TWI540933B - Light emitting diode drive circuit - Google Patents

Light emitting diode drive circuit Download PDF

Info

Publication number
TWI540933B
TWI540933B TW102134130A TW102134130A TWI540933B TW I540933 B TWI540933 B TW I540933B TW 102134130 A TW102134130 A TW 102134130A TW 102134130 A TW102134130 A TW 102134130A TW I540933 B TWI540933 B TW I540933B
Authority
TW
Taiwan
Prior art keywords
signal
voltage
switching element
circuit
current
Prior art date
Application number
TW102134130A
Other languages
Chinese (zh)
Other versions
TW201513723A (en
Inventor
Yan Cun Li
Jui Chi Chang
Original Assignee
Macroblock Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macroblock Inc filed Critical Macroblock Inc
Priority to TW102134130A priority Critical patent/TWI540933B/en
Priority to CN201410399846.7A priority patent/CN104470054B/en
Publication of TW201513723A publication Critical patent/TW201513723A/en
Application granted granted Critical
Publication of TWI540933B publication Critical patent/TWI540933B/en

Links

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)

Description

發光二極體驅動電路 Light-emitting diode driving circuit

本發明是有關於一種驅動電路,特別是指一種具有波谷切換功效之發光二極體驅動電路。 The invention relates to a driving circuit, in particular to a light emitting diode driving circuit with valley switching effect.

發光二極體為一種使用低電壓直流驅動的元件,一般在通用照明(General Lighting)的應用上,常常會搭配使用切換式轉換器(Switching Converter)作為其驅動電路。 A light-emitting diode is a component that uses a low-voltage DC drive. Generally, in general lighting applications, a switching converter (Switching Converter) is often used as its driving circuit.

參閱圖1、圖2及圖3,一般切換式轉換器如圖1所示的降壓式轉換器(Buck Converter)、如圖2所示的降升壓式轉換器(Buck-Boost Converter),及如圖3所示的反馳式轉換器(Flyback Converter)中,皆是利用開關元件11切換以達到調節輸出電壓/電流的效果,然而,在開關元件11切換的瞬間,會產生切換損失(Switching Loss)及電磁干擾(Electromagnetic Interference,簡寫為EMI)等問題。 Referring to FIG. 1, FIG. 2 and FIG. 3, a general switching converter is shown in FIG. 1 as a buck converter (Buck Converter), and as shown in FIG. 2, a Buck-Boost Converter. And in the flyback converter shown in FIG. 3, the switching element 11 is switched to achieve the effect of adjusting the output voltage/current. However, at the moment when the switching element 11 is switched, switching loss occurs ( Switching Loss) and Electromagnetic Interference (EMI).

近年來在降低切換損失及電磁干擾的研究中,準諧振(Quasi-Resonant)及波谷切換(Valley Switching)技術被廣泛研究與使用,此技術是利用開關元件11兩端電壓會因寄生元件而諧振的特性,藉由觀測開關元件11兩端的電壓,並在開關元件11兩端電壓位於諧振的波谷時做切換, 由於開關元件11兩端電壓在波谷時意味著開關元件11兩端的電壓差為低電壓甚至零電壓,因此可以降低切換時產生的耗損,再者,切換瞬間之電壓變化率(dv/dt)也較小,故電磁干擾的訊號強度也同時被降低。 In recent years, in the study of reducing switching loss and electromagnetic interference, Quasi-Resonant and Valley Switching technologies have been widely studied and used. This technique uses the voltage across the switching element 11 to resonate due to parasitic elements. The characteristic is obtained by observing the voltage across the switching element 11 and switching when the voltage across the switching element 11 is at the valley of the resonance, Since the voltage across the switching element 11 is in the valley, it means that the voltage difference across the switching element 11 is a low voltage or even a zero voltage, so that the loss generated during switching can be reduced, and the voltage change rate (dv/dt) at the switching instant is also Smaller, so the signal strength of electromagnetic interference is also reduced.

目前大部分的準諧振及波谷切換技術中,為了偵測該開關元件11兩端的電壓,必須增設一輔助繞組12及兩個分壓電阻13,並藉由一控制電路14測量該等分壓電阻13連接點的觀測電壓V AUX 再與一預定電壓作比較,以得知開關元件11兩端的電壓是否位於波谷。 In most of the quasi-resonant and valley switching techniques, in order to detect the voltage across the switching element 11, an auxiliary winding 12 and two voltage dividing resistors 13 must be added, and the voltage dividing resistors are measured by a control circuit 14. The observed voltage V AUX of the 13 connection point is then compared with a predetermined voltage to know whether the voltage across the switching element 11 is in the valley.

參閱圖3及圖4,圖4所示為圖3的反馳式轉換器電路所對應正電壓比較法的切換波形示意圖,其中,V gs 為該開關元件11的閘極-源極電壓、V ds為該開關元件11的汲極-源極電壓、V ref 為預定電壓、Valley為觀測電壓V AUX 與該預定電壓V ref 的比較輸出結果、Set為訊號Valley的正緣觸發訊號,用以提供做為控制該開關元件11使用、t dis 為與該開關元件11串接之電感L的電流從峰值放電到零的時間,t on 為該開關元件11導通時間,t off 為該開關元件11不導通時間。 Referring to FIG. 3 and FIG. 4, FIG. 4 is a schematic diagram showing switching waveforms of a positive voltage comparison method corresponding to the flyback converter circuit of FIG. 3, wherein V gs is the gate-source voltage of the switching element 11, V. Ds is the drain-source voltage of the switching element 11, V ref is a predetermined voltage, Valley is the comparison output of the observed voltage V AUX and the predetermined voltage V ref , and Set is the positive edge trigger signal of the signal Valley for providing As a time for controlling the switching element 11 to be used, t dis is the current of the inductance L connected in series with the switching element 11 from the peak discharge to zero, t on is the on- time of the switching element 11, and t off is the switching element 11 On time.

由圖4中可見,由於該觀測電壓V AUX 的波谷點位置為變數,因此預先設定的該預定電壓V ref 無法良好地追隨該觀測電壓V AUX 的波谷點,而只能在諧振的下半週期作切換,無法達到絕對波谷切換。 As can be seen from FIG. 4, since the position of the valley point of the observed voltage V AUX is a variable, the predetermined predetermined voltage V ref cannot follow the valley point of the observed voltage V AUX well , but only in the second half of the resonance. Switching, you cannot achieve absolute valley switching.

參閱圖3及圖5,圖5所示為圖3的反馳式轉換器電路所對應負電壓比較法的切換波形示意圖,由圖5中可見,該預定電壓V ref 仍然無法良好地追隨該觀測電壓V AUX 的 波谷點,無法達到絕對波谷切換。 Referring to FIG. 3 and FIG. 5, FIG. 5 is a schematic diagram showing switching waveforms of the negative voltage comparison method corresponding to the flyback converter circuit of FIG. 3. As can be seen from FIG. 5, the predetermined voltage V ref still cannot follow the observation well. The valley point of the voltage V AUX cannot achieve absolute valley switching.

