到之點。
然而,在此範例中,由活組織切片提供之資訊係不準確的,且事實上,腫瘤實際上包括100,000個R 2 類型之細胞(即,該等對d 2 藥物具有抗性者)。此不準確是因為事實上d 2 細胞存在低於測試法能檢測之閾值之最小值。在此範例中,假設R 2類型細胞基因上較接近R 1-2類型細胞,而不是R 1類型細胞。因此,R 2類型細胞可更快轉變成R 1-2細胞(如,經由遺傳性的轉變,諸如單一核苷酸改變或染色體重排,或非遺傳性的突變,諸如表觀遺傳突變)。
在第13個月之時間點,病人經歷可檢測的復發。活組織切片指出,腫瘤包括可用藥物d 1最有效地治療之R 2類型細胞。用d 1治療病人的腫瘤,腫瘤之總尺寸,N,減小,R 2細胞群體被根除。
然而,由於事實上R 2類型細胞直到第13個月的時間點才被治療,所以在大約第2個月之時間點,一些R 2細胞之群體突變成R 1-2細胞(即,不可用藥物d 1或d 2治療之細胞)。類型R 1-2之細胞持續生長直到第26個月另一復發發生,在此時間點,腫瘤係不可治療的,因此無法治癒。
參照圖4,另一圖表說明癌細胞群體尺寸隨著個人化策略醫學治療方案之過程而發展之例子,該方案使用與之前範例中所使用相同的藥物:d 1以及d 2。該圖表繪製細胞群體尺寸之數目對時間之圖,包括有關總細胞群體尺寸,N,之標繪線,以及有關亞群體S、R 1,R 2,R 1-2之標繪線。
在此習用策略性個人化醫學治療法之例子中,之前範例之病人由於發現癌腫塊1 cm 3而就診於個人化策略醫學腫瘤科醫師。腫瘤科醫師作該腫瘤之活組織切片,且該活組織切片指出該腫塊僅包括S類型之細胞(即,對治療d 1以及d 2二者均具敏感性)。然而,根據於國家以及國際數據庫中累積之由流行病學以及分子腫瘤學數據表示之集體知識,腫瘤科醫師公認,即使沒有檢測出R 2類型細胞,但此類型之腫瘤有機會包括小型少數次選殖R 2細胞。此外,腫瘤科醫師公認,R 2類型細胞存在突變成R 1-2類型細胞之高風險,其為不可治癒的。
如在之前範例之情況,假設藥物d 2能夠有效地殺死S類型細胞,且可完全地根除大部分包括S細胞之可檢測的腫瘤。亦假設藥物d 1在治療S類型細胞方面效率較差,僅延緩其等之生長。
根據此資訊,腫瘤科醫師策略性用藥物d 1治療病人四個月,使R 2 類型細胞群體最小。因為d 1 在殺死類型S細胞方面效率較差,所以總細胞群體,N,在用d 2 起始治療期間慢慢生長。用d 1 治療4個月後,腫瘤科醫師決定容許總細胞群體,N,持續生長形成無法接受立即的風險,之後轉換至d 1 以及d 2 之混合。在用d 1 以及d 2 之混合治療之時間點後,腫瘤事際上不見了,低於檢測位準。在此範例中,R 1-2 細胞群體沒有出現,直到大約第8個月之時間點。
由於以上所述之治療策略,病人身上沒有出現不可治癒的R 1-2 細胞之復發,直到從起始治療那一天起至第38個月,使得病人得以多活幾年。
現行的模型著重在由遺傳性以及表觀遺傳性因素決定之藥物敏感性/抗性表型,以及其等在最適個人化醫學因素上之影響。著重在可遺傳的表型以及將非常大量的基因型濃縮成較小的表型聚集,二者基本上均容許用電腦實施複合治療策略之評估。吾人稱此著重的模型為“核心模型”,由廣泛參數上大量敏感性之分析支持,該核心模型在個人化醫學策略方面已產生高水準的結果。
在將此核心模型詳細地應用於實際的腫瘤時,需將許多額外錯綜複雜的事情列入考慮。此等額外錯綜複雜的事情需分開連結至模型評估,之後再將資訊饋入該核心模型中。此連結至模型的架構之後能夠表現個別腫瘤以及治療法之複雜性,如此可獲得詳細的結果。此係對於複
雜的系統更有效的方法,因為可在分開的步驟中以電腦計算個別腫瘤的特性,然後應用於大量的候選治療策略。
當應用於實際的腫瘤時,在許多情況下,該核心模型需要參數值之特別的概率分佈,而不是個別值。現行的核心模型使用廣泛具均一分佈的參數值(各參數值指定為等概率);然而,當連結至其它資訊來源時,此等概率分佈可能變窄,變得更結構化。以下,吾人提供一個該核心模型如何消化從其它模型來的資訊之高水準的概念,該等資訊有關(i)在具敏感性或具抗性表型下之遺傳性狀態以及此等狀態間之轉變、(ii)過客(passenger)突變對驅動(driver)突變、(iii)抗性之非遺傳性機制以及(iv)生物分佈。
下列來源可用於獲得表型敏感性/抗性狀態以及潛在的基因型間之地圖,以及評估特定狀態存在之機率:i)直接測量值:此需要建立非侵入性採樣方法,以及單細胞位準之分子和/或表型特徵化。
ii)實驗數據庫:於診斷以及驗屍之大量病人上收集資訊,開始特徵化可能的狀態以及其等憑經驗發生的可能性。例如,在近來之論文中,發表大約100個三重陰性乳癌之詳細的次選殖結構,儘管仍不是單細胞解析。一系列細胞株之分子研究可用於補充此經驗資訊,且可直接測試此等細胞株之藥物敏性表型,以校正遺傳性以及表觀遺傳性註解。
