TW201414353A - Driving circuits, methods and controllers for driving light source - Google Patents

Driving circuits, methods and controllers for driving light source Download PDF

Info

Publication number
TW201414353A
TW201414353A TW102110493A TW102110493A TW201414353A TW 201414353 A TW201414353 A TW 201414353A TW 102110493 A TW102110493 A TW 102110493A TW 102110493 A TW102110493 A TW 102110493A TW 201414353 A TW201414353 A TW 201414353A
Authority
TW
Taiwan
Prior art keywords
signal
current
voltage
switch
state
Prior art date
Application number
TW102110493A
Other languages
Chinese (zh)
Other versions
TWI527494B (en
Inventor
Tie-Sheng Yan
Xue-Shan Liu
Ching-Chuan Kuo
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by O2Micro Inc filed Critical O2Micro Inc
Publication of TW201414353A publication Critical patent/TW201414353A/en
Application granted granted Critical
Publication of TWI527494B publication Critical patent/TWI527494B/en

Links

Abstract

A driving circuit includes a converter, a transformer, a first sensor and a second sensor. The converter is coupled to a switch that operates in a first state or in a second state. The converter receives an input voltage and provides a regulated voltage. The transformer transforms the regulated voltage to an output voltage to power a light source. Both a first current through the converter and a second current through the transformer further flow through the switch when the switch operates in the first state. The first sensor coupled between the switch and a first reference node provides a first sense signal indicating a combined current of the first current and the second current. The second sensor coupled between the first reference node and a second reference node provides a second sense signal indicating only the second current.

Description

光源驅動電路、方法及控制器 Light source driving circuit, method and controller

本發明係有關一種供電電路,特別是一種發光二極體光源的供電電路、電力轉換器及供電方法。 The invention relates to a power supply circuit, in particular to a power supply circuit, a power converter and a power supply method for a light-emitting diode light source.

圖1所示為一種傳統光源驅動電路100的示意圖。光源驅動電路100用於驅動一光源(例如,發光二極體串108)。光源驅動電路100係由一電源102提供一輸入電壓VIN為驅動電路100供電。光源驅動電路100包含一降壓轉換器(Buck Converter),其在一控制器104的控制下為發光二極體串108提供一調整後之電壓VOUT。降壓轉換器包含二極體114、電感112、電容116以及一開關106。一電阻110與開關106串聯耦接。當開關106導通,電阻110耦接電感112以及發光二極體串108,且產生一回授信號以指示流經電感112的電流。當開關106斷開,電阻110與電感112以及發光二極體串108斷開,因此無電流流經電阻110。 FIG. 1 is a schematic diagram of a conventional light source driving circuit 100. The light source driving circuit 100 is for driving a light source (for example, the light emitting diode string 108). The light source driving circuit 100 supplies an input voltage VIN from a power source 102 to power the driving circuit 100. The light source driving circuit 100 includes a buck converter that provides an adjusted voltage VOUT to the LED string 108 under the control of a controller 104. The buck converter includes a diode 114, an inductor 112, a capacitor 116, and a switch 106. A resistor 110 is coupled in series with the switch 106. When the switch 106 is turned on, the resistor 110 is coupled to the inductor 112 and the LED string 108, and generates a feedback signal to indicate the current flowing through the inductor 112. When the switch 106 is turned off, the resistor 110 is disconnected from the inductor 112 and the LED string 108, so no current flows through the resistor 110.

開關106係受控於控制器104。當開關106導通,一電流流經發光二極體串108、電感112、開關106、電阻110至地。在電感112的作用下此電流逐漸增加。當電流增加至達到一預設峰值電流位準時,控制器104斷開開關106。當開關106斷開,一電流流經發光二極體串108、電感112和二極體114。控制器104在一段時間後可再次導通開關106。因此,控制器104基於預設峰值電流位準控制降壓轉換器。然而,流經電感112和發光二極體串108之平均電流位準會隨電感112的電感值、輸入電壓VIN以及發光二極體串108兩端的電壓VOUT而變化,因此,流經電感112的平均電流位準(亦即流經發光二極體串108的平均電流)無法被精確地控制。 Switch 106 is controlled by controller 104. When the switch 106 is turned on, a current flows through the LED string 108, the inductor 112, the switch 106, and the resistor 110 to ground. This current gradually increases under the action of the inductor 112. When the current increases to a predetermined peak current level, the controller 104 turns off the switch 106. When the switch 106 is turned off, a current flows through the LED string 108, the inductor 112, and the diode 114. The controller 104 can turn the switch 106 on again after a period of time. Therefore, the controller 104 controls the buck converter based on the preset peak current level. However, the average current level flowing through the inductor 112 and the LED string 108 varies with the inductance of the inductor 112, the input voltage VIN, and the voltage VOUT across the LED string 108, thus flowing through the inductor 112. The average current level (i.e., the average current flowing through the LED string 108) cannot be accurately controlled.

為解決上述技術問題,本發明提供了一種驅動電路,包括:一轉換器,接收一輸入電壓,並提供一調節電壓;一開關,耦接該轉換器,該開關交替地工作於一第一狀態和一第二狀態;一變壓器,耦接該轉換器和該開關,將該調節電壓轉換為一輸出電壓,以對一負載供電,其中,當該開關工作於該第一狀態時,流經該轉換器的一第一電流和流經該變壓器的一第二電流流過該開關;一第一感應器,耦接於該開關和一第一參考節點之間,提供指示該第一電流和該第二電流的一組合電流的一第一感應信號;以及一第二感應器,耦接於該第一參考節點和一第二參考節點之間,提供僅指示該第二電流的一第二感應信號。 In order to solve the above technical problem, the present invention provides a driving circuit comprising: a converter that receives an input voltage and provides a regulated voltage; a switch coupled to the converter, the switch operating in a first state alternately And a second state; a transformer coupled to the converter and the switch, converting the regulated voltage to an output voltage to supply power to a load, wherein when the switch operates in the first state, flowing through the a first current of the converter and a second current flowing through the transformer flow through the switch; a first inductor coupled between the switch and a first reference node, providing the first current and the a first sensing signal of a combined current of the second current; and a second inductor coupled between the first reference node and a second reference node to provide a second sensing indicating only the second current signal.

本發明還提供了一種控制負載電能控制器,包括:一輸出接腳,產生一驅動信號使一開關交替地工作於一第一狀態和一第二狀態;一轉換器,耦接該開關,將一輸入電壓變換為一調節電壓;一變壓器,耦接該開關,將該調節電壓轉換為一輸出電壓,以為一負載供電,當該開關工作於該第一狀態時,流經該轉換器的一第一電流和流經該變壓器的一第二電流都流過該開關;一保護接腳,耦接一保護電路,該保護電路透過監測一第一感應器和一第二感應器上的一總電壓感應該第一電流和該第二電流的一組合電流,該第一感應器耦接於該開關和一第一參考節點之間,該第二感應器耦接於該第一參考節點和一第二參考節點之間;以及一感應接腳,耦接該第一參考節點,透過監測該第二感應器上的一電壓來感應該第二電流,其中,該控制器根據該感應接腳接收的一信號和該保護接腳接收的一信號控制該驅動信號。 The present invention also provides a control load power controller, comprising: an output pin, generating a drive signal to cause a switch to alternately operate in a first state and a second state; a converter coupled to the switch, An input voltage is converted into a regulated voltage; a transformer coupled to the switch, the regulated voltage is converted into an output voltage to supply power to a load, and when the switch operates in the first state, a flow through the converter a first current and a second current flowing through the transformer flow through the switch; a protection pin coupled to a protection circuit, the protection circuit transmitting a total of a first sensor and a second sensor A first inductor is coupled between the switch and a first reference node, and the second inductor is coupled to the first reference node and the first inductor And a sensing pin coupled to the first reference node to sense the second current by monitoring a voltage on the second inductor, wherein the controller receives the second current according to the sensing pin A signal and a reception signal of the protection pin of the driving control signal.

本發明還提供了一種負載電能控制方法,包括:利用一轉換器將一輸入電壓變換為一調節電壓;利用一變壓器將該調節電壓轉換為一輸出電壓,以對一負載供電;根據一驅動信號使開關交替地工作於一第一狀態和一第二狀態,當該開關工作於該第一狀態時,流經該轉換器的一第一電流和流經該變壓器的一第二電流皆流過該開關;透過監測一第一感應器和一第二感應器上的一總電壓接收指示該第一電流和該第二電流的一組合電流的一第一感應信號,該第一感應器耦接於該開關和一第一參考節 點之間,該第二感應器耦接於該第一參考節點和一第二參考節點之間;透過監測該第二感應器上的一電壓接收僅指示該第二電流的一第二感應信號;以及根據該第一感應信號和該第二感應信號控制該驅動信號,以調節流經該負載的一電流。 The invention also provides a load power control method, comprising: converting a input voltage into a regulated voltage by using a converter; converting the regulated voltage into an output voltage by using a transformer to supply power to a load; The switch is alternately operated in a first state and a second state, and when the switch operates in the first state, a first current flowing through the converter and a second current flowing through the transformer flow through The first sensor is coupled to receive a first sensing signal indicating a combined current of the first current and the second current by monitoring a total voltage on a first inductor and a second inductor, the first inductor being coupled On the switch and a first reference section Between the points, the second sensor is coupled between the first reference node and a second reference node; and receiving a second sensing signal indicating the second current by monitoring a voltage on the second sensor And controlling the driving signal according to the first sensing signal and the second sensing signal to adjust a current flowing through the load.

100‧‧‧光源驅動電路 100‧‧‧Light source drive circuit

102‧‧‧電源 102‧‧‧Power supply

104‧‧‧控制器 104‧‧‧ Controller

106‧‧‧開關 106‧‧‧Switch

108‧‧‧發光二極體串 108‧‧‧Lighting diode strings

110‧‧‧電阻 110‧‧‧resistance

112‧‧‧電感 112‧‧‧Inductance

114‧‧‧二極體 114‧‧‧dipole

116‧‧‧電容 116‧‧‧ Capacitance

200‧‧‧驅動電路 200‧‧‧ drive circuit

202‧‧‧電源 202‧‧‧Power supply

204‧‧‧整流器 204‧‧‧Rectifier

206‧‧‧電力轉換器 206‧‧‧Power Converter

208‧‧‧發光二極體串 208‧‧‧Lighting diode strings

210‧‧‧控制器 210‧‧‧ Controller

212‧‧‧濾波器 212‧‧‧ filter

214‧‧‧儲能元件 214‧‧‧ Energy storage components

218‧‧‧電阻 218‧‧‧resistance

278‧‧‧電流感應器 278‧‧‧ Current sensor

288‧‧‧負載 288‧‧‧load

300‧‧‧光源驅動電路 300‧‧‧Light source drive circuit

302、304‧‧‧電感 302, 304‧‧‧Inductance

308‧‧‧電容 308‧‧‧ Capacitance

314‧‧‧二極體 314‧‧‧ diode

316‧‧‧開關 316‧‧‧ switch

318‧‧‧電容 318‧‧‧ Capacitance

320‧‧‧電阻 320‧‧‧resistance

322‧‧‧電容 322‧‧‧ Capacitance

324‧‧‧電容 324‧‧‧ Capacitance

333‧‧‧共同節點 333‧‧‧Common node

402‧‧‧誤差放大器 402‧‧‧Error amplifier

404‧‧‧比較器 404‧‧‧ Comparator

408‧‧‧脈衝寬度調變信號產生器 408‧‧‧Pulse width modulation signal generator

602‧‧‧誤差放大器 602‧‧‧Error amplifier

604‧‧‧比較器 604‧‧‧ Comparator

606‧‧‧鋸齒波信號產生器 606‧‧‧Sawtooth signal generator

608‧‧‧重置信號產生器 608‧‧‧Reset signal generator

610‧‧‧脈衝寬度調變信號產生器 610‧‧‧Pulse width modulation signal generator

800‧‧‧光源驅動電路 800‧‧‧Light source drive circuit

802‧‧‧齊納二極體 802‧‧ ‧ Zener diode

804‧‧‧開關 804‧‧‧ switch

900‧‧‧光源驅動電路 900‧‧‧Light source drive circuit

902‧‧‧鋸齒波信號產生器 902‧‧‧Sawtooth signal generator

906‧‧‧電力轉換器 906‧‧‧Power Converter

910‧‧‧控制器 910‧‧‧ Controller

912‧‧‧電源線 912‧‧‧Power cord

920‧‧‧濾波器 920‧‧‧ filter

960‧‧‧鋸齒波信號 960‧‧‧Sawtooth signal

962‧‧‧驅動信號 962‧‧‧Drive signal

1000‧‧‧光源驅動電路 1000‧‧‧Light source drive circuit

1008‧‧‧輸入電容 1008‧‧‧ input capacitor

1012‧‧‧電阻 1012‧‧‧resistance

1014‧‧‧電容 1014‧‧‧ Capacitance

1016‧‧‧電阻 1016‧‧‧resistance

1018‧‧‧二極體 1018‧‧‧dipole

1024‧‧‧輸出濾波器 1024‧‧‧ output filter

1300‧‧‧流程圖 1300‧‧‧flow chart

1302~1312‧‧‧步驟 1302~1312‧‧‧Steps

1400‧‧‧光源驅動電路 1400‧‧‧Light source drive circuit

1402‧‧‧電流濾波器 1402‧‧‧ Current filter

1406‧‧‧電力轉換器 1406‧‧‧Power Converter

1408‧‧‧光源 1408‧‧‧Light source

1410‧‧‧控制器 1410‧‧‧ Controller

1420‧‧‧電壓濾波器 1420‧‧‧voltage filter

1422‧‧‧變壓器 1422‧‧‧Transformer

1424‧‧‧開關 1424‧‧‧Switch

1462‧‧‧驅動信號 1462‧‧‧Drive signal

1464‧‧‧感應信號 1464‧‧‧Induction signal

1466‧‧‧監測信號 1466‧‧‧Monitoring signal

1500‧‧‧光源驅動電路 1500‧‧‧Light source drive circuit

1502‧‧‧磁芯 1502‧‧‧ magnetic core

1504‧‧‧初級繞組 1504‧‧‧Primary winding

1506‧‧‧次級繞組 1506‧‧‧Secondary winding

1508‧‧‧輔助繞組 1508‧‧‧Auxiliary winding

1512‧‧‧電感 1512‧‧‧Inductance

1602‧‧‧鋸齒波信號產生器 1602‧‧‧Sawtooth signal generator

1660‧‧‧鋸齒波信號 1660‧‧‧Sawtooth signal

1700‧‧‧流程圖 1700‧‧‧Flowchart

1702、1704、1706、1708、1710、1712‧‧‧步驟 1702, 1704, 1706, 1708, 1710, 1712‧‧ steps

1800‧‧‧光源驅動電路 1800‧‧‧Light source drive circuit

1808‧‧‧光源 1808‧‧‧Light source

1810‧‧‧控制器 1810‧‧‧ Controller

1820‧‧‧轉換器 1820‧‧‧ converter

1822‧‧‧變壓器 1822‧‧‧Transformer

1824‧‧‧初級繞組 1824‧‧‧Primary winding

1826‧‧‧次級繞組 1826‧‧‧Secondary winding

1828‧‧‧輔助繞組 1828‧‧‧Auxiliary winding

1830‧‧‧磁芯 1830‧‧‧ magnetic core

1832‧‧‧分壓器 1832‧‧ ‧ Voltage divider

1834‧‧‧開關 1834‧‧‧Switch

1836‧‧‧保護電路 1836‧‧‧Protection circuit

1838‧‧‧感應器 1838‧‧‧ sensor

1840‧‧‧箝位電路 1840‧‧‧Clamp circuit

1842‧‧‧感應器 1842‧‧‧ sensor

1850‧‧‧驅動信號 1850‧‧‧ drive signal

1852‧‧‧感應信號 1852‧‧‧Induction signal

1854‧‧‧監測信號 1854‧‧‧Monitoring signal

1856‧‧‧感應信號 1856‧‧‧Induction signal

1860‧‧‧波形圖 1860‧‧‧ Waveform

1900‧‧‧波形圖 1900‧‧‧ waveform

2002‧‧‧採集電路 2002‧‧‧ Acquisition circuit

2004‧‧‧狀態檢測器 2004‧‧‧State detector

2006‧‧‧開關 2006‧‧‧Switch

2012‧‧‧運算放大器 2012‧‧‧Operational Amplifier

2014‧‧‧鋸齒波產生器 2014‧‧‧Sawtooth generator

2016‧‧‧比較器 2016‧‧‧ Comparator

2018‧‧‧緩衝器 2018‧‧‧buffer

2020‧‧‧運算轉導放大器 2020‧‧‧Operational Transducer

2022‧‧‧電容 2022‧‧‧ Capacitance

2050‧‧‧信號產生器 2050‧‧‧Signal Generator

2052‧‧‧驅動器 2052‧‧‧ drive

2060‧‧‧開關控制信號 2060‧‧‧Switch control signal

2062‧‧‧方波信號 2062‧‧‧ square wave signal

2100‧‧‧波形圖 2100‧‧‧ Waveform

2200‧‧‧電子系統 2200‧‧‧Electronic system

2202‧‧‧光源驅動電路 2202‧‧‧Light source drive circuit

2204‧‧‧交流矽控閘流體(TRIAC)調光器 2204‧‧‧AC thyristor fluid (TRIAC) dimmer

2206‧‧‧TRIAC元件 2206‧‧‧TRIAC components

2208‧‧‧可變電阻 2208‧‧‧Variable resistor

2210‧‧‧電容 2210‧‧‧ Capacitance

2212‧‧‧二極體交流開關 2212‧‧‧Diode AC Switch

2214‧‧‧洩流路徑 2214‧‧‧Drainage path

2216‧‧‧拉低電路 2216‧‧‧Lower circuit

2218‧‧‧控制器 2218‧‧‧ Controller

2220‧‧‧拉低信號 2220‧‧‧Low signal

2222‧‧‧檢測信號 2222‧‧‧Detection signal

2250‧‧‧驅動信號 2250‧‧‧ drive signal

2402‧‧‧電容 2402‧‧‧ Capacitance

2404‧‧‧開關 2404‧‧‧Switch

2502‧‧‧TRIAC監測器 2502‧‧‧TRIAC monitor

2602‧‧‧比較器 2602‧‧‧ Comparator

2604‧‧‧濾波器 2604‧‧‧Filter

2606‧‧‧比較器 2606‧‧‧ Comparator

2608‧‧‧分壓信號 2608‧‧‧Division signal

2610‧‧‧分壓器 2610‧‧ ‧ Voltage divider

2612‧‧‧方波信號 2612‧‧‧ square wave signal

2700‧‧‧流程圖 2700‧‧‧Flowchart

2702、2704、2706、2708、2710、2712‧‧‧步驟 2702, 2704, 2706, 2708, 2710, 2712‧ ‧ steps

以下結合附圖和具體實施例對本發明的技術方法進行詳細的描述,以使本發明的特徵和優點更為明顯。其中:圖1所示為一種傳統光源驅動電路的示意圖。 The technical method of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious. Wherein: Figure 1 shows a schematic diagram of a conventional light source driving circuit.

圖2所示為根據本發明一實施例驅動電路示意圖。 2 is a schematic diagram of a driving circuit in accordance with an embodiment of the present invention.

圖3所示為根據本發明一實施例光源驅動電路電路示意圖。 3 is a circuit diagram of a light source driving circuit according to an embodiment of the invention.

圖4所示為根據本發明一實施例圖3中所示之控制器的示意圖。 4 is a schematic diagram of the controller shown in FIG. 3 in accordance with an embodiment of the present invention.

圖5所示為根據本發明一實施例圖4中所示之控制器的波形圖。 Figure 5 is a waveform diagram of the controller shown in Figure 4 in accordance with an embodiment of the present invention.

圖6所示為根據本發明一實施例圖3中所示之控制器的另一種架構示意圖。 FIG. 6 is a block diagram showing another architecture of the controller shown in FIG. 3 according to an embodiment of the invention.

圖7所示為根據本發明一實施例圖6中所示之控制器的波形圖。 Figure 7 is a waveform diagram of the controller shown in Figure 6 in accordance with an embodiment of the present invention.

圖8所示為根據本發明另一個實施例的光源驅動電路光源驅動電路的示意圖。 FIG. 8 is a schematic diagram of a light source driving circuit light source driving circuit according to another embodiment of the present invention.

圖9A所示為根據本發明另一實施例的光源驅動電路的示意圖。 FIG. 9A is a schematic diagram of a light source driving circuit according to another embodiment of the present invention.

圖9B所示為根據本發明的一個實施例圖9A中的光源驅動電路中的信號波形圖。 Fig. 9B is a diagram showing signal waveforms in the light source driving circuit of Fig. 9A according to an embodiment of the present invention.

圖10所示為根據本發明的又一實施例的光源驅動電路的示意圖。 Figure 10 is a schematic illustration of a light source driving circuit in accordance with yet another embodiment of the present invention.

圖11所示為根據本發明的實施例的圖9A中控制器的結構示意圖。 Figure 11 is a block diagram showing the structure of the controller of Figure 9A in accordance with an embodiment of the present invention.

圖12所示為根據本發明的實施例的光源驅動電路產生或接收的信號波形圖。 Figure 12 is a diagram showing signal waveforms generated or received by a light source driving circuit in accordance with an embodiment of the present invention.

圖13所示為根據本發明的實施例的用於驅動負載的驅動電路的方法流程圖。 Figure 13 is a flow chart of a method for driving a drive circuit of a load in accordance with an embodiment of the present invention.

圖14A所示為根據本發明另一實施例的光源驅動電路的方塊示意 圖。 FIG. 14A is a block diagram showing a light source driving circuit according to another embodiment of the present invention. Figure.

圖14B所示為根據本發明示於圖14A之光源驅動電路所產生或接收的信號波形圖。 Figure 14B is a diagram showing signal waveforms generated or received by the light source driving circuit shown in Figure 14A in accordance with the present invention.

圖15所示為根據本發明另一實施例之光源驅動電路的電路示意圖。 Figure 15 is a circuit diagram showing a light source driving circuit according to another embodiment of the present invention.

圖16所示為根據本發明一實施例之示於圖14A中之控制器的結構示意圖。 Figure 16 is a block diagram showing the structure of the controller shown in Figure 14A in accordance with an embodiment of the present invention.

圖17所示為根據本發明實施例之驅動光源的方法流程圖。 17 is a flow chart of a method of driving a light source in accordance with an embodiment of the present invention.

圖18A所示為根據本發明另一實施例的光源驅動電路的電路示意圖。 FIG. 18A is a circuit diagram showing a light source driving circuit according to another embodiment of the present invention.

圖18B所示為根據本發明一個實施例的光源驅動電路產生或接收的信號波形圖。 Figure 18B is a diagram showing signal waveforms generated or received by a light source driving circuit in accordance with one embodiment of the present invention.

圖19所示為根據本發明一個實施例的光源驅動電路產生或接收的信號波形圖。 Figure 19 is a diagram showing signal waveforms generated or received by a light source driving circuit in accordance with one embodiment of the present invention.

圖20所示為根據本發明一個實施例的圖18A所示控制器的結構示意圖。 Figure 20 is a block diagram showing the structure of the controller of Figure 18A in accordance with one embodiment of the present invention.

圖21所示為根據本發明的實施例的圖18A所示控制器產生或接收的信號波形圖。 Figure 21 is a diagram showing signal waveforms generated or received by the controller of Figure 18A in accordance with an embodiment of the present invention.

圖22所示為根據本發明另一個實施例的電子系統示意圖。 Figure 22 is a schematic illustration of an electronic system in accordance with another embodiment of the present invention.

圖23所示為根據本發明一個實施例的圖22中TRIAC調光器產生或接收的信號波形圖。 Figure 23 is a diagram showing signal waveforms generated or received by the TRIAC dimmer of Figure 22, in accordance with one embodiment of the present invention.

圖24所示為根據本發明一個實施例的圖22中的光源驅動電路的電路示意圖。 Figure 24 is a circuit diagram of the light source driving circuit of Figure 22, in accordance with one embodiment of the present invention.

圖25所示為根據本發明一個實施例的圖22中的控制器的結構示意圖。 Figure 25 is a block diagram showing the structure of the controller of Figure 22 in accordance with one embodiment of the present invention.

圖26所示為根據本發明一個實施例的圖25中的TRIAC監測器的結構示意圖。 Figure 26 is a block diagram showing the structure of the TRIAC monitor of Figure 25 in accordance with one embodiment of the present invention.

圖27所示為根據本發明一實施例於驅動負載的方法流程圖。 27 is a flow chart of a method of driving a load in accordance with an embodiment of the present invention.

以下將對本發明的實施例給出詳細的說明。雖然本發明 將結合實施例進行闡述,但應理解這並非意指將本發明限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。 A detailed description of the embodiments of the present invention will be given below. Although the invention The invention will be described in connection with the embodiments, but it should be understood that this is not intended to limit the invention. Rather, the invention is to cover various modifications, equivalents, and equivalents of the invention as defined by the scope of the appended claims.

此外,在以下對本發明的詳細描述中,為了提供針對本發明的完全的理解,提供了大量的具體細節。然而,於本技術領域中具有通常知識者將理解,沒有這些具體細節,本發明同樣可以實施。在另外的一些實例中,對於大家熟知的方法、程序、元件和電路未作詳細描述,以便於凸顯本發明之主旨。 In addition, in the following detailed description of the embodiments of the invention However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail in order to facilitate the invention.

圖2所示為根據本發明一實施例驅動電路200的示意圖。光源驅動電路200包含整流器204,其可從一電源202接收一輸入電壓,並提供一調整後的電壓給電力轉換器206。電力轉換器206接收調整後的電壓並為負載288提供一輸出電力。在一實施例中,電力轉換器206可為降壓轉換器或者升壓(Boost)轉換器。在一實施例中,電力轉換器206包含一儲能元件214和一用於感應儲能元件214之電力狀況的電流感應器278(例如,一電阻)。電流感應器278提供一第一信號ISEN給控制器210,以指示流經儲能元件214的瞬間電流。驅動電路200還包含一濾波器212,基於第一信號ISEN產生一用於指示流經儲能元件214的平均電流之第二信號IAVG。在一實施例中,控制器210接收第一信號ISEN和第二信號IAVG,並控制流經儲能元件214的平均電流為一目標電流值位準。 2 is a schematic diagram of a drive circuit 200 in accordance with an embodiment of the present invention. Light source drive circuit 200 includes a rectifier 204 that receives an input voltage from a power source 202 and provides an adjusted voltage to power converter 206. Power converter 206 receives the adjusted voltage and provides an output power to load 288. In an embodiment, power converter 206 can be a buck converter or a boost converter. In one embodiment, power converter 206 includes an energy storage component 214 and a current sensor 278 (eg, a resistor) for sensing the power condition of energy storage component 214. Current sensor 278 provides a first signal ISEN to controller 210 to indicate the instantaneous current flowing through energy storage element 214. The drive circuit 200 also includes a filter 212 that generates a second signal IAVG for indicating an average current flowing through the energy storage element 214 based on the first signal ISEN. In one embodiment, the controller 210 receives the first signal ISEN and the second signal IAVG and controls the average current flowing through the energy storage element 214 to be a target current value level.

圖3所示為根據本發明一實施例光源驅動電路300的電路示意圖。圖3中與圖2具有相同元件符號之元件具有類似的功能。在圖3的例子中,光源驅動電路300包含整流器204、電力轉換器206、濾波器212和控制器210。整流器204可為包含二極體D1-D4的橋式整流器。整流器204調整來自電源202的電壓。電力轉換器206接收經整流器204調整後的電壓並提供一輸出電力以對負載(例如,發光二極體串208)供電。 FIG. 3 is a circuit diagram of a light source driving circuit 300 according to an embodiment of the invention. Elements in Figure 3 having the same reference numerals as in Figure 2 have similar functions. In the example of FIG. 3, the light source driving circuit 300 includes a rectifier 204, a power converter 206, a filter 212, and a controller 210. Rectifier 204 can be a bridge rectifier including diodes D1-D4. Rectifier 204 adjusts the voltage from power source 202. Power converter 206 receives the voltage adjusted by rectifier 204 and provides an output power to power the load (e.g., LED string 208).