再者,由圖1、圖2、及圖3中可見,於習知技術中,為了偵測該觀測電壓V AUX 須增設該輔助繞組12及該等分壓電阻13,並在控制電路14上也增加一個對應的腳位才能接收該觀測電壓V AUX 以進行後續比較,如此會增加系統電路元件數並導致成本較高。 Furthermore, as can be seen from FIG. 1 , FIG. 2 and FIG. 3 , in the prior art, the auxiliary winding 12 and the voltage dividing resistor 13 have to be added to detect the observed voltage V AUX and are on the control circuit 14 . A corresponding pin is also added to receive the observed voltage V AUX for subsequent comparisons, which increases the number of system circuit components and results in higher costs.

因此,本發明之目的,即在提供一種具有波谷切換功效之發光二極體驅動電路。 Accordingly, it is an object of the present invention to provide a light emitting diode driving circuit having a valley switching effect.

於是,本發明發光二極體驅動電路,適用於驅動複數發光二極體,該發光二極體驅動電路包含一轉換電路及一控制電路。 Therefore, the LED driving circuit of the present invention is suitable for driving a plurality of LEDs, and the LED driving circuit comprises a conversion circuit and a control circuit.

該轉換電路接收一電源訊號以提供一輸出電流驅動該等發光二極體,且包括一開關元件、一電流偵測元件,及一電感。 The conversion circuit receives a power signal to provide an output current to drive the light emitting diodes, and includes a switching element, a current detecting element, and an inductor.

該開關元件具有一第一端、一第二端,及一接收一控制訊號的控制端,受該控制訊號控制而於導通與截止間切換。 The switching element has a first end, a second end, and a control end receiving a control signal, controlled by the control signal to switch between on and off.

該電流偵測元件電連接該開關元件並藉由偵測一相關於該開關元件兩端電壓的諧振電流以輸出一諧振訊號。 The current detecting component is electrically connected to the switching component and outputs a resonant signal by detecting a resonant current related to a voltage across the switching component.

該電感電連接該開關元件。 The inductor is electrically connected to the switching element.

該控制電路分別電連接該電流偵測元件、該開關元件的控制端,接收該諧振訊號並根據該諧振訊號判斷 該開關元件兩端電壓的波谷點,並根據該開關元件兩端電壓的波谷點輸出該控制訊號以控制該開關元件切換。 The control circuit is electrically connected to the current detecting component and the control end of the switching component, and receives the resonant signal and determines according to the resonant signal The valley point of the voltage across the switching element, and the control signal is output according to the valley point of the voltage across the switching element to control the switching of the switching element.

本發明之功效在於:應用諧振電路理論中諧振電流與電壓的相位差為90度之原理,藉由設置該電流偵測元件偵測該諧振電流並輸出該諧振訊號供該控制電路判斷該開關元件兩端電壓的波谷點來控制該開關元件切換,能達到絕對波谷切換而降低切換時產生的耗損及電磁干擾的訊號強度。 The effect of the invention is: applying the principle that the phase difference between the resonant current and the voltage in the resonant circuit theory is 90 degrees, detecting the resonant current by setting the current detecting component and outputting the resonant signal for the control circuit to judge the switching component The valley point of the voltage at both ends controls the switching of the switching elements, and can achieve absolute valley switching and reduce the signal intensity of the loss and electromagnetic interference generated during switching.