iii)計算機途徑分析:範例PARADIGM軟體(University of California at Santa Cruz Cancer Genomics
Browser)可分析超過1,400個策劃訊號途徑。此軟體在未來可用於預測什麼分子亞狀態可能與特別敏感性概況有關,因為各種特定的修改,在途徑位準之分析上可能會出現相似的表型作用。根據其等途徑對其它已經實驗測定的相關性,使用此軟體可能可以預測與表型相關之額外的遺傳狀態。
iv)功能性基因體:用siRNA以及shRNA之高通量篩選,可系統地用於預測什麼基因型可能與敏感性以及抗性表型有關。
此等狀態間之轉變可能經任何的機制,不限於單一驅動基因之突變,而是包括所有已知的遺傳性以及表觀遺傳性改變之機制(突變、插入、缺失、轉位、擴增、染色體喪失或獲得、DNA甲基化或組蛋白修飾)。表型狀態A與B間之總轉變率係對應於從表型A變成表型B之所有可能的方式之總合。考慮到吾人可能不知道,許多相關分子狀態中那一個目前產生表型A,吾人必須計算在表型A下之每一可能的分子狀態轉變至B之機率,然後把所有此等機率加起來,各乘以該表型下特別分子狀態之機率。針對任何個別的機率,吾人需要知道二種分子狀態有多相似,以及可能轉換之機率之機制。因為遺傳不安定性突變可能影響此等個別的狀態,所以該個別機率本身可能需要以範圍或概率分佈表示。
該模型基本上可被視為藥物敏感性狀態間之表型轉變之模型,且該表型轉變可能經由任何大量可能的基因改變而發生。表型改變之總比率係從所有原則上會導致
表型改變之個別改變之比率的總合。在藥物抗性方面,此可因獲得新的驅動突變而規避之前的治療法,但其亦可能是由於過客突變。此一突變雖然與一開始驅使出腫瘤無關,但可驅使出抗性。例如,突變可能發生導致細胞分佈或藥物代謝之改變。吾人之前已經有撰寫有關過客突變代表亦可能會促成藥物抗性之多樣性之總匯,因此在藥物治療下存活之事實。
過客突變與驅動突變不同,因為其等在無治療時不會被選擇。此反映在模型之無藥物治療中之淨生長率參數上,在獲得過客突變時,其不會反映生長率增加。
非遺傳抗性機制:對抗威羅菲尼產生抗性之已知機制,例示說明了不涉及遺傳性改變之抗性機制。特別是,在結直腸癌症中,威羅菲尼抑制B-Raf,導致EGF受體(EGFR)之反饋向上調節,接著導致二個事件:(i)上游活化Ras,導致B-Raf雙偶合,使得威羅菲尼失效,以及(ii)平行活化pI3激酶訊號途徑,可能規避Ras-Raf-Mek途徑至其仍被抑制之程度。此抗性係天生的,發生快速,且不需要遺傳性改變。此反饋迴路在訊號途徑中係常見的,且事實上,相似的反饋迴路會影響pI3激酶途徑之抑制劑。
以上提到之“藥物1”以及“藥物2”亦指單一狀態下直接之組合。此意指諸如結直腸癌中之威羅菲尼之情況,威羅菲尼很清楚地應結合EGFR抑制劑。假如會遺傳的狀態係如對結直腸癌之說明,則藥物1意指在該遺傳的狀態之假設內暫時適應之最佳的藥物或藥物組合(即,諸如威羅
菲尼以及西妥昔單抗(cetuximab)之組合)。最佳的組合必需由與該核心模型分開之連合的模型決定。在企圖了解有關抗性之非遺傳性機制之訊號方面,高含量磷酸化蛋白質體是重要的資訊來源。
在一些情況下,處理非遺傳抗性之最佳的組合係不可得的。於此情況下,事實是反映在較少的效率參數輸入該模型上。於其它情況下,非遺傳抗性可能是可變的。在此情況下,其可由效率參數之概率分佈表示。此概率分佈在不同的基因狀態下可能不同;即,遺傳性狀態可能會影響特定抗性機制之可能性。假如其為已知的,則可將所有的這個輸入模型之參數分佈中。
生物分佈:就像藥物1以及藥物2係最佳的組合,假如需要處理非遺傳抗性機制,則在藥物傳送方面,以單一劑之形式提供之藥物1以及藥物2之劑量以及時間表假定為最佳的。倘若腫瘤內濃度之連續狀態對應於劑量為已知的,則可將此資訊饋入該核心模型的效率參數分佈中。吾人正積極地尋找,決定抗體之最適劑量隨著其等之生物分佈以及生物物理學因素改變之問題。此等問題目前可能無法解決,但若有的話,可將資訊從此現象之複雜模型饋入該核心模型中。
雖然以上之說明描述簡單的二種藥物、四種狀態模型,但可實行更複雜的模型。例如,典型的模型可能包括高達1000個實驗以及經核准的抗癌藥物。於此情況
下,至少概念上狀態空間的尺寸可能非常的大(如,21000)。狀態空間之尺寸可用各種技術縮小,例如,預選擇該等劑之亞組或建立該等劑之種類之模型。即使具有大量的選擇試劑,但以上之方法可用於比較特別治療法,且在最佳化的方法中可用於反復地搜尋最佳的治療法,例如,藉由反復精細的方法。