在圖3的例子中,電力轉換器206係為一降壓轉換器,其包含電容308、開關316、二極體314、電流感應器(例如,電阻218)、 相互耦接的電感302和電感304、以及電容324。二極體314係耦接於開關316和光源驅動電路300的地之間。電容324與發光二極體串208並聯耦接。在一實施例中,電感302和電感304彼此電磁耦接。更具體而言,電感302和電感304耦接一共同節點333。在圖3的例子中,共同節點333係介於電阻218和電感302之間。然而,本發明並不限於此架構,共同節點333也可位於開關316和電阻218之間。共同節點333為控制器210提供一參考接地。在一實施例中,控制器210的參考接地和光源驅動電路300的地不同。透過導通和斷開開關316,流經電感302的電流可被調整,進而調節供應至發光二極體串208的電力。電感304感應電感302的電力狀況,例如,監測流經電感302的電流是否降低至一預設電流位準。 In the example of FIG. 3, power converter 206 is a buck converter that includes capacitor 308, switch 316, diode 314, current inductor (eg, resistor 218), The inductor 302 and the inductor 304 and the capacitor 324 are coupled to each other. The diode 314 is coupled between the switch 316 and the ground of the light source driving circuit 300. The capacitor 324 is coupled in parallel with the LED string 208. In an embodiment, the inductor 302 and the inductor 304 are electromagnetically coupled to each other. More specifically, the inductor 302 and the inductor 304 are coupled to a common node 333. In the example of FIG. 3, the common node 333 is interposed between the resistor 218 and the inductor 302. However, the invention is not limited to this architecture, and the common node 333 can also be located between the switch 316 and the resistor 218. The common node 333 provides a reference ground for the controller 210. In an embodiment, the reference ground of the controller 210 is different from the ground of the light source driving circuit 300. By turning on and off switch 316, the current flowing through inductor 302 can be adjusted to adjust the power supplied to light emitting diode string 208. Inductor 304 senses the power condition of inductor 302, for example, monitoring whether the current flowing through inductor 302 drops to a predetermined current level.

電阻218的一端耦接開關316和二極體314之陰極之間的一節點,電阻218的另一端耦接電感302。當開關316導通和斷開時,電阻218提供一指示流經電感302的瞬間電流之第一信號ISEN。換言之,不論開關316為導通還是斷開,電阻218均能感應流經電感302的瞬間電流。濾波器212耦接電阻218並產生一指示流經電感302的平均電流的第二信號IAVG。在一實施例中,濾波器212包含電阻320和電容322。 One end of the resistor 218 is coupled to a node between the switch 316 and the cathode of the diode 314, and the other end of the resistor 218 is coupled to the inductor 302. When switch 316 is turned "on" and "off", resistor 218 provides a first signal ISEN indicative of the instantaneous current flowing through inductor 302. In other words, the resistor 218 senses the instantaneous current flowing through the inductor 302 regardless of whether the switch 316 is turned "on" or "off". Filter 212 is coupled to resistor 218 and produces a second signal IAVG indicative of the average current flowing through inductor 302. In an embodiment, filter 212 includes a resistor 320 and a capacitor 322.

控制器210接收第一信號ISEN和第二信號IAVG,並透過導通或斷開開關316以控制流經電感302的平均電流為一目標電流位準。電容324濾除流經發光二極體串208的漣波電流,進而使流經發光二極體串208的電流平滑且實質上相等於流經電感302的平均電流。因此,流經發光二極體串208的電流可實質上與目標電流相等。此處“實質上與目標電流相等"意指流經發光二極體串208的電流雖可能與目標電流有些許微小差別,但仍介於一可容許範圍內,因此可不考慮電路元件的不理想情況和且可忽略從電感304傳送至控制器210的電力。 The controller 210 receives the first signal ISEN and the second signal IAVG and controls the average current flowing through the inductor 302 to be a target current level by turning on or off the switch 316. The capacitor 324 filters out the chopping current flowing through the LED string 208, thereby smoothing the current flowing through the LED string 208 and substantially equal to the average current flowing through the inductor 302. Thus, the current flowing through the LED string 208 can be substantially equal to the target current. Here, "substantially equal to the target current" means that the current flowing through the LED string 208 may be slightly different from the target current, but is still within an allowable range, so that the circuit component is not considered to be undesirable. The power transmitted from the inductor 304 to the controller 210 can be ignored and can be ignored.

在圖3的例子中,控制器210的端點包括ZCD、GND、DRV、VDD、CS、COMP和FB。端點ZCD耦接電感304,用於接收 一指示電感302之電力狀況(例如,流經電感302的電流是否降低至預設電流位準,例如,“0”)的檢測信號AUX。檢測信號AUX也能指示發光二極體串208是否處於開路狀態。端點DRV耦接開關316並產生一驅動信號(例如,脈衝寬度調變信號PWM1)以導通或斷開開關316。端點VDD耦接電感304並接收來自電感304的電力。端點CS耦接電阻218並接收一指示流經電感302的瞬間電流的第一信號ISEN。端點COMP透過電容318耦接控制器210的參考接地。端點FB透過濾波器212耦接電阻218耦接以接收一指示流經電感302的平均電流的第二信號IAVG。在圖3的例子中,端點GND(亦即控制器210的參考接地)耦接位於電阻218、電感302與電感304之間的共同節點333。 In the example of FIG. 3, the endpoints of controller 210 include ZCD, GND, DRV, VDD, CS, COMP, and FB. The endpoint ZCD is coupled to the inductor 304 for receiving A detection signal AUX indicating the power condition of the inductor 302 (eg, whether the current flowing through the inductor 302 drops to a predetermined current level, for example, "0"). The detection signal AUX can also indicate whether the LED string 208 is in an open state. The terminal DRV is coupled to the switch 316 and generates a drive signal (eg, pulse width modulation signal PWM1) to turn the switch 316 on or off. Endpoint VDD is coupled to inductor 304 and receives power from inductor 304. The terminal CS is coupled to the resistor 218 and receives a first signal ISEN indicative of an instantaneous current flowing through the inductor 302. The terminal COMP is coupled to the reference ground of the controller 210 through the capacitor 318. The terminal FB is coupled through the filter 212 coupled to the resistor 218 to receive a second signal IAVG indicative of the average current flowing through the inductor 302. In the example of FIG. 3, the terminal GND (ie, the reference ground of the controller 210) is coupled to a common node 333 between the resistor 218, the inductor 302, and the inductor 304.

開關316可為N通道金屬氧化物半導體場效電晶體(NMOSFET)。開關316的導通狀態係基於開關316的閘極極電壓與端點GND的電壓(亦即共同節點333處的電壓)之間的一電壓差決定之。因此,端點DRV輸出的脈衝寬度調變信號PWM1決定了開關316的開或關狀態。當開關316導通,控制器210的參考接地的電壓位準高於光源驅動電路300的地的電壓位準,因此本發明的電路可適用於具有相對較高電壓的電源。 Switch 316 can be an N-channel metal oxide semiconductor field effect transistor (NMOSFET). The conduction state of switch 316 is determined based on a voltage difference between the gate voltage of switch 316 and the voltage at terminal GND (i.e., the voltage at common node 333). Therefore, the pulse width modulation signal PWM1 output from the terminal DRV determines the on or off state of the switch 316. When the switch 316 is turned on, the voltage level of the reference ground of the controller 210 is higher than the voltage level of the ground of the light source driving circuit 300, and thus the circuit of the present invention can be applied to a power source having a relatively high voltage.

在操作中,當開關316導通,一電流流經開關316、電阻218、電感302、發光二極體串208至光源驅動電路300的地。當開關316斷開,一電流流經電阻218、電感302、發光二極體串208和二極體314。電感304磁性耦接電感302以檢測電感302的電力狀況,例如,檢測流經電感302的電流是否降低到預設電流位準。因此,控制器210透過檢測信號AUX、第一信號ISEN、和第二信號IAVG監測流經電感302的電流,並透過脈衝寬度調變信號PWM1控制開關316,以控制流經電感302的平均電流為一目標電流位準。因此,經過電容324濾波後之流經發光二極體串208的電流也可實質上相等於目標電流位準。 In operation, when switch 316 is turned on, a current flows through switch 316, resistor 218, inductor 302, and LED string 208 to ground of light source drive circuit 300. When switch 316 is open, a current flows through resistor 218, inductor 302, LED string 208, and diode 314. The inductor 304 is magnetically coupled to the inductor 302 to detect the power condition of the inductor 302, for example, to detect if the current flowing through the inductor 302 has dropped to a preset current level. Therefore, the controller 210 monitors the current flowing through the inductor 302 through the detection signal AUX, the first signal ISEN, and the second signal IAVG, and controls the switch 316 through the pulse width modulation signal PWM1 to control the average current flowing through the inductor 302. A target current level. Therefore, the current flowing through the LED string 208 after being filtered by the capacitor 324 can also be substantially equal to the target current level.

在一實施例中,控制器210基於檢測信號AUX判斷發 光二極體串208是否處於開路狀態。如果發光二極體串208開路,則電容324上的電壓增加。當開關316處於斷開狀態時,電感302兩端的電壓增大,且檢測信號AUX的電壓也相應增大。其結果是,透過端點ZCD流入控制器210的電流增大。因此,控制器210監測檢測信號AUX,如果當開關316斷開且流入至控制器210之電流增大致超過一電流臨限值,控制器210則判斷發光二極體串208處於開路狀態。 In an embodiment, the controller 210 determines to send based on the detection signal AUX. Whether the photodiode string 208 is in an open state. If the LED string 208 is open, the voltage across the capacitor 324 increases. When the switch 316 is in the off state, the voltage across the inductor 302 increases, and the voltage of the detection signal AUX also increases accordingly. As a result, the current flowing into the controller 210 through the terminal ZCD increases. Accordingly, the controller 210 monitors the detection signal AUX, and if the switch 316 is turned off and the current flowing into the controller 210 increases beyond a current threshold, the controller 210 determines that the LED string 208 is in an open state.

控制器210還可基於端點VDD處的電壓判斷發光二極體串208是否處於短路狀態。如果發光二極體串208短路,當開關316處於斷開狀態時,由於電感302兩端均耦接光源驅動電路300的地,所以電感302兩端的電壓將減小。電感304兩端的電壓和端點VDD處的電壓也相應減小。因此,當開關316處於斷開狀態時,如果端點VDD處的電壓低於一電壓臨限值,則控制器210判斷發光二極體串208處於短路狀態。 The controller 210 can also determine whether the light emitting diode string 208 is in a short circuit state based on the voltage at the terminal VDD. If the LED string 208 is short-circuited, when the switch 316 is in the off state, since both ends of the inductor 302 are coupled to the ground of the light source driving circuit 300, the voltage across the inductor 302 will decrease. The voltage across inductor 304 and the voltage at terminal VDD are also reduced accordingly. Therefore, when the switch 316 is in the off state, if the voltage at the terminal VDD is lower than a voltage threshold, the controller 210 determines that the LED string 208 is in a short circuit state.

圖4所示為根據本發明一實施例圖3中所示之控制器210的示意圖。圖5所示為根據本發明一實施例圖4中所示之控制器210的波形圖。圖4將結合圖3和圖5進行描述。 4 is a schematic diagram of the controller 210 shown in FIG. 3 in accordance with an embodiment of the present invention. FIG. 5 is a waveform diagram of the controller 210 shown in FIG. 4 in accordance with an embodiment of the present invention. Figure 4 will be described in conjunction with Figures 3 and 5.

在圖4的例子中,控制器210包含一誤差放大器402、一比較器404和一脈衝寬度調變信號產生器408。誤差放大器402基於一參考信號SET和第二信號IAVG之間的電壓差產生一誤差信號VEA。參考信號SET可指示目標電流位準。第二信號IAVG透過端點FB接收,可指示流經電感302的平均電流。誤差信號VEA可用以調整流經電感302的平均電流至目標電流位準。比較器404耦接誤差放大器402,並比較誤差信號VEA和第一信號ISEN。第一信號ISEN透過端點CS接收,指示流經電感302的瞬間電流。檢測信號AUX透過端點ZCD接收,指示流經電感302的電流是否降低到預設電流位準(例如,減小到零)。脈衝寬度調變信號產生器408耦接比較器404以及端點ZCD,且基於比較器404的輸出和檢測信號AUX產生脈衝寬度調變信號PWM1。脈衝寬度調變信號PWM1透過端點DRV控制開關316的導通狀態。 In the example of FIG. 4, controller 210 includes an error amplifier 402, a comparator 404, and a pulse width modulation signal generator 408. The error amplifier 402 generates an error signal VEA based on a voltage difference between a reference signal SET and a second signal IAVG. The reference signal SET can indicate the target current level. The second signal IAVG is received through the terminal FB to indicate the average current flowing through the inductor 302. The error signal VEA can be used to adjust the average current flowing through the inductor 302 to the target current level. The comparator 404 is coupled to the error amplifier 402 and compares the error signal VEA with the first signal ISEN. The first signal ISEN is received through the terminal CS indicating the instantaneous current flowing through the inductor 302. The sense signal AUX is received through the endpoint ZCD indicating whether the current flowing through the inductor 302 has dropped to a predetermined current level (eg, reduced to zero). The pulse width modulation signal generator 408 is coupled to the comparator 404 and the terminal ZCD, and generates a pulse width modulation signal PWM1 based on the output of the comparator 404 and the detection signal AUX. The pulse width modulation signal PWM1 controls the conduction state of the switch 316 through the terminal DRV.

脈衝寬度調變信號產生器408產生具有第一位準(例如,邏輯1)的脈衝寬度調變信號PWM1以導通開關316。當開關316導通,一電流流經開關316、電阻218、電感302、發光二極體串208至光源驅動電路300的地。流經電感302的電流逐漸增大,使得第一信號ISEN的電壓逐漸增大。在一實施例中,當開關316導通時,檢測信號AUX的電壓為負值。在一實施例中,在控制器210內部,比較器404比較誤差信號VEA與第一信號ISEN。當第一信號ISEN的電壓超過誤差信號VEA的電壓,則比較器404輸出一邏輯0,否則比較器404輸出一邏輯1。換言之,比較器404的輸出為一系列的脈衝。脈衝寬度調變信號產生器408產生具有第二位準(例如,邏輯0)的脈衝寬度調變信號PWM1以回應比較器404的負緣(negative going)輸出,進而斷開開關316。當開關316斷開,檢測信號AUX的電壓變為正值。當開關316斷開,一電流流經電阻218、電感302、發光二極體串208和二極體314。流經電感302的電流逐漸減小,因此第一信號ISEN的電壓逐漸減小。當流經電感302的電流減小到預設電流位準(例如,減小到零),檢測信號AUX的電壓會產生一個負緣,進而脈衝寬度調變信號產生器408產生具有第一狀態(例如,邏輯1)的脈衝寬度調變信號PWM1以導通開關316。 The pulse width modulation signal generator 408 generates a pulse width modulation signal PWM1 having a first level (eg, logic 1) to turn on the switch 316. When the switch 316 is turned on, a current flows through the switch 316, the resistor 218, the inductor 302, and the LED string 208 to the ground of the light source driving circuit 300. The current flowing through the inductor 302 gradually increases, so that the voltage of the first signal ISEN gradually increases. In an embodiment, when the switch 316 is turned on, the voltage of the detection signal AUX is a negative value. In one embodiment, within controller 210, comparator 404 compares error signal VEA with first signal ISEN. When the voltage of the first signal ISEN exceeds the voltage of the error signal VEA, the comparator 404 outputs a logic 0, otherwise the comparator 404 outputs a logic 1. In other words, the output of comparator 404 is a series of pulses. The pulse width modulation signal generator 408 generates a pulse width modulation signal PWM1 having a second level (e.g., logic 0) in response to the negative going output of the comparator 404, thereby turning off the switch 316. When the switch 316 is turned off, the voltage of the detection signal AUX becomes a positive value. When switch 316 is open, a current flows through resistor 218, inductor 302, LED string 208, and diode 314. The current flowing through the inductor 302 gradually decreases, so the voltage of the first signal ISEN gradually decreases. When the current flowing through the inductor 302 is reduced to a predetermined current level (eg, reduced to zero), the voltage of the detection signal AUX will generate a negative edge, and the pulse width modulation signal generator 408 will have the first state ( For example, the pulse width modulation signal PWM1 of logic 1) turns on the switch 316.

在一實施例中,脈衝寬度調變信號PWM1的責任週期比係由誤差信號VEA決定。如果第二信號IAVG的電壓小於參考信號SET的電壓,則誤差放大器402增加誤差信號VEA的電壓以增大脈衝寬度調變信號PWM1的責任週期比。相應地,流經電感302的平均電流增大,直到第二信號IAVG的電壓增加至參考信號SET的電壓位準。如果第二信號IAVG的電壓大於參考信號SET的電壓,則誤差放大器402減小誤差信號VEA的電壓以減小脈衝寬度調變信號PWM1的責任週期比,進而降低流經電感302的平均電流,直到第二信號IAVG的電壓降低至參考信號SET的電壓位準。因此,流經電感302的平均電流能夠被維持至與目標電流位準相等。 In one embodiment, the duty cycle ratio of the pulse width modulation signal PWM1 is determined by the error signal VEA. If the voltage of the second signal IAVG is less than the voltage of the reference signal SET, the error amplifier 402 increases the voltage of the error signal VEA to increase the duty cycle ratio of the pulse width modulation signal PWM1. Accordingly, the average current flowing through the inductor 302 increases until the voltage of the second signal IAVG increases to the voltage level of the reference signal SET. If the voltage of the second signal IAVG is greater than the voltage of the reference signal SET, the error amplifier 402 reduces the voltage of the error signal VEA to reduce the duty cycle ratio of the pulse width modulation signal PWM1, thereby reducing the average current flowing through the inductor 302 until The voltage of the second signal IAVG is lowered to the voltage level of the reference signal SET. Therefore, the average current flowing through the inductor 302 can be maintained to be equal to the target current level.

圖6所示為根據本發明一實施例圖3中所示之控制器 210的另一種架構示意圖。圖7所示為根據本發明一實施例圖6中所示之控制器210的波形圖。圖6將結合圖3和圖7進行描述。 Figure 6 shows the controller shown in Figure 3 in accordance with an embodiment of the present invention. Another architectural schematic of 210. FIG. 7 is a waveform diagram of the controller 210 shown in FIG. 6 in accordance with an embodiment of the present invention. Figure 6 will be described in conjunction with Figures 3 and 7.

在圖6的例子中,控制器210包含誤差放大器602、比較器604、鋸齒波信號產生器606、重置信號產生器608、以及脈衝寬度調變信號產生器610。誤差放大器602基於一參考信號SET和第二信號IAVG之間的一電壓差產生一誤差信號VEA。參考信號SET指示一目標電流位準。第二信號IAVG透過端點FB接收指示流經電感302的平均電流。誤差信號VEA可用於調整流經電感302的平均電流使之等於目標電流位準。鋸齒波信號產生器606產生一鋸齒波信號SAW。比較器604耦接誤差放大器602以及鋸齒波信號產生器606,並比較誤差信號VEA與鋸齒波信號SAW。重置信號產生器608產生一重置信號RESET,並提供重置信號RESET給鋸齒波信號產生器606和脈衝寬度調變信號產生器610。為回應重置信號RESET,開關316導通。脈衝寬度調變信號產生器610耦接比較器604以及重置信號產生器608,並基於比較器604的輸出和重置信號RESET產生一脈衝寬度調變信號PWM1。脈衝寬度調變信號PWM1透過端點DRV控制開關316的導通狀態。 In the example of FIG. 6, the controller 210 includes an error amplifier 602, a comparator 604, a sawtooth signal generator 606, a reset signal generator 608, and a pulse width modulation signal generator 610. The error amplifier 602 generates an error signal VEA based on a voltage difference between a reference signal SET and a second signal IAVG. The reference signal SET indicates a target current level. The second signal IAVG receives an average current indicative of the flow through the inductor 302 through the terminal FB. The error signal VEA can be used to adjust the average current flowing through the inductor 302 to be equal to the target current level. The sawtooth signal generator 606 generates a sawtooth signal SAW. The comparator 604 is coupled to the error amplifier 602 and the sawtooth signal generator 606, and compares the error signal VEA with the sawtooth signal SAW. The reset signal generator 608 generates a reset signal RESET and provides a reset signal RESET to the sawtooth signal generator 606 and the pulse width modulation signal generator 610. In response to the reset signal RESET, the switch 316 is turned "on". The pulse width modulation signal generator 610 is coupled to the comparator 604 and the reset signal generator 608, and generates a pulse width modulation signal PWM1 based on the output of the comparator 604 and the reset signal RESET. The pulse width modulation signal PWM1 controls the conduction state of the switch 316 through the terminal DRV.

在一實施例中,重置信號RESET係為一具有固定頻率的脈衝信號。在另一實施例中,重置信號RESET係為一使得開關316處於斷開狀態的時間為一常數的脈衝信號。重置信號RESET使得例如在圖5中之脈衝寬度調變信號PWM1為邏輯0的時間為一常數。 In one embodiment, the reset signal RESET is a pulse signal having a fixed frequency. In another embodiment, the reset signal RESET is a pulse signal that causes the switch 316 to be in an off state for a constant period of time. The reset signal RESET is such that the time when the pulse width modulation signal PWM1 in FIG. 5 is logic 0 is a constant.

在操作中,脈衝寬度調變信號產生器610產生一具有第一狀態(例如,邏輯1)的脈衝寬度調變信號PWM1以導通開關316,並回應重置信號RESET。當開關316導通,一電流流經開關316、電阻218、電感302、發光二極體串208至光源驅動電路300的地。鋸齒波信號產生器606所產生的鋸齒波信號SAW的電壓從一初始位準INI開始增加,以回應重置信號RESET的脈衝。當鋸齒波信號SAW的電壓增大到誤差信號VEA的電壓,脈衝寬度調變信號產生器610產生一具有第二狀態(例如,邏輯0)的脈衝寬度調變信號PWM1以斷開開 關316,並且鋸齒波信號SAW的電壓被重置為初始位準INI,直到鋸齒波信號產生器606接收到重置信號RESET的下一個脈衝。待接收到重置信號RESET的下一個脈衝,鋸齒波信號SAW的電壓會再次從初始位準INI開始逐漸增加,以回應此脈衝。 In operation, pulse width modulation signal generator 610 generates a pulse width modulation signal PWM1 having a first state (eg, logic 1) to turn on switch 316 and to respond to reset signal RESET. When the switch 316 is turned on, a current flows through the switch 316, the resistor 218, the inductor 302, and the LED string 208 to the ground of the light source driving circuit 300. The voltage of the sawtooth wave signal SAW generated by the sawtooth signal generator 606 is increased from an initial level INI in response to the pulse of the reset signal RESET. When the voltage of the sawtooth signal SAW increases to the voltage of the error signal VEA, the pulse width modulation signal generator 610 generates a pulse width modulation signal PWM1 having a second state (for example, logic 0) to be turned off. Off 316, and the voltage of the sawtooth signal SAW is reset to the initial level INI until the sawtooth signal generator 606 receives the next pulse of the reset signal RESET. Upon receiving the next pulse of the reset signal RESET, the voltage of the sawtooth signal SAW will gradually increase from the initial level INI again in response to the pulse.

在一實施例中,脈衝寬度調變信號PWM1的責任週期比係由誤差信號VEA決定。如果第二信號IAVG的電壓小於參考信號SET的電壓,則誤差放大器602增大誤差信號VEA的電壓以增大脈衝寬度調變信號PWM1的責任週期比。相應地,流經電感302的平均電流增大,直到第二信號IAVG的電壓增加至參考信號SET的電壓位準。如果第二信號IAVG的電壓大於參考信號SET的電壓位準,則誤差放大器602減小誤差信號VEA的電壓以減小脈衝寬度調變信號PWMI的責任週期比。相應地,流經電感302的平均電流減小,直到第二信號IAVG的電壓降低至參考信號SET的電壓位準。因此,流經電感302的平均電流能夠被維持至與目標電流位準相等。 In one embodiment, the duty cycle ratio of the pulse width modulation signal PWM1 is determined by the error signal VEA. If the voltage of the second signal IAVG is less than the voltage of the reference signal SET, the error amplifier 602 increases the voltage of the error signal VEA to increase the duty cycle ratio of the pulse width modulation signal PWM1. Accordingly, the average current flowing through the inductor 302 increases until the voltage of the second signal IAVG increases to the voltage level of the reference signal SET. If the voltage of the second signal IAVG is greater than the voltage level of the reference signal SET, the error amplifier 602 reduces the voltage of the error signal VEA to reduce the duty cycle ratio of the pulse width modulation signal PWMI. Accordingly, the average current flowing through the inductor 302 decreases until the voltage of the second signal IAVG drops to the voltage level of the reference signal SET. Therefore, the average current flowing through the inductor 302 can be maintained to be equal to the target current level.

圖8所示為根據本發明另一個實施例的光源驅動電路光源驅動電路800的示意圖。圖8中與圖2、圖3具有相同元件符號之元件具有類似的功能。 FIG. 8 is a schematic diagram of a light source driving circuit light source driving circuit 800 according to another embodiment of the present invention. Elements in Figure 8 having the same reference numerals as in Figures 2 and 3 have similar functions.

控制器210的端點VDD透過開關804耦接整流器204,並接收經過整流器204調整後的輸出電壓。耦接於開關804和控制器210之參考接地之間的一齊納二極體802用於保持端點VDD的電壓基本上恆定。圖8的例子中,控制器210的端點ZCD電性耦接電感302,接收指示電感302之電力狀況的檢測信號AUX。檢測信號AUX可指示流經電感302的電流是否降低至預設電流位準(例如,是否減小到零)。共同節點333可為控制器210提供一參考接地。 The terminal VDD of the controller 210 is coupled to the rectifier 204 through the switch 804 and receives the output voltage adjusted by the rectifier 204. A Zener diode 802 coupled between the switch 804 and the reference ground of the controller 210 is used to maintain the voltage at the terminal VDD substantially constant. In the example of FIG. 8 , the terminal ZCD of the controller 210 is electrically coupled to the inductor 302 and receives a detection signal AUX indicating the power condition of the inductor 302 . The detection signal AUX may indicate whether the current flowing through the inductor 302 has decreased to a preset current level (eg, whether it is reduced to zero). The common node 333 can provide a reference ground for the controller 210.

綜上所述,本發明提供了一種控制電力轉換器以對負載供電的電路。在一實施例中,電力轉換器為負載(例如發光二極體串)提供一實質上恆定之電流。在另一實施例中,電力轉換器提供一定電流以對電池充電。與圖1中的傳統電路相比,本發明的電路所提供給負載或電池的電流可得到更精確的控制。而且本發明的電路可適用於 具有相對較高電壓的電壓源。 In summary, the present invention provides a circuit that controls a power converter to power a load. In one embodiment, the power converter provides a substantially constant current to a load, such as a string of light emitting diodes. In another embodiment, the power converter provides a current to charge the battery. The current provided by the circuit of the present invention to the load or battery can be more accurately controlled than the conventional circuit of FIG. Moreover, the circuit of the present invention is applicable to A voltage source with a relatively high voltage.