2‧‧‧電源電路 2‧‧‧Power circuit

Vac‧‧‧交流電源 Vac‧‧‧AC power supply

201‧‧‧交流電源之第一端 201‧‧‧The first end of the AC power supply

202‧‧‧交流電源之第二端 202‧‧‧The second end of the AC power supply

21‧‧‧電磁干擾濾波模組 21‧‧‧Electromagnetic interference filter module

Cf‧‧‧電磁干擾濾波電容 Cf‧‧‧Electromagnetic interference filter capacitor

Lf‧‧‧電磁干擾濾波電感 Lf‧‧‧electromagnetic interference filter inductor

22‧‧‧橋式整流模組 22‧‧‧Bridge rectifier module

D1‧‧‧第一二極體 D1‧‧‧First Diode

D2‧‧‧第二二極體 D2‧‧‧ second diode

D3‧‧‧第三二極體 D3‧‧‧ third diode

D4‧‧‧第四二極體 D4‧‧‧ fourth diode

C1‧‧‧濾波電容 C1‧‧‧Filter Capacitor

3‧‧‧轉換電路 3‧‧‧Transition circuit

Q1‧‧‧開關元件 Q1‧‧‧Switching elements

L‧‧‧電感 L‧‧‧Inductance

Do‧‧‧飛輪二極體 Do‧‧‧Flywheel diode

Co‧‧‧輸出電容 Co‧‧‧ output capacitor

Rcs‧‧‧電流偵測元件 Rcs‧‧‧ current detecting component

4‧‧‧控制電路 4‧‧‧Control circuit

CS‧‧‧迴授偵測端 CS‧‧‧Responding to the detection side

VSS‧‧‧控制電路接地端 VSS‧‧‧Control circuit ground

VDD‧‧‧控制電路之電源端 VDD‧‧‧ power supply terminal

GATE‧‧‧開關控制端 GATE‧‧ switch control terminal

COMP‧‧‧相位補償端 COMP‧‧‧ phase compensation end

41‧‧‧波谷偵測模組 41‧‧‧ Valley Detection Module

411‧‧‧放大器 411‧‧‧Amplifier

412‧‧‧比較器 412‧‧‧ Comparator

413‧‧‧單穩態正反器 413‧‧‧monostable flip-flop

42‧‧‧切換控制模組 42‧‧‧Switching control module

V ref ‧‧‧預定電壓 V ref ‧‧‧predetermined voltage

Set‧‧‧觸發訊號 Set‧‧‧ trigger signal

Valley‧‧‧波谷訊號 Valley‧‧‧Valley Signal

Vss‧‧‧控制電路接地電壓 Vss‧‧‧Control circuit ground voltage

i L ‧‧‧電感電流 i L ‧‧‧Inductor current

9‧‧‧發光二極體 9‧‧‧Lighting diode

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一電路示意圖,說明習知一種採用降壓式轉換器的發光二極體驅動電路;圖2是一電路示意圖,說明習知一種採用降升壓式轉換器的發光二極體驅動電路;圖3是一電路示意圖,說明習知一種採用返馳式轉換器的發光二極體驅動電路;圖4是習知採用返馳式轉換器的發光二極體驅動電路的一切換波形示意圖;圖5是習知採用返馳式轉換器的發光二極體驅動電路的另一切換波形示意圖;圖6是本發明發光二極體驅動電路之一第一較佳實施例的電路示意圖;圖7是該第一較佳實施例的一波谷偵測模組的電路示意 圖;圖8是該第一較佳實施例的一切換波形示意圖;圖9是本發明發光二極體驅動電路之一第二較佳實施例的電路示意圖;及圖10是該第二較佳實施例的一切換波形示意圖。 Other features and effects of the present invention will be apparent from the following description of the drawings. FIG. 1 is a circuit diagram illustrating a conventional LED driving circuit using a buck converter; 2 is a circuit diagram illustrating a conventional LED driving circuit using a step-down converter; FIG. 3 is a circuit diagram illustrating a conventional LED driving circuit using a flyback converter; 4 is a schematic diagram of a switching waveform of a conventional LED driving circuit using a flyback converter; FIG. 5 is another switching waveform diagram of a conventional LED driving circuit using a flyback converter; 6 is a schematic circuit diagram of a first preferred embodiment of the LED driving circuit of the present invention; FIG. 7 is a circuit diagram of a trough detecting module of the first preferred embodiment. Figure 8 is a schematic diagram of a switching waveform of the first preferred embodiment; Figure 9 is a circuit diagram of a second preferred embodiment of the LED driving circuit of the present invention; and Figure 10 is the second preferred embodiment. A schematic diagram of a switching waveform of an embodiment.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖6與圖7,本發明發光二極體驅動電路之第一較佳實施例適用於驅動複數發光二極體9,該發光二極體驅動電路包含一電源電路2、一轉換電路3,及一控制電路4。 Referring to FIG. 6 and FIG. 7 , the first preferred embodiment of the LED driving circuit of the present invention is suitable for driving a plurality of LEDs 9 , wherein the LED driving circuit comprises a power circuit 2 and a conversion circuit 3 . And a control circuit 4.

該電源電路2接收一交流電源Vac以輸出一電源訊號,該交流電源Vac具有一第一端201及一第二端202,該電源電路2包括一電磁干擾濾波模組21、一橋式整流模組22,及一濾波電容C1。 The power circuit 2 receives an AC power supply Vac to output a power signal. The AC power supply Vac has a first end 201 and a second end 202. The power circuit 2 includes an electromagnetic interference filter module 21 and a bridge rectifier module. 22, and a filter capacitor C1.

該電磁干擾濾波模組21電連接於該交流電源Vac及該橋式整流模組22間,並包括一電磁干擾濾波電感Lf及二電磁干擾濾波電容Cf。 The electromagnetic interference filter module 21 is electrically connected between the AC power supply Vac and the bridge rectifier module 22, and includes an electromagnetic interference filter inductor Lf and two electromagnetic interference filter capacitors Cf.

該電磁干擾濾波電感Lf具有一電連接該交流電源Vac第一端201的第一端,及一第二端。 The electromagnetic interference filter inductor Lf has a first end electrically connected to the first end 201 of the AC power source Vac, and a second end.

該等電磁干擾濾波電容Cf分別電連接於該電磁干擾濾波電感Lf的第一端及第二端與該交流電源Vac第二端202間。 The electromagnetic interference filter capacitors Cf are electrically connected between the first end and the second end of the electromagnetic interference filter inductor Lf and the second end 202 of the AC power source Vac.

值得一提的是,由於電磁干擾濾波模組21具有多種實施態樣,本領域中具有相關知識者亦可依此變化,本實施例中的電路僅做為說明示意,並不以此為限。 It is to be noted that, as the EMI filter module 21 has various implementations, those skilled in the art may also change accordingly. The circuit in this embodiment is for illustrative purposes only and is not limited thereto. .

該橋式整流模組22具有一第一二極體D1、一第二二極體D2、一第三二極體D3,及一第四二極體D4。 The bridge rectifier module 22 has a first diode D1, a second diode D2, a third diode D3, and a fourth diode D4.

該第一二極體D1具有一電連接該電磁干擾濾波電感Lf的第二端的陽極端,及一電連接該轉換電路3且輸出該電源訊號的陰極端。 The first diode D1 has an anode end electrically connected to the second end of the electromagnetic interference filter inductor Lf, and a cathode end electrically connected to the conversion circuit 3 and outputting the power signal.

該第二二極體D2具有一電連接一接地端的陽極端,及一電連接該電磁干擾濾波電感Lf的第二端的陰極端。 The second diode D2 has an anode end electrically connected to a ground end, and a cathode end electrically connected to the second end of the electromagnetic interference filter inductor Lf.

該第三二極體D3具有一電連接該交流電源Vac的第二端202的陽極端,及一電連接該轉換電路3且輸出該電源訊號的陰極端。 The third diode D3 has an anode end electrically connected to the second end 202 of the AC power source Vac, and a cathode end electrically connected to the conversion circuit 3 and outputting the power signal.

該第四二極體D4具有一電連接該接地端的陽極端,及一電連接該交流電源Vac的第二端202的陰極端。 The fourth diode D4 has an anode end electrically connected to the ground end, and a cathode end electrically connected to the second end 202 of the alternating current power source Vac.

該濾波電容C1具有一輸出該電源訊號的第一端,及一電連接該接地端的第二端。 The filter capacitor C1 has a first end for outputting the power signal and a second end electrically connected to the ground.

該轉換電路3接收該電源訊號以提供一輸出電流驅動該等發光二極體9,且包括一開關元件Q1、一電流偵測元件Rcs、一電感L、一飛輪二極體Do,及一輸出電容Co。 The conversion circuit 3 receives the power signal to provide an output current to drive the light-emitting diodes 9, and includes a switching element Q1, a current detecting element Rcs, an inductor L, a flywheel diode Do, and an output. Capacitance Co.

於本實施例中,使用一應用浮動接地技術的降壓式轉換電路(Buck Converter)來作為說明,但凡切換式轉 換器(Switching Converter)皆可適用,並不限於應用浮動接地技術或降壓轉換電路。 In this embodiment, a buck converter circuit using a floating grounding technique is used as an explanation, but the switching mode is used. Switching Converter can be used, not limited to the application of floating grounding technology or buck conversion circuit.

該開關元件Q1具有一接收該電源訊號的第一端、一第二端,及一接收一控制訊號的控制端,受該控制訊號控制而於導通與截止間切換。 The switching element Q1 has a first end, a second end, and a control end receiving a control signal, and is controlled by the control signal to switch between on and off.

該電流偵測元件Rcs為一電阻元件,電連接該開關元件Q1的第二端,偵測一相關於該開關元件Q1兩端電壓的諧振電流,並轉換為一呈電壓的諧振訊號輸出。 The current detecting component Rcs is a resistive component electrically connected to the second end of the switching component Q1 to detect a resonant current related to the voltage across the switching component Q1 and converted into a resonant signal output that is a voltage.

該飛輪二極體Do具有一接地的陽極端,及一電連接該開關元件Q1第二端的陰極端。 The flywheel diode Do has a grounded anode end and a cathode end electrically connected to the second end of the switching element Q1.