在一些範例中,可使用癌腫瘤生長之其它模型,諸如Norton-Simon所述之模型。
在以上說明書中,個人化策略性癌症治療法係以治療人類個體之情況作說明。應知道,任何其它經歷不正常細胞生長之有機體(例如,諸如狗、爬蟲類等等)均可為以上所述方法之個體。
在一些範例中,在病人衍生而來之生物材料(如,腫瘤組織檢體)上進行活體外實驗,以便決定預期生長以及多種細胞狀態間之轉變之表述。在其它範例中,在腫瘤組織檢體、細胞株或其它生物材料上進行試管中或活體內實驗,以便決定預期生長以及多種細胞狀態間之轉變之表述。
在此說明書中所述之技術以及所有的功能操作可在數位電子電路中或電腦硬體、韌體、軟體或其等之組合中實行。該系統可以電腦程式產品之形式實行,即具體包埋在資訊載體中,如,電腦可讀的貯存元件或傳播訊號,由數據處理裝置(如可編程處理器、電腦或多部電腦)執行,
或控制操作數據處理裝置。電腦程式可以任何形式之程式語言書寫,包括編輯式或解釋式語言,且其可以任何形式部署,包括獨立程式或模組、組件、子程式或其它適合用於電腦計算環境之單元。電腦程式可佈局成在一個電腦,或在一個位置或分佈多個位置且由通訊網路互連之多個電腦上執行。
在一些範例中,該實行可為至少部分地集中式的,如此有關個體組織檢體之資訊可被提供至中央計算資源(如,遠程電腦),然後提供治療法作為回報。於一些實行中,檢體之處理係自動化的和/或檢體之分析結果自動提供結電腦資源,然後提供治療法(如,試劑以及劑量)給臨床醫師作為回報。
該系統之方法步驟可由一或多個程式化處理器進行,其操作輸入數據執行電腦程式,完成該系統之功能,然後產生輸出。方法步驟亦可藉由特定目的的邏輯電路完成,以及系統裝置可以特定目的的邏輯電路之形式實行。
適合執行電腦程式之處理器包括,例如,一般以及特別目的微處理二者,以及一或多種具任一種數位電腦之處理器。概略而言,處理器會接受從唯讀記憶體或隨機存取記憶體或二者而來之指令以及數據。電腦之基本元素係用於執行指令之處理器以及一或多種用於貯存指令以及數據之記憶元件。概略而言,電腦亦包括,或操作偶合至接受從一或多種用於貯存數據之主貯存元件而來之數據,或將數據傳送至一或多種用於貯存數據之主貯存元
件,如,磁碟、磁光碟或光碟片,或二者。適合包埋電腦程式指令以及數據之資訊載體包括全部形式的非揮發性記憶體,包括例如半導體記憶元件,如EPROM、EEPROM以及快閃記憶元件;磁碟,如內部硬碟或可移動磁盤;磁光碟;以及CD-ROM以及DVD-ROM碟片。處理器以及記憶體可由特別目的邏輯電路補充或併入特別目的邏輯電路。
為提供與使用者之互動,系統可在具有顯示元件CRT(陰極射線管)或LCD(液晶顯示器)顯示器之電腦上實行,用於顯示資訊給使用者,以及具有鍵盤以及指示元件,如滑鼠或軌跡球,藉此使用者可輸入至電腦。其它類的元件亦可用於提供與使用者之互動;例如,提供給使用者之返饋的信息可為任何感覺反饋形式,如視覺反饋、聽覺反饋或觸覺反饋;以及可以任何形式接收從使用者而來之輸入,包括聽覺、口語或觸覺輸入。與使用者之互動不必一定是直接的。系統可用應用程式界面實行,容許與該系統交換輸入數據以及輸出數據之替代工具。
另外技術詳情、範例、具體例和/或實驗結果可在“Impact of genetic dynamics and single-cell heterogeneity on development of nonstandard personalized medicine strategies for cancer,”Robert A.Beckman,et al.,Proc.National Academy of Science of the U.S.A.2012 Sep.4;109(36):14586-91中找到,其在此併入本案以為參考,包括有關由National Academy of Science(如,透過http://www.pnas.org/content/109/36/14586/suppl/DCSupplem
ental)公開可得之文件之補充資訊。
應了解,前面之說明係用於例示用,不應限制本發明之範疇,其範疇係由所附之申請專利範圍界定。其它具體例落在下列申請專利範圍之範疇內。
100‧‧‧系統
102、106、110、114‧‧‧步驟
104、108、112、116‧‧‧方塊
Claims (19)