圖9A所示為根據本發明另一個實施例的光源驅動電路900的方塊示意圖。圖9A中與圖2、圖3編號相同的元件具有類似的功能。在一實施例中,光源驅動電路900包括與電源202耦接的濾波器920、整流器204、電力轉換器906、負載288、鋸齒波信號產生器902和控制器910。電源202產生交流輸入電壓VAC(例如,交流輸入電壓VAC具有正弦波信號)和交流輸入電流IAC。交流輸入電流IAC流入濾波器920。電流IAC'從濾波器920流出,並流入整流器204。整流器204透過濾波器920接收交流輸入電壓VAC,並在電源線912上提供一整流電壓VIN和一整流電流IIN。電源線912耦接於整流器204和電力轉換器906之間。電力轉換器906將整流電壓VIN轉換成一輸出電壓VOUT,為負載288提供電能。控制器910與電力轉換器906耦接,用於控制電力轉換器906,以調節流過負載288的電流IOUT,並校正光源驅動電路900的功率因數。 FIG. 9A is a block diagram showing a light source driving circuit 900 in accordance with another embodiment of the present invention. Elements in Figure 9A numbered the same as Figures 2 and 3 have similar functions. In an embodiment, light source drive circuit 900 includes a filter 920 coupled to power source 202, a rectifier 204, a power converter 906, a load 288, a sawtooth signal generator 902, and a controller 910. The power supply 202 produces an AC input voltage V AC (eg, the AC input voltage V AC has a sinusoidal signal) and an AC input current I AC . The AC input current I AC flows into the filter 920. Current I AC ' flows out of filter 920 and flows into rectifier 204. The rectifier 204 receives the AC input voltage V AC through the filter 920 and provides a rectified voltage V IN and a rectified current I IN on the power line 912. The power line 912 is coupled between the rectifier 204 and the power converter 906. Power converter 906 converts rectified voltage V IN to an output voltage V OUT to provide power to load 288. The controller 910 is coupled to the power converter 906 for controlling the power converter 906 to regulate the current I OUT flowing through the load 288 and correct the power factor of the light source driving circuit 900.

控制器910產生一驅動信號962。在一個實施例中,電力轉換器906包括一開關316。驅動信號962控制開關316,進而調節流經負載288的電流IOUT。電力轉換器906還產生指示流經負載288的電流IOUT的一感應信號IAVG。 Controller 910 generates a drive signal 962. In one embodiment, power converter 906 includes a switch 316. Drive signal 962 controls switch 316 to regulate current I OUT flowing through load 288. Power converter 906 also generates an induced signal IAVG indicative of current I OUT flowing through load 288.

在一個實施例中,與控制器910耦接的鋸齒波信號產生器902,根據驅動信號962產生一鋸齒波信號960。例如,驅動信號962可為脈衝寬度調變信號。在一個實施例中,當驅動信號962為邏輯高電位時,鋸齒波信號960增加;當驅動信號962為邏輯低電位時,鋸齒波信號960降低到預設電壓值(例如,降低到0V)。 In one embodiment, the sawtooth signal generator 902 coupled to the controller 910 generates a sawtooth signal 960 based on the drive signal 962. For example, drive signal 962 can be a pulse width modulated signal. In one embodiment, the sawtooth signal 960 is increased when the drive signal 962 is at a logic high level; when the drive signal 962 is at a logic low level, the sawtooth signal 960 is lowered to a predetermined voltage value (eg, reduced to 0V).

有利之處在於,控制器910根據鋸齒波信號960和感應信號IAVG產生驅動信號962。驅動信號962控制開關316,使流經負載288的電流IOUT保持在目標電流值,以提高電流控制的精確性。另外,驅動信號962控制開關316,調節整流電流IIN的平均電流IIN_AVG與整流電壓VIN實質同相,以校正光源驅動電路900的功率因數。在本發明中,實質同相指兩波形理論上同相位,然而在實際應用中,由 於電路中電容的存在,造成兩波形存在細微的相差。光源驅動電路900的工作原理將在圖9B中進一步描述。 Advantageously, controller 910 generates drive signal 962 based on sawtooth signal 960 and sense signal IAVG. The drive signal 962 controls the switch 316 to maintain the current I OUT flowing through the load 288 at the target current value to improve the accuracy of the current control. In addition, the drive signal 962 controls the switch 316, and the average current I IN_AVG of the regulated rectified current I IN is substantially in phase with the rectified voltage V IN to correct the power factor of the light source drive circuit 900. In the present invention, substantially in phase means that the two waveforms are theoretically in phase, however, in practical applications, due to the presence of capacitance in the circuit, there is a slight phase difference between the two waveforms. The operation of light source drive circuit 900 will be further described in Figure 9B.

圖9B所示為根據本發明的一個實施例圖9A中的光源驅動電路900中的信號的波形圖,圖9B將結合圖9A描述。圖9B描述了輸入交流電壓VAC、整流電壓VIN、整流電流IIN、整流電流的平均電流IIN_AVG、電流IAC’和輸入交流電流IAC的波形。 Figure 9B is a waveform diagram of signals in the light source driving circuit 900 of Figure 9A in accordance with one embodiment of the present invention, and Figure 9B will be described in conjunction with Figure 9A. FIG. 9B depicts waveforms of the input AC voltage V AC , the rectified voltage V IN , the rectified current I IN , the average current I IN — AVG of the rectified current, the current I AC ', and the input AC current I AC .

為了描述的方便,輸入交流電壓VAC為正弦波形,但並不以此為限。整流器204整流輸入交流電壓VAC。在圖9B的實施例中,整流電壓VIN具有整流後的正弦波形,即,輸入交流電壓VAC的正向波形保留,其負向波形轉換成對應的正向波形。 For convenience of description, the input AC voltage V AC is a sinusoidal waveform, but is not limited thereto. The rectifier 204 rectifies the input AC voltage V AC . In the embodiment of Figure 9B, the rectified voltage V IN has a rectified sinusoidal waveform, i.e., the forward waveform of the input AC voltage V AC remains, and its negative waveform is converted to a corresponding forward waveform.

在一個實施例中,控制器910所產生的驅動信號962控制整流電流IIN。整流電流IIN從一預設值(例如,0安培)開始增加。當整流電流IIN達到與整流電壓VIN成比例的一個值之後,整流電流IIN降到預設值。如圖9B所示,整流電流IIN的平均電流IIN_AVG的波形與整流電壓VIN的波形實質同相。 In one embodiment, the drive signal 962 generated by the controller 910 controls the rectified current I IN . The rectified current I IN increases from a predetermined value (for example, 0 amps). After the rectified current I IN reaches a value proportional to the rectified voltage V IN , the rectified current I IN drops to a preset value. As shown in FIG. 9B, the waveform of the average current I IN_AVG of the rectified current I IN is substantially in phase with the waveform of the rectified voltage V IN .

整流電流IIN從整流器204流出並流入電力轉換器906。整流電流IIN是流入整流器204的電流IAC’整流後的電流。如圖9B所示,當輸入交流電壓VAC為正值時,電流IAC’的正向波形與整流電流IIN的正向波形類似;當輸入電流電壓VAC為負值時,電流IAC’的負向波形與整流電流IIN的波形對應。 The rectified current I IN flows out of the rectifier 204 and flows into the power converter 906. The rectified current I IN is the current rectified by the current I AC ' flowing into the rectifier 204. As shown in FIG. 9B, when the input AC voltage V AC is positive, the forward waveform of the current I AC ' is similar to the forward waveform of the rectified current I IN ; when the input current voltage V AC is negative, the current I AC The negative waveform of ' corresponds to the waveform of the rectified current I IN .

在一個實施例中,透過耦接於電源202和整流器204之間的濾波器920,輸入交流電流IAC與電流IAC’的平均值相等或成比例。因此,如圖9B所示,輸入交流電流IAC的波形與輸入交流電壓VAC的波形實質同相。理論上,輸入交流電流IAC與輸入交流電壓VAC同相。然而,在實際應用中,由於濾波器920和電力轉換器906中存在電容,輸入交流電流IAC與輸入交流電壓VAC之間可能存在細微的相差。此外,輸入交流電流IAC與輸入交流電壓VAC波形也大致相似。因此,光源驅動電路900的功率因數得到了校正,進而提高了光源驅動電路900的供電品質。 In one embodiment, the input AC current I AC is equal or proportional to the average of the current I AC ' through a filter 920 coupled between the power source 202 and the rectifier 204. Therefore, as shown in FIG. 9B, the waveform of the input alternating current I AC is substantially in phase with the waveform of the input alternating current voltage V AC . In theory, the input AC current I AC is in phase with the input AC voltage V AC . However, in practical applications, there may be a slight phase difference between the input alternating current I AC and the input alternating voltage V AC due to the presence of capacitance in the filter 920 and the power converter 906. In addition, the input AC current I AC is also substantially similar to the input AC voltage V AC waveform. Therefore, the power factor of the light source driving circuit 900 is corrected, thereby improving the power supply quality of the light source driving circuit 900.

圖10所示為根據本發明的又一實施例的光源驅動電路1000的示意圖。圖10中與圖2、圖3和圖9A編號相同的元件具有類似的功能。圖10將結合圖4、圖5和圖9A進行描述。 FIG. 10 is a schematic diagram of a light source driving circuit 1000 in accordance with still another embodiment of the present invention. Elements in Figure 10 that are numbered the same as Figures 2, 3, and 9A have similar functions. Figure 10 will be described in conjunction with Figures 4, 5 and 9A.

在圖10的例子中,光源驅動電路1000包含耦接電源202的濾波器920、整流器204、電力轉換器906、負載288、鋸齒波信號產生器902和控制器910。在一個實施例中,負載288包含發光二極體串208(例如,發光二極體鏈)。本發明並不局限於此,負載288可以包含其他類型的光源或者其他類型的負載(例如,電池組)。濾波器920可為包含一對電感和一對電容的電感-電容濾波器,但並不以此為限。在一個實施例中,控制器910包含多個埠,例如,ZCD埠、GND埠、DRV埠、VDD埠、FB埠、COMP埠和CS埠。 In the example of FIG. 10, the light source driving circuit 1000 includes a filter 920 coupled to the power source 202, a rectifier 204, a power converter 906, a load 288, a sawtooth signal generator 902, and a controller 910. In one embodiment, load 288 includes a light emitting diode string 208 (eg, a light emitting diode chain). The invention is not limited in this regard, and the load 288 may include other types of light sources or other types of loads (eg, battery packs). The filter 920 can be an inductor-capacitor filter including a pair of inductors and a pair of capacitors, but is not limited thereto. In one embodiment, controller 910 includes a plurality of ports, for example, ZCD埠, GND埠, DRV埠, VDD埠, FB埠, COMP埠, and CS埠.

在一個實施例中,電力轉換器906包含耦接電源線912的輸入電容1008。輸入電容1008減少整流電壓VIN的漣波,以平滑整流電壓VIN的波形。在一個實施例中,輸入電容1008具有相對較小的電容值(例如,小於0.5微法拉),以幫助消除或減小整流電壓VIN波形的畸變。另外,在一個實施例中,由於輸入電容1008之電容值較小,流經輸入電容1008的電流可以忽略。因此,當開關316接通時,流經開關316的電流I214與從整流器204流出的整流電流IIN大致相等。 In one embodiment, power converter 906 includes an input capacitor 1008 coupled to power line 912. The input capacitor 1008 reduces the chopping of the rectified voltage V IN to smooth the waveform of the rectified voltage V IN . In one embodiment, input capacitor 1008 has a relatively small capacitance value (eg, less than 0.5 microfarads) to help eliminate or reduce distortion of the rectified voltage V IN waveform. Additionally, in one embodiment, since the capacitance of the input capacitor 1008 is small, the current flowing through the input capacitor 1008 can be ignored. Thus, when switch 316 is turned "on", current I 214 flowing through switch 316 is substantially equal to the rectified current I IN flowing from rectifier 204.

電力轉換器906與圖3中的電力轉換器206的操作類似。在一個實施例中,儲能元件214包含電感302和電感304,電感302電磁耦接電感304。電感302與開關316和發光二極體串208耦接。因此,根據開關316的導通狀態,電流I214流經電感302。更具體地,在一個實施例中,控制器910在DRV埠上產生驅動信號962(例如,脈衝寬度調變信號),以控制開關316接通或斷開。當開關316閉合,電流I214從電源線912流出,流經開關316和電感302,並且不斷增加。電流I214可以由方程式(1)得出:△I214=(VIN-VOUT)*TON/L302 (1) Power converter 906 is similar to the operation of power converter 206 in FIG. In one embodiment, the energy storage component 214 includes an inductor 302 and an inductor 304 that is electromagnetically coupled to the inductor 304. Inductor 302 is coupled to switch 316 and light emitting diode string 208. Therefore, current I 214 flows through inductor 302 depending on the on state of switch 316. More specifically, in one embodiment, controller 910 generates a drive signal 962 (e.g., a pulse width modulation signal) on DRV to control switch 316 to be turned "on" or "off". When switch 316 is closed, current I 214 flows from power line 912, through switch 316 and inductor 302, and increases. Current I 214 can be derived from equation (1): ΔI 214 = (V IN - V OUT ) * T ON / L 302 (1)

其中,TON表示開關316導通的時間,△I214表示電流I214的變化量,L302表示電感302的電感值。在一個實施例中,控制器910 控制驅動信號962,使得TON為一個恒定值。所以,若輸出電壓VOUT基本恒定,在TON時間間隔內,電流I214的變化量△I214與整流電壓VIN成比例。在一個實施例中,當電流I214降低到預設值(例如,0安培)時,開關316閉合。因此,電流I214的峰值與整流電壓VIN成比例。 Where T ON represents the time when the switch 316 is turned on, ΔI 214 represents the amount of change of the current I 214 , and L 302 represents the inductance value of the inductor 302. In one embodiment, controller 910 controls drive signal 962 such that T ON is a constant value. Therefore, when the output voltage V OUT is substantially constant, in a time interval T ON, the current I 214 is the amount of change △ I of the rectified voltage 214 is proportional to V IN. In one embodiment, when current I 214 is lowered to a preset value (eg, 0 amps), switch 316 is closed. Therefore, the peak value of the current I 214 is proportional to the rectified voltage V IN .

當開關316斷開時,電流I214從地流出,並流經二極體314和電感302,流進發光二極體串208。相應地,電流I214根據方程式(2)降低:△I214=(-VOUT)*TOFF/L302 (2)其中,TOFF表示開關316的關斷時間。 When switch 316 is open, current I 214 flows from ground and flows through diode 314 and inductor 302 into current LED string 208. Accordingly, current I 214 is decreased according to equation (2): ΔI 214 = (-V OUT ) * T OFF / L 302 (2) where T OFF represents the off time of switch 316.

在一個實施例中,當開關316導通時,電流IIN與電流I214相等,當開關316斷開時,電流IIN等於0安培。 In one embodiment, current I IN is equal to current I 214 when switch 316 is on, and current I IN is equal to 0 amps when switch 316 is open.

電感304感應電感302的狀況,例如,流經電感302的電流是否下降到預設電流值,例如0安培。結合圖5所述,在一個實施例中,在開關316閉合時,監測信號AUX為低電位,當開關316斷開時,監測信號AUX為高電位。當流經電感302的電流I214降低到預設電流值,監測信號AUX的電壓產生一個負緣。控制器910的ZCD埠耦接於電感304,用來接收監測信號AUX。 Inductor 304 senses the condition of inductor 302, for example, whether the current flowing through inductor 302 drops to a preset current value, such as 0 amps. In conjunction with FIG. 5, in one embodiment, the monitor signal AUX is low when the switch 316 is closed and the monitor signal AUX is high when the switch 316 is open. When the current I 214 flowing through the inductor 302 is lowered to a preset current value, the voltage of the monitor signal AUX produces a negative edge. The ZCD of the controller 910 is coupled to the inductor 304 for receiving the monitoring signal AUX.

在一個實施例中,電力轉換器906包含輸出濾波器1024。輸出濾波器1024可為具有相對較大電容值(例如,大於400微法拉)的電容。所以,流經發光二極體串208的電流IOUT表示電流I214的平均值。 In one embodiment, power converter 906 includes an output filter 1024. Output filter 1024 can be a capacitor having a relatively large capacitance value (eg, greater than 400 microfarads). Therefore, the current I OUT flowing through the LED string 208 represents the average value of the current I 214 .

電阻218產生指示流經電感302的電流的電流感應信號ISEN。在一個實施例中,濾波器212為包含電阻320和電容322的電阻-電容濾波器。濾波器212去除電流感應信號ISEN中的漣波,以產生電流感應信號ISEN的平均電流感應信號IAVG。所以,在圖10的實施例中,平均電流感應信號IAVG表示流經發光二極體串208的電流IOUT。控制器910的埠FB用於接收平均電流感應信號IAVG。 Resistor 218 produces a current sense signal ISEN indicative of the current flowing through inductor 302. In one embodiment, filter 212 is a resistor-capacitor filter comprising a resistor 320 and a capacitor 322. The filter 212 removes the chopping in the current sense signal ISEN to generate an average current sense signal IAVG of the current sense signal ISEN. Therefore, in the embodiment of FIG. 10, the average current sense signal IAVG represents the current I OUT flowing through the LED string 208. The 埠FB of the controller 910 is used to receive the average current sense signal IAVG.

鋸齒波信號產生器902耦接於DRV埠和CS埠。鋸齒波信號產生器902根據DRV埠的驅動信號962在CS埠上產生鋸齒波信 號960。例如,鋸齒波信號產生器902包含耦接於DRV埠和CS埠之間且相互並聯的電阻1016和二極體1018,還包含耦接於CS埠和地之間且相互並聯的電阻1012和電容1014。工作時,鋸齒波信號960根據驅動信號962而變化。更具體地,在一個實施例中,驅動信號962為脈衝寬度調變信號。當驅動信號962為邏輯高電位時,電流I1從DRV埠流出,經過電阻1016,流入電容1014。因此,電容1014被充電,鋸齒波信號960的電壓V960增加。當驅動信號962為邏輯低電位時,電流I2從電容1014流出,經過二極體1018,並流入DRV埠。因此,電容1014放電,電壓V960降低到0伏特。鋸齒波信號產生器902還可以包含其他元件,並不局限於圖10所示的實施例。 The sawtooth signal generator 902 is coupled to the DRV埠 and CS埠. The sawtooth signal generator 902 generates a sawtooth signal 960 on CS埠 based on the DRV drive signal 962. For example, the sawtooth signal generator 902 includes a resistor 1016 and a diode 1018 coupled between the DRV埠 and the CS埠 and connected in parallel with each other, and further includes a resistor 1012 and a capacitor coupled between the CS埠 and the ground and connected in parallel with each other. 1014. In operation, the sawtooth signal 960 varies according to the drive signal 962. More specifically, in one embodiment, drive signal 962 is a pulse width modulated signal. When the drive signal 962 is at a logic high level, the current I1 flows out of the DRV, passes through the resistor 1016, and flows into the capacitor 1014. Therefore, the capacitor 1014 is charged, and the voltage V 960 of the sawtooth signal 960 is increased. When the drive signal 962 is at a logic low level, the current I2 flows out of the capacitor 1014, passes through the diode 1018, and flows into the DRV. Therefore, the capacitor 1014 is discharged and the voltage V 960 is lowered to 0 volts. The sawtooth signal generator 902 may also include other components and is not limited to the embodiment shown in FIG.

在一個實施例中,控制器910整合在一個積體電路晶片上。電阻1016和1012、二極體1018以及電容1014為積體電路晶片的週邊電路元件。在另一個實施例中,鋸齒波信號產生器902和控制器910也可以整合在一個積體電路晶片上。在該實施例中,可以省略CS埠,進而減小了光源驅動電路1000的尺寸和成本。電力轉換器906還可以具有其他結構,並不局限於圖10所示的實施例。 In one embodiment, controller 910 is integrated on an integrated circuit die. Resistors 1016 and 1012, diode 1018, and capacitor 1014 are peripheral circuit components of the integrated circuit die. In another embodiment, the sawtooth signal generator 902 and controller 910 can also be integrated on an integrated circuit die. In this embodiment, the CS埠 can be omitted, thereby reducing the size and cost of the light source driving circuit 1000. The power converter 906 can also have other configurations and is not limited to the embodiment shown in FIG.

圖11所示為根據本發明的實施例的圖9A中控制器910的結構示意圖。圖11中與圖4和圖9A編號相同的元件具有類似的功能。圖11將結合圖4、圖5、圖9A和圖10進行描述。 FIG. 11 is a block diagram showing the structure of the controller 910 of FIG. 9A according to an embodiment of the present invention. Elements in Figure 11 that are numbered the same as Figures 4 and 9A have similar functions. Figure 11 will be described in conjunction with Figures 4, 5, 9A and 10.

在一個實施例中,控制器910與圖4中的控制器210有相似的結構,不同之處在於,CS埠接收鋸齒波信號960而不是電流感應信號ISEN。控制器910根據鋸齒波信號960、平均電流感應信號IAVG和監測信號AUX產生驅動信號962。控制器910包括誤差放大器402、比較器404和脈寬調變信號產生器408。誤差放大器402根據平均電流感應信號IAVG和表示目標電流值的參考信號SET之間的差值,產生誤差信號VEA。比較器404比較鋸齒波信號960和誤差信號VEA,以產生比較信號S。脈衝寬度調變信號產生器408根據比較信號S和監測測信號AUX產生驅動信號962。 In one embodiment, controller 910 has a similar structure to controller 210 of FIG. 4, except that CS埠 receives sawtooth signal 960 instead of current sense signal ISEN. The controller 910 generates a drive signal 962 based on the sawtooth signal 960, the average current sense signal IAVG, and the monitor signal AUX. Controller 910 includes error amplifier 402, comparator 404, and pulse width modulation signal generator 408. The error amplifier 402 generates an error signal VEA based on the difference between the average current sense signal IAVG and the reference signal SET indicating the target current value. Comparator 404 compares sawtooth signal 960 and error signal VEA to produce comparison signal S. The pulse width modulation signal generator 408 generates a drive signal 962 based on the comparison signal S and the monitor signal AUX.

在一個實施例中,當監測信號AUX表示流經電感302 的電流I214降到預設值(例如,0安培)時,驅動信號962切換至第一電位(例如,邏輯高電位),以閉合開關316。當鋸齒波信號960達到誤差信號VEA時,驅動信號962切換至第二電位(例如,邏輯低電位),以斷開開關316。有利之處在於,由於CS埠接收鋸齒波信號960而不是電流感應信號ISEN,流經電感302的電流I214的峰值不會受限於誤差信號VEA。因此,如方程式(1)所述,流經電感302的電流I214根據整流電壓VIN改變。例如,電流I214的峰值與整流電壓VIN成比例而不是與誤差信號VEA成比例。 In one embodiment, when the monitor signal AUX indicates that the current I 214 flowing through the inductor 302 drops to a preset value (eg, 0 amps), the drive signal 962 switches to a first potential (eg, a logic high) to close Switch 316. When the sawtooth signal 960 reaches the error signal VEA, the drive signal 962 switches to a second potential (eg, a logic low) to turn off the switch 316. Advantageously, since CS埠 receives the sawtooth signal 960 instead of the current sense signal ISEN, the peak value of the current I 214 flowing through the inductor 302 is not limited by the error signal VEA. Therefore, as described in equation (1), the current I 214 flowing through the inductor 302 changes according to the rectified voltage V IN . For example, the peak value of current I 214 is proportional to the rectified voltage V IN rather than to the error signal VEA.

控制器910控制驅動信號962,以使電流IOUT保持在由參考信號SET表示的目標電流值。例如,如果電流IOUT大於目標電流值(例如,由於整流電壓VIN的變化),誤差放大器402減小誤差信號VEA,以縮短開關316閉合的時間TON。所以,電流I214的平均電流降低,以減小電流IOUT。同樣的,如果電流IOUT小於目標電流值,控制器910延長開關316閉合的時間TON,以增大電流IOUTThe controller 910 controls the drive signal 962 to maintain the current I OUT at the target current value represented by the reference signal SET. For example, if the current I OUT is greater than the target current value (eg, due to a change in the rectified voltage V IN ), the error amplifier 402 reduces the error signal VEA to shorten the time T ON at which the switch 316 is closed. Therefore, the average current of current I 214 is reduced to reduce current I OUT . Similarly, if the current I OUT is less than the target current value, the controller 910 extends the time T ON at which the switch 316 is closed to increase the current I OUT .

圖12所示為根據本發明的實施例的光源驅動電路(例如,光源驅動電路900或1000)產生或接收的信號波形圖。圖12將結合圖4、圖9A、圖9B和圖10進行描述。圖12描述了整流電壓VIN、整流電流IIN、整流電流IIN的平均電流IIN_AVG、流經發光二極體串208的電流IOUT、表示流經電感302的電流I214的感應信號ISEN、誤差信號VEA、鋸齒波信號960和驅動信號962。 Figure 12 is a diagram showing signal waveforms generated or received by a light source driving circuit (e.g., light source driving circuit 900 or 1000) in accordance with an embodiment of the present invention. Figure 12 will be described in conjunction with Figures 4, 9A, 9B and 10. Figure 12 depicts the rectified voltage V IN, the rectified current I IN, the rectified current I IN average current I IN_AVG, flowing through the light-emitting diode current I OUT string 208, the current flowing through the inductor 302 represents the inductive signal ISEN 214 of I The error signal VEA, the sawtooth signal 960, and the drive signal 962.

如圖12所示,整流電壓VIN是整流後的正弦波信號。在t1時刻,驅動信號962變為邏輯高電位。因此,開關316閉合,表示流經電感302的電流I214的感應信號ISEN增加。同時,鋸齒波信號960根據驅動信號962增加。 As shown in FIG. 12, the rectified voltage V IN is a rectified sine wave signal. At time t1, drive signal 962 becomes a logic high. Thus, switch 316 is closed, current flows through the inductor 302 represents the increase I of the sensing signal ISEN 214. At the same time, the sawtooth signal 960 is increased in accordance with the drive signal 962.

在t2時刻,鋸齒波信號960增加到誤差信號VEA。相應地,控制器910調節驅動信號962為邏輯低電位,鋸齒波信號960降到0伏特。驅動信號962斷開開關316,因此,感應信號ISEN下降。換言之,鋸齒波信號960和誤差信號VEA決定了驅動信號962邏輯高電位的時間TONAt time t2, the sawtooth signal 960 is added to the error signal VEA. Accordingly, controller 910 adjusts drive signal 962 to a logic low level and sawtooth signal 960 to a voltage of zero volts. The drive signal 962 turns off the switch 316, so the sense signal ISEN drops. In other words, the sawtooth signal 960 and the error signal VEA determine the time T ON at which the drive signal 962 is logic high.

在t3時刻,電流I214降低到預設電流值(例如,0安培),由此,控制器910調節驅動信號962為邏輯高電位,以閉合開關316。 At time t3, current I 214 is reduced to a preset current value (eg, 0 amps), whereby controller 910 adjusts drive signal 962 to a logic high to close switch 316.

在一個實施例中,在整流電壓VIN的一個週期內,流經發光二極體串208的電流IOUT與電流I214的平均值相等或成比例。結合圖11的描述,控制器910調節電流IOUT至由參考信號SET表示的目標電流值。另外,如圖12所示,表示電流I214的感應信號ISEN在t1至t4期間與t5至t6期間具有相同的波形。所以,電流I214在t1至t4期間的平均值與在t5至t6期間的平均值相等。因此,電流IOUT保持在目標電流值。在一個實施例中,TON由鋸齒波信號960和誤差信號VEA決定。由於在驅動信號962的每個週期內,鋸齒波信號960從0伏特上升到誤差信號VEA的時間都是相等的,所以TON是恒定的。根據方程式(1),在TON時間內,電流I214的變化量△I214與整流電壓VIN成比例。所以,如圖12所示,感應信號ISEN的峰值與輸入電壓VIN成比例。 In one embodiment, the current I OUT flowing through the LED string 208 is equal or proportional to the average of the current I 214 during one cycle of the rectified voltage V IN . In conjunction with the description of FIG. 11, controller 910 adjusts current I OUT to a target current value represented by reference signal SET. In addition, as shown in FIG. 12, the induced signal ISEN indicating the current I 214 has the same waveform during the period from t1 to t4 and during the period from t5 to t6. Therefore, the average value of the current I 214 during t1 to t4 is equal to the average value during t5 to t6. Therefore, the current I OUT is maintained at the target current value. In one embodiment, T ON is determined by the sawtooth signal 960 and the error signal VEA. Since the time during which the sawtooth signal 960 rises from 0 volts to the error signal VEA is equal during each period of the drive signal 962, T ON is constant. According to equation (1), within a time T ON, the current I 214 is the amount of change △ I 214 IN proportional to the rectified voltage V. Therefore, as shown in FIG. 12, the peak value of the induced signal ISEN is proportional to the input voltage V IN .