該輸出電容Co具有一提供該輸出電流以驅動該等發光二極體9的第一端,及一接地的第二端。 The output capacitor Co has a first end that provides the output current to drive the light emitting diodes 9, and a grounded second end.

該電感L及該電流偵測元件Rcs串接於該輸出電容Co第一端及該飛輪二極體Do陰極端間,且該電感L及該電流偵測元件Rcs的連接點提供一浮動接地電壓Vss。 The inductor L and the current detecting component Rcs are connected in series between the first end of the output capacitor Co and the cathode end of the flywheel diode Do, and the connection point of the inductor L and the current detecting component Rcs provides a floating ground voltage. Vss.

該控制電路4分別電連接該開關元件Q1及該電流偵測元件Rcs的連接點、該電感L及該電流偵測元件Rcs的連接點、及該開關元件Q1的控制端,接收該浮動接地電壓Vss及該電流偵測元件Rcs輸出之諧振訊號,並根據該諧振訊號判斷該開關元件Q1兩端電壓的波谷點,及根據該開關元件Q1兩端電壓的波谷點輸出該控制訊號以控制該開關元件Q1切換,該控制電路4包括一電源端VDD、一開關控制端GATE、一迴授偵測端CS、一相位補償端COMP、 一控制電路接地端VSS、一波谷偵測模組41,及一切換控制模組42。 The control circuit 4 is electrically connected to the connection point of the switching element Q1 and the current detecting element Rcs, the connection point of the inductor L and the current detecting element Rcs, and the control end of the switching element Q1, and receives the floating ground voltage. Vss and the resonant signal outputted by the current detecting component Rcs, and determining a valley point of the voltage across the switching element Q1 according to the resonant signal, and outputting the control signal according to a valley point of the voltage across the switching element Q1 to control the switch The component Q1 is switched, and the control circuit 4 includes a power terminal VDD, a switch control terminal GATE, a feedback detection terminal CS, and a phase compensation terminal COMP. A control circuit ground VSS, a valley detecting module 41, and a switching control module 42.

該電源端VDD用以接收該控制電路4所需之電源。 The power terminal VDD is used to receive the power required by the control circuit 4.

該開關控制端GATE電連接該開關元件Q1的控制端且輸出該控制訊號。 The switch control terminal GATE is electrically connected to the control terminal of the switching element Q1 and outputs the control signal.

該迴授偵測端CS電連接該開關元件Q1及該電流偵測元件Rcs間的連接點,以接收該諧振訊號及接收對應於該電感L電流與該輸出電流之一迴授訊號。 The feedback detection terminal CS is electrically connected to the connection point between the switching element Q1 and the current detecting component Rcs to receive the resonant signal and receive a feedback signal corresponding to the inductor L current and the output current.

該相位補償端COMP用以補償該迴授訊號之相位,使系統穩定。 The phase compensation terminal COMP is used to compensate the phase of the feedback signal to stabilize the system.

該控制電路接地端VSS電連接該電感L與該電流偵測元件Rcs的連接點並接收一控制電路接地電壓Vss,於本實施例中,由於應用浮動接地技術,因此該控制電路接地電壓Vss即為電路中的浮動接地電壓。 The control circuit ground VSS is electrically connected to the connection point of the inductor L and the current detecting component Rcs and receives a control circuit ground voltage Vss. In this embodiment, the grounding voltage Vss of the control circuit is Is the floating ground voltage in the circuit.

該波谷偵測模組41電連接該迴授偵測端CS,接收該諧振訊號以判斷該開關元件Q1兩端電壓的波谷點,並輸出一相關於該開關元件Q1兩端電壓波谷點的判斷訊號,該波谷偵測模組41具有一放大器411、一比較器412及一單穩態正反器413。 The valley detection module 41 is electrically connected to the feedback detection terminal CS, receives the resonance signal to determine a valley point of the voltage across the switching element Q1, and outputs a judgment about a voltage valley point across the switching element Q1. The valley detecting module 41 has an amplifier 411, a comparator 412 and a monostable flip-flop 413.

該放大器411電連接該迴授偵測端CS,接收該諧振訊號並於放大後輸出。 The amplifier 411 is electrically connected to the feedback detection terminal CS, receives the resonance signal, and outputs after amplification.

該比較器412電連接該放大器411及一預定電壓V ref ,接收放大後的該諧振訊號並與該預定電壓V ref 作比較 以判斷該諧振訊號低於零的負半緣區間,並輸出一相關於比較結果的波谷訊號Valley。 The comparator 412 is electrically connected to the amplifier 411 and a predetermined voltage V ref , receives the amplified resonant signal and compares it with the predetermined voltage V ref to determine a negative half-edge interval of the resonant signal below zero, and outputs a correlation. In the comparison of the results of the valley signal Valley.

該單穩態正反器413電連接該比較器412,接收該波谷訊號Valley,並對該波谷訊號Valley作負緣觸發以判斷該諧振訊號之零交越點,並輸出該判斷訊號Set。 The one-shot flip-flop 413 is electrically connected to the comparator 412, receives the valley signal Valley, and triggers the valley signal Valley to determine the zero-crossing point of the resonant signal, and outputs the determination signal set.

該切換控制模組42電連接該波谷偵測模組41及該開關控制端GATE,接收該判斷訊號Set並根據該判斷訊號Set輸出該控制訊號。 The switching control module 42 is electrically connected to the valley detecting module 41 and the switch control terminal GATE, receives the determining signal set and outputs the control signal according to the determining signal set.

參閱圖6、圖7及圖8,由於該轉換電路3的降壓轉換為此業界所熟知,在此並不贅述。 Referring to FIG. 6, FIG. 7, and FIG. 8, since the buck conversion of the conversion circuit 3 is well known in the art, it will not be described herein.

圖8所示為圖6的降壓式轉換電路所對應的切換波形示意圖,其中,V gs 為該開關元件Q1的閘極-源極電壓、V ds為該開關元件Q1的汲極-源極電壓、該預定電壓V ref 於本實施例中設計為零準位、v cs 為該電流偵測元件Rcs的跨壓(即該迴授訊號及諧振訊號)、i L 為該電感L電流、該波谷訊號Valley為放大後的該電流偵測元件Rcs跨壓v cs 與該預定電壓V ref 的比較輸出結果、該判斷訊號Set為該波谷訊號Valley的負緣觸發訊號並用以提供做為控制該開關元件Q1使用、t dis 為電感L電流i L 從峰值放電到零的時間,t on 為該開關元件Q1導通時間,t off 為該開關元件Q1不導通時間,其中,由於該電流偵測元件Rcs與該電感L串聯,根據歐姆定律,該電流偵測元件Rcs的跨壓v cs 之波形與該電感L電流i L 的波形相當,即兩波形之相位相同,大小呈常數倍,因此於圖8中使用同一波形表示。 8 is a schematic diagram of switching waveforms corresponding to the buck converter circuit of FIG. 6, wherein V gs is the gate-source voltage of the switching element Q1, and V ds is the drain-source of the switching element Q1. The voltage, the predetermined voltage V ref is designed to be zero level in the embodiment, v cs is the voltage across the current detecting element Rcs (ie, the feedback signal and the resonant signal), i L is the inductor L current, The valley signal Valley is a comparison output of the amplified current detecting component Rcs across the voltage v cs and the predetermined voltage V ref , and the determining signal set is a negative edge triggering signal of the valley signal Valley and is used as a control for the switch. The component Q1 uses, t dis is the time when the inductor L current i L is discharged from the peak to zero, t on is the on- time of the switching element Q1, and t off is the non-conduction time of the switching element Q1, wherein the current detecting component Rcs in series with the inductor L, according to Ohm's law, the waveform of the voltage across the current detecting v cs Rcs element of the inductor current i L L quite waveform, i.e., the same phase of the two waveforms, the size was often several times, so in FIG. 8 Use the same waveform representation.