- 一種使用基因演變動態來選擇治療法之電腦實施之方法,其包含:接受至少部分根據一個體的癌症之測量而特徵化該癌症之數種細胞狀態之數個群體的數據,該數種細胞狀態係依照其等對不同治療劑組合之反應定義的,該數種細胞狀態具有一總群體,而該等細胞狀態包括一其細胞狀態為最大的群體的第一細胞狀態;接受數種治療選擇策略中各種之說明,各治療選擇策略係表示計畫一欲導入至該個體的多個治療劑之順序及時間的計畫方法,其中至少一些治療選擇策略係在沒有標靶該第一細胞狀態或該數種細胞狀態的總群體之情況下,標靶非該第一細胞狀態之細胞狀態;使用一經電腦實行的程序,根據下述數據,決定與使用該數種治療選擇策略中每一個之個體之預測死亡率相關的預測效用,該數據在引入不同的治療劑下特徵化該數種細胞狀態之預期生長以及該數種細胞狀態間之轉變之數據,且包括特徵化該數種細胞狀態之群體的基因演變之計算數據;以及根據該預測效用選擇治療選擇策略。
- 如申請專利範圍第1項之方法,其中該特徵化該數種細胞狀態之群體之數據係額外根據與未檢測目前細胞狀態或未來細胞狀態相關之機率資訊。
- 如申請專利範圍第1項之方法,其中該特徵化該數種細 胞狀態之群體之數據係額外地根據位在組織檢體、體液檢體以及分子影像之至少一種中之數種細胞狀態之群體的測量。
- 如申請專利範圍第3項之方法,其中測量數種細胞狀態之群體包括使用分子測量技術。
- 如申請專利範圍第4項之方法,其中使用該分子測量技術包括使用聚合酶鏈反應技術。
- 如申請專利範圍第1項之方法,其中該決定進一步包括根據該數種細胞狀態所測量的群體大小以及該數種細胞狀態所推論的群體大小,評估該數種細胞狀態中各群體之大小。
- 如申請專利範圍第1項之方法,其中該特徵化數種細胞狀態之預期生長以及數種細胞狀態間之轉變之數據,包括由試管中和/或活體內實驗測定之數據。
- 如申請專利範圍第1項之方法,其中該特徵化數種狀態之預期生長以及數種狀態間之轉變之數據,包括由在病人而來之生物材料上進行活體外實驗測定之資訊。
- 如申請專利範圍第1項之方法,其中計算該特徵化群體之演變之數據,包括使用數值模擬方法。
- 如申請專利範圍第1項之方法,其中各治療選擇策略表示欲導入至該個體之該等治療劑的順序、時間及劑量之選擇。
- 如申請專利範圍第1項之方法,其中決定該數種治療選擇策略中每一個之預測效用包括預測處於符合多重藥物 抗性之細胞狀態之群體的存在或演變之可能性。
- 如申請專利範圍第1項之方法,其中決定該數種治療選擇策略中每一個之該預測效用包括評估用於細胞表型狀態之連結模型,該模型包含數種分子狀態以在導入不同的治療劑下特徵化該細胞狀態之預期生長速率。
- 如申請專利範圍第1項之方法,其中決定該預測效用係額外基於生長及轉變參數之概率分佈以及該等細胞狀態之起始群體。
- 一種用於選擇治療法的軟體,其中該軟體係貯存在非暫時性電腦可讀取紀錄媒體上,且包含用於使數據處理系統發生下列之指令:接受至少部分根據個體的癌症之測量而特徵化該癌症之數種細胞狀態之數個群體的數據,該數種細胞狀態係依照其等對不同治療劑組合之反應定義的,該數種細胞狀態具有一總群體,而該等細胞狀態包括一其細胞狀態為最大的群體的第一細胞狀態;接受數種治療選擇策略中各種之說明,各治療選擇策略係表示計畫一欲導入至該個體的多個治療劑之順序及時間的計畫方法,其中至少一些治療選擇策略係在沒有標靶該第一細胞狀態或該數種細胞狀態的總群體之情況下,標靶非該第一細胞狀態之細胞狀態;根據下述數據,決定與使用該數種治療選擇策略中每一個之個體之預測死亡率相關的預測效用,該數據在引入不同的治療劑下特徵化該數種細胞狀態之預期生 長以及該數種細胞狀態間之轉變之數據,且包括特徵化該數種細胞狀態之群體的基因演變之計算數據;以及根據該預測效用選擇治療選擇策略。
- 一種治療法選擇系統,其包含:一輸入,用於接受至少部分根據個體的癌症之測量而特徵化該癌症之數種細胞狀態之數個群體的數據,該數種細胞狀態係依照其等對不同治療劑組合之反應定義的,該數種細胞狀態具有一總群體,而該等細胞狀態包括一其細胞狀態為最大的群體的第一細胞狀態;一數據貯存,用於容納數種治療選擇策略中各種之說明,各治療選擇策略係表示計畫一欲導入至該個體的多個治療劑之經選擇之順序及時間的計畫方法,其中至少一些治療選擇策略係在沒有標靶該第一細胞狀態或該數種細胞狀態的總群體之情況下,標靶非該第一細胞狀態之細胞狀態;以及一電腦模組,裝配用於根據下述數據,決定與使用該數種治療選擇策略中每一個之個體之預測死亡率相關的預測效用,該數據在引入不同的治療劑下特徵化該數種細胞狀態之預期生長以及該數種細胞狀態間之轉變之數據,且包括特徵化該數種細胞狀態之群體的基因演變之計算數據;以及根據該預測效用選擇治療選擇策略。
- 如申請專利範圍第15項之治療法選擇系統,其進一步包含一該電腦模組可取得之資料庫,用於提供特徵化治療 劑對該數種細胞狀態之效用之數據。
- 如申請專利範圍第16項之治療法選擇系統,其中該資料庫進一步用於提供該數種細胞狀態之生長以及死亡率,以及此等狀態間之轉變率。