在一個實施例中,當開關316閉合時,電流IIN的波形與電流I214的波形相類似,當開關316斷開時,電流IIN等於0安培。在t1至t6時間段內,整流電流IIN的平均電流IIN_AVG與整流電壓VIN實質同相。結合圖9B所描述的,輸入電流IAC與輸入電壓VAC實質同相,進而校正了光源驅動電路的功率因數,進而提高了供電品質。 In one embodiment, when switch 316 is closed, the waveform of current I IN is similar to the waveform of current I 214 , and when switch 316 is open, current I IN is equal to 0 amps. In the period t1 to t6, and the average current I IN_AVG substantial rectifying the rectified voltage V IN is in phase with current I IN. As described in connection with FIG. 9B, the input current I AC is substantially in phase with the input voltage V AC , thereby correcting the power factor of the light source driving circuit, thereby improving the power supply quality.

圖13所示為根據本發明的實施例的用於驅動負載的驅動電路(例如,用於驅動發光二極體串208的光源驅動電路900或1000)的方法流程圖1300。圖13將結合圖9A至圖12進行描述。圖13所涵蓋的具體步驟僅作為示例。也就是說,本發明也適用於執行其他合理的步驟或對圖13進行改進的步驟。 13 is a flowchart 1300 of a method for driving a load driving circuit (eg, light source driving circuit 900 or 1000 for driving light emitting diode string 208) in accordance with an embodiment of the present invention. FIG. 13 will be described in conjunction with FIGS. 9A through 12. The specific steps covered in Figure 13 are only examples. That is, the present invention is also applicable to the steps of performing other reasonable steps or improving FIG.

在步驟1302中,接收輸入電壓(例如,整流電壓VIN)和輸入電流(例如,整流電流IIN)。在步驟1304中,輸入電壓被轉換成輸出電壓,為負載(例如,發光二極體光源)提供電能。在步驟1306中,根據驅動信號(例如,驅動信號962)控制流經儲能元件(例如,儲能元件214)的電流,以調節流經負載的電流。 In step 1302, an input voltage (eg, rectified voltage V IN ) and an input current (eg, rectified current I IN ) are received. In step 1304, the input voltage is converted to an output voltage to provide electrical energy to a load (eg, a light emitting diode source). In step 1306, current flowing through the energy storage element (eg, energy storage element 214) is controlled in accordance with a drive signal (eg, drive signal 962) to regulate the current flowing through the load.

在步驟1308中,接收表示流經負載的電流的第一感應信號(例如,平均電流感應信號IAVG)。在一個實施例中,第一感應信號由表示流經儲能元件電流的第二感應信號濾波而得到。在步驟1310中,根據驅動信號產生鋸齒波信號。 In step 1308, a first induced signal (eg, average current sense signal IAVG) representative of the current flowing through the load is received. In one embodiment, the first sensed signal is obtained by filtering a second sensed signal indicative of current flowing through the energy storage element. In step 1310, a sawtooth signal is generated based on the drive signal.

在步驟1312中,由鋸齒波信號和第一感應信號控制驅動信號,以調節流經負載的電流至目標電流值,並透過控制輸入電流的平均電流與輸入電壓實質同相,以校正光源驅動電路的功率因數。在一個實施例中,根據第一感應信號和參考信號的差值產生誤差信號,參考信號表示流經發光二極體光源的目標電流值。比較鋸齒波信號和誤差信號,並接收指示儲能元件狀況的監測信號。若監測信號指示流經儲能元件的電流降低到預設值時,切換驅動信號到第一狀態,並根據鋸齒波信號和誤差信號的比較值,切換驅動信號到第二狀態。當驅動信號處於第一狀態,增加流經儲能元件的電流;驅動信號處於第二狀態時,減小流經儲能元件的電流。在一個實施例中,若流經發光二極體光源的電流保持在目標電流值,則鋸齒波信號從預設值增加到誤差信號的時間是恒定的。 In step 1312, the driving signal is controlled by the sawtooth wave signal and the first sensing signal to adjust the current flowing through the load to the target current value, and the average current through the control input current is substantially in phase with the input voltage to correct the light source driving circuit. Power factor. In one embodiment, an error signal is generated based on a difference between the first sensed signal and the reference signal, the reference signal representing a target current value flowing through the light emitting diode source. The sawtooth signal and the error signal are compared and a monitoring signal indicative of the condition of the energy storage element is received. If the monitoring signal indicates that the current flowing through the energy storage element is reduced to a preset value, the driving signal is switched to the first state, and the driving signal is switched to the second state according to the comparison value of the sawtooth wave signal and the error signal. When the drive signal is in the first state, the current flowing through the energy storage element is increased; and when the drive signal is in the second state, the current flowing through the energy storage element is reduced. In one embodiment, if the current flowing through the light emitting diode source is maintained at the target current value, the time during which the sawtooth signal is increased from the preset value to the error signal is constant.

圖14A所示為根據本發明另一實施例的光源驅動電路1400的方塊示意圖。圖14A中與圖2、圖3和圖9A編號相同的元件具有類似的功能。圖14B所示為根據本發明示於圖14A之光源驅動電路1400所產生或接收的信號波形圖。圖14A和圖14B將結合圖9A和圖9B進行描述。 FIG. 14A is a block diagram showing a light source driving circuit 1400 according to another embodiment of the present invention. Elements in Figure 14A numbered the same as Figures 2, 3 and 9A have similar functions. Figure 14B is a diagram showing signal waveforms generated or received by the light source driving circuit 1400 shown in Figure 14A in accordance with the present invention. 14A and 14B will be described in conjunction with Figs. 9A and 9B.

在圖14A的例子中,光源驅動電路1400包括與電源202耦接的電流濾波器1402、整流器204、電力轉換器1406、光源1408和控制器1410。電源202產生交流輸入電壓VAC(例如,VAC具有正弦波信號)和交流輸入電流IAC。交流輸入電流IAC流入電流濾波器1402。電流IAC’從電流濾波器1402流出,並流入整流器204。整流器204透過電流濾波器1402接收交流輸入電壓VAC,並在電源線912上提供整流電壓VIN和整流電流IIN。電源線912耦接於整流器204和電力轉換器1406之間。 In the example of FIG. 14A, light source drive circuit 1400 includes a current filter 1402 coupled to a power source 202, a rectifier 204, a power converter 1406, a light source 1408, and a controller 1410. Power source 202 produces an AC input voltage V AC (eg, V AC has a sinusoidal signal) and an AC input current I AC . The AC input current I AC flows into the current filter 1402. Current I AC ' flows out of current filter 1402 and flows into rectifier 204. Rectifier 204 receives AC input voltage V AC through current filter 1402 and provides rectified voltage V IN and rectified current I IN on power line 912. The power line 912 is coupled between the rectifier 204 and the power converter 1406.

在一個實施例中,電力轉換器1406包含電壓濾波器1420、變壓器1422以及開關1424。電壓濾波器1420接收電壓VIN,並過濾電壓VIN以產生一個穩定電壓VREG。例如,電壓VIN中具有相對較高頻率的諧波分量被排除或消除。因此,如圖14B所示,穩定電壓VREG的波形比電壓VIN的波形更加穩定。變壓器1422將穩定電壓VREG轉換為輸出電壓VOUT,為光源1408提供電能。因此,輸出電壓VOUT的波形不會受到輸入電壓VIN(例如,正弦波)變化的影響。相應的,由輸入電壓VIN的變化所產生之流經光源1408的電流IOUT的漣波被减少或消除,進而進一步降低了光源1408所發出光線的行頻干擾。 In one embodiment, power converter 1406 includes voltage filter 1420, transformer 1422, and switch 1424. Voltage filter 1420 receives voltage V IN and filters voltage V IN to produce a regulated voltage V REG . For example, harmonic components having a relatively high frequency in voltage V IN are excluded or eliminated. Therefore, as shown in FIG. 14B, the waveform of the stable voltage V REG is more stable than the waveform of the voltage V IN . Transformer 1422 converts regulated voltage V REG to output voltage V OUT to provide power to light source 1408. Therefore, the waveform of the output voltage V OUT is not affected by variations in the input voltage V IN (eg, sine wave). Correspondingly, the chopping of the current I OUT flowing through the light source 1408 caused by the change of the input voltage V IN is reduced or eliminated, thereby further reducing the horizontal frequency interference of the light emitted by the light source 1408.

控制器1410產生驅動信號1462以控制開關1424操作於第一狀態或第二狀態,進而進一步控制流入電壓濾波器1420的輸入電流IIN和流經光源1408的輸出電流IOUT。在一個實施例中,變壓器1422提供了一種指示輸出電流IOUT的感應信號1464。基於感應信號1464,控制器1410控制開關1424的導通時間TON和關斷時間TOFF的比例,以調節輸出電流IOUT至一目標值。 The controller 1410 generates a drive signal 1462 to control the switch 1424 to operate in a first state or a second state, thereby further controlling the input current I IN flowing into the voltage filter 1420 and the output current I OUT flowing through the light source 1408. In one embodiment, transformer 1422 provides an inductive signal 1464 indicative of output current IOUT . Based on the sense signal 1464, the controller 1410 controls the ratio of the on time T ON and the off time T OFF of the switch 1424 to adjust the output current I OUT to a target value.

在一個實施例中,在開關1424操作於第一狀態期間,輸入電流IIN增大,且在開關1424操作於第二狀態期間,輸入電流IIN减小。在第二狀態期間,控制器1410控制第二狀態的持續時間,以允許輸入電流IIN减小到預設值(例如,零)。控制器1410進一步控制第一狀態的持續時間,以允許輸入電流從預設值增大到與輸入電壓VIN成比例的值。輸入電流IIN的平均電流IIN_AVG與輸入電壓VIN實質同相位。類似於圖9B中的討論,電流IAC與輸入電壓VAC實質同相位。在理想情況下,交流輸入電壓VAC和交流輸入電流IAC是同相的。然而,在實際應用中,由於電流濾波器1402和電力轉換器1406中存在一電容,可能會導致細微的相位差。此外,交流輸入電流IAC的波形類似於交流輸入電壓VAC的波形形狀。因此,可校正光源驅動電路1400的功率因數。 In one embodiment, during operation of switch 1424 in the first state, input current I IN increases, and during operation of switch 1424 in the second state, input current I IN decreases. During the second state, the controller 1410 controls the duration of the second state to allow the input current I IN to decrease to a preset value (eg, zero). The controller 1410 further controls the duration of the first state to allow the input current to increase from a preset value to a value proportional to the input voltage V IN . Input current I IN I IN_AVG average current and input voltage V IN substantial phase. Similar to the discussion of FIG. 9B, the input current I AC voltage V AC with substantial phase. Ideally, the AC input voltage V AC and the AC input current I AC are in phase. However, in practical applications, due to the presence of a capacitor in the current filter 1402 and the power converter 1406, a slight phase difference may result. Further, the waveform of the AC input current I AC is similar to the waveform shape of the AC input voltage V AC . Therefore, the power factor of the light source driving circuit 1400 can be corrected.

有利之處在於,透過將開關1424交替地於第一狀態和第二狀態之間切換,可校正光源驅動電路1400的功率因數,且將輸 出電流IOUT調節至目標值。因此,光源驅動電路1400的供電品質電流控制的精確度均得到提高。由於僅控制開關1424,進而降低了光源驅動電路1400的尺寸和成本。 Advantageously, by switching the switch 1424 alternately between the first state and the second state, the power factor of the light source drive circuit 1400 can be corrected and the output current I OUT can be adjusted to a target value. Therefore, the accuracy of the power quality control of the light source driving circuit 1400 is improved. Since only the switch 1424 is controlled, the size and cost of the light source driving circuit 1400 are reduced.

圖15所示為根據本發明另一實施例之光源驅動電路1500的電路示意圖。圖15中與圖2、圖3、圖9A和圖14A編號相同的元件具有類似的功能。圖15將結合圖14A和圖14B進行描述。在一個實施例中,控制器1410包含多個端點,例如VIN端點、COMP端點、GND端點、DRV端點、CS端點、VDD端點、ZCD端點和FB端點。 FIG. 15 is a circuit diagram of a light source driving circuit 1500 according to another embodiment of the present invention. Elements in Figure 15 that are numbered the same as Figures 2, 3, 9A and 14A have similar functions. Figure 15 will be described in conjunction with Figures 14A and 14B. In one embodiment, controller 1410 includes multiple endpoints, such as VIN endpoints, COMP endpoints, GND endpoints, DRV endpoints, CS endpoints, VDD endpoints, ZCD endpoints, and FB endpoints.

在一個實施例中,電壓濾波器1420包含電感1512、二極體D15和D16以及電容C15。變壓器1422可以是一個返馳轉換器,包含初級繞組1504、次級繞組1506、輔助繞組1508和磁芯1502。開關1424與二極體D16和初級繞組1504耦接,並操作在第一狀態(例如,導通狀態)和第二狀態(例如,關斷狀態)中,以控制流經電感1512的輸入電流IIN和流經光源1408的輸出電流IOUTIn one embodiment, voltage filter 1420 includes an inductor 1512, diodes D15 and D16, and a capacitor C15. Transformer 1422 can be a flyback converter including primary winding 1504, secondary winding 1506, auxiliary winding 1508, and magnetic core 1502. The switch 1424 is coupled to the diode D16 and the primary winding 1504 and operates in a first state (eg, an on state) and a second state (eg, an off state) to control an input current I IN flowing through the inductor 1512. And an output current I OUT flowing through the light source 1408.

在一個實施例中,控制器1410產生驅動信號1462(例如,脈衝寬度調變信號),以控制開關1424。更具體的,在一個實施例中,當驅動信號1462具有邏輯高電位(例如,在導通狀態期間TON),開關1424被導通,二極體D15被反向偏置,二極體D16被正向偏置。穩定電壓VREG向變壓器1422供電。電流IPRI流經初級繞組1504、開關1424至地。電流IPRI增大以將能量儲存在磁芯1502中。此外,輸入電流IIN流經電感1512、二極體D16和開關1424,且輸入電流IIN增大以對電感1512充電,輸入電流IIN可以由方程式(3)得出:△IIN=VIN * TCH/L1512 (3) In one embodiment, controller 1410 generates drive signal 1462 (eg, a pulse width modulation signal) to control switch 1424. More specifically, in one embodiment, when the drive signal 1462 has a logic high potential (eg, during the on state, T ON ), the switch 1424 is turned on, the diode D15 is reverse biased, and the diode D16 is positive. Offset. The regulated voltage V REG supplies power to the transformer 1422. Current I PRI flows through primary winding 1504, switch 1424 to ground. The current I PRI is increased to store energy in the magnetic core 1502. In addition, the input current I IN flows through the inductor 1512, the diode D16, and the switch 1424, and the input current I IN increases to charge the inductor 1512. The input current I IN can be derived from equation (3): ΔI IN =V IN * T CH /L 1512 (3)

其中,TCH表示在開關1424的導通狀態期間,電感1512被充電的充電時間。△IIN表示輸入電流IIN的變化量,L1512表示電感1512的電感值。在一個實施例中,當開關1424導通時,持續時間TCH等於持續時間TONWhere T CH represents the charging time during which the inductor 1512 is charged during the on state of the switch 1424. ΔI IN represents the amount of change in the input current I IN , and L 1512 represents the inductance value of the inductor 1512. In one embodiment, when switch 1424 is turned on, duration TCH is equal to duration TON .

當驅動信號1462具有邏輯低電位(例如,關斷狀態期 間TOFF)時,開關1424被斷開,二極體D15被正向偏置,二極體D16被反向偏置。變壓器1422放電為發光二極體串208提供電能。因此,流經次級繞組1506的電流ISE减小。此外,輸入電流IIN流經電感1512、二極體D15和電容C15,且根據方程式(4),輸入電流IIN减小進而向電感1512放電:△IIN=(VIN-VREG)* TDISCH/L1512 (4) When the drive signal 1462 has a logic low (eg, during the off state TOFF ), the switch 1424 is turned off, the diode D15 is forward biased, and the diode D16 is reverse biased. The discharge of the transformer 1422 provides electrical energy to the LED string 208. Therefore, the current I SE flowing through the secondary winding 1506 is reduced. In addition, the input current I IN flows through the inductor 1512, the diode D15, and the capacitor C15, and according to equation (4), the input current I IN decreases and discharges to the inductor 1512: ΔI IN = (V IN - V REG )* T DISCH /L 1512 (4)

其中,TDISCH表示在開關1424的關斷狀態期間,電感1512放電的持續時間。由於一旦輸入電流IIN减小到0安培,電感1512的放電終止,因此對於關斷狀態,時間TDISCH與時間TOFF會有所不同。 Where T DISCH represents the duration of discharge of the inductor 1512 during the off state of the switch 1424. Since the discharge of the inductor 1512 is terminated once the input current I IN is reduced to 0 amps, the time T DISCH and the time T OFF may be different for the off state.

在一個實施例中,電感1512和電容C15構成一電感-電容濾波器。電感-電容濾波器過濾輸入電壓VIN的高頻諧波分量。這樣,由輸入電壓VIN的變化所導致的穩定電壓VREG波形的漣波因此减少。變壓器1422將穩定電壓VREG轉換為輸出電壓VOUTIn one embodiment, inductor 1512 and capacitor C15 form an inductive-capacitor filter. The inductor-capacitor filter filters the high frequency harmonic components of the input voltage V IN . Thus, the chopping of the waveform of the stable voltage V REG caused by the change in the input voltage V IN is thus reduced. The transformer 1422 converts the stable voltage V REG into an output voltage V OUT .

在一個實施例中,輔助繞組1508透過ZCD端點與控制器1410耦接。輔助繞組1508提供監測信號1466,監測信號1466指示電流ISE是否下降到預設值(例如,0安培)。控制器1410的FB端點接收感應信號1464,感應信號1464指示流經發光二極體串208的輸出電流IOUT。在一個實施例中,控制器1410基於監測信號1466和感應信號1464控制驅動信號1462的責任週期,以調節流經發光二極體串208之輸出電流IOUT至目標電流值。控制器1410的操作將在圖16中進一步描述。 In one embodiment, the auxiliary winding 1508 is coupled to the controller 1410 through the ZCD terminal. The auxiliary winding 1508 provides a monitoring signal 1466 indicating whether the current I SE drops to a preset value (eg, 0 amps). The FB endpoint of controller 1410 receives an inductive signal 1464 indicating the output current I OUT flowing through LED string 208. In one embodiment, the controller 1410 controls the duty cycle of the drive signal 1462 based on the monitor signal 1466 and the sense signal 1464 to adjust the output current I OUT flowing through the LED string 208 to the target current value. The operation of controller 1410 will be further described in FIG.

在一個實施例中,控制器1410還控制驅動信號1462 TON和TOFF的持續時間,以校正光源驅動電路1500的功率因數。更具體的,在一個實施例中,控制器1410將關斷狀態的持續時間TOFF設置到大於一時間臨限值TTH。透過重寫方程式(4),電感1512的放電時間可以由方程式(5)得出:TDISCH=△IIN*L1512/(VIN_VREG) (5) In one embodiment, controller 1410 also controls the duration of drive signals 1462 T ON and T OFF to correct the power factor of light source drive circuit 1500. More specifically, in one embodiment, the controller 1410 will shut down duration T OFF state is set to a time greater than the threshold value T TH. By rewriting equation (4), the discharge time of inductor 1512 can be derived from equation (5): T DISCH = ΔI IN * L 1512 / (V IN _V REG ) (5)

如圖14B所示,△IIN在驅動信號1462不同的循環週期裡可以是不同的。在一個實施例中,時間臨限值TTH可設置為等於或 大於電感1512最大放電時間TDISCH_MAX的量。這樣,開關1424在關斷狀態的持續時間足以允許輸入電流IIN减小至0安培。此外,控制器1410維持TON的持續時間在一個相同的值。於是,根據方程式(3),輸入電流IIN從預設值增大到與輸入電壓VIN成比例的峰值。因此,如圖14A和圖14B所描述的,校正了光源驅動電路1500的功率因數以提高光源驅動電路1500的供電品質。 As shown in FIG. 14B, ΔI IN may be different in different cycle periods of the drive signal 1462. In one embodiment, the time threshold T TH may be set to be equal to or greater than the amount of the maximum discharge time T DISCH — MAX of the inductor 1512. Thus, the duration of the switch 1424 in the off state is sufficient to allow the input current I IN to decrease to 0 amps. In addition, controller 1410 maintains the duration of T ON at the same value. Thus, according to equation (3), the input current I IN is increased from a preset value to a peak proportional to the input voltage V IN . Therefore, as described in FIGS. 14A and 14B, the power factor of the light source driving circuit 1500 is corrected to improve the power supply quality of the light source driving circuit 1500.

圖16所示為根據本發明一實施例之示於圖14A中之控制器1410的結構示意圖。圖16中與圖4和圖9A編號相同的元件具有類似的功能。圖16將結合圖4、圖5、圖10和圖11進行描述。 Figure 16 is a block diagram showing the structure of the controller 1410 shown in Figure 14A, in accordance with an embodiment of the present invention. Elements in Figure 16 that are numbered the same as Figures 4 and 9A have similar functions. Figure 16 will be described in conjunction with Figures 4, 5, 10 and 11.

在一個實施例中,控制器1410除了包含產生鋸齒波信號1660的鋸齒波信號產生器1602之外,具有與圖11中的控制器910類似的結構。在一個實施例中,鋸齒波信號產生器1602的操作與圖10所示的鋸齒波信號產生器902類似。當驅動信號1462導通開關1424時,鋸齒波信號1660斜坡上升,當驅動信號1462關斷開關1424時,鋸齒波信號1660下降到0安培。 In one embodiment, controller 1410 has a similar structure to controller 910 of FIG. 11 except that it includes sawtooth signal generator 1602 that produces sawtooth signal 1660. In one embodiment, the operation of the sawtooth signal generator 1602 is similar to the sawtooth signal generator 902 shown in FIG. When the drive signal 1462 turns on the switch 1424, the sawtooth signal 1660 ramps up, and when the drive signal 1462 turns off the switch 1424, the sawtooth signal 1660 drops to 0 amps.

控制器1410基於鋸齒波信號1660、感應信號1464和監測信號1466,產生驅動信號1462。控制器1410還包含誤差放大器402、比較器404和脈衝寬度調變(PWM)信號產生器408。誤差放大器402放大感應信號1464與指示目標電流值的參考信號SET之間的差值,以產生誤差信號VEA。比較器404將鋸齒波信號1660與誤差信號VEA進行比較,產生一個比較信號S。脈衝寬度調變信號產生器408根據比較信號S和一監測信號1466產生驅動信號1462。TON對應於鋸齒波信號1660從預設值增大到誤差信號VEA的時間。 Controller 1410 generates drive signal 1462 based on sawtooth signal 1660, sense signal 1464, and monitor signal 1466. Controller 1410 also includes error amplifier 402, comparator 404, and pulse width modulation (PWM) signal generator 408. Error amplifier 402 amplifies the difference between sensed signal 1464 and reference signal SET indicative of the target current value to produce error signal VEA. Comparator 404 compares sawtooth signal 1660 with error signal VEA to produce a comparison signal S. The pulse width modulation signal generator 408 generates a drive signal 1462 based on the comparison signal S and a monitor signal 1466. T ON corresponds to the time when the sawtooth signal 1660 is increased from the preset value to the error signal VEA.

在一個實施例中,當監測信號1466指示流經次級繞組1506的電流ISE下降到了預設值(例如,0安培),驅動信號1462具有邏輯高電位以導通開關1424。當鋸齒波信號1660達到誤差信號VEA時,驅動信號1462具有邏輯低電位以關斷開關1424。 In one embodiment, when the monitor signal 1466 indicates that the current I SE flowing through the secondary winding 1506 has dropped to a preset value (eg, 0 amps), the drive signal 1462 has a logic high potential to turn on the switch 1424. When the sawtooth signal 1660 reaches the error signal VEA, the drive signal 1462 has a logic low to turn off the switch 1424.

控制器1410控制驅動信號1462,以維持輸出電流IOUT在由參考信號SET所表示的目標電流值。例如,如果輸出電流IOUT大 於目標值(例如,由於不期望的雜訊),誤差放大器402將减小誤差信號VEA以縮短開關1424的導通狀態持續時間TON。因此,驅動信號1462的責任週期减小,以减小輸出電流IOUT。同樣地,如果輸出電流IOUT小於目標值,則控制器1410將增大驅動信號1462的責任週期,以增大輸出電流IOUT。在一個實施例中,如果輸出電流IOUT維持在目標值,那麽持續時間TON維持在一個恒定值。 The controller 1410 controls the drive signal 1462 to maintain the output current IOUT at the target current value represented by the reference signal SET. For example, if the output current I OUT is greater than the target value (eg, due to undesired noise), the error amplifier 402 will reduce the error signal VEA to shorten the on-state duration T ON of the switch 1424. Therefore, the duty cycle of the drive signal 1462 is reduced to reduce the output current I OUT . Likewise, if the output current I OUT is less than the target value, the controller 1410 will increase the duty cycle of the drive signal 1462 to increase the output current I OUT . In one embodiment, if the output current I OUT is maintained at the target value, the duration T ON is maintained at a constant value.

圖17所示為根據本發明實施例之驅動光源的方法流程圖1700。圖17將結合圖14A-圖16進行描述。圖17所涵蓋的具體步驟僅作為示例。也就是說,本發明也適用於執行其他合理的步驟或對圖17進行改進的步驟。 17 is a flow chart 1700 of a method of driving a light source in accordance with an embodiment of the present invention. Figure 17 will be described in conjunction with Figures 14A-16. The specific steps covered in Figure 17 are by way of example only. That is, the present invention is also applicable to the steps of performing other reasonable steps or improving FIG.

在步驟1702中,接收輸入電流(例比,輸入電流IIN)和輸入電壓(例如,輸入電壓VIN)。在步驟1704中,過濾輸入電壓以提供穩定電壓(例如,穩定電壓VREG)。在步驟1706中,轉換穩定電壓為輸出電壓(例如,輸出電壓VOUT),為光源提供電能。在步驟1708中,產生驅動信號(例如,驅動信號1462)以控制開關(例如,開關1424)交替地操作在第一狀態和第二狀態之間。輸入電流在第一狀態期間增大,在第二狀態期間减小。在步驟1708中,可進一步包括步驟1710。 In step 1702, an input current (for example, input current I IN ) and an input voltage (eg, input voltage V IN ) are received. In step 1704, the input voltage is filtered to provide a regulated voltage (eg, a regulated voltage V REG ). In step 1706, the regulated stable voltage is an output voltage (eg, output voltage VOUT ) to provide electrical energy to the light source. In step 1708, a drive signal (eg, drive signal 1462) is generated to control the switch (eg, switch 1424) to alternate between the first state and the second state. The input current increases during the first state and decreases during the second state. In step 1708, step 1710 can be further included.

在步驟1710中,控制操作在第一狀態的持續時間和在操作在第二狀態的持續時間,使得輸入電流在第二狀態操作期間减小到預設值(例如,0安培),且在第一狀態操作期間從預設值增大到與輸入電壓成比例的峰值。 In step 1710, controlling the duration of the operation in the first state and the duration of operation in the second state such that the input current is reduced to a preset value (eg, 0 amps) during the second state operation, and at During a state operation, it increases from a preset value to a peak that is proportional to the input voltage.

在步驟1712中,控制第一狀態和第二狀態的時間比,以調節流經光源的輸出電流至一目標值。 In step 1712, the time ratio of the first state to the second state is controlled to adjust the output current through the light source to a target value.