本發明主要是利用諧振電路理論中,諧振電流與電壓的相位差為90度的原理,由圖8中可見,該電感L電流i L 與該開關元件Q1的兩端跨壓(汲極-源極電壓V ds)震盪頻率相同,而相位差距90度,因此本發明藉由偵測該電感L電流i L 變化並判斷該電感L電流i L 的零交越點(Zero-crossings),即可間接偵測到該開關元件Q1的兩端跨壓V ds之波谷點。 The invention mainly utilizes the principle that the phase difference between the resonant current and the voltage is 90 degrees in the resonance circuit theory. As can be seen from FIG. 8, the inductor L current i L and the cross-over voltage of the switching element Q1 (dip-source) The pole voltage V ds ) has the same oscillation frequency and the phase difference is 90 degrees. Therefore, the present invention can detect the change of the inductor L current i L and determine the zero-crossing point of the inductor L current i L . The valley point of the voltage across the V ds across the switching element Q1 is indirectly detected.

如圖8中所示,當該開關元件Q1的閘極-源極電壓V gs 切換到低準位(即該開關元件Q1受控制而截止)時,該開關元件Q1的兩端跨壓V ds上升,並於該電感L電流i L 從峰值放電到零後開始震盪,該波谷偵測模組41偵測電流偵測元件Rcs的跨壓v cs (即相當於偵測該電感L電流i L 變化)並經由該比較器412與該預定電壓V ref (於本實施例中為零準位)作比較以判斷零交越點,再經由該單穩態正反器413作負緣觸發,即可輸出對應於該開關元件Q1兩端跨壓V ds之波谷點的判斷訊號Set以供該切換控制模組42調整輸出該控制訊號。 , When the gate of the switching element Q1 as shown in FIG. 8 - source voltage V gs is switched to the low level (i.e., the switching element Q1 is turned off by the control), both ends of the voltage across the switching element Q1 V ds Rising, and starting to oscillate after the inductor L current i L is discharged from the peak to the zero, the valley detecting module 41 detects the cross-voltage v cs of the current detecting component Rcs (ie, is equivalent to detecting the inductor L current i L And changing, by the comparator 412, the predetermined voltage V ref (zero level in this embodiment) to determine a zero crossing point, and then triggering via the monostable flip-flop 413 as a negative edge, ie A determination signal set corresponding to a valley point across the voltage V ds across the switching element Q1 may be output for the switching control module 42 to adjust the output of the control signal.

於本實施例中,以該開關元件Q1兩端跨壓V ds第三次波谷時將該開關元件Q1的閘極-源極電壓V gs 切換回復高準位為例,僅為說明本發明可以偵測及切換於任一波谷,可依實際需求而設計在第一波谷、第二波谷、...或其他波谷作切換,並不限於此。 In this embodiment, the gate-source voltage V gs of the switching element Q1 is switched back to a high level when the switching element Q1 crosses the voltage V ds across the third trough, for the purpose of illustrating the present invention. Detecting and switching to any trough can be designed to switch between the first trough, the second trough, ... or other troughs according to actual needs, and is not limited to this.

經由以上的說明,可將本實施例的優點歸納如下: Through the above description, the advantages of this embodiment can be summarized as follows:

一、本實施例應用諧振電路理論中,諧振電流與電壓的相位差為90度之原理,藉由偵測該電流偵測元件Rcs的跨壓v cs 得知該電感L電流i L 的波形,並藉由判斷該電感L電流i L 波形的零交越點而間接得知該開關元件Q1的兩端跨壓V ds之波谷點,由圖8中可看到,相較於習知技術,本實施例可準確地偵測到該開關元件Q1兩端跨壓V ds之波谷點,故能達到絕對波谷(低電壓甚至零電壓)切換而降低切換時產生的耗損,並降低電磁干擾的訊號強度。 First, the present embodiment is applied resonant circuit theory, the phase difference between current and voltage resonance is a schematic of 90 degrees, by detecting the voltage across the current detecting element v cs Rcs that the inductance L L of the waveform of the current i, And by determining the zero crossing point of the inductor L current i L waveform, the valley point of the cross-over voltage V ds of the switching element Q1 is indirectly known, as can be seen from FIG. 8 , compared with the prior art, In this embodiment, the valley point of the voltage across the V ds across the switching element Q1 can be accurately detected, so that the absolute valley (low voltage or even zero voltage) can be switched to reduce the loss generated during the switching and reduce the electromagnetic interference signal. strength.

二、本實施例透過電流偵測元件Rcs來間接判斷該開關元件Q1兩端跨壓之波谷點,並使用該控制電路4上原本作為迴授控制保護的迴授端點作為該迴授偵測端CS,相較於習知技術中必須增設輔助繞組、分壓電阻、控制電路4增加對應腳位,本實施例可大幅降低整體電路的元件數目及電路成本,且本實施例可應用於所有以切換式轉換器為基礎的發光二極體驅動電路,具有產業利用範圍廣大的優勢。 2. In this embodiment, the current detecting component Rcs is used to indirectly determine the valley point of the voltage across the switching element Q1, and the feedback terminal originally used as the feedback control protection on the control circuit 4 is used as the feedback detection. In the terminal CS, the auxiliary winding, the voltage dividing resistor, and the control circuit 4 are added in the prior art to increase the corresponding pin position. This embodiment can greatly reduce the component number and circuit cost of the overall circuit, and the embodiment can be applied to all The LED driver circuit based on the switching converter has a wide range of advantages in industrial utilization.

參閱圖7、圖9及圖10,為本發明發光二極體驅動電路的一第二較佳實施例,該第二較佳實施例是類似於該第一較佳實施例,該第二較佳實施例與該第一較佳實施例的差異在於:於本實施例中,使用一應用浮動接地技術的降升壓式轉換電路(Buck-boost Converter)來作為說明,但凡切換式轉換器(Switching Converter)皆可適用,並不限於應用浮動接地技術或降升壓式轉換電路。 Referring to FIG. 7, FIG. 9, and FIG. 10, a second preferred embodiment of the LED driving circuit of the present invention is similar to the first preferred embodiment. The difference between the preferred embodiment and the first preferred embodiment is that in the present embodiment, a buck-boost converter using a floating grounding technique is used as an illustration, but the switching converter ( Switching Converter) is applicable, not limited to the application of floating grounding technology or step-down converter circuit.