- 如申請專利範圍第15項之治療法選擇系統,其進一步包含一該電腦模組可取得之資料庫,用於提供特徵化下列之數據:遺傳性狀態以及暫時功能狀態間之關係,以及被給定一特定遺傳性狀態之指定暫時功能狀態之機率。
- 如申請專利範圍第15項之治療法選擇系統,其進一步包含一該電腦模組可取得之資料庫,用於特徵化藥物濃度隨著劑量改變之生物分佈模式。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161558902P | 2011-11-11 | 2011-11-11 | |
US201161566396P | 2011-12-02 | 2011-12-02 | |
US201261678790P | 2012-08-02 | 2012-08-02 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201327246A TW201327246A (zh) | 2013-07-01 |
TWI541673B true TWI541673B (zh) | 2016-07-11 |
Family
ID=47279038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101141792A TWI541673B (zh) | 2011-11-11 | 2012-11-09 | 使用基因演變動態來選擇治療法的電腦實施之方法、軟體及治療法選擇系統 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20130124163A1 (zh) |
EP (1) | EP2776959B1 (zh) |
JP (1) | JP6209521B2 (zh) |
HK (1) | HK1201605A1 (zh) |
TW (1) | TWI541673B (zh) |
WO (1) | WO2013071012A2 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103974999B (zh) | 2011-10-07 | 2016-01-20 | 树脂核动力工业有限公司 | 通过真实迈克尔加成反应可交联的可交联组合物以及用于该组合物的树脂 |
DK2984133T3 (en) | 2013-04-08 | 2018-05-28 | Allnex Netherlands Bv | COMPOSITION THAT CAN BE CIRCULATED BY REAL MICHAEL ADDITION (RMA) REACTION |
CN107660227B (zh) | 2015-04-17 | 2021-07-16 | 欧尼克斯荷兰有限公司 | 地板涂料组合物 |
CN107683312B (zh) | 2015-04-17 | 2020-12-08 | 欧尼克斯荷兰有限公司 | 用于改善rma可交联涂料组合物的粘附性的改进的环氧底漆 |
EP3283588A1 (en) | 2015-04-17 | 2018-02-21 | Allnex Netherlands B.V. | A method for curing a rma crosslinkable resin coating, rma crosslinkable compositions and resins for use therein |
US10767074B2 (en) | 2015-04-17 | 2020-09-08 | Allnex Netherlands B.V. | Process for the manufacture of a crosslinkable composition |
AU2016339022B2 (en) | 2015-10-12 | 2020-09-10 | Nantomics, Llc | Iterative discovery of neoepitopes and adaptive immunotherapy and methods therefor |
EP3542859A1 (en) | 2018-03-20 | 2019-09-25 | Koninklijke Philips N.V. | Determining a medical imaging schedule |
WO2020146356A1 (en) * | 2019-01-07 | 2020-07-16 | President And Fellows Of Harvard College | Machine learning techniques for determining therapeutic agent dosages |