圖18A所示為根據本發明另一實施例的光源驅動電路1800的電路示意圖。圖18A中與圖2、圖9A編號相同的元件具有類似的功能。圖18A將結合圖14A進行描述。 FIG. 18A is a circuit diagram of a light source driving circuit 1800 according to another embodiment of the present invention. Elements in Figure 18A numbered the same as Figures 2 and 9A have similar functions. Figure 18A will be described in conjunction with Figure 14A.

在圖18A的例子中,光源驅動電路1800包括電源202、濾波器920、整流器204、轉換器1820、變壓器1822、感應器1838、感應器 1842、開關1834、保護電路1836、光源1808(例如,LED)和控制器1810。電源202產生交流輸入電壓VAC(例如,VAC具有正弦波信號)和交流輸入電流IAC。交流輸入電流IAC流入濾波器920。電流IAC’從濾波器920流出,並流入整流器204。整流器204透過濾波器920接收交流輸入電壓VAC,並提供整流電壓VIN和整流電流IC至轉換器1820。轉換器1820提供調節電壓VREG至變壓器1822。變壓器1822將調節電壓VREG轉換為輸出電壓VOUT以為光源1808供電。控制器1810控制輸出電流IOUT以保持光源1808的亮度為一目標值,並控制整流電流IC以校正光源驅動電路1800的功率因數。在一個實施例中,控制器1810包括多個接腳,例如,接腳DRV、接腳COMP、接腳CS、接腳FB、接腳GND和接腳VDD。 In the example of FIG. 18A, the light source driving circuit 1800 includes a power source 202, a filter 920, a rectifier 204, a converter 1820, a transformer 1822, a sensor 1838, an inductor 1842, a switch 1834, a protection circuit 1836, and a light source 1808 (eg, an LED). And controller 1810. Power source 202 produces an AC input voltage V AC (eg, V AC has a sinusoidal signal) and an AC input current I AC . The AC input current I AC flows into the filter 920. Current I AC ' flows out of filter 920 and flows into rectifier 204. Rectifier 204 receives AC input voltage V AC through filter 920 and provides rectified voltage V IN and rectified current I C to converter 1820. Converter 1820 provides regulated voltage V REG to transformer 1822. Transformer 1822 converts regulated voltage V REG to output voltage V OUT to power light source 1808. The controller 1810 controls the output current I OUT to maintain the brightness of the light source 1808 at a target value and controls the rectified current I C to correct the power factor of the light source driving circuit 1800. In one embodiment, the controller 1810 includes a plurality of pins, such as a pin DRV, a pin COMP, a pin CS, a pin FB, a pin GND, and a pin VDD.

在一個實施例中,耦接至開關1834的轉換器1820包括電感1512、二極體D15、二極體D16和電容C18。在一個實施例中,耦接至開關1834的變壓器1822可為反馳式變壓器,包括初級繞組1824、次級繞組1826、輔助繞組1828和磁芯1830。整流器204具有參考地GND1。次級繞組1826具有參考地GND2。控制器1810具有參考地GND3。轉換器1820、初級繞組1824、輔助繞組1828、保護電路1836和箝位電路1840與控制器1810共享參考地GND3。在一個實施例中,參考地GND1、GND2和GND3具有不同的參考電壓值。 In one embodiment, the converter 1820 coupled to the switch 1834 includes an inductor 1512, a diode D15, a diode D16, and a capacitor C18. In one embodiment, the transformer 1822 coupled to the switch 1834 can be a flyback transformer including a primary winding 1824, a secondary winding 1826, an auxiliary winding 1828, and a magnetic core 1830. The rectifier 204 has a reference ground GND1. Secondary winding 1826 has a reference ground GND2. The controller 1810 has a reference ground GND3. Converter 1820, primary winding 1824, auxiliary winding 1828, protection circuit 1836, and clamp circuit 1840 share reference ground GND3 with controller 1810. In one embodiment, the reference grounds GND1, GND2, and GND3 have different reference voltage values.

在一個實施例中,控制器1810在接腳DRV處產生驅動信號1850,以使開關1834交替地工作於第一狀態(例如,導通狀態)和第二狀態(例如,關斷狀態)。因此,開關1834控制流過轉換器1820的整流電流IC和流過初級繞組1824的電流IPR,進而控制流過光源1808的輸出電流IOUTIn one embodiment, controller 1810 generates drive signal 1850 at pin DRV to cause switch 1834 to alternately operate in a first state (eg, an on state) and a second state (eg, an off state). Thus, switch 1834 controls the rectified current I C flowing through converter 1820 and the current I PR flowing through primary winding 1824, thereby controlling the output current I OUT flowing through source 1808.

圖18B所示為根據本發明一個實施例的光源驅動電路1800產生或接收的信號波形圖1860。圖18B將結合圖18A進行描述。圖18B示出了驅動信號1850、流過轉換器1820的整流電流IC、流過初級繞組1824的電流IPR、感應信號1852、監測信號1854和感應信號1856的波形。 Figure 18B shows a signal waveform diagram 1860 generated or received by light source drive circuit 1800 in accordance with one embodiment of the present invention. Fig. 18B will be described in conjunction with Fig. 18A. FIG. 18B shows waveforms of drive signal 1850, rectified current I C flowing through converter 1820, current I PR flowing through primary winding 1824, sense signal 1852, monitor signal 1854, and sense signal 1856.

在圖18B的例子中,驅動信號1850為PWM信號。在導通時間TON內(如時間間隔從t1到t2、從t3到t4,或從t5到t6),驅動信號1850具有第一狀態(例如,高電位);在關斷時間TOFF內(如時間間隔從t2 到t3、或從t4到t5),驅動信號1850具有第二狀態(例如,低電位)。 In the example of FIG. 18B, the drive signal 1850 is a PWM signal. Within the on time T ON (eg, from time t1 to t2, from t3 to t4, or from t5 to t6), the drive signal 1850 has a first state (eg, a high potential); during the off time TOFF (eg, The drive signal 1850 has a second state (eg, a low potential) from time t2 to t3, or from t4 to t5).

當驅動信號1850為高電位時,如在導通時間TON內,開關1834導通,二極體D15被反向偏置,二極體D16被正向偏置。變壓器1822由調節電壓VREG供電。電流IPR流過電容C18、初級繞組1824和開關1834。如圖18B所示,電流IPR增大,以從轉換器1820傳遞電能至磁芯1830,如方程式(6)所示:△IPR=VREG * TON/L1824 (6) When the drive signal 1850 is at a high potential, such as during the on time T ON , the switch 1834 is turned on, the diode D15 is reverse biased, and the diode D16 is forward biased. Transformer 1822 is powered by regulated voltage V REG . Current I PR flows through capacitor C18, primary winding 1824, and switch 1834. As shown in Fig. 18B, the current I PR is increased to transfer power from the converter 1820 to the magnetic core 1830 as shown in equation (6): ΔI PR = V REG * T ON / L 1824 (6)

其中,△IPR表示電流IPR的變化量,L1824表示初級繞組1824的電感值。電流IPR在開關1834關斷時刻達到峰值IPK。另外,流過電感1512、二極體D16、開關1834的電流IC增大以為電感1512充電,如方程式(7)所示:△IC=VIN * TON/L1512 (7) Here, ΔI PR represents the amount of change in the current I PR , and L 1824 represents the inductance value of the primary winding 1824. The current I PR reaches a peak value I PK at the moment the switch 1834 is turned off. In addition, the current I C flowing through the inductor 1512, the diode D16, and the switch 1834 is increased to charge the inductor 1512 as shown in the equation (7): ΔI C = V IN * T ON / L 1512 (7)

其中,△IC表示電流IC的變化量,L1512表示電感1512的電感值。因此,當開關1834導通時,電流IC和電流IPR都流過開關1834。 Here, ΔI C represents the amount of change in the current I C , and L 1512 represents the inductance value of the inductor 1512 . Therefore, when switch 1834 is turned on, both current I C and current I PR flow through switch 1834.

當驅動信號1850為低電位時,如在關斷時間TOFF內,開關1834關斷,二極體D15被正向偏置,二極體D16被反向偏置。流過次級繞組1826的電流ISE下降,以從磁芯1830傳遞電能至光源1808,如方程式(8)所示:△ISE=(-VOUT)* TDIS/L1826 (8) When the drive signal 1850 is low, as in the off time TOFF , the switch 1834 is turned off, the diode D15 is forward biased, and the diode D16 is reverse biased. The current I SE flowing through the secondary winding 1826 drops to transfer electrical energy from the magnetic core 1830 to the light source 1808 as shown in equation (8): ΔI SE = (-V OUT )* T DIS /L 1826 (8)

其中,TDIS表示電流ISE下降的時間,L1826表示次級繞組1826的電感值。此外,電流IC從整流器204流經電感1512、二極體D15和電容C18,並流至參考地GND3。如圖18B所示,電流IC下降,使得電感1512放電,如方程式(9)所示:△IC=(VIN-VREG)* TDISCH/L1512 (9) Where T DIS represents the time at which the current I SE falls, and L 1826 represents the inductance value of the secondary winding 1826. Further, the current I C flows from the rectifier 204 through the inductor 1512, the diode D15, and the capacitor C18, and flows to the reference ground GND3. As shown in Fig. 18B, the current I C drops, causing the inductor 1512 to discharge, as shown in equation (9): ΔI C = (V IN - V REG ) * T DISCH / L 1512 (9)

其中,TDISCH表示電感1512的放電時間。由於當電流IC减小到零安培時,電感1512停止放電,因此,放電時間TDISCH可以與關斷時間TOFF不同。如圖18B所示,放電時間TDISCH小於關斷時間TOFFWhere T DISCH represents the discharge time of the inductor 1512. Since the inductor 1512 stops discharging when the current I C is reduced to zero amps, the discharge time T DISCH can be different from the off time T OFF . As shown in FIG. 18B, the discharge time T DISCH is smaller than the off time T OFF .

在一個實施例中,輔助繞組1828提供監測信號1854。監測信號1854指示變壓器1822是否工作於預設狀態。在一個實施例中,控制器 1810的FB接腳透過分壓器1832(例如,分壓器1832為串聯耦接的電阻R1和R2)耦接至輔助繞組1828,接收監測信號1854。更具體地說,在一個實施例中,當開關1834處於關斷狀態,電流ISE下降時(例如,在時間TDIS內),輔助繞組1828兩端的電壓為正電壓值。因此,如圖18B所示,監測信號1854具有正電壓值V3。當監測信號1854的電壓值為V3時,其指示變壓器1822工作於預設狀態。當電流ISE下降至預設值(例如,零安培),輔助繞組1828兩端的電壓為零伏特,此時監測信號1854具有電壓值V4(例如,零伏特)。當開關1834處於導通狀態,電流IPR上升時,輔助繞組1828兩端的電壓為負電壓值,此時監測信號1854具有負電壓值V5。監測信號1854具有電壓值V4或V5時,均指示變壓器1822沒有工作於預設狀態。 In one embodiment, the auxiliary winding 1828 provides a monitoring signal 1854. The monitor signal 1854 indicates whether the transformer 1822 is operating in a preset state. In one embodiment, the FB pin of the controller 1810 is coupled to the auxiliary winding 1828 via a voltage divider 1832 (eg, the voltage divider 1832 is a series coupled resistor R1 and R2) that receives the monitor signal 1854. More specifically, in one embodiment, when switch 1834 is in the off state and current I SE is falling (eg, within time T DIS ), the voltage across auxiliary winding 1828 is a positive voltage value. Thus, monitoring the voltage value having a positive signal 1854 in FIG. 18B V 3. When the monitoring signal of a voltage value of 1854 V 3, indicating that the transformer operates in 1822 by default. When the current I SE drops to a predetermined value (e.g., zero amps), 1828 across the auxiliary winding voltage is zero volts, then the monitor signal 1854 has a voltage value V 4 (e.g., zero volts). When the switch 1834 is in the ON state, the current I PR rises 1828 across auxiliary winding voltage is a negative voltage value, then the monitor signal 1854 having a negative voltage value V 5. When the monitoring signal 1854 has a voltage value of V 4 or V 5 , it indicates that the transformer 1822 is not operating in the preset state.

在一個實施例中,由於開關1834、參考地GND1、參考地GND3、及感應器1838和1842之間的電性連接,在導通時間TON內,即使電流IC和電流IPR都流過開關1834,也可提供僅指示電流IPR的感應信號1852。控制器1810利用感應信號1852來獲得關於流過光源1808的輸出電流IOUT的資訊。因此,光源驅動電路1800二次側的感應器和光源驅動電路1800一次側與二次側之間的隔離器都可省去。 In one embodiment, due to the electrical connection between the switch 1834, the reference ground GND1, the reference ground GND3, and the inductors 1838 and 1842, even the current I C and the current I PR flow through the switch during the on time T ON . In 1834, an inductive signal 1852 indicating only the current I PR may also be provided. Controller 1810 utilizes sense signal 1852 to obtain information regarding the output current I OUT flowing through light source 1808. Therefore, the inductor on the secondary side of the light source driving circuit 1800 and the isolator between the primary side and the secondary side of the light source driving circuit 1800 can be omitted.

更具體地說,在一個實施例中,感應器1838以及1842為電阻,感應器1838耦接於開關1834和參考地GND1之間。感應器1842耦接於參考地GND1和參考地GND3之間。在一個實施例中,由於感應器1838串聯耦接至開關1834,在導通時間TON內,電流IC和電流IPR都流過感應器1838。因此,感應器1838感應電流IC和電流IPR的組合電流ICOMBINE。在一個實施例中,參考地GND1還耦接至電流IC的電流路徑。舉例來說,電流IC流過整流器204和電感1512,而不流過感應器1842。然而,由於參考地GND3耦接至電容C18,電流IPR流過感應器1842。因此,當開關1834導通時,電流IC從整流器204流經電感1512、二極體D16、開關1834、感應器1838、參考地GND1,並流回至整流器204。電流IPR從電容C18流經初級繞組1824、開關1834、感應器1838、參考地GND1、感應器1842,並流回至電容C18。因此,感應器1838感應組合電流ICOMBINE(例如,組合電流ICOMBINE的電流值等於電流IC和電流IPR之和)。另外,感應器1842僅感應電流IPRMore specifically, in one embodiment, the inductors 1838 and 1842 are resistors, and the inductor 1838 is coupled between the switch 1834 and the reference ground GND1. The inductor 1842 is coupled between the reference ground GND1 and the reference ground GND3. In one embodiment, since the inductor 1838 is coupled in series to the switch 1834, both the current I C and the current I PR flow through the inductor 1838 during the on time T ON . Therefore, the inductor 1838 senses the combined current I COMBINE of the current I C and the current I PR . In one embodiment, the reference ground GND1 is also coupled to the current path of the current I C . For example, current I C flows through rectifier 204 and inductor 1512 without flowing through inductor 1842. However, since the reference ground GND3 is coupled to the capacitor C18, the current I PR flows through the inductor 1842. Therefore, when the switch 1834 is turned on, the current I C flows from the rectifier 204 through the inductor 1512, the diode D16, the switch 1834, the inductor 1838, the reference ground GND1, and flows back to the rectifier 204. Current I PR flows from capacitor C18 through primary winding 1824, switch 1834, inductor 1838, ground reference GND1, inductor 1842, and back to capacitor C18. Thus, the inductor 1838 senses the combined current I COMBINE (eg, the current value of the combined current I COMBINE is equal to the sum of the current I C and the current I PR ). In addition, the inductor 1842 senses only the current I PR .

在一個實施例中,控制器1810的接腳CS耦接至參考地GND1。由於控制器1810具有參考地GND3,控制器1810能在接腳CS處接收指示電流IPR的感應信號1852。在一個實施例中,感應信號1852可由感應器1842上的電壓表示。在一個實施例中,保護電路1836耦接至開關1834和感應器1838之間的一共同節點,並接收指示組合電流ICOMBINE的感應信號1856。一個實施例中,感應信號1856可由感應器1838和感應器1842上的總電壓VTO表示,如方程式(10)所示:VTO=IC * R1838+IPR *(R1838+R1842) (10) In one embodiment, the pin CS of the controller 1810 is coupled to the reference ground GND1. Since the controller 1810 has the reference ground GND3, the controller 1810 can receive the sensing signal 1852 indicating the current IPR at the pin CS. In one embodiment, the sense signal 1852 can be represented by a voltage on the inductor 1842. In one embodiment, the protection circuit 1836 is coupled to a common node between the switch 1834 and the inductor 1838 and receives an inductive signal 1856 indicative of the combined current I COMBINE . In one embodiment, the sense signal 1856 can be represented by the total voltage V TO on the inductor 1838 and the inductor 1842, as shown in equation (10): V TO = I C * R 1838 + I PR * (R 1838 + R 1842 ) (10)

其中,R1838表示感應器1838的阻值,R1842表示感應器1842的阻值。在另一個實施例中,保護電路1836包括耦接至感應器1838兩端的一對接腳。因此,保護電路1836的接腳接收僅由感應器1838上的電壓表示的感應信號,例如,ICOMBINE * R1838Wherein, R 1838 represents the resistance of the inductor 1838, and R 1842 represents the resistance of the inductor 1842. In another embodiment, the protection circuit 1836 includes a pair of pins coupled to both ends of the inductor 1838. Thus, the pin of protection circuit 1836 receives an inductive signal represented only by the voltage on inductor 1838, for example, I COMBINE * R 1838 .

如圖18B所示,在導通時間TON內,電流IC和電流IPR均上升。相應地,指示電流IPR的感應信號1852上升,且指示電流IC和電流IPR的組合電流ICOMBINE的感應信號1856上升。在關斷時間TOFF內,電流IC從電容C18流經感應器1842至參考地GND1。由於感應信號1852的電壓值等於感應器1842上的電壓,感應信號1852為負值,且與電流IC成反比。 As shown in FIG. 18B, both the current I C and the current I PR rise during the on-time T ON . Accordingly, the sense signal 1852 indicating the current I PR rises, and the sense signal 1856 indicating the combined current I COMBINE of the current I C and the current I PR rises. During the off time T OFF , the current I C flows from the capacitor C18 through the inductor 1842 to the reference ground GND1. Since the voltage value of the sense signal 1852 is equal to the voltage on the inductor 1842, the sense signal 1852 is a negative value and is inversely proportional to the current I C .

在一個實施例中,光源驅動電路1800還包括箝位電路1840。箝位電路1840將感應信號1852的電壓V1852箝位在一預設電壓值,以防止電壓V1852下降至低於預設臨限值VTH1。在一個實施例中,箝位電路1840包括二極體D17和電阻R3。預設臨限值VTH1可為與二極體D17相關的臨限值(例如,負0.7伏特)。如果電壓V1852大於VTH1,二極體D17被反向偏置。此時電壓V1852由感應器1842上的電壓决定。如果電壓V1852小於VTH1,二極體D17正向偏置並導通電流流過二極體D17和電阻R3。由於二極體D17兩端產生壓降,電壓V1852被箝位在預設電壓值,如負0.7伏特。因此,在一個實施例中,如18B所示,當感應器1842上的電壓小於電壓VTH1時,感應信號1852被箝位在預設電壓值VTH1;當感應器1842上的電壓大於電壓VTH1時,感應信號1852與電流IC呈反比上升。此外,沒有電流流過感應器1838。因此,當開關1834關斷時,感應信號1856的電壓值等於感應器1842上的電 壓值。 In one embodiment, light source drive circuit 1800 also includes a clamp circuit 1840. Clamp circuit 1840 clamps voltage V 1852 of sense signal 1852 to a predetermined voltage value to prevent voltage V 1852 from falling below a preset threshold V TH1 . In one embodiment, the clamp circuit 1840 includes a diode D17 and a resistor R3. Preset threshold V TH1 D17 may be related threshold (e.g., -0.7 volts) and the diode. If voltage V 1852 is greater than V TH1 , diode D17 is reverse biased. At this time, the voltage V 1852 is determined by the voltage on the inductor 1842. If the voltage V 1852 is less than V TH1 , the diode D17 is forward biased and conducts current through the diode D17 and the resistor R3. Since a voltage drop across the diode D17 occurs, the voltage V 1852 is clamped at a predetermined voltage value, such as minus 0.7 volts. Therefore, in one embodiment, as shown in FIG. 18B, when the voltage on the inductor 1842 is less than the voltage V TH1 , the sensing signal 1852 is clamped at the preset voltage value V TH1 ; when the voltage on the inductor 1842 is greater than the voltage V At TH1 , the sense signal 1852 increases in inverse proportion to the current I C . In addition, no current flows through the inductor 1838. Thus, when switch 1834 is turned off, the voltage value of sense signal 1856 is equal to the voltage value on inductor 1842.

控制器1810透過FB接腳接收監測信號1854,並透過接腳CS接收指示流過初級繞組1824的電流IPR的感應信號1852。在一個實施例中,基於感應信號1852和監測信號1854,控制器1810監測流過光源1808的輸出電流IOUT。基於感應信號1852和監測信號1854,控制器1810產生方波信號。方波信號的平均電壓與輸出電流IOUT成比例(將於圖20和圖21進一步描述)。據此,控制器1810產生驅動信號1850來控制開關1834,以調節輸出電流IOUT至目標電流值ITARGETThe controller 1810 receives the monitor signal 1854 through the FB pin and receives the sense signal 1852 indicating the current I PR flowing through the primary winding 1824 through the pin CS. In one embodiment, based on the sense signal 1852 and the monitor signal 1854, the controller 1810 monitors the output current I OUT flowing through the light source 1808. Based on the sense signal 1852 and the monitor signal 1854, the controller 1810 generates a square wave signal. The average voltage of the square wave signal is proportional to the output current I OUT (described further in Figures 20 and 21). Accordingly, controller 1810 generates drive signal 1850 to control switch 1834 to regulate output current I OUT to target current value I TARGET .

有利之處在於,控制器1810能够根據由光源驅動電路1800一次側電路所產生的感應信號1852和監測信號1854感應輸出電流IOUT。因此,光源驅動電路1800二次側的感應電路和耦接於光源驅動電路1800一次側與二次側之間的隔離電路都可省去,節省了光源驅動電路1800的尺寸和成本。 Advantageously, the controller 1810 is capable of sensing the output current I OUT based on the sensed signal 1852 and the monitor signal 1854 generated by the primary side circuit of the light source drive circuit 1800. Therefore, the sensing circuit on the secondary side of the light source driving circuit 1800 and the isolation circuit coupled between the primary side and the secondary side of the light source driving circuit 1800 can be omitted, saving the size and cost of the light source driving circuit 1800.

在一個實施例中,保護電路1836耦接至控制器1810的接腳COMP。保護電路1836比較感應信號1856和臨限值VTH2,並根據比較結果將接腳COMP處的電壓拉至預設電壓值,如參考地GND3的電壓。更具體地說,在一個實施例中,保護電路1836可為電晶體(圖中未顯示),但本發明並不以此為限。電晶體的閘極接收感應信號1856,汲極耦接至接腳COMP,源極耦接至參考地GND3。如果感應信號1856的電壓大於臨限值VTH2(例如,與電晶體相關的臨限值),電晶體使接腳COMP和參考地GND3之間導通。據此,控制器1810控制驅動信號1850,以防止光源驅動電路1800進入過電流狀態。在一個實施例中,如果接腳COMP處的電壓被拉至參考地GND3的電壓時,控制器1810保持開關1834處於斷開狀態,以下將於圖20進一步描述。此時,電流IC和電流IPR都被切斷。有利之處在於,感應信號1856指示組合電流ICOMBINE而非單獨的電流IC或IPR。因此,電流IC或電流IPR中任意一個的過電流狀態都將觸發保護電路1836來拉低接腳COMP處的電壓,以防止光源驅動電路1800損壞。 In one embodiment, the protection circuit 1836 is coupled to the pin COMP of the controller 1810. The protection circuit 1836 compares the sense signal 1856 with the threshold value V TH2 and pulls the voltage at the pin COMP to a preset voltage value, such as the voltage of the reference ground GND3, according to the comparison result. More specifically, in one embodiment, the protection circuit 1836 can be a transistor (not shown), but the invention is not limited thereto. The gate of the transistor receives the sensing signal 1856, the drain is coupled to the pin COMP, and the source is coupled to the reference ground GND3. If the voltage of the sense signal 1856 is greater than the threshold V TH2 (eg, a threshold associated with the transistor), the transistor conducts between the pin COMP and the reference ground GND3. Accordingly, the controller 1810 controls the drive signal 1850 to prevent the light source drive circuit 1800 from entering an overcurrent condition. In one embodiment, if the voltage at pin COMP is pulled to the voltage of reference ground GND3, controller 1810 keeps switch 1834 in an open state, as further described below in FIG. At this time, both the current I C and the current I PR are cut off. Advantageously, the sense signal 1856 indicates the combined current I COMBINE rather than the separate current I C or I PR . Therefore, the overcurrent state of either of the current I C or the current I PR will trigger the protection circuit 1836 to pull down the voltage at the pin COMP to prevent the light source driving circuit 1800 from being damaged.

圖19所示為根據本發明一個實施例的光源驅動電路1800產生或接收的信號波形圖1900。圖19將結合圖14B、圖18A和圖18B進行描 述。圖19示出了整流電壓VIN,調節電壓VREG,輸出電壓VOUT,電流IC,電流IC的平均值IC_AVG和驅動信號1850的波形。 Figure 19 is a diagram 1900 of a signal waveform generated or received by a light source driving circuit 1800 in accordance with one embodiment of the present invention. Figure 19 will be described in conjunction with Figures 14B, 18A and 18B. FIG 19 shows the rectified voltage V IN, the average adjustment waveform voltage V REG, the output voltage V OUT, the current I C, current I C I C_AVG and the drive signal 1850.

正如圖18A和圖18B所描述的,當開關1834導通時,電流IC上升。當開關1834關斷時,電流IC下降。電流IC的波形與圖14B中整流電流IIN的波形相似。因此,與圖14B的討論相似,交流輸入電流IAC與交流輸入電壓VAC實質同相。此外,交流輸入電流IAC的波形形狀類似於交流輸入電壓VAC的波形形狀。因此,校正了光源驅動電路1800的功率因數,提高了光源驅動電路1800的供電品質。此外,調節電壓VREG的波形比整流電壓VIN的波形更加穩定。因此,輸出電壓VOUT的波形不會受到整流電壓VIN(例如,正弦波)變化的影響。相應的,由於减小或消除了因整流電壓VIN的變化而引起的流經光源1408的輸出電流IOUT的漣波,進而進一步降低了光源1808發光的線頻干擾。 As depicted in Figures 18A and 18B, when switch 1834 is turned on, current I C rises. When switch 1834 is turned off, current I C drops. The waveform of the current I C is similar to the waveform of the rectified current I IN in Fig. 14B. Thus, similar to the discussion of Fig. 14B, the AC input current I AC and the AC input voltage V AC in phase with the substance. Further, the waveform shape of the AC input current I AC is similar to the waveform shape of the AC input voltage V AC . Therefore, the power factor of the light source driving circuit 1800 is corrected, and the power supply quality of the light source driving circuit 1800 is improved. Further, the waveform of the adjustment voltage V REG is more stable than the waveform of the rectified voltage V IN . Therefore, the waveform of the output voltage V OUT is not affected by the change in the rectified voltage V IN (for example, a sine wave). Correspondingly, since the chopping of the output current I OUT flowing through the light source 1408 caused by the change of the rectified voltage V IN is reduced or eliminated, the line frequency interference of the light source 1808 is further reduced.

圖20所示為根據本發明一個實施例的圖18A所示控制器1810的結構示意圖。圖20中與圖18A編號相同的元件具有類似的功能。圖20將結合圖18A進行描述。 Figure 20 is a block diagram showing the structure of the controller 1810 of Figure 18A in accordance with one embodiment of the present invention. Elements in Figure 20 that are numbered the same as Figure 18A have similar functions. Figure 20 will be described in conjunction with Figure 18A.