該電感L具有一電連接該開關元件Q1第二端的第一端,及一接地的第二端。 The inductor L has a first end electrically connected to the second end of the switching element Q1 and a second end connected to the ground.

該輸出電容Co具有一提供一輸出電流以驅動該等發光二極體9的第一端,及一電連接該飛輪二極體Do陽極端的第二端。 The output capacitor Co has a first end that provides an output current to drive the LEDs 9, and a second end that electrically connects the anode end of the flywheel diode Do.

該飛輪二極體Do及該電流偵測元件Rcs串接於該輸出電容Co第二端及該電感L第一端間,且該電流偵測元件Rcs及該電感L的連接點提供一浮動接地電壓Vss。 The flywheel diode Do and the current detecting component Rcs are connected in series between the second end of the output capacitor Co and the first end of the inductor L, and the connection point of the current detecting component Rcs and the inductor L provides a floating ground Voltage Vss.

由於該轉換電路3的降升壓轉換為此業界所熟知,在此並不贅述。 Since the step-down conversion of the conversion circuit 3 is well known in the art, it will not be described here.

圖10所示為圖9的降升壓式轉換器所對應的切換示意波形圖,其中,i Do 為該飛輪二極體Do電流,由於當開關元件Q1截止時,電感電流i L 流過該飛輪二極體Do,故此時i L =i Do 。由於該電流偵測元件Rcs與該飛輪二極體Do串聯,根據歐姆定律,該電流偵測元件Rcs的跨壓v cs 之波形將與該飛輪二極體Do電流i Do的波形相當,即該電流偵測元件Rcs的跨壓v cs 之波形於開關元件Q1截止時與電感電流i L 之波形相當,因此於圖10中使用同一波形表示。 10 is a schematic waveform diagram of switching corresponding to the step-down converter of FIG. 9, wherein i Do is the flywheel diode Do current, because when the switching element Q1 is turned off, the inductor current i L flows through the Flywheel diode Do, so i L = i Do at this time. Since the current detecting element Rcs the flywheel diode Do in series, according to Ohm's law, the current detecting element Rcs waveforms of the voltage across the v cs flywheel diode Do and the current waveform i D o rather, i.e. and the inductor current i L of the waveform rather, the use of same waveform is shown in FIG. 10 is a waveform of the voltage across the current detecting v cs Rcs element in the switching element Q1 is turned off.

由圖10中可見,該飛輪二極體Do電流i Do (相當於開關元件Q1截止時之電感電流i L )與該開關元件Q1的兩端跨壓V ds震盪頻率相同而相位差距90度,因此本發明藉由偵測該飛輪二極體Do電流i Do 變化並判斷該飛輪二極體Do電流i Do 的零交越點,即可間接偵測到該開關元件Q1的兩端跨壓V ds之波谷點。 As can be seen from FIG. 10, the flywheel diode Do current i Do (corresponding to the inductor current i L when the switching element Q1 is turned off) is the same as the oscillation frequency of the two ends of the switching element Q1 across the voltage V ds and the phase difference is 90 degrees. Therefore, the present invention can indirectly detect the cross-over voltage V of the switching element Q1 by detecting the change of the flywheel diode Do current i Do and determining the zero crossing point of the flywheel diode Do current i Do . Ds trough point.

如圖10中所示,當該開關元件Q1的閘極-源極電壓V gs 切換到低準位(即該開關元件Q1受控制而截止)時,該開關元件Q1的兩端跨壓V ds上升,並於該飛輪二極體Do電流i Do (相當於開關元件Q1截止時之電感電流i L )從峰值放電到零後開始震盪,該波谷偵測模組41偵測電流偵測元件Rcs的跨壓v cs (即相當於偵測該飛輪二極體Do電流i Do 變化)並判斷零交越點,即可輸出對應於該開關元件Q1兩端跨壓V ds之波谷點的判斷訊號Set以供該切換控制模組42調整輸出該控制訊號。 , When the gate of the switching element Q1 as shown in FIG. 10 - source voltage V gs is switched to the low level (i.e., the switching element Q1 is turned off by the control), both ends of the voltage across the switching element Q1 V ds Ascending, and the flywheel diode Do current i Do (corresponding to the inductor current i L when the switching element Q1 is turned off) starts to oscillate from the peak discharge to zero, and the valley detecting module 41 detects the current detecting component Rcs The cross-voltage v cs (that is, the detection of the flywheel diode Do current i Do change) and determine the zero crossing point, the output signal corresponding to the valley point of the cross-voltage V ds across the switching element Q1 can be outputted Set for the switching control module 42 to adjust the output of the control signal.

於本實施例中,以該開關元件Q1兩端跨壓V ds第三次波谷時將該開關元件Q1的閘極-源極電壓V gs 切換回復高準位為例,僅為說明本發明可以偵測及切換於任一波谷,可依實際需求而設計在第一波谷、第二波谷、...或其他波谷作切換,並不限於此。 In this embodiment, the gate-source voltage V gs of the switching element Q1 is switched back to a high level when the switching element Q1 crosses the voltage V ds across the third trough, for the purpose of illustrating the present invention. Detecting and switching to any trough can be designed to switch between the first trough, the second trough, ... or other troughs according to actual needs, and is not limited to this.

如此,該第二較佳實施例亦可達到與上述第一較佳實施例相同的目的與功效。 Thus, the second preferred embodiment can achieve the same purpose and effect as the first preferred embodiment described above.

綜上所述,本發明不僅可達到絕對波谷切換而降低切換時產生的耗損、降低電磁干擾的訊號強度,還可大幅降低整體電路的元件數目及電路成本、具有產業利用範圍廣大的優勢,故確實能達成本發明之目的。 In summary, the present invention can not only achieve absolute valley switching, but also reduce the loss generated during switching, reduce the signal strength of electromagnetic interference, and can greatly reduce the component number and circuit cost of the whole circuit, and has the advantages of industrial utilization. It is indeed possible to achieve the object of the invention.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