CN110428905B (zh) * | 2019-07-02 | 2022-03-29 | 江南大学附属医院 | 一种肿瘤生长趋势预测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2726175A1 (en) * | 2008-05-27 | 2009-12-23 | Memorial Sloan-Kettering Cancer Center | Models for combinatorial perturbations of living biological systems |
-
2012
- 2012-11-09 WO PCT/US2012/064298 patent/WO2013071012A2/en active Application Filing
- 2012-11-09 US US13/672,886 patent/US20130124163A1/en not_active Abandoned
- 2012-11-09 TW TW101141792A patent/TWI541673B/zh active
- 2012-11-09 EP EP12795177.0A patent/EP2776959B1/en active Active
- 2012-11-09 JP JP2014541294A patent/JP6209521B2/ja active Active
-
2015
- 2015-02-26 HK HK15101928.8A patent/HK1201605A1/zh unknown
-
2016
- 2016-11-10 US US15/347,899 patent/US20170185728A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
HK1201605A1 (zh) | 2015-09-04 |
JP2014533948A (ja) | 2014-12-18 |
US20130124163A1 (en) | 2013-05-16 |
JP6209521B2 (ja) | 2017-10-04 |
WO2013071012A3 (en) | 2013-12-12 |
US20170185728A1 (en) | 2017-06-29 |
EP2776959B1 (en) | 2021-08-11 |
EP2776959A2 (en) | 2014-09-17 |
WO2013071012A2 (en) | 2013-05-16 |
TW201327246A (zh) | 2013-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI541673B (zh) | 使用基因演變動態來選擇治療法的電腦實施之方法、軟體及治療法選擇系統 | |
Acar et al. | Exploiting evolutionary steering to induce collateral drug sensitivity in cancer | |
Lesko | Personalized medicine: elusive dream or imminent reality? | |
Gendelman et al. | Bayesian network inference modeling identifies TRIB1 as a novel regulator of cell-cycle progression and survival in cancer cells | |
Mendelsohn | Personalizing oncology: perspectives and prospects | |
Bansal et al. | A community computational challenge to predict the activity of pairs of compounds | |
McGrail et al. | Improved prediction of PARP inhibitor response and identification of synergizing agents through use of a novel gene expression signature generation algorithm | |