控制器1810包括信號產生器2050和驅動器2052。信號產生器2050與接腳CS和接腳FB相連,以接收感應信號1852和監測信號1854。根據感應信號1852和監測信號1854,信號產生器2050產生方波信號2062。驅動器2052根據方波信號2062在接腳DRV上產生驅動信號1850,以控制開關1834的導通和關斷,進而控制輸出電流IOUTController 1810 includes a signal generator 2050 and a driver 2052. The signal generator 2050 is coupled to the pin CS and the pin FB to receive the sense signal 1852 and the monitor signal 1854. Based on the sense signal 1852 and the monitor signal 1854, the signal generator 2050 generates a square wave signal 2062. The driver 2052 generates a driving signal 1850 on the pin DRV according to the square wave signal 2062 to control the turning on and off of the switch 1834, thereby controlling the output current I OUT .

在一個實施例中,信號產生器2050包括採集電路2002、狀態檢測器2004和多工器(例如,開關2006)。採集電路2002與接腳CS相連,以接收感應信號1852。採集電路2002根據電流感應信號1852採集流過初級繞組1824的電流IPR的峰值IPK。在一個實施例中,採集電路2002具有採樣保持的功能,以產生峰值信號VPK。也就是說,採集電路2002可以採樣電流IPR的電流值並保持電流IPR的峰值IPK。因此,採集電路2002輸出與電流IPR的峰值IPK成比例的峰值信號VPK。在一個實施例中,當電流IPR出現峰值IPK1以後,峰值信號VPK恒定為與IPK1成比例的電壓值VPK1,直至電流IPR出現另一峰值。 In one embodiment, signal generator 2050 includes acquisition circuitry 2002, state detector 2004, and a multiplexer (eg, switch 2006). The acquisition circuit 2002 is coupled to the pin CS to receive the sense signal 1852. Acquisition circuit 2002 collects peak I PK of current I PR flowing through primary winding 1824 based on current sense signal 1852. In one embodiment, the acquisition circuit 2002 has a sample hold function to generate a peak signal V PK . That is, the acquisition circuit 2002 may be sampled current value of the current I PR and holding the peak current I PR I PK. Therefore, the acquisition circuit 2002 outputs a peak signal V PK that is proportional to the peak value I PK of the current I PR . In one embodiment, after the peak I PK1 occurs at the current I PR , the peak signal V PK is constant to a voltage value V PK1 that is proportional to I PK1 until another peak occurs in the current I PR .

在一個實施例中,開關2006包括具有第一接腳、第二接腳和第三接腳。開關2006的第一接腳與採集電路2002的輸出端相連,用於接收峰值信號VPK。開關2006的第二接腳與參考地GND3相連,用於接收預設電壓信號VPRE,(例如,VPRE為零伏特)。開關2006的第三接腳與驅動器2052的輸入端相連,用於提供方波信號2062。在另一個實施例中,開關的第二接腳也可連接至其他的信號發生器,接收預設恒定參考電壓。 In one embodiment, the switch 2006 includes a first pin, a second pin, and a third pin. The first pin of the switch 2006 is coupled to the output of the acquisition circuit 2002 for receiving the peak signal V PK . The second pin of the switch 2006 is connected to the reference ground GND3 for receiving a preset voltage signal V PRE (for example, V PRE is zero volts). A third pin of switch 2006 is coupled to the input of driver 2052 for providing a square wave signal 2062. In another embodiment, the second pin of the switch can also be connected to other signal generators to receive a preset constant reference voltage.

狀態檢測器2004與接腳FB相連,以接收監測信號1854。狀態檢測器2004根據監測信號1854判斷變壓器1822是否工作於預設狀態,並產生開關控制信號2060以控制開關。更具體地說,在一個實施例中,當監測信號1854具有電壓值V3時(表示變壓器1822工作於預設狀態),開關控制信號2060具有第一狀態(例如,高電位)。此時,開關的第一接腳和第三接腳導通。由此,方波信號2062等於峰值信號VPK。當監測信號1854具有電壓值V4或V5時(表示變壓器1822沒有工作於預設狀態),開關控制信號2060具有第二狀態(例如,低電位)。此時,開關的第二接腳和第三接腳導通。由此,方波信號2062等於預設電壓信號VPREState detector 2004 is coupled to pin FB to receive monitoring signal 1854. State detector 2004 determines whether transformer 1822 is operating in a preset state based on monitor signal 1854 and generates switch control signal 2060 to control the switch. More specifically, in one embodiment, when the monitoring signal 1854 has a voltage value V 3 (indicated transformer 1822 operates in the default state), the switch control signal 2060 has a first state (e.g., high). At this time, the first pin and the third pin of the switch are turned on. Thus, the square wave signal 2062 is equal to the peak signal V PK . When the monitor signal 1854 has a voltage value of V 4 or V 5 (indicating that the transformer 1822 is not operating in a preset state), the switch control signal 2060 has a second state (eg, a low potential). At this time, the second pin and the third pin of the switch are turned on. Thus, the square wave signal 2062 is equal to the preset voltage signal V PRE .

圖21所示為根據本發明的實施例的圖18A所示控制器1810產生或接收的信號波形圖2100。圖21將結合圖18A、圖18B和圖20進行描述。圖21示出了方波信號2062、電流ISE、電流IPR、監測信號1854和驅動信號1850的波形。 21 is a signal waveform diagram 2100 generated or received by controller 1810 of FIG. 18A, in accordance with an embodiment of the present invention. 21 will be described in conjunction with FIGS. 18A, 18B, and 20. 21 shows waveforms of a square wave signal 2062, a current I SE , a current I PR , a monitor signal 1854, and a drive signal 1850.

在圖21的實施例中,驅動信號1850是週期為TS的PWM信號。在時間間隔TON(如t1至t2、t3至t4以及t5至t6)內,驅動信號1850具有第一狀態(例如,高電位)。因此,開關1834處於導通狀態。在時間間隔TOFF(如t2至t3、t4至t5以及t6至t7)內,驅動信號1850具有第二狀態(如低電位)。因此,開關1834處於關斷狀態。 In the embodiment of Figure 21, the drive signal period T S 1850 is a PWM signal. During the time interval T ON (eg, t1 to t2, t3 to t4, and t5 to t6), the drive signal 1850 has a first state (eg, a high potential). Therefore, the switch 1834 is in an on state. During the time interval T OFF (eg, t2 to t3, t4 to t5, and t6 to t7), the drive signal 1850 has a second state (eg, a low potential). Therefore, the switch 1834 is in an off state.

當監測信號1854具有電壓值V3時(表示變壓器1822處於預設狀態),方波信號2062具有與電流IPR的峰值IPK成比例的電壓值VPK,如方程式(I1)所示:VPK=A * IPK (11) When the monitoring signal 1854 has a voltage value V 3 (indicated transformer 1822 is in the preset state), the square wave signal 2062 having a voltage value and the current peak value I PR I V PK PK proportional as shown in Equation (I1) as shown: V PK = A * I PK (11)

其中,A表示電壓值VPK和峰值IPK之間的比例因子。當監測 信號1854具有電壓值V4或V5時(表示變壓器1822沒有工作於預設狀態),方波信號2062切換至預設電壓值VPRE(例如,零伏特)。 Where A represents the scaling factor between the voltage value V PK and the peak value I PK . When the monitor signal 1854 has a voltage value of V 4 or V 5 (indicating that the transformer 1822 is not operating in a preset state), the square wave signal 2062 is switched to a preset voltage value V PRE (eg, zero volts).

根據能量守恒原理,在時間間隔TDIS中流經次級繞組1826的電流ISE的平均值ISE_AVG與在時間間隔TON中流經初級繞組1824的電流IPR的平均值IPR_AVG成比例,如方程式(12)表示:ISE_AVG=IPR_AVG *(NPR/NSE)=1/2 * IPK *(NPR/NSE) (12) According to the principle of conservation of energy, the average value I SE_AVG of the current I SE flowing through the secondary winding 1826 in the time interval T DIS is proportional to the average value I PR_AVG of the current IPR flowing through the primary winding 1824 in the time interval T ON , as in the equation ( 12) indicates: I SE_AVG = I PR_AVG *(N PR /N SE )=1/2 * I PK *(N PR /N SE ) (12)

其中,NPR/NSE表示初級繞組1824和次級繞組1826之間的匝數比。此外,方波信號2062的平均電壓VSQ_AVG可由方程式(13)表示:VSQ_AVG=VPK *(TDIS/TS) (13) Where N PR /N SE represents the turns ratio between the primary winding 1824 and the secondary winding 1826. Further, the average voltage V SQ_AVG of the square wave signal 2062 can be expressed by equation (13): V SQ_AVG = V PK *(T DIS /T S ) (13)

另外,輸出電流IOUT的平均電流IOUT_AVG等於在週期TS內電流ISE的平均值ISE_AVG,如方程式(14)表示:IOUT_AVG=ISE_AVG *(TDIS/TS) (14) In addition, the average current I OUT_AVG of the output current I OUT is equal to the average value I SE_AVG of the current I SE in the period T S as expressed by equation (14): I OUT_AVG = I SE_AVG *(T DIS /T S ) (14)

結合方程式(11)、(12)、(13)和(14),方波信號2062的平均電壓VSQ_AVG可表示為:VSQ_AVG=(2 * A/(NPR/NSE))* IOUT_AVG (15) Combined with equations (11), (12), (13), and (14), the average voltage V SQ_AVG of the square wave signal 2062 can be expressed as: V SQ_AVG = (2 * A / (N PR / N SE )) * I OUT_AVG (15)

因此,根據方程式(15),本發明的光源驅動電路所產生的方波信號2052的平均電壓VSQ_AVG與流經光源1808的輸出電流IOUT的平均電流IOTU_AVG成比例。 Therefore, according to equation (15), the average voltage V SQ — AVG of the square wave signal 2052 generated by the light source driving circuit of the present invention is proportional to the average current I OTU — AVG of the output current I OUT flowing through the light source 1808.

回到圖20,在一個實施例中,驅動器2052包括運算放大器2012、鋸齒波產生器2014、比較器2016和緩衝器2018。在一個實施例中,運算放大器2012包括運算轉導放大器(OTA)2020和電容2022。運算轉導放大器2020的非反相輸入端接收方波信號2062,反相輸入端接收參考信號REF。其中,參考信號REF表示輸出電流IOUT的目標電流值ITARGET。運算轉導放大器2020根據方波信號2062和參考信號REF之間的差值於輸出端產生電流I2020,以對電容2022充電或放電,進而產生誤差信號2064。由於電容2022過濾誤差信號2064上的漣波,誤差信號2064由方波信號2062的平均電壓VSQ_AVG和參考信號REF之間的差值决定。在另一個實施例中,電容2022在控制器1810之外,透過控制器的一個接腳與運算轉導放大器2020相連。 Returning to FIG. 20, in one embodiment, the driver 2052 includes an operational amplifier 2012, a sawtooth generator 2014, a comparator 2016, and a buffer 2018. In one embodiment, operational amplifier 2012 includes an operational transconductance amplifier (OTA) 2020 and a capacitor 2022. The non-inverting input of the operational transduction amplifier 2020 receives the square wave signal 2062, and the inverting input receives the reference signal REF. Wherein, the reference signal REF represents the target current value I TARGET of the output current I OUT . The operational transconductance amplifier 2020 generates a current I 2020 at the output based on the difference between the square wave signal 2062 and the reference signal REF to charge or discharge the capacitance 2022, thereby generating an error signal 2064. Since the capacitor 2022 filters the chopping on the error signal 2064, the error signal 2064 is determined by the difference between the average voltage V SQ — AVG of the square wave signal 2062 and the reference signal REF. In another embodiment, capacitor 2022 is external to controller 1810 and is coupled to operational transconductance amplifier 2020 via a pin of the controller.

鋸齒波產生器2014產生鋸齒波信號SAW。比較器2016比較誤差信號2064和鋸齒波信號SAW,並產生比較信號。緩衝器2018接收比較信號,並產生驅動信號1850(例如,脈衝寬度調變信號)。在圖20的實施例中,如果方波信號2062的平均電壓VSQ_AVG增加,誤差信號2064隨之增大,鋸齒波信號SAW則需要更多的時間增加到誤差信號2064。由此,驅動信號1850的責任週期减小。同理,如果方波信號2062的平均電壓VSQ_AVG减小,驅動信號1850的責任週期會增加。 The sawtooth generator 2014 generates a sawtooth wave signal SAW. The comparator 2016 compares the error signal 2064 with the sawtooth signal SAW and produces a comparison signal. Buffer 2018 receives the comparison signal and produces a drive signal 1850 (eg, a pulse width modulation signal). In the embodiment of FIG. 20, if the average voltage V SQ — AVG of the square wave signal 2062 increases, the error signal 2064 increases, and the sawtooth signal SAW requires more time to increase to the error signal 2064. Thereby, the duty cycle of the drive signal 1850 is reduced. Similarly, if the average voltage V SQ — AVG of the square wave signal 2062 decreases, the duty cycle of the drive signal 1850 increases.

結合圖18A和圖20,控制器1810和變壓器1822組成一負回授迴路。更具體地說,驅動信號1850的責任週期决定了輸出電流IOUT的平均電流IOUT_AVG。並且,方波信號2062的平均電壓VSQ_AVG與平均電流IOUT_AVG成比例。此外,方波信號2062的平均電壓VSQ_AVG决定了驅動信號1850的責任週期。因此,包括控制器1810和變壓器1822的負回授迴路可以保持方波信號2062的平均電壓VSQ_AVG等於參考信號REF,進而將平均電流IOUT_AVG調節至目標電流值ITARGETIn conjunction with Figures 18A and 20, controller 1810 and transformer 1822 form a negative feedback loop. More specifically, the drive signal duty cycle determines the average current 1850 I OUT_AVG output current I OUT. Also, the average voltage V SQ — AVG of the square wave signal 2062 is proportional to the average current I OUT — AVG . In addition, the average voltage V SQ — AVG of the square wave signal 2062 determines the duty cycle of the drive signal 1850. Thus, the negative feedback loop including controller 1810 and transformer 1822 can maintain the average voltage V SQ — AVG of square wave signal 2062 equal to reference signal REF, thereby adjusting average current I OUT — AVG to target current value I TARGET .

舉例說明,如果方波信號2062的平均電壓VSQ_AVG大於參考信號REF(表示輸出電流IOUT的平均電流IOUT_AVG大於目標電流值ITARGET),則運算放大器2012增大誤差信號2064以减小驅動信號1850的責任週期,進而降低輸出電流IOUT的平均電流IOUT_AVG,直到方波信號2062的平均電壓VSQ_AVG减小到參考信號REF。同理,如果方波信號2062的平均電壓VSQ_AVG小於參考信號REF(表示輸出電流IOUT的平均電流IOUT_AVG小於目標電流值ITARGET),則運算放大器2012减小誤差信號2064以增大驅動信號1850的責任週期,進而增大輸出電流IOUT的平均電流IOUT_AVG,直到方波信號2062的平均電壓VSQ_AVG增大到參考信號REF。這樣,輸出電流IOUT的平均電流能够被調整到與目標電流值ITARGET相等。 For example, if the average voltage of the square wave signal V SQ_AVG 2062 is greater than the reference signal REF (represented by the output current I OUT is greater than the average current I OUT_AVG target current value I TARGET), increasing the operational amplifier 2012 to reduce the error signal, the drive signal 2064 The duty cycle of 1850, in turn, reduces the average current I OUT_AVG of the output current I OUT until the average voltage V SQ_AVG of the square wave signal 2062 decreases to the reference signal REF. Similarly, if the average voltage of the square wave signal 2062 V SQ_AVG less than the reference signal REF (represented by the average current output current I OUT is less than the target current value I OUT_AVG I TARGET), operational amplifier 2012 to reduce the error signal to increase the driving signal 2064 The duty cycle of 1850, which in turn increases the average current I OUT_AVG of the output current I OUT , until the average voltage V SQ_AVG of the square wave signal 2062 increases to the reference signal REF. Thus, the average current of the output current I OUT can be adjusted to be equal to the target current value I TARGET .

正如圖18A中所述,當光源驅動電路1800處於過電流狀態時,保護電路1836將接腳COMP處的電壓拉至預設電壓值,如參考地GND3。如圖20所示,如果接腳COMP處的電壓被拉至GND3,比較器2016和緩衝器2018保持開關1834斷開,進而切斷電流IC和電流IPR。控制器1810可具有其他結構,並不局限於圖20所示之的實施例。 As described in FIG. 18A, when the light source driving circuit 1800 is in an overcurrent state, the protection circuit 1836 pulls the voltage at the pin COMP to a preset voltage value, such as the reference ground GND3. As shown in FIG. 20, if the voltage at the pin COMP is pulled to GND3, the comparator 2016 and the buffer 2018 keep the switch 1834 open, thereby cutting off the current I C and the current I PR . Controller 1810 can have other configurations and is not limited to the embodiment shown in FIG.

圖22所示為根據本發明另一個實施例的電子系統2200的電路示意圖。圖22中與圖2、圖9A和圖18A編號相同的元件具有類似的功能。圖22將結合圖18A進行描述。 FIG. 22 is a circuit diagram of an electronic system 2200 in accordance with another embodiment of the present invention. Elements in Figure 22 that are numbered the same as Figures 2, 9A and 18A have similar functions. Figure 22 will be described in conjunction with Figure 18A.

在圖22的例子中,電子系統2200包括電源202、交流矽控閘流體(TRIAC)調光器2204和光源驅動電路2202。在一個實施例中,光源驅動電路2202包括濾波器920、整流器204、轉換器1820、變壓器1822、開關1834、光源1808、洩流路徑2214、拉低電路2216和控制器2218。電源202在火線和中性線(Neutral)間產生交流輸入電壓VAC。TRIAC調光器2204將交流輸入電壓VAC轉換為交流電壓VTRIAC。整流器204透過濾波器920接收交流電壓VTRIAC,並提供整流電壓VIN至轉換器1820。轉換器1820提供調節電壓VREG至變壓器1822。變壓器1822將調節電壓VREG轉換為輸出電壓VOUT以為光源1808供電。控制器2218控制輸出電流IOUT以保持光源1808的亮度為目標值。 In the example of FIG. 22, electronic system 2200 includes a power source 202, an AC thyristor fluid (TRIAC) dimmer 2204, and a light source drive circuit 2202. In one embodiment, light source drive circuit 2202 includes filter 920, rectifier 204, converter 1820, transformer 1822, switch 1834, light source 1808, drain path 2214, pull-down circuit 2216, and controller 2218. The power source 202 generates an AC input voltage V AC between the live line and the neutral. The TRIAC dimmer 2204 converts the AC input voltage V AC to an AC voltage V TRIAC . Rectifier 204 receives AC voltage V TRIAC through filter 920 and provides rectified voltage V IN to converter 1820. Converter 1820 provides regulated voltage V REG to transformer 1822. Transformer 1822 converts regulated voltage V REG to output voltage V OUT to power light source 1808. The controller 2218 controls the output current I OUT to maintain the brightness of the light source 1808 as a target value.

TRIAC調光器2204可為安裝在牆壁上或燈座上的按鈕式開關或旋鈕式開關。在一個實施例中,TRIAC調光器2204包括耦接於電源202和濾波器920之間的TRIAC元件2206。TRIAC元件2206具有接腳A1、接腳A2和閘極G。TRIAC調光器2204還包括串聯耦接的可變電阻2208和電容2210,以及二極體交流開關(DIAC)2212。二極體交流開關2212的一端耦接至電容2210,另一端耦接至TRIAC元件2206的閘極G。TRIAC元件2206為雙向開關,一旦被觸發可在任一方向導通電流。TRIAC元件2206可由施加至閘極G的正電流或負電流觸發。一旦被觸發,TRIAC元件2206將在流過接腳A1和接腳A2的電流下降至臨限值(例如,保持電流IH)之前保持導通。 The TRIAC dimmer 2204 can be a push button switch or a knob switch mounted on a wall or on a lamp holder. In one embodiment, the TRIAC dimmer 2204 includes a TRIAC element 2206 coupled between the power source 202 and the filter 920. The TRIAC component 2206 has a pin A1, a pin A2, and a gate G. The TRIAC dimmer 2204 also includes a variable resistor 2208 and a capacitor 2210 coupled in series, and a diode AC switch (DIAC) 2212. One end of the diode AC switch 2212 is coupled to the capacitor 2210 and the other end is coupled to the gate G of the TRIAC component 2206. The TRIAC component 2206 is a bidirectional switch that conducts current in either direction once triggered. The TRIAC element 2206 can be triggered by a positive or negative current applied to the gate G. Once triggered, the TRIAC component 2206 will remain conductive until the current flowing through pin A1 and pin A2 drops to a threshold (eg, hold current IH ).

圖23所示為根據本發明一個實施例的圖22中TRIAC調光器2204產生或接收的信號波形圖。圖23將結合圖22進行描述。圖23示出了交流輸入電壓VAC、TRIAC元件2206接腳A1和接腳A2間的電壓VA2-A1、流過二極體交流開關2212的電流IDIAC、交流電壓VTRIAC和整流電壓VIN的波形。 Figure 23 is a diagram showing signal waveforms generated or received by the TRIAC dimmer 2204 of Figure 22, in accordance with one embodiment of the present invention. Figure 23 will be described in conjunction with Figure 22. Figure 23 shows the AC input voltage V AC , the voltage V A2-A1 between the TRIAC component 2206 pin A1 and the pin A2, the current I DIAC flowing through the diode AC switch 2212, the AC voltage V TRIAC and the rectified voltage V The waveform of IN .

在圖23的例子中,交流輸入電壓VAC具有正弦波波形。在 時刻T0至時刻T1間,TRIAC元件2206被關斷,接腳A1和接腳A2間的電壓VA2-A1隨著交流輸入電壓VAC的增大而增大。此時,充電電流ICH流過電阻2208和電容2210,以為電容2210充電。電容2210上的電壓據此上升。當電容2210上的電壓在時刻T1達到與二極體交流開關2212相關的電壓臨限值時,二極體交流開關2212導通,進而產生施加至TRIAC元件2206的閘極G的電流脈衝。TRIAC元件2206由該電流脈衝觸發導通。因此,電流I1從火線流經TRIAC元件2206、濾波器920、洩流路徑2214至中性線(Neutral)。另外,電流I2從火線流經TRIAC元件2206、濾波器920至整流器204。因此,流過TRIAC元件2206的電流I3等於電流I1和I2之和。在時刻T1至時刻T2間,洩流路徑2214導通電流I1,以保持流過TRIAC元件2206的電流I3大於保持電流IH。因此,在時刻T1至時刻T2間,TRIAC元件2206保持導通。所以,在時刻T1至時刻T2間,交流電壓VTRIAC的波形與交流輸入電壓VAC的波形一致。 In the example of FIG. 23, the AC input voltage V AC has a sinusoidal waveform. Between time T 0 and time T 1 , the TRIAC element 2206 is turned off, and the voltage V A2-A1 between the pin A1 and the pin A2 increases as the AC input voltage V AC increases. At this time, the charging current I CH flows through the resistor 2208 and the capacitor 2210 to charge the capacitor 2210. The voltage on capacitor 2210 rises accordingly. When the voltage across the capacitor at time T 1 2210 reaches exchange switch 2212 and diode voltage associated threshold, diode AC switch 2212 is turned on, thereby generating a current pulse is applied to the gate electrode of the TRIAC element 2206 G's. The TRIAC element 2206 is triggered to conduct by the current pulse. Accordingly, the current I 1 flowing through the line of fire from the TRIAC element 2206, a filter 920, discharge path 2214 to neutral (Neutral). In addition, current I 2 flows from the live line through TRIAC element 2206, filter 920, to rectifier 204. Thus, the current I flowing through a TRIAC element 2206 is equal to the current I and I 3, and 12 of the. Between time T 1 and time T 2 , the bleed path 2214 conducts current I 1 to maintain the current I 3 flowing through the TRIAC element 2206 greater than the holding current I H . Thus, at time T 1 to time T 2 Room, 2206 a TRIAC element is kept turned on. Therefore, the waveform of the AC voltage V TRIAC coincides with the waveform of the AC input voltage V AC between the time T 1 and the time T 2 .

在接近交流輸入電壓VAC的第一半週期結束的時刻T2,由於流過TRIAC元件2206的電流I3下降至低於TRIAC元件2206的保持電流IH,TRIHC元件2206關斷。 At time T 2 near the end of the first half cycle of the AC input voltage V AC , since the current I 3 flowing through the TRIAC element 2206 drops below the holding current I H of the TRIAC element 2206, the TRIHC element 2206 is turned off.

在交流輸入電壓VAC的第二半週期中,當電容2210上的電壓在時刻T3導通二極體交流開關2212時,TRIAC元件2206再次導通。同理,在時刻T3至時刻T4間,交流電壓VTRIAC的波形與交流輸入電壓VAC的波形一致。 During the second half cycle of the AC input voltage V AC , when the voltage on the capacitor 2210 turns on the diode AC switch 2212 at time T 3 , the TRIAC element 2206 is again turned on. Similarly, between time T 3 and time T 4 , the waveform of the alternating voltage V TRIAC coincides with the waveform of the alternating current input voltage V AC .

在一個實施例中,使用者可調整可變電阻2208的阻值R2208,例如,旋轉TRIAC調光器2204的旋鈕以調整可變電阻2208的阻值R2208。可變電阻2208的阻值R2208决定TRIAC元件2206在交流輸入電壓VAC的每個半週期中的導通時刻。更具體地說,在一個實施例中,如果可變電阻的阻值R2208增大,在時刻T0後為電容2210充電的充電電流ICH的平均值减小。因此,電容2210上的電壓需要更多的時間達到與二極體交流開關2212相關的電壓臨限值。所以,TRIAC元件2206的導通時刻被延遲,例如,晚於時刻T1。同理,如果可變電阻的阻值R2208减小,TRIAC元件2206的導通時刻被提早,例如,早於時刻T1。因此,透過調整可變電阻2208的阻值R2208, 每個半週期中TRIAC元件2206的導通時刻得到相應的調整,例如,導通時刻被延遲或提早。TRIAC調光器2204可具有其他結構,並不局限於圖22和圖23的實施例。在另一個實施例中,如果可變電阻2208的阻值R2208變化,例如,阻值R2208被使用者調整,每個半週期中TRIAC元件2206的關斷時刻得到調整。為舉例說明,在以下的描述中,TRIAC調光器2204調整TRIAC元件2206的導通時刻。然而,本發明並不局限於此,本發明的TRIAC調光器2204還適用於調整TRIAC元件2206的關斷時刻。 In one embodiment, the user can adjust the resistance R 2208 of the variable resistor 2208, for example, by rotating the knob of the TRIAC dimmer 2204 to adjust the resistance R 2208 of the variable resistor 2208 . The resistance R 2208 of the variable resistor 2208 determines the turn-on timing of the TRIAC element 2206 during each half cycle of the AC input voltage V AC . More specifically, in one embodiment, if the resistance R 2208 of the variable resistor increases, the average value of the charging current I CH that charges the capacitor 2210 after time T 0 decreases. Therefore, the voltage on capacitor 2210 requires more time to reach the voltage threshold associated with diode AC switch 2212. Therefore, the conduction time of a TRIAC element 2206 is delayed, for example, later than time T 1. Similarly, if the resistance R 2208 of the variable resistor is decreased, the turn-on timing of the TRIAC element 2206 is advanced, for example, earlier than the time T 1 . Therefore, by adjusting the resistance R 2208 of the variable resistor 2208, the conduction timing of the TRIAC element 2206 is adjusted correspondingly in each half cycle, for example, the conduction time is delayed or advanced. The TRIAC dimmer 2204 can have other configurations and is not limited to the embodiments of Figures 22 and 23. In another embodiment, if the resistance R 2208 of the variable resistor 2208 changes, for example, the resistance R 2208 is adjusted by the user, the turn-off timing of the TRIAC component 2206 is adjusted during each half cycle. By way of example, in the following description, the TRIAC dimmer 2204 adjusts the turn-on timing of the TRIAC element 2206. However, the present invention is not limited thereto, and the TRIAC dimmer 2204 of the present invention is also suitable for adjusting the turn-off timing of the TRIAC element 2206.