2‧‧‧電源電路 2‧‧‧Power circuit

Vac‧‧‧交流電源 Vac‧‧‧AC power supply

201‧‧‧交流電源之第一端 201‧‧‧The first end of the AC power supply

202‧‧‧交流電源之第二端 202‧‧‧The second end of the AC power supply

21‧‧‧電磁干擾濾波模組 21‧‧‧Electromagnetic interference filter module

Cf‧‧‧電磁干擾濾波電容 Cf‧‧‧Electromagnetic interference filter capacitor

Lf‧‧‧電磁干擾濾波電感 Lf‧‧‧electromagnetic interference filter inductor

22‧‧‧橋式整流模組 22‧‧‧Bridge rectifier module

D1‧‧‧第一二極體 D1‧‧‧First Diode

D2‧‧‧第二二極體 D2‧‧‧ second diode

D3‧‧‧第三二極體 D3‧‧‧ third diode

D4‧‧‧第四二極體 D4‧‧‧ fourth diode

C1‧‧‧濾波電容 C1‧‧‧Filter Capacitor

3‧‧‧轉換電路 3‧‧‧Transition circuit

Q1‧‧‧開關元件 Q1‧‧‧Switching elements

L‧‧‧電感 L‧‧‧Inductance

Do‧‧‧飛輪二極體 Do‧‧‧Flywheel diode

Co‧‧‧輸出電容 Co‧‧‧ output capacitor

Rcs‧‧‧電流偵測元件 Rcs‧‧‧ current detecting component

4‧‧‧控制電路 4‧‧‧Control circuit

CS‧‧‧迴授偵測端 CS‧‧‧Responding to the detection side

VSS‧‧‧控制電路接地端 VSS‧‧‧Control circuit ground

VDD‧‧‧控制電路之電源端 VDD‧‧‧ power supply terminal

GATE‧‧‧開關控制端 GATE‧‧ switch control terminal

COMP‧‧‧相位補償端 COMP‧‧‧ phase compensation end

41‧‧‧波谷偵測模組 41‧‧‧ Valley Detection Module

42‧‧‧切換控制模組 42‧‧‧Switching control module

Vss‧‧‧控制電路接地電壓 Vss‧‧‧Control circuit ground voltage

i L ‧‧‧電感電流 i L ‧‧‧Inductor current

9‧‧‧發光二極體 9‧‧‧Lighting diode

Claims (10)

一種發光二極體驅動電路,適用於驅動複數發光二極體,該發光二極體驅動電路包含:一轉換電路,接收一電源訊號以提供一輸出電流驅動該等發光二極體,且包括:一開關元件,具有一第一端、一第二端,及一接收一控制訊號的控制端,受該控制訊號控制而於導通與截止間切換,一電流偵測元件,電連接該開關元件並藉由偵測一相關於該開關元件兩端電壓的諧振電流以輸出一諧振訊號,及一電感,電連接該開關元件;及一控制電路,包括一開關控制端,電連接該開關元件的該控制端且輸出該控制訊號,一迴授偵測端,電連接該開關元件及該電流偵測元件間的連接點,以接收該諧振訊號及接收對應於該電感之電流與該輸出電流之一迴授訊號,及一控制電路接地端,電連接該電感與該電流偵測元件間的連接點,並接收一控制電路接地電壓;其中,該控制電路根據該諧振訊號判斷該開關元件兩端電壓的波谷點,並根據該開關元件兩端電壓的波谷點輸出該控制訊號以控制該開關元件切換。 An LED driving circuit is configured to drive a plurality of LEDs. The LED driving circuit includes: a conversion circuit that receives a power signal to provide an output current to drive the LEDs, and includes: a switching element having a first end, a second end, and a control end receiving a control signal, controlled by the control signal to switch between on and off, a current detecting component electrically connected to the switching component And electrically connecting the switching element by detecting a resonant current related to a voltage across the switching element to output a resonant signal, and an inductor; and a control circuit including a switch control end electrically connecting the switching element The control terminal outputs the control signal, and the feedback detection terminal electrically connects the connection point between the switching component and the current detecting component to receive the resonant signal and receive the current corresponding to the inductor and the output current a feedback signal, and a control circuit ground, electrically connecting a connection point between the inductor and the current detecting component, and receiving a control circuit ground voltage; wherein Analyzing valley point circuit voltage across the switching element based on the resonant signal, and outputs the control signal to control the switching element is switched according to the voltage across the valley point of the switching element. 如請求項1所述的發光二極體驅動電路,其中: 該電流偵測元件為電阻元件,偵測該諧振電流並轉換為呈電壓的諧振訊號輸出,該控制電路還包括:一波谷偵測模組,電連接該迴授偵測端,接收該諧振訊號以判斷該開關元件兩端電壓的波谷點,並輸出一相關於該開關元件兩端電壓波谷點的判斷訊號,及一切換控制模組,電連接該波谷偵測模組及該開關控制端,接收該判斷訊號並根據該判斷訊號輸出該控制訊號。 The illuminating diode driving circuit of claim 1, wherein: The current detecting component is a resistive component that detects the resonant current and converts it into a resonant signal output that is a voltage. The control circuit further includes: a valley detecting module electrically connected to the feedback detecting end to receive the resonant signal Determining a valley point of the voltage across the switching element, and outputting a determination signal related to a voltage valley point across the switching element, and a switching control module electrically connecting the valley detecting module and the switch control end, Receiving the determination signal and outputting the control signal according to the determination signal. 如請求項2所述的發光二極體驅動電路,其中,該波谷偵測模組具有:一比較器,電連接該迴授偵測端及一預定電壓,接收該諧振訊號並與該預定電壓作比較以判斷該諧振訊號之低於零的負半緣區間,並輸出一相關於比較結果的波谷訊號,及一單穩態正反器,電連接該比較器,接收該波谷訊號並根據該波谷訊號判斷該諧振訊號之零交越點,並輸出該判斷訊號。 The illuminating diode driving circuit of claim 2, wherein the valley detecting module has: a comparator electrically connected to the feedback detecting end and a predetermined voltage, receiving the resonant signal and the predetermined voltage Comparing to determine a negative half-edge interval of the resonant signal below zero, and outputting a valley signal related to the comparison result, and a monostable flip-flop, electrically connecting the comparator, receiving the valley signal and according to the The valley signal determines the zero crossing point of the resonant signal and outputs the determination signal. 如請求項3所述的發光二極體驅動電路,其中,該轉換電路為降壓式轉換器。 The illuminating diode driving circuit of claim 3, wherein the conversion circuit is a buck converter. 如請求項4所述的發光二極體驅動電路,其中,該轉換電路還包括一飛輪二極體及一輸出電容;該開關元件的第一端接收該電源訊號,該飛輪二極體具有一接地的陽極端,及一電連接該 開關元件第二端的陰極端,該輸出電容具有一提供該輸出電流以驅動該等發光二極體的第一端,及一接地的第二端,該電感及該電流偵測元件串接於該輸出電容第一端及該飛輪二極體陰極端間。 The illuminating diode driving circuit of claim 4, wherein the converting circuit further comprises a flywheel diode and an output capacitor; the first end of the switching component receives the power signal, and the flywheel diode has a Grounded anode end, and an electrical connection a cathode end of the second end of the switching element, the output capacitor has a first end for providing the output current to drive the light emitting diodes, and a grounded second end, wherein the inductor and the current detecting component are connected in series The first end of the output capacitor and the cathode end of the flywheel diode. 如請求項3所述的發光二極體驅動電路,其中,該轉換電路為降升壓式轉換器。 The illuminating diode driving circuit of claim 3, wherein the conversion circuit is a step-down converter. 如請求項6所述的發光二極體驅動電路,其中,該轉換電路還包括一飛輪二極體及一輸出電容;該開關元件的第一端接收該電源訊號,該電感具有一電連接該開關元件第二端的第一端,及一接地的第二端,該輸出電容具有一提供該輸出電流以驅動該等發光二極體的第一端,及一電連接該飛輪二極體陽極端的第二端,該飛輪二極體及該電流偵測元件串接於該輸出電容第二端及該電感第一端間。 The illuminating diode driving circuit of claim 6, wherein the converting circuit further comprises a flywheel diode and an output capacitor; the first end of the switching component receives the power signal, and the inductor has an electrical connection a first end of the second end of the switching element, and a grounded second end, the output capacitor has a first end for providing the output current to drive the light emitting diodes, and an electrical connection to the anode end of the flywheel diode The second end of the flywheel diode and the current detecting component are serially connected between the second end of the output capacitor and the first end of the inductor. 如請求項3所述的發光二極體驅動電路,還包含一用以接收一交流電源以輸出該電源訊號的電源電路,該交流電源具有一第一端及一第二端,該電源電路包括一橋式整流模組,該橋式整流模組具有:一第一二極體,具有一電連接該交流電源的第一端的陽極端,及一輸出該電源訊號的陰極端,一第二二極體,具有一電連接至地的陽極端,及一 電連接該交流電源的第一端的陰極端,一第三二極體,具有一電連接該交流電源的第二端的陽極端,及一輸出該電源訊號的陰極端,及一第四二極體,具有一電連接至地的陽極端,及一電連接該交流電源的第二端的陰極端。 The LED driving circuit of claim 3, further comprising a power circuit for receiving an AC power source for outputting the power signal, the AC power source having a first end and a second end, the power circuit including a bridge rectifier module, the bridge rectifier module has: a first diode body having an anode end electrically connected to the first end of the AC power source, and a cathode end outputting the power signal, a second two a pole body having an anode end electrically connected to the ground, and a Electrically connecting the cathode end of the first end of the AC power source, a third diode body having an anode end electrically connected to the second end of the AC power source, and a cathode end outputting the power signal, and a fourth diode The body has an anode end electrically connected to the ground and a cathode end electrically connected to the second end of the alternating current power source. 如請求項8所述的發光二極體驅動電路,其中,該電源電路還包括:一濾波電容,具有一輸出該電源訊號的第一端,及一電連接至地的第二端。 The illuminating diode driving circuit of claim 8, wherein the power circuit further comprises: a filter capacitor having a first end for outputting the power signal and a second end electrically connected to the ground. 如請求項9所述的發光二極體驅動電路,其中,該電源電路還包括一電連接於該交流電源及該橋式整流模組間的電磁干擾濾波模組。 The illuminating diode driving circuit of claim 9, wherein the power circuit further comprises an electromagnetic interference filtering module electrically connected between the alternating current power source and the bridge rectifier module.
TW102134130A 2013-09-23 2013-09-23 Light emitting diode drive circuit TWI540933B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102134130A TWI540933B (en) 2013-09-23 2013-09-23 Light emitting diode drive circuit
CN201410399846.7A CN104470054B (en) 2013-09-23 2014-08-13 Light emitting diode driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102134130A TWI540933B (en) 2013-09-23 2013-09-23 Light emitting diode drive circuit