Laganà et al. | Precision medicine for relapsed multiple myeloma on the basis of an integrative multiomics approach | |
Cho et al. | Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth | |
Santos et al. | Integration of genomics in cancer care | |
Mazzocco et al. | Prediction of response to temozolomide in low‐grade glioma patients based on tumor size dynamics and genetic characteristics | |
Beckman et al. | How should cancer models be constructed? | |
Szczurek et al. | Synthetic sickness or lethality points at candidate combination therapy targets in glioblastoma | |
Vazquez | Optimization of personalized therapies for anticancer treatment | |
Matlak et al. | Epistasis in genomic and survival data of cancer patients | |
Cárdenas et al. | Model-informed experimental design recommendations for distinguishing intrinsic and acquired targeted therapeutic resistance in head and neck cancer | |
McDonald et al. | Computational approaches to modelling and optimizing cancer treatment | |
Carlson et al. | Impact of mutations in homologous recombination repair genes on treatment outcomes for metastatic castration resistant prostate cancer | |
Alessi et al. | Impact of TMB/PD-L1 expression and pneumonitis on chemoradiation and durvalumab response in stage III NSCLC | |
Yeang et al. | Long range personalized cancer treatment strategies incorporating evolutionary dynamics | |
Swanton et al. | From genomic landscapes to personalized cancer management—is there a roadmap? | |
Morris et al. | Identifying the spatial and temporal dynamics of molecularly-distinct glioblastoma sub-populations | |
Aytes et al. | Cross-species analysis of genome-wide regulatory networks identifies a synergistic interaction between FOXM1 and CENPF that drives prostate cancer malignancy | |
Wang et al. | An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies | |
Gardner et al. | New tools for cancer chemotherapy: computational assistance for tailoring treatments |