在一個實施例中,整流器204可為橋式整流器。整流器204保留交流電壓VTRIAC的正值部分並將交流電壓VTRIAC的負值部分轉換為對應的正值,進而產生整流電壓VIN。在某些情況下,由於轉換器1820和變壓器1822中的電容性元件能够儲存電能,進而導致整流電壓VIN的波形的扭曲,在交流輸入電壓VAC的半週期結束時,整流電壓VIN可能無法降至零伏特。在一個實施例中,控制器2218將指示整流電壓VIN的檢測信號2222和臨限值電壓VTH3進行比較,並根據比較結果產生拉低信號2220。拉低電路2216響應拉低信號2220將整流電壓VIN拉至預設值,例如,參考地GND1。在一個實施例中,每個半週期結束時(例如,當整流電壓VIN低於臨限值電壓VTH3時),整流電壓VIN被拉低。因此,消除或避免了由轉換器1820和變壓器1822中之電容性元件造成的整流電壓VIN的波形扭曲。 In one embodiment, rectifier 204 can be a bridge rectifier. Reserved rectifier 204 converts the negative portion of the AC voltage V TRIAC and the positive portion of the AC voltage V TRIAC into a corresponding value, thereby generating the rectified voltage V IN. In some cases, since the capacitive elements in the converter 1820 and the transformer 1822 are capable of storing electrical energy, which in turn causes distortion of the waveform of the rectified voltage V IN , at the end of the half cycle of the AC input voltage V AC , the rectified voltage V IN may Can't drop to zero volts. In one embodiment, the controller 2218 compares the detection signal 2222 indicative of the rectified voltage V IN with the threshold voltage V TH3 and produces a pull down signal 2220 based on the comparison. The pull-down circuit 2216 pulls the rectified voltage V IN to a preset value in response to the pull-down signal 2220, for example, reference ground GND1. In one embodiment, at the end of each half cycle (eg, when the rectified voltage V IN is below the threshold voltage V TH3 ), the rectified voltage V IN is pulled low. Therefore, the waveform distortion of the rectified voltage V IN caused by the capacitive elements in the converter 1820 and the transformer 1822 is eliminated or avoided.

回到圖22,轉換器1820、變壓器1822和開關1834的操作與圖18A中對應元件的操作相似。有利之處在於,控制器2218接收指示整流電壓VIN的檢測信號2222,並據此檢測TRIAC元件2206的導通狀態。控制器2218根據TRIAC元件2206的導通狀態產生驅動信號2250。驅動信號2250使開關1834交替地工作於第一狀態(例如,導通狀態)和第二狀態(例如,關斷狀態),進而調整流過光源1808的平均電流。更具體地說,在一個實施例中,控制器2218基於檢測信號2222來檢測每個週期中TRIAC元件2206的導通時刻。如果可變電阻2208的阻值R2208增大,每個週期中TRIAC元件2206的導通時刻延遲。由此,控制器2218控制開關1834以降低流過光源1808的平均電流。同理,如果可變電阻2208的阻值R2208减小,控制器2218控制開關1834以提高流過光源1808的平均電流。因此,控制器2218 根據TRIAC調光器2204的操作實現了對光源1808的調光控制。控制器2218的操作將結合圖25做進一步描述。 Returning to Figure 22, the operation of converter 1820, transformer 1822, and switch 1834 is similar to the operation of the corresponding components of Figure 18A. Advantageously, the controller 2218 receives the detection signal 2222 indicative of the rectified voltage V IN and thereby detects the conduction state of the TRIAC element 2206. Controller 2218 generates drive signal 2250 based on the conduction state of TRIAC element 2206. The drive signal 2250 causes the switch 1834 to alternately operate in a first state (eg, an on state) and a second state (eg, an off state), thereby adjusting an average current flowing through the source 1808. More specifically, in one embodiment, controller 2218 detects the turn-on instant of TRIAC element 2206 in each cycle based on detection signal 2222. If the resistance R 2208 of the variable resistor 2208 increases, the turn-on timing of the TRIAC element 2206 is delayed in each cycle. Thus, controller 2218 controls switch 1834 to reduce the average current flowing through light source 1808. Similarly, if the resistance R 2208 of the variable resistor 2208 is reduced, the controller 2218 controls the switch 1834 to increase the average current flowing through the source 1808. Thus, controller 2218 implements dimming control of light source 1808 in accordance with the operation of TRIAC dimmer 2204. The operation of controller 2218 will be further described in conjunction with FIG.

圖24所示為根據本發明一個實施例的圖22中的光源驅動電路2202的電路示意圖。圖22中與圖2、圖9A、圖18A和圖22編號相同的元件具有類似的功能。圖24將結合圖18A和圖22進行描述。 Figure 24 is a circuit diagram of the light source driving circuit 2202 of Figure 22, in accordance with one embodiment of the present invention. Elements in Figure 22 that are numbered the same as Figures 2, 9A, 18A and 22 have similar functions. Figure 24 will be described in conjunction with Figures 18A and 22.

除了洩流路徑2214、拉低電路2216和控制器2218之外,光源驅動電路2202和圖18A中的光源驅動電路1800具有相似的結構。在一個實施例中,洩流路徑2214包括串聯耦接的電阻R4和電容2402。拉低電路2216包括串聯耦接的開關2404和電阻R5。 The light source driving circuit 2202 and the light source driving circuit 1800 in FIG. 18A have a similar structure except for the drain path 2214, the pull-down circuit 2216, and the controller 2218. In one embodiment, the bleed path 2214 includes a resistor R4 and a capacitor 2402 coupled in series. The pull-down circuit 2216 includes a switch 2404 and a resistor R5 coupled in series.

控制器2218包括多個接腳,例如,接腳CLP、接腳HV、接腳DRV、接腳COMP、接腳CS、接腳FB、接腳GND和接腳VDD。在一個實施例中,控制器2218透過接腳CS接收指示電流IPR的感應信號1852,透過接腳COMP接收指示電流IC和電流IPR的組合電流ICOMBINE的感應信號1856,透過接腳FB接收指示變壓器1822是否工作於預設狀態的監測信號1854,透過接腳HV接收指示整流電壓VIN的檢測信號2222,透過接腳DRV產生驅動信號2250,並透過接腳CLP產生拉低信號2220。 The controller 2218 includes a plurality of pins, for example, a pin CLP, a pin HV, a pin DRV, a pin COMP, a pin CS, a pin FB, a pin GND, and a pin VDD. In one embodiment, the controller 2218 receives the sensing signal 1852 indicating the current I PR through the pin CS, and receives the sensing signal 1856 indicating the combined current I COMBINE of the current I C and the current I PR through the pin COMP, through the pin FB. A monitoring signal 1854 indicating whether the transformer 1822 is operating in a preset state is received, a detection signal 2222 indicating the rectified voltage V IN is received through the pin HV, a driving signal 2250 is generated through the pin DRV, and a pull-down signal 2220 is generated through the pin CLP.

圖25所示為根據本發明一個實施例的圖22中的控制器2218的結構示意圖。圖25中與圖20和圖24編號相同的元件具有類似的功能。圖25將結合圖20和圖24進行描述。 Figure 25 is a block diagram showing the structure of the controller 2218 of Figure 22, in accordance with one embodiment of the present invention. Elements in Figure 25 that are numbered the same as Figures 20 and 24 have similar functions. FIG. 25 will be described in conjunction with FIGS. 20 and 24.

在圖25的例子中,控制器2218包括信號產生器2050、TRIAC監測器2502和驅動器2052。驅動器2052耦接於信號產生器2050和TRIAC監測器2502。信號產生器2050產生監測信號(例如,方波信號2062)。監測信號的平均電壓與流過光源1808的平均電流(例如,平均電流IOUT_AVG)成比例。TRIAC監測器2502根據檢測信號2222產生參考信號REF。參考信號REF以指示流經光源1808的平均電流的目標電流值(例如,目標電流值ITARGET)。相應地,驅動器2052基於方波信號2062和參考信號REF產生驅動信號2250。與圖20的討論相似,信號產生器2050、驅動器2052和變壓器1822組成負回授迴路。該負回授迴路保持方波信號2062的平均電壓等於參考信號REF,進而保持流經光源1808的平均電流等於目標電流值ITARGETIn the example of FIG. 25, controller 2218 includes a signal generator 2050, a TRIAC monitor 2502, and a driver 2052. The driver 2052 is coupled to the signal generator 2050 and the TRIAC monitor 2502. Signal generator 2050 generates a monitoring signal (eg, square wave signal 2062). The average voltage of the monitored signal is proportional to the average current flowing through the source 1808 (eg, the average current I OUT — AVG ). The TRIAC monitor 2502 generates a reference signal REF based on the detection signal 2222. The reference signal REF is indicative of a target current value (eg, target current value I TARGET ) of the average current flowing through the source 1808. Accordingly, driver 2052 generates drive signal 2250 based on square wave signal 2062 and reference signal REF. Similar to the discussion of FIG. 20, signal generator 2050, driver 2052, and transformer 1822 form a negative feedback loop. The negative feedback loop maintains the average voltage of the square wave signal 2062 equal to the reference signal REF, thereby maintaining the average current flowing through the source 1808 equal to the target current value I TARGET .

有利之處在於,TRIAC監測器2052能够根據TRIAC調光器2204來調整參考信號REF。更具體地說,在一個實施例中,如果檢測信號2222指示TRIAC元件2206在每個週期中的導通時刻被提前,則TRIAC監測器2502增大參考信號REF。由此,流過光源1808的平均電流增大。同理,如果檢測信號2222指示TRIAC元件2206在每個週期中的導通時刻被延遲,則TRIAC監測器2502减小參考信號REF。由此,流過光源1808的平均電流减小。控制器2218可具有其他結構,並不局限於圖25的實施例。 Advantageously, the TRIAC monitor 2052 can adjust the reference signal REF according to the TRIAC dimmer 2204. More specifically, in one embodiment, the TRIAC monitor 2502 increments the reference signal REF if the detection signal 2222 indicates that the turn-on instant of the TRIAC component 2206 is advanced in each cycle. Thereby, the average current flowing through the light source 1808 increases. Similarly, if the detection signal 2222 indicates that the TAPAC element 2206 is delayed at the turn-on instant in each cycle, the TRIAC monitor 2502 reduces the reference signal REF. Thereby, the average current flowing through the light source 1808 is reduced. Controller 2218 can have other configurations and is not limited to the embodiment of FIG.

圖26所示為根據本發明一個實施例的圖25中的TRIAC監測器2502的結構示意圖。圖26將結合圖25進行描述。在圖26的例子中,TRIAC監測器2502包括比較器2602、比較器2606、分壓器2610和濾波器2604。在一個實施例中,分壓器2610包括串聯耦接的電阻R6和電阻R7。分壓器2610接收檢測信號2222,並提供指示整流電壓VIN的分壓信號2608。比較器2606將分壓信號2608和臨限值電壓VTH4進行比較,並根據比較結果產生方波信號2612。濾波器2604過濾方波信號2612,以產生參考信號REF。 Figure 26 is a block diagram showing the structure of the TRIAC monitor 2502 of Figure 25 in accordance with one embodiment of the present invention. Figure 26 will be described in conjunction with Figure 25. In the example of FIG. 26, TRIAC monitor 2502 includes a comparator 2602, a comparator 2606, a voltage divider 2610, and a filter 2604. In one embodiment, voltage divider 2610 includes a resistor R6 and a resistor R7 coupled in series. Voltage divider 2610 receives detection signal 2222 and provides a divided signal 2608 indicative of rectified voltage V IN . The comparator 2606 compares the divided voltage signal 2608 with the threshold voltage VTH4 and generates a square wave signal 2612 based on the comparison result. Filter 2604 filters square wave signal 2612 to produce reference signal REF.

更具體地說,在一個實施例中,在時刻T1至時刻T2的導通時間TTRI_ON內,分壓信號2608大於臨限值電壓VTH4(例如,零伏特),方波信號2612被切換至高電位。在時刻T2至時刻T3的關斷時間TTRI_OFF內,分壓信號2608小於臨限值電壓VTH4,方波信號2612被切換至低電位。當TRIAC元件2206的導通時刻發生變化時,方波信號2612的平均電壓相應變化。濾波器2604過濾方波信號2612,進而提供與方波信號2612的平均電壓成比例的參考信號REF。因此,透過調節參考信號REF可調整流經光源1808的平均電流,進而實現了根據TRIAC調光器2204對光源1808的調光控制。 More specifically, in one embodiment, during the on time T TRI_ON from time T 1 to time T 2 , the divided signal 2608 is greater than the threshold voltage V TH4 (eg, zero volts) and the square wave signal 2612 is switched. To high potential. In the off time T TRI_OFF from time T 2 to time T 3 , the divided voltage signal 2608 is less than the threshold voltage V TH4 , and the square wave signal 2612 is switched to the low potential. When the turn-on timing of the TRIAC element 2206 changes, the average voltage of the square wave signal 2612 changes accordingly. Filter 2604 filters square wave signal 2612, which in turn provides a reference signal REF that is proportional to the average voltage of square wave signal 2612. Therefore, the average current through the light source 1808 can be rectified by adjusting the reference signal REF, thereby achieving dimming control of the light source 1808 according to the TRIAC dimmer 2204.

此外,比較器2602將指示整流電壓VIN的檢測信號2222和臨限值電壓VTH3進行比較,以控制接腳CLP的拉低信號2220。更具體地說,在一個實施例中,當檢測信號2222低於臨限值電壓VTH3時,拉低信號2220具有高電位以導通開關2404。當檢測信號2222高於臨限值電壓VTH3時,拉低信號2220具有低電位以關斷開關2404。TRIAC監測器2502可具有其他結構,並不局限於圖26的實施例。 In addition, the comparator 2602 compares the detection signal 2222 indicating the rectified voltage V IN with the threshold voltage V TH3 to control the pull-down signal 2220 of the pin CLP. More specifically, in one embodiment, when the detection signal 2222 is below the threshold voltage VTH3 , the pull-down signal 2220 has a high potential to turn on the switch 2404. When the detection signal 2222 is above the threshold voltage VTH3 , the pull-down signal 2220 has a low potential to turn off the switch 2404. The TRIAC monitor 2502 can have other configurations and is not limited to the embodiment of FIG.

值得注意的是,雖然以上實施例中是以驅動發光二極體光源 為例對本發明進行說明,但本發明並不局限於此,本發明的驅動電路也可以驅動其他負載,例如可以驅動其他類型的光源或者電池組。 It is worth noting that although the above embodiment is to drive the LED light source The present invention is described by way of example, but the invention is not limited thereto, and the drive circuit of the present invention can also drive other loads, such as other types of light sources or battery packs.

圖27所示為根據本發明一實施例於驅動負載(例如,光源1808)的方法流程圖2700。圖27將結合圖18A至圖26進行描述。圖27所涵蓋的具體步驟僅作為示例。也就是說,本發明也適用於執行其他合理的步驟或對圖27進行改進的步驟。 27 is a flow chart 2700 of a method for driving a load (eg, light source 1808) in accordance with an embodiment of the present invention. Figure 27 will be described in conjunction with Figures 18A through 26. The specific steps covered in Figure 27 are by way of example only. That is, the present invention is also applicable to the steps of performing other reasonable steps or improving FIG.

在步驟2702中,轉換器(例如,轉換器1820)將輸入電壓(例如,整流電壓VIN)變換為調節電壓(例如,調節電壓VREG)。 In step 2702, a converter (eg, converter 1820) converts an input voltage (eg, rectified voltage V IN ) to a regulated voltage (eg, regulated voltage V REG ).

在步驟2704中,變壓器(例如,變壓器1822)將調節電壓轉換為輸出電壓(例如,電壓VOUT),以為負載(例如,光源1808)供電。 In step 2704, a transformer (eg, transformer 1822) converts the regulated voltage to an output voltage (eg, voltage VOUT ) to power the load (eg, light source 1808).

在步驟2706中,根據驅動信號(例如,驅動信號1850或驅動信號2250)使開關(例如,開關1834)交替地工作於第一狀態(例如,導通狀態)和第二狀態(例如,關斷狀態)。當開關工作於第一狀態時,流過轉換器的第一電流(例如,電流IC)和流過變壓器的第二電流(例如,電流IPR)流過開關。在一個實施例中,變壓器包括初級繞組(例如,初級繞組1824)和次級繞組(例如,次級繞組1826)。當開關工作於第一狀態時,流過初級繞組的第二電流上升。當開關工作於第二狀態時,流過次級繞組的第三電流(例如,電流ISE)下降,直至下降到預設值(例如,零安培)。在一個實施例中,當開關工作於第二狀態且第三電流下降時(例如,在時間間隔TDIS中),變壓器工作於預設狀態。 In step 2706, a switch (eg, switch 1834) is alternately operated in a first state (eg, an on state) and a second state (eg, an off state) based on a drive signal (eg, drive signal 1850 or drive signal 2250) ). When the switch is operating in the first state, a first current flowing through the converter (eg, current I C ) and a second current flowing through the transformer (eg, current I PR ) flow through the switch. In one embodiment, the transformer includes a primary winding (eg, primary winding 1824) and a secondary winding (eg, secondary winding 1826). When the switch operates in the first state, the second current flowing through the primary winding rises. When the switch is operating in the second state, the third current (eg, current I SE ) flowing through the secondary winding drops until it drops to a preset value (eg, zero amps). In one embodiment, when the switch is operating in the second state and the third current is decreasing (eg, in time interval T DIS ), the transformer operates in a preset state.

在步驟2708中,透過監測第一感應器(例如,感應器1838)和第二感應器(例如,感應器1842)上的總電壓接收指示第一電流和第二電流的組合電流(例如,電流ICOMBINE)的第一感應信號(例如,感應信號1856)。第一感應器耦接於開關和第一參考節點之間。第二感應器耦接於第一參考節點和第二參考節點之間。在一個實施例中,第一參考節點為整流器的參考地,第二參考節點為控制器的參考地,其中整流器用於產生輸入電壓,控制器用於控制驅動信號。 In step 2708, a combined current indicative of the first current and the second current (eg, current) is received by monitoring a total voltage across the first inductor (eg, inductor 1838) and the second inductor (eg, inductor 1842) The first sensing signal of I COMBINE ) (eg, sensing signal 1856). The first inductor is coupled between the switch and the first reference node. The second inductor is coupled between the first reference node and the second reference node. In one embodiment, the first reference node is the reference ground of the rectifier and the second reference node is the reference ground of the controller, wherein the rectifier is for generating an input voltage and the controller is for controlling the drive signal.

在步驟2710中,透過監測第二感應器上的電壓接收僅指示第二電流的第二感應信號(例如,感應信號1852)。在一個實施例中,基於 第二感應信號提供第一方波信號(例如,方波信號2062),第一方波信號的平均電壓(例如,方波信號的平均電壓值VSQ_AVG)與流經負載的平均電流(輸出電流IOUT的平均電流IOUT_AVG)成比例。在一個實施例中,當變壓器工作於預設狀態時,調節第一方波信號至與第二電流的峰值成比例的第一電壓值(例如,電壓值VPK)。當變壓器沒有工作在預設狀態,調節第一方波信號至第二電壓值(例如,預設電壓值VPRE)。 In step 2710, a second sensed signal (eg, sensed signal 1852) that only indicates the second current is received by monitoring the voltage on the second inductor. In one embodiment, the first square wave signal (eg, square wave signal 2062) is provided based on the second induced signal, and the average voltage of the first square wave signal (eg, the average voltage value of the square wave signal V SQ — AVG ) flows through The average current of the load (the average current I OUT_AVG of the output current I OUT ) is proportional. In one embodiment, the first square wave signal is adjusted to a first voltage value (eg, voltage value V PK ) that is proportional to the peak of the second current when the transformer is operating in the preset state. When the transformer is not operating in the preset state, the first square wave signal is adjusted to a second voltage value (eg, a preset voltage value V PRE ).

在步驟2712中,根據第一感應信號和第二感應信號控制驅動信號以調整流經負載的電流。在一個實施例中,基於第一方波信號控制驅動信號以調整流經負載的平均電流至目標電流值(例如,目標電流值ITARGET)。在一個實施例中,比較第一感應信號和第一臨限值(例如,臨限值VTH2),並根據比較結果將控制器的接腳(例如,接腳COMP)處的電壓拉至預設電壓值(例如,參考地GND3)。當該接腳處的電壓被拉至預設電壓值時,控制驅動信號以保持開關工作於第二狀態。在一個實施例中,由TRIAC元件(例如,TRIAC元件2206)將交流輸入電壓(例如,交流輸入電壓VAC)轉換為交流電壓(例如,交流電壓VTRIAC),由整流器(例如,整流器920)將交流電壓轉換成輸入電壓(例如,整流電壓VIN)。根據指示輸入電壓的檢測信號(例如,檢測信號2222)檢測TRIAC元件的導通狀態。根據檢測信號產生指示流過負載的平均電流的目標電流值的參考信號(例如,參考信號REF)。根據參考信號控制驅動信號,以使開關交替工作於第一狀態和第二狀態,進而控制流過負載的平均電流。在一個實施例中,根據檢測信號檢測交流輸入電壓每個週期中TRIAC元件的導通時刻是否變化。根據該導通時刻的變化調整參考信號。 In step 2712, the drive signal is controlled based on the first sensed signal and the second sensed signal to adjust the current flowing through the load. In one embodiment, the drive signal is controlled based on the first square wave signal to adjust the average current flowing through the load to a target current value (eg, target current value I TARGET ). In one embodiment, the first sensed signal and the first threshold (eg, threshold V TH2 ) are compared, and the voltage at the controller's pin (eg, pin COMP) is pulled to the pre-predict based on the comparison. Set the voltage value (for example, ground reference GND3). When the voltage at the pin is pulled to a preset voltage value, the drive signal is controlled to keep the switch operating in the second state. In one embodiment, an AC input voltage (eg, AC input voltage V AC ) is converted to an AC voltage (eg, AC voltage V TRIAC ) by a TRIAC component (eg, TRIAC component 2206) by a rectifier (eg, rectifier 920) The AC voltage is converted to an input voltage (eg, rectified voltage V IN ). The conduction state of the TRIAC element is detected based on a detection signal (eg, detection signal 2222) indicating the input voltage. A reference signal (eg, reference signal REF) indicating a target current value of the average current flowing through the load is generated according to the detection signal. The drive signal is controlled in accordance with the reference signal to cause the switch to alternately operate in the first state and the second state, thereby controlling the average current flowing through the load. In one embodiment, it is detected based on the detection signal whether the conduction time of the TRIAC element changes in each cycle of the AC input voltage. The reference signal is adjusted according to the change in the conduction time.

本發明的實施例提供了驅動負載(例如,光源)的驅動電路。驅動電路包含轉換器、變壓器、第一感應器和第二感應器。轉換器接收輸入電壓並提供調節電壓。變壓器將調節電壓轉換為輸出電壓以給負載供電。當開關工作於第一狀態時,流經轉換器的第一電流和流經變壓器的第二電流都流過開關。耦接於開關和第一參考節點間的第一感應器提供指示第一電流和第二電流的組合電流的第一感應信號。耦接於第一參考節點和第二參考節點間的第二感應器提供僅指示第二電流的第二感應信號。本發 明的負載驅動電路、方法及控制器,不僅可省去電路二次側的感應器和電路一次側與二次側之間的隔離器,降低了電路的尺寸和成本,而且校正了電路的功率因數,提高了供電品質。 Embodiments of the present invention provide a drive circuit that drives a load (eg, a light source). The drive circuit includes a converter, a transformer, a first inductor, and a second inductor. The converter receives the input voltage and provides a regulated voltage. The transformer converts the regulated voltage to an output voltage to power the load. When the switch is operating in the first state, both the first current flowing through the converter and the second current flowing through the transformer flow through the switch. A first inductor coupled between the switch and the first reference node provides a first sensed signal indicative of a combined current of the first current and the second current. A second inductor coupled between the first reference node and the second reference node provides a second sensing signal indicative of only the second current. This hair The load driving circuit, method and controller of the invention can not only save the inductor on the secondary side of the circuit and the isolator between the primary side and the secondary side of the circuit, reduce the size and cost of the circuit, and correct the power of the circuit. The factor improves the quality of the power supply.

上文具體實施方式和附圖僅為本發明之常用實施例。顯然,在不脫離後附申請專利範圍所界定的本發明精神和保護範圍的前提下可以有各種增補、修改和替換。本技術領域中具有通常知識者應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈局、比例、材料、元素、元件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附申請專利範圍及其合法均等物界定,而不限於先前之描述。 The above detailed description and the accompanying drawings are only typical embodiments of the invention. It is apparent that various additions, modifications and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those of ordinary skill in the art that the present invention may be applied in the form of the form, structure, arrangement, ratio, material, element, element, and other aspects in the actual application without departing from the invention. Changed. Therefore, the embodiments disclosed herein are intended to be illustrative and not limiting, and the scope of the invention is defined by the scope of the appended claims and their legal equivalents.