Publications (2)

Publication Number Publication Date
TW201513723A TW201513723A (en) 2015-04-01
TWI540933B true TWI540933B (en) 2016-07-01

Family

ID=52915207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102134130A TWI540933B (en) 2013-09-23 2013-09-23 Light emitting diode drive circuit

Country Status (2)

Country Link
CN (1) CN104470054B (en)
TW (1) TWI540933B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103647B2 (en) 2016-08-17 2018-10-16 Industrial Technology Research Institute Sensorless measurement method and device for filter capacitor current by using a state observer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241853A (en) * 2007-03-26 2008-10-09 Hitachi Ltd Plasma display panel (pdp) driving circuit device and plasma display device
KR20100019503A (en) * 2007-05-11 2010-02-18 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Driver device for leds
CN102214992B (en) * 2010-04-01 2013-12-18 安恩国际公司 Constant current driving system for stably outputting current
CN202261942U (en) * 2011-09-01 2012-05-30 唯联工业有限公司 Light emitting diode constant current driver with protection circuit
CN103219872A (en) * 2012-01-19 2013-07-24 尼克森微电子股份有限公司 Converting control circuit and converter thereof
CN102695339B (en) * 2012-05-22 2014-06-25 矽力杰半导体技术(杭州)有限公司 LED (light-emitting diode) drive circuit with high efficient and high power factor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103647B2 (en) 2016-08-17 2018-10-16 Industrial Technology Research Institute Sensorless measurement method and device for filter capacitor current by using a state observer

Also Published As

Publication number Publication date
CN104470054A (en) 2015-03-25
TW201513723A (en) 2015-04-01
CN104470054B (en) 2017-03-15

Similar Documents

Publication Publication Date Title
TWI565355B (en) High efficiency, high power factor LED driver circuit
TWI436689B (en) Lighting apparatus and control method thereof
TWI633807B (en) Switching power supply system, control circuit and associated control method
TWI508613B (en) High efficiency LED driver circuit and its driving method
US8421360B2 (en) Load determination device and illumination apparatus using same
KR101357727B1 (en) Isolation-type flyback converter for light emitting diode driver
US8754625B2 (en) System and method for converting an AC input voltage to regulated output current
CN103716965B (en) LED driving device and control circuit and output current detection circuit thereof
US9450486B2 (en) Apparatus and method for implementing a multiple function pin in a BCM power supply
US20150181667A1 (en) Driver circuit between fluorescent ballast and led
US8901832B2 (en) LED driver system with dimmer detection
TW201414353A (en) Driving circuits, methods and controllers for driving light source
TWI519200B (en) Driving circuits, methods and controllers thereof for driving light sources
WO2018024036A1 (en) Switching power supply having source power factor correction
TW201401923A (en) Driving circuit for driving light source and controller for controlling converter
TWI505746B (en) Circuits and method for powering led light source and power converter thereof
TWI493849B (en) Power supplies and control methods capable of improving power factor during light load
Chen et al. Evaluation of primary side control schemes for flyback converter with constant current output
TWI540933B (en) Light emitting diode drive circuit
US20150179098A1 (en) Led driver, led driving method and controller for led driver
EP2727229A1 (en) Input voltage sensing for a switching power converter and a triac-based dimmer
KR101039407B1 (en) Power supply for LED
JP2016115515A (en) Dc power source for lighting and lighting apparatus
TWI422277B (en) Led driving device
TW201517691A (en) Light emitting device