202‧‧‧電源 202‧‧‧Power supply

204‧‧‧整流器 204‧‧‧Rectifier

920‧‧‧濾波器 920‧‧‧ filter

1512‧‧‧電感 1512‧‧‧Inductance

1800‧‧‧光源驅動電路 1800‧‧‧Light source drive circuit

1808‧‧‧光源 1808‧‧‧Light source

1810‧‧‧控制器 1810‧‧‧ Controller

1820‧‧‧轉換器 1820‧‧‧ converter

1822‧‧‧變壓器 1822‧‧‧Transformer

1824‧‧‧初級繞組 1824‧‧‧Primary winding

1826‧‧‧次級繞組 1826‧‧‧Secondary winding

1828‧‧‧輔助繞組 1828‧‧‧Auxiliary winding

1830‧‧‧磁芯 1830‧‧‧ magnetic core

1832‧‧‧分壓器 1832‧‧ ‧ Voltage divider

1834‧‧‧開關 1834‧‧‧Switch

1836‧‧‧保護電路 1836‧‧‧Protection circuit

1838‧‧‧感應器 1838‧‧‧ sensor

1840‧‧‧箝位電路 1840‧‧‧Clamp circuit

1842‧‧‧感應器 1842‧‧‧ sensor

1850‧‧‧驅動信號 1850‧‧‧ drive signal

1852‧‧‧感應信號 1852‧‧‧Induction signal

1854‧‧‧監測信號 1854‧‧‧Monitoring signal

1856‧‧‧感應信號 1856‧‧‧Induction signal

Claims (34)

一種驅動電路,包括:一轉換器,接收一輸入電壓,並提供一調節電壓;一開關,耦接該轉換器,該開關交替地工作於一第一狀態和一第二狀態;一變壓器,耦接該轉換器和該開關,將該調節電壓轉換為一輸出電壓,以對一負載供電,其中,當該開關工作於該第一狀態時,流經該轉換器的一第一電流和流經該變壓器的一第二電流流過該開關;一第一感應器,耦接於該開關和一第一參考節點之間,提供指示該第一電流和該第二電流的一組合電流的一第一感應信號;以及一第二感應器,耦接於該第一參考節點和一第二參考節點之間,提供僅指示該第二電流的一第二感應信號。 A driving circuit comprising: a converter receiving an input voltage and providing a regulating voltage; a switch coupled to the converter, the switch alternately operating in a first state and a second state; a transformer, coupled Connecting the converter and the switch, converting the regulated voltage to an output voltage to supply power to a load, wherein when the switch operates in the first state, a first current flowing through the converter and flowing through a second current flowing through the switch; a first inductor coupled between the switch and a first reference node to provide a first current indicating a combined current of the first current and the second current And a second sensor coupled between the first reference node and a second reference node to provide a second sensing signal indicating only the second current. 如申請專利範圍第1項的驅動電路,進一步包括:一控制器,耦接該開關,產生一驅動信號使該開關交替地工作於該第一狀態和該第二狀態;以及一保護電路,耦接該控制器之一接腳,接收該第一感應信號,該保護電路比較該第一感應信號和一第一臨限值,並根據一比較結果將該接腳的一電壓拉升至一第一預設電壓值。 The driving circuit of claim 1, further comprising: a controller coupled to the switch to generate a driving signal to alternately operate the switch in the first state and the second state; and a protection circuit coupled Receiving a pin of the controller, receiving the first sensing signal, the protection circuit comparing the first sensing signal with a first threshold, and pulling a voltage of the pin to a first according to a comparison result A preset voltage value. 如申請專利範圍第2項的驅動電路,其中,當該接腳的該電壓保持在該第一預設電壓值時,該控制器控制該驅動信號,以保持該開關工作於該第二狀態。 The driving circuit of claim 2, wherein when the voltage of the pin is maintained at the first predetermined voltage value, the controller controls the driving signal to keep the switch operating in the second state. 如申請專利範圍第1項的驅動電路,其中,當該開關工作於該第一狀態時,該第一電流和該第二電流皆流過該第一感應器,該第二電流只有流過該第二感應器。 The driving circuit of claim 1, wherein when the switch operates in the first state, the first current and the second current flow through the first inductor, and the second current only flows through the The second sensor. 如申請專利範圍第1項的驅動電路,其中,該第一參考節點 耦接該第一電流的一電流路徑,該第一電流不流過該第二感應器。 The driving circuit of claim 1, wherein the first reference node And coupling a current path of the first current, the first current does not flow through the second inductor. 如申請專利範圍第1項的驅動電路,其中,該第一感應信號的一電壓值等於該第一感應器上的一電壓和該第二感應器上的一電壓之和,該第二感應信號的一電壓值等於該第二感應器上的該電壓。 The driving circuit of claim 1, wherein a voltage value of the first sensing signal is equal to a sum of a voltage on the first inductor and a voltage on the second inductor, the second sensing signal A voltage value is equal to the voltage on the second inductor. 如申請專利範圍第1項的驅動電路,進一步包括:一整流器,提供該輸入電壓;以及一控制器,產生一驅動信號使該開關交替地工作於該第一狀態和該第二狀態,該整流器和該控制器具有不同的參考地,該第一參考節點為該整流器的參考地,該第二參考節點為該控制器的參考地。 The driving circuit of claim 1, further comprising: a rectifier for providing the input voltage; and a controller for generating a driving signal for alternately operating the switch in the first state and the second state, the rectifier And the controller has a different reference ground, the first reference node is a reference ground of the rectifier, and the second reference node is a reference ground of the controller. 如申請專利範圍第1項的驅動電路,進一步包括:一控制器,耦接該開關,產生一驅動信號使該開關交替地工作於該第一狀態和該第二狀態,該控制器包括接收該第二感應信號的一接腳;以及一箝位電路,耦接於該第一參考節點和該接腳之間,當該第二感應器上的一電壓下降至低於一第二臨限值時,該箝位電路將該接腳處的一電壓箝位在一第二預設電壓值。 The driving circuit of claim 1, further comprising: a controller coupled to the switch to generate a driving signal to cause the switch to alternately operate in the first state and the second state, the controller comprising receiving the a pin of the second sensing signal; and a clamping circuit coupled between the first reference node and the pin, when a voltage on the second inductor drops below a second threshold The clamp circuit clamps a voltage at the pin to a second predetermined voltage value. 如申請專利範圍第1項的驅動電路,進一步包括:一控制器,耦接該開關,基於該第二感應信號提供一第一方波信號,該第一方波信號的一平均電壓與流經該負載的一平均電流成比例,該控制器基於該第一方波信號提供一驅動信號以控制該開關,進而控制該平均電流。 The driving circuit of claim 1, further comprising: a controller coupled to the switch, and providing a first square wave signal based on the second sensing signal, an average voltage of the first square wave signal flowing through The average current of the load is proportional, and the controller provides a drive signal based on the first square wave signal to control the switch to control the average current. 如申請專利範圍第9項的驅動電路,其中,當該變壓器工作於一預設狀態時,該第一方波信號具有與該第二電流的一峰值成 比例的一第一電壓值;當該變壓器沒有工作在該預設狀態時,該第一方波信號具有一第二電壓值。 The driving circuit of claim 9, wherein the first square wave signal has a peak value of the second current when the transformer operates in a predetermined state. a first voltage value of the ratio; the first square wave signal has a second voltage value when the transformer is not operating in the preset state. 如申請專利範圍第10項的驅動電路,其中,該變壓器包括一初級繞組和一次級繞組,其中,在該開關的該第一狀態中,流經該初級繞組的該第二電流上升;在該開關的該第二狀態中,流經該次級繞組的一第三電流下降,其中,當流經該次級繞組的該第三電流下降時,該變壓器工作於該預設狀態。 The driving circuit of claim 10, wherein the transformer comprises a primary winding and a primary winding, wherein in the first state of the switch, the second current flowing through the primary winding rises; In the second state of the switch, a third current flowing through the secondary winding is decreased, wherein the transformer operates in the predetermined state when the third current flowing through the secondary winding drops. 如申請專利範圍第9項的驅動電路,其中,該控制器包括:一驅動器,產生該驅動信號以控制該開關;一採集電路,根據該第二感應信號採集該第二電流的該峰值,並產生一峰值信號,該峰值信號具有與該峰值成比例的一第一電壓值;及一多工器,如果該變壓器工作在該預設狀態,該多工器傳送該峰值信號至該驅動器;如果該變壓器沒有工作在該預設狀態,該多工器傳送預設信號至該驅動器,該預設信號具有一第二電壓值。 The driving circuit of claim 9, wherein the controller comprises: a driver that generates the driving signal to control the switch; and an acquisition circuit that acquires the peak value of the second current according to the second sensing signal, and Generating a peak signal having a first voltage value proportional to the peak; and a multiplexer transmitting the peak signal to the driver if the transformer is operating in the predetermined state; The transformer is not operating in the preset state, and the multiplexer transmits a preset signal to the driver, the preset signal having a second voltage value. 如申請專利範圍第9項的驅動電路,其中,該控制器和該變壓器構成一負回授迴路,該負回授迴路保持該第一方波信號的該平均電壓等於一參考信號,以保持流經該負載的該平均電流等於一目標電流值。 The driving circuit of claim 9, wherein the controller and the transformer form a negative feedback loop, and the negative feedback loop maintains the average voltage of the first square wave signal equal to a reference signal to maintain the current The average current through the load is equal to a target current value. 如申請專利範圍第1項的驅動電路,進一步包括:一交流矽控閘流體,接收一交流電壓,該交流矽控閘流體在該交流電壓的每個週期中交替地導通和關斷,產生該輸入電壓;該驅動電路進一步包括:一控制器,接收指示該輸入電壓的一檢測信號,該控制器根據該檢測信號檢測該交流矽控閘流體之一導通狀態,並根據該導通狀態產生一驅動信號,該驅動信號使該開關交替地工作於該第一狀 態和該第二狀態。 The driving circuit of claim 1, further comprising: an AC thyristor fluid, receiving an AC voltage, the AC 矽 control fluid alternately turning on and off during each cycle of the AC voltage, generating the The driving circuit further includes: a controller receiving a detection signal indicating the input voltage, the controller detecting an on state of the AC 矽 control fluid according to the detection signal, and generating a driving according to the conduction state a signal that causes the switch to alternately operate in the first state State and the second state. 如申請專利範圍第14項的驅動電路,其中,該控制器進一步包括:一信號產生器,產生一監測信號,該監測信號的一平均電壓與流經該負載的一平均電流成比例;一交流矽控閘流體監測器,根據該檢測信號產生一參考信號,該參考信號指示流經該負載的該平均電流的一目標電流值;及一驅動器,耦接該信號產生器和該交流矽控閘流體監測器,基於該監測信號和該參考信號產生該驅動信號,以控制該開關,進而調整該平均電流至該目標電流值。 The driving circuit of claim 14, wherein the controller further comprises: a signal generator for generating a monitoring signal, an average voltage of the monitoring signal being proportional to an average current flowing through the load; The thyristor fluid monitor generates a reference signal according to the detection signal, the reference signal indicating a target current value of the average current flowing through the load; and a driver coupled to the signal generator and the AC sluice gate The fluid monitor generates the driving signal based on the monitoring signal and the reference signal to control the switch to adjust the average current to the target current value. 如申請專利範圍第15項的驅動電路,其中,該交流矽控閘流體監測器根據該檢測信號檢測該交流矽控閘流體在該交流輸入電壓的每個週期中的一導通時刻是否變化,並根據該導通時刻的變化調整該參考信號。 The driving circuit of claim 15 , wherein the AC 矽 control fluid monitor detects, according to the detection signal, whether a conduction time of the AC 矽 control fluid in each cycle of the AC input voltage changes, and The reference signal is adjusted according to the change in the conduction time. 如申請專利範圍第15項的驅動電路,其中,該交流矽控閘流體監測器根據該檢測信號產生一第二方波信號,並過濾該第二方波信號以產生與該第二方波信號的一平均電壓成比例的該參考信號。 The driving circuit of claim 15 , wherein the AC 矽 control fluid monitor generates a second square wave signal according to the detection signal, and filters the second square wave signal to generate the second square wave signal An average voltage is proportional to the reference signal. 一種控制負載電能控制器,包括:一輸出接腳,產生一驅動信號使一開關交替地工作於一第一狀態和一第二狀態;一轉換器,耦接該開關,將一輸入電壓變換為一調節電壓;一變壓器,耦接該開關,將該調節電壓轉換為一輸出電壓,以為一負載供電,當該開關工作於該第一狀態時,流經該轉換器的一第一電流和流經該變壓器的一第二電流都流過該開關;一保護接腳,耦接一保護電路,該保護電路透過監測一第一感應 器和一第二感應器上的一總電壓感應該第一電流和該第二電流的一組合電流,該第一感應器耦接於該開關和一第一參考節點之間,該第二感應器耦接於該第一參考節點和一第二參考節點之間;以及一感應接腳,耦接該第一參考節點,透過監測該第二感應器上的一電壓來感應該第二電流,其中,該控制器根據該感應接腳接收的一信號和該保護接腳接收的一信號控制該驅動信號。 A control load power controller includes: an output pin that generates a drive signal to cause a switch to alternately operate in a first state and a second state; a converter coupled to the switch to convert an input voltage into a voltage adjustment; a transformer coupled to the switch, converting the regulated voltage to an output voltage to supply a load, and a first current and current flowing through the converter when the switch operates in the first state A second current flowing through the transformer flows through the switch; a protection pin is coupled to a protection circuit, and the protection circuit monitors a first induction And a total voltage on the second inductor is coupled to the combined current of the first current and the second current, the first inductor being coupled between the switch and a first reference node, the second sensing The sensor is coupled between the first reference node and a second reference node; and an inductive pin coupled to the first reference node to sense the second current by monitoring a voltage on the second inductor, The controller controls the driving signal according to a signal received by the sensing pin and a signal received by the protection pin. 如申請專利範圍第18項的控制負載電能控制器,進一步包括:一回授接腳,耦接該變壓器的一輔助繞組,該回授接腳接收的一信號指示該變壓器是否工作於一預設狀態,該控制器基於該感應接腳接收的該信號和該回授接腳接收的該信號產生一第一方波信號,該第一方波信號的一平均電壓與流經該負載的一平均電流成比例。 The control load power controller of claim 18, further comprising: a feedback pin coupled to an auxiliary winding of the transformer, the signal received by the feedback pin indicating whether the transformer operates at a preset a state, the controller generates a first square wave signal based on the signal received by the sensing pin and the signal received by the feedback pin, an average voltage of the first square wave signal and an average flowing through the load The current is proportional. 如申請專利範圍第19項的控制負載電能控制器,其中,當該變壓器工作於該預設狀態時,該第一方波信號具有與該第二電流的峰值成比例的一第一電壓值;當該變壓器沒有工作在該預設狀態時,該第一方波信號具有一第二電壓值。 The control load power controller of claim 19, wherein the first square wave signal has a first voltage value proportional to a peak value of the second current when the transformer operates in the preset state; The first square wave signal has a second voltage value when the transformer is not operating in the preset state. 如申請專利範圍第19項的控制器,其中,該變壓器包括一初級繞組和一次級繞組,在該開關的該第一狀態中,流經該初級繞組的該第二電流上升;在該開關的該第二狀態中,流經該次級繞組的一第三電流下降,其中,當流經該次級繞組的該第三電流下降時,該變壓器工作於該預設狀態。 The controller of claim 19, wherein the transformer comprises a primary winding and a primary winding, and in the first state of the switch, the second current flowing through the primary winding rises; In the second state, a third current flowing through the secondary winding is decreased, wherein the transformer operates in the predetermined state when the third current flowing through the secondary winding drops. 如申請專利範圍第18項的控制負載電能控制器,其中,當該第一感應器和該第二感應器上的該總電壓大於一第一臨限值,該 保護電路將該保護接腳處的一電壓拉至一第一預設電壓值;如果該保護接腳處的該電壓被拉至該第一預設電壓值,該控制器控制該驅動信號以保持該開關工作於該第二狀態。 The control load power controller of claim 18, wherein when the total voltage on the first inductor and the second inductor is greater than a first threshold, the The protection circuit pulls a voltage at the protection pin to a first preset voltage value; if the voltage at the protection pin is pulled to the first preset voltage value, the controller controls the driving signal to maintain The switch operates in the second state. 如申請專利範圍第18項的控制負載電能控制器,其中,該第一參考節點為一整流器的參考地,該整流器產生該輸入電壓,該第二參考節點為該控制器的參考地。 The control load power controller of claim 18, wherein the first reference node is a reference ground of a rectifier, the rectifier generates the input voltage, and the second reference node is a reference ground of the controller. 如申請專利範圍第18項的控制負載電能控制器,進一步包括:一交流矽控閘流體,接收一交流電壓,該交流矽控閘流體在該交流輸入電壓的每個週期中交替地導通和關斷,產生該輸入電壓;該控制器進一步包括:一檢測接腳,接收指示該輸入電壓的一檢測信號,該控制器根據該檢測信號檢測該交流矽控閘流體的一導通狀態,並根據該導通狀態控制該驅動信號。 The control load power controller of claim 18, further comprising: an AC 矽 control fluid, receiving an AC voltage, the AC 矽 control fluid alternately turning on and off in each cycle of the AC input voltage Breaking, generating the input voltage; the controller further comprising: a detecting pin, receiving a detecting signal indicating the input voltage, the controller detecting a conductive state of the alternating current control fluid according to the detecting signal, and according to the The on state controls the drive signal. 如申請專利範圍第24項的控制負載電能控制器,進一步包括:一信號產生器,產生一監測信號,該監測信號的一平均電壓與流經該負載的一平均電流成比例;一交流矽控閘流體監測器,根據該檢測信號產生一參考信號,該參考信號指示流經該負載的一平均電流的一目標電流值;以及一驅動器,基於該監測信號和該參考信號產生該驅動信號,以控制該開關,進而調整該平均電流至該目標電流值。 The control load power controller of claim 24, further comprising: a signal generator for generating a monitoring signal, an average voltage of the monitoring signal being proportional to an average current flowing through the load; The thyristor monitor generates a reference signal according to the detection signal, the reference signal indicating a target current value of an average current flowing through the load; and a driver generating the driving signal based on the monitoring signal and the reference signal to The switch is controlled to adjust the average current to the target current value. 如申請專利範圍第25項的控制負載電能控制器,其中,該控制器根據該檢測信號檢測該交流矽控閘流體在該交流電壓的每個週期中的一導通時刻是否變化,並根據該導通時刻的變化調整該參考信號。 The control load power controller of claim 25, wherein the controller detects, according to the detection signal, whether an alternating current control fluid changes at a conduction time in each cycle of the alternating voltage, and according to the conduction The change in time adjusts the reference signal. 一種負載電能控制方法,包括: 利用一轉換器將一輸入電壓變換為一調節電壓;利用一變壓器將該調節電壓轉換為一輸出電壓,以對一負載供電;根據一驅動信號使開關交替地工作於一第一狀態和一第二狀態,當該開關工作於該第一狀態時,流經該轉換器的一第一電流和流經該變壓器的一第二電流皆流過該開關;透過監測一第一感應器和一第二感應器上的一總電壓接收指示該第一電流和該第二電流的一組合電流的一第一感應信號,該第一感應器耦接於該開關和一第一參考節點之間,該第二感應器耦接於該第一參考節點和一第二參考節點之間;透過監測該第二感應器上的一電壓接收僅指示該第二電流的一第二感應信號;以及根據該第一感應信號和該第二感應信號控制該驅動信號,以調節流經該負載的一電流。 A load power control method includes: Converting an input voltage into a regulated voltage by using a converter; converting the regulated voltage into an output voltage by using a transformer to supply power to a load; and operating the switch alternately in a first state and a first according to a driving signal a second state, when the switch operates in the first state, a first current flowing through the converter and a second current flowing through the transformer flow through the switch; and a first sensor and a first a total voltage on the two inductors receives a first sensing signal indicating a combined current of the first current and the second current, the first inductor being coupled between the switch and a first reference node, The second inductor is coupled between the first reference node and a second reference node; receiving a second sensing signal indicating only the second current by monitoring a voltage on the second inductor; and according to the first An inductive signal and the second inductive signal control the drive signal to regulate a current flowing through the load. 如申請專利範圍第27項的方法,進一步包括:基於該第二感應信號提供一第一方波信號,該第一方波信號的一平均電壓與流經該負載的一平均電流成比例;以及基於該第一方波信號控制該驅動信號,以調節該平均電流至一目標電流值。 The method of claim 27, further comprising: providing a first square wave signal based on the second sensing signal, an average voltage of the first square wave signal being proportional to an average current flowing through the load; The driving signal is controlled based on the first square wave signal to adjust the average current to a target current value. 如申請專利範圍第28項的方法,進一步包括:當該變壓器工作於一預設狀態時,調節該第一方波信號至一第一電壓值,該第一電壓值與該第二電流的一峰值成比例;以及當該變壓器沒有工作在該預設狀態時,調節該第一方波信號至一第二電壓值。 The method of claim 28, further comprising: adjusting the first square wave signal to a first voltage value when the transformer is operating in a predetermined state, the first voltage value and one of the second current The peak is proportional; and when the transformer is not operating in the preset state, the first square wave signal is adjusted to a second voltage value. 如申請專利範圍第28項的方法,其中,該變壓器包括一初級繞組和一次級繞組,在該開關的該第一狀態中,流經該初級繞組 的該第二電流上升;在該開關的該第二狀態中,流經該次級繞組的一第三電流下降直至達到一預設值,該方法進一步包括:如果在該開關的該第二狀態中,當該第三電流下降時,判斷該變壓器工作於該預設狀態。 The method of claim 28, wherein the transformer comprises a primary winding and a primary winding, and in the first state of the switch, flowing through the primary winding The second current rises; in the second state of the switch, a third current flowing through the secondary winding drops until a predetermined value is reached, the method further comprising: if in the second state of the switch When the third current drops, it is determined that the transformer operates in the preset state. 如申請專利範圍第27項的方法,其中,該第一參考節點為一整流器的參考地,該整流器產生該輸入電壓,該第二參考節點為一控制器的參考地,該控制器控制該驅動信號。 The method of claim 27, wherein the first reference node is a reference ground of a rectifier, the rectifier generates the input voltage, the second reference node is a reference ground of a controller, and the controller controls the driving signal. 如申請專利範圍第27項的方法,進一步包括:比較該第一感應信號和一第一臨限值;根據一比較結果將一控制器的一接腳的一電壓拉至一第一預設電壓值;及如果該接腳的該電壓被拉至該第一預設電壓值,控制該驅動信號以保持該開關工作於該第二狀態。 The method of claim 27, further comprising: comparing the first sensing signal with a first threshold; and pulling a voltage of a pin of a controller to a first predetermined voltage according to a comparison result And if the voltage of the pin is pulled to the first predetermined voltage value, the driving signal is controlled to keep the switch operating in the second state. 如申請專利範圍第27項的方法,進一步包括:利用一交流矽控閘流體將一交流電壓轉換為該輸入電壓;根據指示該輸入電壓的一檢測信號檢測該交流矽控閘流體的一導通狀態;根據該檢測信號產生一參考信號,該參考信號指示流經該負載的一平均電流的一目標電流值;以及根據該參考信號控制該驅動信號,以控制該開關交替工作於該第一狀態和該第二狀態。 The method of claim 27, further comprising: converting an alternating current voltage into the input voltage by using an alternating current control fluid; and detecting a conducting state of the alternating current control fluid according to a detection signal indicating the input voltage. Generating a reference signal according to the detection signal, the reference signal indicating a target current value of an average current flowing through the load; and controlling the driving signal according to the reference signal to control the switch to alternately operate in the first state and The second state. 如申請專利範圍第33項的方法,進一步包括:根據該檢測信號檢測該交流矽控閘流體在該交流電壓的每個週期中的一導通時刻是否變化;以及根據該導通時刻的變化調整該參考信號。 The method of claim 33, further comprising: detecting, according to the detection signal, whether an on-time of the alternating current control fluid in each period of the alternating voltage changes; and adjusting the reference according to the change of the conduction time signal.
TW102110493A 2012-09-28 2013-03-25 Driving circuits, methods and controllers for driving light source TWI527494B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210369122.9A CN103716934B (en) 2012-09-28 2012-09-28 The drive circuit of driving light source, method and controller

Publications (2)

Publication Number Publication Date
TW201414353A true TW201414353A (en) 2014-04-01
TWI527494B TWI527494B (en) 2016-03-21

Family

ID=50409368

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102110493A TWI527494B (en) 2012-09-28 2013-03-25 Driving circuits, methods and controllers for driving light source

Country Status (2)

Country Link
CN (1) CN103716934B (en)
TW (1) TWI527494B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587614B (en) * 2015-08-06 2017-06-11 Ying-Cong Lin AC voltage adjustment device
TWI596882B (en) * 2016-05-03 2017-08-21 A system for providing output current to one or more light emitting diodes

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102791054B (en) 2011-04-22 2016-05-25 昂宝电子(上海)有限公司 For the system and method for the brightness adjustment control under capacity load
CN104768285B (en) 2012-05-17 2017-06-13 昂宝电子(上海)有限公司 System and method for carrying out brightness adjustment control using system controller
CN103024994B (en) 2012-11-12 2016-06-01 昂宝电子(上海)有限公司 Use dimming control system and the method for TRIAC dimmer
US10149362B2 (en) 2013-08-01 2018-12-04 Power Integrations, Inc. Solid state lighting control with dimmer interface to control brightness
CN103957634B (en) 2014-04-25 2017-07-07 广州昂宝电子有限公司 Illuminator and its control method
CN104066254B (en) * 2014-07-08 2017-01-04 昂宝电子(上海)有限公司 TRIAC dimmer is used to carry out the system and method for intelligent dimming control
CN106413189B (en) 2016-10-17 2018-12-28 广州昂宝电子有限公司 Use the intelligence control system relevant to TRIAC light modulator and method of modulated signal
US10615598B2 (en) * 2017-03-30 2020-04-07 Chengdu Monolithic Power Systems Co., Ltd. AC switch with DC voltage generation
CN107645804A (en) 2017-07-10 2018-01-30 昂宝电子(上海)有限公司 System for LED switch control
CN108736746A (en) * 2017-07-27 2018-11-02 永春新盛环保科技有限公司 A kind of method of negative feedback air negative ion purifying
CN107682953A (en) 2017-09-14 2018-02-09 昂宝电子(上海)有限公司 LED illumination System and its control method
CN107995730B (en) 2017-11-30 2020-01-07 昂宝电子(上海)有限公司 System and method for phase-based control in connection with TRIAC dimmers
CN108200685B (en) 2017-12-28 2020-01-07 昂宝电子(上海)有限公司 LED lighting system for silicon controlled switch control
TWM572597U (en) * 2018-10-18 2019-01-01 海得電子股份有限公司 High voltage generator with voltage regulating and output voltage display function and voltage regulating display module
CN109922564B (en) 2019-02-19 2023-08-29 昂宝电子(上海)有限公司 Voltage conversion system and method for TRIAC drive
CN110493913B (en) 2019-08-06 2022-02-01 昂宝电子(上海)有限公司 Control system and method for silicon controlled dimming LED lighting system
CN110831295B (en) 2019-11-20 2022-02-25 昂宝电子(上海)有限公司 Dimming control method and system for dimmable LED lighting system
CN110831289B (en) 2019-12-19 2022-02-15 昂宝电子(上海)有限公司 LED drive circuit, operation method thereof and power supply control module
CN111031635B (en) 2019-12-27 2021-11-30 昂宝电子(上海)有限公司 Dimming system and method for LED lighting system
TWI715387B (en) * 2019-12-30 2021-01-01 宏碁股份有限公司 Driving circuit of lighting device
CN111432526B (en) 2020-04-13 2023-02-21 昂宝电子(上海)有限公司 Control system and method for power factor optimization of LED lighting systems
CN117134605A (en) * 2023-04-28 2023-11-28 荣耀终端有限公司 Power supply circuit, power supply control method, and power supply device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102014540B (en) * 2010-03-04 2011-12-28 凹凸电子(武汉)有限公司 Drive circuit and controller for controlling electric power of light source
US8004861B2 (en) * 2009-04-16 2011-08-23 Fsp Technology Inc. Parameter configuration method for elements of power factor correction function converter
TWI405502B (en) * 2009-08-13 2013-08-11 Novatek Microelectronics Corp Dimmer circuit of light emitted diode and isolated voltage generator and dimmer method thereof
US8233292B2 (en) * 2010-02-25 2012-07-31 O2Micro, Inc. Controllers, systems and methods for controlling power of light sources
US8111017B2 (en) * 2010-07-12 2012-02-07 O2Micro, Inc Circuits and methods for controlling dimming of a light source
CN102332814B (en) * 2011-09-14 2013-12-18 矽力杰半导体技术(杭州)有限公司 Power factor correction control circuit for reducing EMI (electro magnetic interference)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587614B (en) * 2015-08-06 2017-06-11 Ying-Cong Lin AC voltage adjustment device
TWI596882B (en) * 2016-05-03 2017-08-21 A system for providing output current to one or more light emitting diodes

Also Published As

Publication number Publication date
CN103716934A (en) 2014-04-09
CN103716934B (en) 2015-11-25
TWI527494B (en) 2016-03-21

Similar Documents

Publication Publication Date Title
TWI527494B (en) Driving circuits, methods and controllers for driving light source
US20130049621A1 (en) Circuits and methods for driving light sources
EP2364061B1 (en) Circuits and methods for driving light sources
US8143800B2 (en) Circuits and methods for driving a load with power factor correction function
US8593069B2 (en) Power converter with compensation circuit for adjusting output current provided to a constant load
TWI596874B (en) System controller and method for a power converter
US8569963B2 (en) Cascade boost and inverting buck converter with independent control
US8344657B2 (en) LED driver with open loop dimming control
US20120139433A1 (en) Circuits and methods for driving light sources
US8754625B2 (en) System and method for converting an AC input voltage to regulated output current
TWI519200B (en) Driving circuits, methods and controllers thereof for driving light sources
TWI556679B (en) Driving circuit for driving light source and controller for controlling converter
JP6248430B2 (en) LED driving device, LED lighting device, and error amplification circuit
TW201129235A (en) A LED drive circuit
US20120262079A1 (en) Circuits and methods for driving light sources
TWI533745B (en) Light source driving circuit, controller and method for controlling power converter
TW201308842A (en) Buck converter and its control circuit and control method
TWI505746B (en) Circuits and method for powering led light source and power converter thereof
TWI493849B (en) Power supplies and control methods capable of improving power factor during light load
US10306717B1 (en) Flicker-free LED driving apparatus and voltage regulating method thereof
JP7126625B2 (en) Converter for driving load, LED driver and LED lighting device
GB2506500A (en) Circuits and methods for driving light sources
TWI381625B (en) Circuits and controllers for driving light source

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees