TWI535084B - Thin film fabrication of rubber material with piezoelectric characteristics - Google Patents

Thin film fabrication of rubber material with piezoelectric characteristics Download PDF

Info

Publication number
TWI535084B
TWI535084B TW102107965A TW102107965A TWI535084B TW I535084 B TWI535084 B TW I535084B TW 102107965 A TW102107965 A TW 102107965A TW 102107965 A TW102107965 A TW 102107965A TW I535084 B TWI535084 B TW I535084B
Authority
TW
Taiwan
Prior art keywords
layer
dimethyl
siloxane
rubber material
solid
Prior art date
Application number
TW102107965A
Other languages
Chinese (zh)
Other versions
TW201436312A (en
Inventor
蘇育全
王志哲
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW102107965A priority Critical patent/TWI535084B/en
Publication of TW201436312A publication Critical patent/TW201436312A/en
Application granted granted Critical
Publication of TWI535084B publication Critical patent/TWI535084B/en

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Laminated Bodies (AREA)

Description

一種具壓電特性的橡膠材料薄膜結構與製造方法 Rubber material film structure and manufacturing method with piezoelectric characteristics

本發明係一種具壓電特性的橡膠材料薄膜結構與製造方法,尤指一種利用高分子鑄造、多層堆疊、表面改質、以及微電漿製程所開發出來的具壓電特性的橡膠材料薄膜結構。 The invention relates to a film structure and a manufacturing method of a rubber material with piezoelectric characteristics, in particular to a film structure of a rubber material with piezoelectric properties developed by polymer casting, multi-layer stacking, surface modification, and micro-plasma process. .

先前技術中,為了製備所需的多孔結構,大部分的鐵電駐極體利用改良的發泡與薄膜成型技術,在熔融的高分子內通入氣體以產生10微米左右大小的氣泡,並在平面方向拉伸以產生橢圓狀的孔洞結構。遺憾的是,這些製程所生成的孔洞結構其幾何形狀和空間分布是隨機的,很難針對個別孔洞加以控制。除此之外,這些製程步驟與傳統的微機電製程並不相容,以致於在整合與應用上將遭遇極大的挑戰。 In the prior art, in order to prepare the desired porous structure, most of the ferroelectric electrets utilize improved foaming and film forming techniques to introduce gas into the molten polymer to produce bubbles of about 10 microns in size. The plane direction is stretched to produce an elliptical hole structure. Unfortunately, the geometry and spatial distribution of the hole structures generated by these processes are random and difficult to control for individual holes. In addition, these process steps are not compatible with traditional MEMS processes, so that they will encounter great challenges in integration and application.

美國專利號US8,217,381,名稱為「Controlled Buckling Structures in Semiconductor Interconnects and Nanomembranes for Stretchable Electronics」。該專利揭露『本發明提供具有伸縮性和可選擇性打印記的元件,如半導體和電子電路,在拉伸、壓縮、彎曲或以其他方式變形,和相關的製作或調 整該伸縮性元件的方法時,能夠提供良好的性能。對於某些應用,較佳的伸縮性半導體和電子電路是可靈活運用的。除了伸縮性,更要能夠顯著地沿一個或多個軸延展、彎曲、或其它變形。另外,本發明的伸縮性半導體和電子電路適於廣泛的裝置配置,以提供完全靈活的電子和光電裝置。』 U.S. Patent No. 8,217,381, entitled "Controlled Buckling Structures in Semiconductor Interconnects and Nanomembranes for Stretchable Electronics." This patent discloses "the present invention provides components that are flexible and selectively printable, such as semiconductor and electronic circuits, that are stretched, compressed, bent or otherwise deformed, and related fabrications or adjustments. The method of the stretchable element can provide good performance. For some applications, the preferred stretchable semiconductors and electronic circuits are flexible. In addition to flexibility, it is more likely to be able to extend, bend, or otherwise deform significantly along one or more axes. Additionally, the stretchable semiconductor and electronic circuits of the present invention are suitable for a wide range of device configurations to provide fully flexible electronic and optoelectronic devices. 』

請參考第八A圖與第八C圖、第八B圖與第八D圖,係習知技術之美國專利號US8,217,381形成一平滑波浪形之彈性基材之方法示意圖與習知技術之美國專利號US8,217,381形成一平滑波浪形之彈性基材之每一步驟所形成之結構示意圖。如圖所示,非等方向性的矽100蝕刻提供具有尖銳的邊緣24(第八B圖所示)的基材20。經由沉積光阻(PR)在基材20的尖銳的邊緣24中,光阻會填平具有尖銳的邊緣之波谷。一彈性印記(stamp)34被鑄出來以撐著基材20。印記34具有尖銳邊緣的凹處。一第二彈性印記36被鑄在印記34上,以產生具有尖銳邊緣波峰的印記(stamp)。印記36是和Su-8 50浮雕於其上,並固化。光阻26可填平Su-8 50之具有尖銳邊緣的波谷。彈性基材30被鑄出來以撐著Su-8 50,該Su-8 50具有光滑的波谷。基材30被去除後,會顯示一波狀和光滑的表面32。再者,US8,217,381專利範圍獨立項所揭露:一二維伸縮性和可撓曲裝置包括:一彈性基材,係具有一個接觸表面;一互連部,具有一第一端部、一第二端部與一中央部,該第一端部接合到該彈性基材之該接觸表面,該第二端部接合到彈性基材之接觸表面,該在第一端部和第二端部之間,其中,第一端部和第二端部朝向彼 此的移動產生一曲線,彈性基材的接觸表面和互連部的中央部之間有一物理分離部,該物理分離部最大的距離係大於或等於100nm且小於或等於1mm;第一端部連接到一第一接觸墊,第二端部連接到一第二接觸墊,其中,該複數個接觸墊基本上是平的,用於接收該裝置元件,且接觸墊接合到基材上;其中,當接觸墊相對於彼此移動時,互連部電性連接第一接觸墊和第二接觸墊,在保持電性連接時,具有該曲線的中央部可使裝置伸縮和撓曲。 Referring to FIGS. 8A and 8C, 8B and 8D, a schematic diagram of a method for forming a smooth wavy elastic substrate is disclosed in US Pat. No. 8,217,381. U.S. Patent No. 8,217,381 forms a schematic view of each step of forming a smooth wavy elastic substrate. As shown, the non-isotropic 矽100 etch provides a substrate 20 having sharp edges 24 (shown in Figure 8B). In the sharp edge 24 of the substrate 20 via a deposited photoresist (PR), the photoresist fills the valleys with sharp edges. A resilient stamp 34 is cast to support the substrate 20. The imprint 34 has a recess with sharp edges. A second elastic print 36 is cast onto the imprint 34 to create a stamp having sharp edge crests. Imprint 36 is embossed with Su-8 50 and cured. The photoresist 26 fills the valleys of the Su-8 50 with sharp edges. The elastic substrate 30 is cast to support the Su-8 50, which has a smooth trough. After the substrate 30 is removed, a wavy and smooth surface 32 is displayed. Furthermore, it is disclosed in the independent scope of the patent of US Pat. No. 8,217,381: a two-dimensional stretchable and flexible device comprising: an elastic substrate having a contact surface; an interconnecting portion having a first end, a first a second end portion and a central portion joined to the contact surface of the elastic substrate, the second end portion being bonded to a contact surface of the elastic substrate, the first end portion and the second end portion Between the first end and the second end facing the other This movement produces a curve with a physical separation between the contact surface of the elastic substrate and the central portion of the interconnect, the maximum distance of the physical separation being greater than or equal to 100 nm and less than or equal to 1 mm; the first end connection To a first contact pad, the second end is connected to a second contact pad, wherein the plurality of contact pads are substantially flat for receiving the device component, and the contact pad is bonded to the substrate; When the contact pads are moved relative to each other, the interconnects are electrically connected to the first contact pads and the second contact pads, and the central portion having the curve can cause the device to expand and contract and flex when the electrical connections are maintained.

上述美國專利案US8,217,381,就功能性而言,其技術應用係揭露如何形成一平滑波浪形之彈性基材及一二維伸縮性和可撓曲裝置;在經由高分子鑄造、多層堆疊、表面改質、以及微電漿製程所開發的一種具壓電特性的橡膠材料薄膜結構這方面仍不夠完整。因此,如何設計上述之具壓電特性的橡膠材料薄膜結構,將是熟悉該項技藝之人士一項重要的課題。 In the above-mentioned U.S. Patent No. 8,217,381, the technical application discloses how to form a smooth undulating elastic substrate and a two-dimensional stretchable and flexible device; Surface modification and micro-plasma process development of a piezoelectric material film structure with piezoelectric properties is still not complete. Therefore, how to design the above-mentioned rubber material film structure with piezoelectric characteristics will be an important subject for those familiar with the art.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

本發明之主要目的在於提供一種具壓電特性的橡膠材料薄膜結構與製造方法。本發明係利用高分子鑄造、多層堆疊、表面改質、以及微電漿製程所開發出來。為了實現所需的機電感應靈敏度,設計並製造了內含微米孔洞的二甲基矽氧烷結構,並佈植雙極性電荷於孔洞內部的上下表面,植入的成對電荷具有電偶極的特性,可產生多樣的機電感應關係。 The main object of the present invention is to provide a film structure and a manufacturing method of a rubber material having piezoelectric properties. The invention has been developed using polymer casting, multilayer stacking, surface modification, and micro-plasma processes. In order to achieve the required electromechanical sensing sensitivity, a dimethyloxane structure containing micropores was designed and fabricated, and bipolar charges were placed on the upper and lower surfaces inside the holes, and the paired charges implanted had electric dipoles. Features that produce a variety of electromechanical sensing relationships.

一種具壓電特性的橡膠材料薄膜結構,至少包括:一第一電極層,係具有一下表面;一第一二甲基矽氧烷(polydimethylsiloxane,簡稱PDMS)實心層,係具有一上表面與一下表面,該第一二甲基矽氧烷實心層之該上表面與該第一電極層之該下表面係為彼此之相對面;一第一二甲基矽氧烷孔洞層,係具有一上表面與一下表面,該第一二甲基矽氧烷孔洞層之該上表面與第一二甲基矽氧烷實心層之該下表面係為彼此之相對面;一底部二甲基矽氧烷實心層,係具有一上表面與一下表面,該底部二甲基矽氧烷實心層之該上表面與第一二甲基矽氧烷孔洞層之該下表面係為彼此之相對面;及一第二電極層,係具有一上表面,該第二電極層之該上表面與底部二甲基矽氧烷實心層之該下表面係為彼此之相對面。 A film structure of a rubber material having piezoelectric properties, comprising at least: a first electrode layer having a lower surface; a first solid layer of polydimethylsiloxane (PDMS) having an upper surface and a lower surface a surface, the upper surface of the first layer of the first dimethyl oxyalkylene and the lower surface of the first electrode layer are opposite to each other; a first dimethyl methoxy siloxane hole layer having an upper surface a surface and a lower surface, the upper surface of the first dimethyloxane hole layer and the lower surface of the first dimethyl methoxyalkane solid layer are opposite to each other; a bottom dimethyl methoxy oxane a solid layer having an upper surface and a lower surface, the upper surface of the bottom layer of the bottom dimethyl siloxane and the lower surface of the first dimethyl siloxane oxide layer being opposite to each other; The second electrode layer has an upper surface, and the upper surface of the second electrode layer and the lower surface of the bottom solid layer of dimethyl methoxyoxane are opposite to each other.

一種具壓電特性的橡膠材料薄膜結構的製造方法,包括以下步驟:(1)製作出一第一母模,並利用固化與脫膜程序形成一第一二甲基矽氧烷實心層與一第一二甲基矽氧烷孔洞層,該第一二甲基矽氧烷實心層具有一上表面與一下表面,該第一二甲基矽氧烷孔洞層具有一上表面與一下表面,第一二甲基矽氧烷孔洞層之該上表面與第一二甲基矽氧烷實心層之該下表面係彼此之相對面;(2)提供一底部二甲基矽氧烷層,該底部二甲基矽氧烷層具有一上表面與一下表面,且底部二甲基矽氧烷層之該上表面與第一二甲基矽氧烷孔洞層之該下表面係為彼此之相對面;及(3)提供一第一電極層與一第二電極層,該第一電極層具有一下表面, 而該第二電極層具有一上表面,以使得第一電極層的該下表面與第一二甲基矽氧烷實心層之該上表面成為彼此之相對面,且第二電極層的該上表面與該底部二甲基矽氧烷實心層之該下表面成為彼此之相對面。 A method for manufacturing a film structure of a rubber material having piezoelectric properties, comprising the steps of: (1) preparing a first master mold, and forming a solid layer of the first dimethyloxane by using a curing and stripping procedure; a first dimethyloxane hole layer having a top surface and a lower surface, the first dimethyl azide hole layer having an upper surface and a lower surface, The upper surface of the monodimethyl siloxane buffer layer and the lower surface of the first solid layer of dimethyl methoxyalkane are opposite to each other; (2) providing a bottom dimethyl siloxane layer, the bottom The dimethyl siloxane layer has an upper surface and a lower surface, and the upper surface of the bottom dimethyl siloxane layer and the lower surface of the first dimethyl siloxane oxide layer are opposite to each other; And (3) providing a first electrode layer and a second electrode layer, the first electrode layer having a lower surface, And the second electrode layer has an upper surface such that the lower surface of the first electrode layer and the upper surface of the first solid layer of dimethyloxysiloxane become opposite to each other, and the upper surface of the second electrode layer The lower surface of the surface and the solid layer of the bottom dimethyl methoxyoxane are opposite to each other.

習知技術: Conventional technology:

100‧‧‧矽 100‧‧‧矽

24‧‧‧尖銳的邊緣 24‧‧‧ sharp edges

20‧‧‧基材 20‧‧‧Substrate

34‧‧‧彈性印記 34‧‧‧Elastic imprint

36‧‧‧第二彈性印記 36‧‧‧Second elastic mark

50‧‧‧Su-8 50‧‧‧Su-8

26‧‧‧光阻 26‧‧‧Light resistance

30‧‧‧彈性基材 30‧‧‧elastic substrate

32‧‧‧波狀和光滑的表面 32‧‧‧Wave and smooth surface

本發明: this invention:

(1)~(18)‧‧‧步驟編號 (1)~(18)‧‧‧Step number

1‧‧‧橡膠材料薄膜結構 1‧‧‧Metal material film structure

11‧‧‧第一電極層 11‧‧‧First electrode layer

112‧‧‧下表面 112‧‧‧ lower surface

116‧‧‧第一彈性金薄膜層 116‧‧‧First elastic gold film layer

1162‧‧‧下表面 1162‧‧‧ lower surface

117‧‧‧第一3-硫醇基三甲氧基矽烷黏結層 117‧‧‧First 3-thiol trimethoxydecane bonding layer

1171‧‧‧上表面 1171‧‧‧ upper surface

1172‧‧‧下表面 1172‧‧‧ lower surface

12‧‧‧第一二甲基矽氧烷實心層 12‧‧‧First dimethyl oxane solid layer

121‧‧‧上表面 121‧‧‧ upper surface

122‧‧‧下表面 122‧‧‧ lower surface

13‧‧‧第一二甲基矽氧烷孔洞層 13‧‧‧First dimethyloxane hole layer

131‧‧‧上表面 131‧‧‧ upper surface

132‧‧‧下表面 132‧‧‧ lower surface

14‧‧‧第二二甲基矽氧烷實心層 14‧‧‧Second dimethyl oxa oxide solid layer

141‧‧‧上表面 141‧‧‧ upper surface

142‧‧‧下表面 142‧‧‧ lower surface

15‧‧‧第二二甲基矽氧烷孔洞層 15‧‧‧Second dimethyloxane hole layer

151‧‧‧上表面 151‧‧‧ upper surface

152‧‧‧下表面 152‧‧‧ lower surface

16‧‧‧底部二甲基矽氧烷實心層 16‧‧‧Bottom dimethyl oxa oxide solid layer

161‧‧‧上表面 161‧‧‧ upper surface

162‧‧‧下表面 162‧‧‧ lower surface

17‧‧‧第二電極層 17‧‧‧Second electrode layer

171‧‧‧上表面 171‧‧‧ upper surface

176‧‧‧第二彈性金薄膜層 176‧‧‧Second elastic gold film layer

1761‧‧‧上表面 1761‧‧‧ upper surface

177‧‧‧第二3-硫醇基三甲氧基矽烷黏結層 177‧‧‧Second 3-thiol-trimethoxydecane bonding layer

1771‧‧‧上表面 1771‧‧‧ upper surface

1772‧‧‧下表面 1772‧‧‧ lower surface

W1‧‧‧第一矽晶圓 W1‧‧‧ first wafer

W11‧‧‧上表面 W11‧‧‧ upper surface

M1‧‧‧第一母模 M1‧‧‧ first female model

R1‧‧‧第一SU-8 3050光阻層 R1‧‧‧First SU-8 3050 photoresist layer

X1‧‧‧第一全氟辛基三氯矽烷層 X1‧‧‧ first perfluorooctyltrichloromethane layer

X11‧‧‧上表面 X11‧‧‧ upper surface

P1‧‧‧第一二甲基矽氧烷層 P1‧‧‧ first dimethyloxane layer

P11‧‧‧上表面 P11‧‧‧ upper surface

X2‧‧‧第二全氟辛基三氯矽烷層 X2‧‧‧Second perfluorooctyltrichloromethane layer

X21‧‧‧上表面 X21‧‧‧ upper surface

P5‧‧‧二甲基矽氧烷層 P5‧‧‧ dimethyloxane layer

P5’‧‧‧第一二甲基矽氧烷載體層 P5'‧‧‧ first dimethyl decane carrier layer

S1‧‧‧第一結構 S1‧‧‧ first structure

W2‧‧‧第二矽晶圓 W2‧‧‧second silicon wafer

W21‧‧‧上表面 W21‧‧‧ upper surface

M2‧‧‧第二母模 M2‧‧‧ second mother model

R2‧‧‧第二SU-8 3050光阻層 R2‧‧‧Second SU-8 3050 photoresist layer

X3‧‧‧第三全氟辛基三氯矽烷層 X3‧‧‧ third perfluorooctyltrichloromethane layer

P2‧‧‧第二二甲基矽氧烷層 P2‧‧‧Second dimethyloxane layer

P21‧‧‧上表面 P21‧‧‧ upper surface

X3‧‧‧第三全氟辛基三氯矽烷層 X3‧‧‧ third perfluorooctyltrichloromethane layer

X31‧‧‧上表面 X31‧‧‧ upper surface

P3‧‧‧底部二甲基矽氧烷層 P3‧‧‧ bottom dimethyloxane layer

P31‧‧‧上表面 P31‧‧‧ upper surface

S2‧‧‧第二結構 S2‧‧‧ second structure

H‧‧‧內部孔洞 H‧‧‧Internal holes

T‧‧‧通道 T‧‧‧ channel

XA5‧‧‧全氟辛基三乙氧基矽烷黏著層 XA5‧‧‧Perfluorooctyltriethoxysilane adhesive layer

PT‧‧‧聚四氟乙烯層 PT‧‧‧Teflon layer

第一圖係本發明之一種具壓電特性的橡膠材料薄膜結構之一較佳實施例分解示意圖;第二A圖係本發明之具壓電特性的橡膠材料薄膜結構之較佳實施例之第一電極層分解示意圖;第二B圖係本發明之具壓電特性的橡膠材料薄膜結構之較佳實施例之第二電極層分解示意圖;第三圖係本發明之具壓電特性的橡膠材料薄膜結構的方法之較佳實施例之流程圖;第四A圖至第四R圖,係本發明之具壓電特性的橡膠材料薄膜結構的方法之較佳實施例之每一步驟所形成之結構示意圖;第五A圖係本發明之具壓電特性的橡膠材料薄膜結構的多層鑄造微結構內部孔洞的獨立孔洞示意圖;第五B圖係本發明之具壓電特性的橡膠材料薄膜結構的多層鑄造微結構內部通道連接的孔洞之示意圖;第五C圖係本發明之具壓電特性的橡膠材料薄膜結構的多層鑄造微結構內各孔洞連通如棋盤狀之示意圖; 第六A圖與第六B圖係本發明之一種具壓電特性的橡膠材料薄膜結構之工作原理示意圖;第七圖本發明之具壓電特性的橡膠材料薄膜結構之簡易模型示意圖;第八A圖與第八C圖係習知技術之美國專利號US8,217,381形成一平滑波浪形之彈性基材之方法示意圖;及第八B圖與第八D圖係習知技術之美國專利號US8,217,381形成一平滑波浪形之彈性基材之每一步驟所形成之結構示意圖。 1 is a schematic exploded view of a preferred embodiment of a film structure of a rubber material having piezoelectric characteristics; and FIG. 2A is a preferred embodiment of a film structure of a rubber material having piezoelectric characteristics of the present invention. A schematic diagram of an electrode layer decomposition; a second diagram is a schematic view of a second electrode layer of a preferred embodiment of the piezoelectric material film structure of the present invention; and a third figure is a rubber material having piezoelectric characteristics of the present invention. A flow chart of a preferred embodiment of a method of film structure; and FIGS. 4A through 4R are formed by each step of a preferred embodiment of the method for fabricating a film structure of a piezoelectric material of the present invention. Schematic diagram of the structure; the fifth A is a schematic diagram of the independent pores of the inner hole of the multi-layer casting microstructure of the film structure of the rubber material of the present invention; the fifth B is the film structure of the rubber material having the piezoelectric property of the invention A schematic view of a hole connecting the internal passages of the multi-layer casting microstructure; the fifth C is a multi-layer casting microstructure of the piezoelectric material film structure of the present invention having the pores connected in a checkerboard shape Schematic diagram 6A and 6B are schematic diagrams showing the working principle of a film structure of a rubber material having piezoelectric characteristics of the present invention; and a seventh diagram showing a simple model of a film structure of a rubber material having piezoelectric characteristics of the present invention; A diagram of a method for forming a smooth undulating elastic substrate is shown in U.S. Patent No. 8,217,381, the entire disclosure of which is incorporated herein by reference. , 217, 381 form a structural schematic diagram of each step of forming a smooth wavy elastic substrate.

本發明為一種具壓電特性的橡膠材料薄膜結構,係利用高分子鑄造、多層堆疊、表面改質、以及微電漿製程所開發出來。為了實現所需的機電感應靈敏度,設計並製造了內含微米孔洞的二甲基矽氧烷(PDMS)結構,並佈植雙極性電荷於孔洞內部的上下表面,植入的成對電荷具有電偶極的特性,可產生多樣的機電感應關係。在原型的初步驗證中,透過製程於二甲基矽氧烷(PDMS)薄膜結構中產生各種不同幾何形狀的孔洞,並在孔洞表面塗佈一薄層聚四氟乙烯(polytetra-fluoroethylene,以下簡稱PTFE)高分子材料,用以捕捉並穩定被佈植於孔洞表面的電荷。當一外加電場跨接於二甲基矽氧烷(PDMS)薄膜並升至27 MV/m後,孔洞內部的空氣開始被離子化並加速,碰撞產生大量雙極性電荷,並因電場導引分別植入內部相反方向的表面。多孔性橡膠材 料薄膜其有效彈性係數(E)低於500 kPa,因電荷佈植所成的偶極所呈現出的壓電係數(d33)可高於1000 pC/N以上,較傳統壓電高分子材料(如polyvinylidene fluoride,PVDF)要高出三十倍以上。除此之外,橡膠材料薄膜的壓電特性可透過內部多孔結構幾何參數的改變而加以調整,具有極高的潛力可製成高機電感應靈敏度的軟性材料,充分滿足各種感測器、致動器、生物體監控以及能量轉換等相關應用的需求。 The invention relates to a film structure of a rubber material with piezoelectric properties, which is developed by polymer casting, multi-layer stacking, surface modification, and micro-plasma process. In order to achieve the required electromechanical sensing sensitivity, a dimethyl methoxy hydride (PDMS) structure containing micropores was designed and fabricated, and bipolar charges were placed on the upper and lower surfaces inside the holes, and the paired charges were electrically charged. Dipole characteristics can produce a variety of electromechanical sensing relationships. In the initial verification of the prototype, holes of various geometric shapes were produced in the dimethyl methoxide (PDMS) film structure through the process, and a thin layer of polytetrafluoroethylene (polytetrafluoro) was applied to the surface of the hole. PTFE) polymer material to capture and stabilize the charge that is implanted on the surface of the hole. When an applied electric field is connected across the dimethyl methoxide (PDMS) film and rises to 27 MV/m, the air inside the hole begins to be ionized and accelerated, and the collision produces a large amount of bipolar charge, which is guided by the electric field. Implant the surface in the opposite direction. Porous rubber material The effective elastic modulus (E) of the film is less than 500 kPa, and the piezoelectric coefficient (d33) exhibited by the dipole formed by the charge implantation can be higher than 1000 pC/N or more, compared with the conventional piezoelectric polymer material ( Such as polyvinylidene fluoride, PVDF) is more than 30 times higher. In addition, the piezoelectric properties of the rubber material film can be adjusted by changing the geometric parameters of the internal porous structure, and have a high potential to be made into a soft material with high electromechanical sensing sensitivity, which fully satisfies various sensors and actuations. Requirements for related applications such as instrumentation, biological monitoring, and energy conversion.

請參考第六A圖與第六B圖所示,係本發明之一種具壓電特性的橡膠材料薄膜結構之工作原理示意圖,其中,第六A圖是鐵電駐極體的結構,第六B圖是受力變形後壓電特性的產生。被植入的成對電荷其作用等效於電偶極,可產生多樣的機電感應關係,且電荷佈植的程序是在平行板電極之間進行。在此一幾何結構下,空氣解離的條件通常可藉由Paschen’s law加以預測,但是針對微米尺寸的微小間距,依此所得的預測值則會出現明顯的誤差。針對微米尺度間隙,一般而言,造成解離所需的電場會高於由Paschen’s law所預測的值。一旦外加電壓超過解離門檻,則產生微電漿放電現象於孔洞的內部,稍後並自行停止熄滅,因為雙極性電荷已沉積在內部結構的上下相對表面,感應的電場會抵消外加電場的作用。已沉積電荷的多孔性橡膠材料結構具高度柔軟與高度極化特性,當受力產生變形時,結構中的電偶極矩也隨之改變,因此產生所需的壓電特性。如第六B圖所示,當外力施加於已沉積電荷的多孔性橡膠材料結構,可預期其厚度將改變。此外, 位於上下電極的感應電荷密度也隨之改變。 Please refer to FIG. 6A and FIG. 6B, which are schematic diagrams showing the working principle of a piezoelectric material film structure with piezoelectric characteristics according to the present invention, wherein FIG. 6A is a structure of a ferroelectric electret, sixth. Figure B shows the generation of piezoelectric characteristics after stress deformation. The paired charges implanted are equivalent to electric dipoles and can produce a variety of electromechanical sensing relationships, and the charge implantation procedure is performed between parallel plate electrodes. Under this geometry, the conditions for air dissociation are usually predicted by Paschen's law, but for small pitches of micron size, the predicted values obtained will have significant errors. For micron-scale gaps, in general, the electric field required to cause dissociation will be higher than the value predicted by Paschen's law. Once the applied voltage exceeds the dissociation threshold, a micro-plasma discharge phenomenon occurs inside the hole and stops extinguishing at a later time because the bipolar charge has been deposited on the upper and lower opposing surfaces of the internal structure, and the induced electric field cancels the effect of the applied electric field. The porous rubber material structure in which the charge has been deposited has a high degree of softness and a high degree of polarization. When the force is deformed, the electric dipole moment in the structure also changes, thereby producing the desired piezoelectric characteristics. As shown in Fig. B, when an external force is applied to the porous rubber material structure in which the electric charge has been deposited, it is expected that the thickness thereof will change. In addition, The induced charge density at the upper and lower electrodes also changes.

請參考第七圖所示,係本發明之具壓電特性的橡膠材料薄膜結構之簡易模型示意圖。該結構包含上、下電極,實心及孔洞結構層則被夾在兩片電極之間。針對一具有n層孔洞及n+1層實體的結構,其於實心層(E1)及孔洞層(E2)的內部電場可由Gauss’law推算。 Please refer to the seventh figure, which is a simplified model diagram of the film structure of the rubber material with piezoelectric characteristics of the present invention. The structure includes upper and lower electrodes, and the solid and hole structure layers are sandwiched between the two electrodes. For a structure with n-layer holes and n+1 layer entities, the internal electric field in the solid layer (E1) and the hole layer (E2) can be estimated by Gauss'law.

請參考第一圖,係本發明之一種具壓電特性的橡膠材料薄膜結構之一較佳實施例分解示意圖。該具壓電特性的橡膠材料薄膜結構1包括:一第一電極層11,係具有一下表面112;一第一二甲基矽氧烷(polydimethylsiloxane,簡稱PDMS)實心層12,係具有一上表面121與一下表面122,該第一二甲基矽氧烷實心層12之該上表面121與該第一電極層11之該下表面112係為彼此之相對面;一第一二甲基矽氧烷孔洞層13,係具有一上表面131與一下表面132,該第一二甲基矽氧烷孔洞層13之該上表面131與第一二甲基矽氧烷實心層12之該下表面122係為彼此之相對面;一第二二甲基矽氧烷實心層14,係具有一上表面141與一下表面142,該第二二甲基矽氧烷實心層14之該上表面141與該第一二甲基矽氧烷孔洞層13之該下表面132係為彼此之相對面;一第二二甲基矽氧烷孔洞層15,係具有一上表面151與一下表面152,該第二二甲基矽氧烷孔洞層15之該上表面151與該第二二甲 基矽氧烷實心層14之該下表面142係為彼此之相對面;一底部二甲基矽氧烷實心層16,係具有一上表面161與一下表面162,該底部二甲基矽氧烷實心層16之該上表面161與第二二甲基矽氧烷孔洞層15之該下表面152係為彼此之相對面;及一第二電極層17,係具有一上表面171,該第二電極層17之該上表面171與底部二甲基矽氧烷實心層16之該下表面162係為彼此之相對面。 Please refer to the first figure, which is an exploded perspective view of a preferred embodiment of a film structure of a rubber material having piezoelectric characteristics. The piezoelectric material film structure 1 having piezoelectric characteristics comprises: a first electrode layer 11 having a lower surface 112; a first solid layer 12 of polydimethylsiloxane (PDMS) having an upper surface 121 and the lower surface 122, the upper surface 121 of the solid layer 12 of the first dimethyl siloxane and the lower surface 112 of the first electrode layer 11 are opposite to each other; a first dimethyl oxime The alkane layer 13 has an upper surface 131 and a lower surface 132. The upper surface 131 of the first dimethyloxane hole layer 13 and the lower surface 122 of the first dimethyl siloxane solid layer 12 Opposite to each other; a second dimethyl siloxane solid layer 14 having an upper surface 141 and a lower surface 142, the upper surface 141 of the second dimethyl siloxane solid layer 14 The lower surface 132 of the first dimethyl fluorene oxide hole layer 13 is opposite to each other; a second dimethyl fluorene oxide hole layer 15 has an upper surface 151 and a lower surface 152, the second The upper surface 151 of the dimethyloxane hole layer 15 and the second dimethyl The lower surface 142 of the bismuth oxyalkylene solid layer 14 is opposite to each other; a bottom dimethyl oxyalkylene solid layer 16 having an upper surface 161 and a lower surface 162, the bottom dimethyl methoxy oxane The upper surface 161 of the solid layer 16 and the lower surface 152 of the second dimethyloxane hole layer 15 are opposite to each other; and a second electrode layer 17 having an upper surface 171, the second The upper surface 171 of the electrode layer 17 and the lower surface 162 of the bottom dimethyl siloxane solid layer 16 are opposite to each other.

請參考第二A圖與第二B圖,係本發明之具壓電特性的橡膠材料薄膜結構之較佳實施例之第一電極層分解示意圖與本發明之具壓電特性的橡膠材料薄膜結構之較佳實施例之第二電極層分解示意圖。如第二A圖所示,第一電極層11包括:一第一彈性金薄膜(elastic gold film)層116,係具有一下表面1162;及一第一3-硫醇基三甲氧基矽烷(3-mercaptopropyltrimethoxysilane;MPTMS)黏結層117,係具有一上表面1171與一下表面1172,該第一彈性金薄膜(elastic gold film)層116之該下表面1162與該第一3-硫醇基三甲氧基矽烷黏結層117之該上表面1171係為彼此之相對面,其中,該第一3-硫醇基三甲氧基矽烷黏結層117之該下表面1172與該第一電極層11之該下表面112係一相同面。如第二B圖所示,第二電極層17包括:一第二3-硫醇基三甲氧基矽烷黏結層177,係具有一上表面1771與一下表面1772;及一第二彈性金薄膜層176,係具有一上表面1761,該第二3-硫醇基三甲氧基矽烷黏結層177之該下表面1772與該第二彈性金薄膜層176之該上表面1761係彼此之相對 面,其中,該第二3-硫醇基三甲氧基矽烷黏結層177之該上表面1771與該第二電極層17之該上表面1761係一相同面。 Please refer to FIG. 2A and FIG. 2B, which are schematic diagrams showing the first electrode layer of the preferred embodiment of the piezoelectric material film structure of the present invention, and the piezoelectric material film structure of the present invention having piezoelectric characteristics. A schematic exploded view of a second electrode layer of the preferred embodiment. As shown in FIG. 2A, the first electrode layer 11 includes: a first elastic gold film layer 116 having a lower surface 1162; and a first 3-thiol trimethoxy decane (3). a mercaptopropyltrimethoxysilane (MPTMS) bonding layer 117 having an upper surface 1171 and a lower surface 1172, the lower surface 1162 of the first elastic gold film layer 116 and the first 3-thiol trimethoxy group The upper surface 1171 of the decane bonding layer 117 is opposite to each other, wherein the lower surface 1172 of the first 3-thiol trimethoxydecane bonding layer 117 and the lower surface 112 of the first electrode layer 11 One is the same side. As shown in FIG. 2B, the second electrode layer 17 includes: a second 3-thiol-trimethoxydecane bonding layer 177 having an upper surface 1771 and a lower surface 1772; and a second elastic gold film layer. 176, having an upper surface 1761, the lower surface 1772 of the second 3-thiol-trimethoxydecane bonding layer 177 and the upper surface 1761 of the second elastic gold film layer 176 are opposite to each other The upper surface 1771 of the second 3-thiol trimethoxydecane bonding layer 177 is identical to the upper surface 1761 of the second electrode layer 17.

請參考第三圖,係本發明之具壓電特性的橡膠材料薄膜結構的方法之較佳實施例之流程圖,也請同時對照參考第四A圖至第四R圖,係本發明之具壓電特性的橡膠材料薄膜結構的方法之較佳實施例之每一步驟所形成之結構示意圖。如圖所示,該方法包括以下步驟:(1)定義一圖形(圖式中具有凹處與凸處之部分,為圖形的示意處)於一第一矽晶圓W1之一上表面W11上,以製備出一第一母模M1,即依據該圖形塗佈一厚約50μm的第一SU-8 3050光阻層R1於該第一矽晶圓W1之該上表面W11上,以形成該第一母模M1,如第四A圖所示;(2)將第一母模M1放置於一真空容器(圖中未示)中,並塗佈一第一全氟辛基三氯矽烷(1H,1H,2H,2H-perfluorooctyl-trichlorosilane)層X1於該第一SU-8 3050光阻層R1與第一矽晶圓W1之上表面W11,以進行表面矽烷化改質,將有利於後續的剝離脫模,如第四B圖所示;(3)將一厚度約100μm的第一二甲基矽氧烷層P1塗佈於該第一全氟辛基三氯矽烷層X1之一上表面X11,接著在85℃下烘烤一小時,如第四C圖所示;(4)該固化的第一二甲基矽氧烷層P1之一上表面P11塗佈一第二全氟辛基三氯矽烷層X2,以進行表面矽烷化改質,如第四D圖所 示;(5)於該第二全氟辛基三氯矽烷層X2之一上表面X21塗佈一厚度約2mm的二甲基矽氧烷層P5,以作為一第一二甲基矽氧烷載體層P5’,如第四E圖所示;(6)利用該第一全氟辛基三氯矽烷層X1的化學特性,可將從上至下的該第一二甲基矽氧烷載體層P5’、第二全氟辛基三氯矽烷層X2、含第一二甲基矽氧烷實心層12及第一二甲基矽氧烷孔洞層13之第一二甲基矽氧烷層P1從包含了從上至下的第一SU-8 3050光阻層R1與第一矽晶圓W1之第一母模M1中剝離而脫膜,進而形成一第一結構S1,該第一結構S1從上至下包括第一二甲基矽氧烷載體層P5’、第二全氟辛基三氯矽烷層X2及第一二甲基矽氧烷層P1(含第一二甲基矽氧烷實心層12及第一二甲基矽氧烷孔洞層13),如第四F圖所示;(7)定義另一圖形(圖式中具有凹處與凸處之部分,為圖形的示意處)於一第二矽晶圓W2之一上表面W21上,以製備出一第二母模M2,即依據該圖形塗佈一厚約50μm的第二SU-8 3050光阻層R2於該第二矽晶圓W2之該上表面W21上,以形成該第二母模M2,如第四G圖所示;(8)將第二母模M2放置於一真空容器(圖中未示)中,並塗佈一第三全氟辛基三氯矽烷(1H,1H,2H,2H-perfluorooctyl-trichlorosilane)層X3於該第二SU-8 3050光阻層R2與第二矽晶圓W2之上表面W21,以進行表面矽烷化改質,將有利於後續的剝離脫模,如 第四H圖所示;(9)將一厚度約100μm的第二二甲基矽氧烷層P2塗佈於該第三全氟辛基三氯矽烷層X3之一上表面X31,接著在85℃下烘烤一小時,如第四I圖所示;(10)對第一結構S1之第一二甲基矽氧烷層P1之第一二甲基矽氧烷孔洞層13之下表面132與第二二甲基矽氧烷層P2之一上表面P21進行表面電漿處理,再將具有第一PDMS載體層P5’、第二全氟辛基三氯矽烷層X2及第一二甲基矽氧烷層P1之第一結構疊合連結於第二二甲基矽氧烷層P2之上,並於85℃下烘烤至少一小時,以結合第一二甲基矽氧烷層P1與第二二甲基矽氧烷層P2,如第四J圖所示;(11)利用該第三全氟辛基三氯矽烷層X3的化學特性,將含第二二甲基矽氧烷實心層14及第二二甲基矽氧烷孔洞層15之第二二甲基矽氧烷層P2從一包含了從上至下的第二SU-8 3050光阻層R2與第二矽晶圓W2之第二母模M2中剝離而脫膜,如第四K圖所示;(12)提供一厚度約100μm的底部二甲基矽氧烷層P3,如第四L圖所示;(13)對該底部二甲基矽氧烷層P3之一上表面P31與第二二甲基矽氧烷層P2之第二二甲基矽氧烷孔洞層15之下表面152進行表面電漿處理,再將第二二甲基矽氧烷層P2疊合連結於底部二甲基矽氧烷層P3之上,並於85℃下烘烤至少一小時,以結合第二二甲 基矽氧烷層P2與底部二甲基矽氧烷層P3,進而形成包含一從上至下的第一二甲基矽氧烷載體層P5’、第二全氟辛基三氯矽烷層X2、含第一二甲基矽氧烷實心層12及第一二甲基矽氧烷孔洞層13之第一二甲基矽氧烷層P1、含第二二甲基矽氧烷實心層14及第二二甲基矽氧烷孔洞層15之第二二甲基矽氧烷層P2及底部二甲基矽氧烷層P3之一第二結構S2,如第四M圖所示;(14)將複數滴全氟辛基三乙氧基矽烷溶液引入該第二結構S2之複數個內部孔洞H與通道T,以形成一全氟辛基三乙氧基矽烷黏著層XA5於各孔洞H與通道T之上,如第四N圖所示;(15)將複數滴聚四氟乙烯(polytetra-fluoroethylene,俗稱Teflon,簡稱PTFE)溶液引入該第二結構S2之複數個內部孔洞H與通道T,以形成一聚四氟乙烯層PT於各孔洞H與通道T上的該全氟辛基三乙氧基矽烷黏著層XA5之上,其中,該聚四氟乙烯係高分子材料,故該聚四氟乙烯層PT係沉積的高分子膜,如第四O圖所示;(16)利用該第二全氟辛基三氯矽烷層X2的化學特性,可將第一二甲基矽氧烷載體層P5’與第二全氟辛基三氯矽烷層X2脫離完成堆疊的第一二甲基矽氧烷層P1、第二二甲基矽氧烷層P2及底部二甲基矽氧烷層P3,係由於二甲基矽氧烷表面間的鍵結強度大於經矽烷化處理後的表面間鍵結強度,如第四P圖所示;(17)於第一二甲基矽氧烷層P1之上表面121與底部二甲基矽氧烷層P3之下表面162分別形成一第一3-硫醇基三甲氧基矽烷黏著層 117與一第二3-硫醇基三甲氧基矽烷黏著層177,如第四Q圖所示;(18)分別形成第一彈性金薄膜(elastic gold film)層116於該第一3-硫醇基三甲氧基矽烷黏著層117上與一第二彈性金薄膜層176於該第二3-硫醇基三甲氧基矽烷黏著層177,其中,該第一電極層11包括第一3-硫醇基三甲氧基矽烷黏著層117與該第一彈性金薄膜116,該第二電極層17包括第二3-硫醇基三甲氧基矽烷黏著層177與該第二彈性金薄膜176,且第一3-硫醇基三甲氧基矽烷黏著層117之上表面1171與第一彈性金薄膜116之下表面1162成為彼此之相對面,第二3-硫醇基三甲氧基矽烷黏著層177之下表面1772與第二彈性金薄膜176之上表面1761成為彼此之相對面,如第四R圖所示。 Please refer to the third figure, which is a flow chart of a preferred embodiment of the method for fabricating a film structure of a rubber material having piezoelectric characteristics, and also refers to the fourth to fourth R drawings of the present invention. A schematic view of the structure formed by each step of the preferred embodiment of the piezoelectric material film structure of the piezoelectric property. As shown in the figure, the method comprises the following steps: (1) defining a pattern (a portion having a recess and a protrusion in the figure, which is a schematic portion of the pattern) on an upper surface W11 of a first wafer W1. a first master mold M1 is prepared, that is, a first SU-8 3050 photoresist layer R1 having a thickness of about 50 μm is coated on the upper surface W11 of the first tantalum wafer W1 according to the pattern to form the first mother mold M1. The first master mold M1 is as shown in FIG. 4A; (2) the first master mold M1 is placed in a vacuum vessel (not shown) and coated with a first perfluorooctyltrichloromethane ( 1H, 1H, 2H, 2H-perfluorooctyl-trichlorosilane layer X1 on the first SU-8 3050 photoresist layer R1 and the upper surface W11 of the first germanium wafer W1 for surface decane reforming, which will facilitate subsequent Stripping release, as shown in FIG. 4B; (3) coating a first dimethyl siloxane layer P1 having a thickness of about 100 μm on one of the first perfluorooctyltrichloromethane layers X1 Surface X11, followed by baking at 85 ° C for one hour, as shown in FIG. 4C; (4) coating a second perfluorooctane on the upper surface P11 of one of the cured first dimethyl siloxane layer P1 Trichlorodecane layer X2 for surface decane Modification, as the fourth D in FIG. (5) coating a surface of the second perfluorooctyltrichloromethane layer X2 on the upper surface X21 with a dimethyl oxa oxide layer P5 having a thickness of about 2 mm to serve as a first dimethyloxane a carrier layer P5', as shown in FIG. 4E; (6) utilizing the chemical characteristics of the first perfluorooctyltrichloromethane layer X1, the first dimethyloxane carrier from top to bottom a layer P5', a second perfluorooctyltrichloromethane layer X2, a first dimethyloxonane solid layer 12 and a first dimethyloxonium oxide layer 13 of a first dimethyloxane layer P1 is peeled off from the first SU-8 3050 photoresist layer R1 including the top-down and the first master mold M1 of the first germanium wafer W1, thereby forming a first structure S1, the first structure S1 includes a first dimethyl decane carrier layer P5', a second perfluorooctyltrichloromethane layer X2 and a first dimethyl decane layer P1 (containing a first dimethyl oxime) from top to bottom. The solid layer of alkane 12 and the first dimethyloxane hole layer 13) are as shown in the fourth F diagram; (7) define another pattern (the portion having a concave portion and a convex portion in the drawing, which is a schematic diagram of the figure) Prepared on the upper surface W21 of one of the second silicon wafers W2 to prepare And forming a second female mold M2, that is, coating a second SU-8 3050 photoresist layer R2 having a thickness of about 50 μm on the upper surface W21 of the second germanium wafer W2 according to the pattern to form the second female M2, as shown in the fourth G; (8) placing the second master M2 in a vacuum vessel (not shown) and coating a third perfluorooctyltrichloromethane (1H, 1H) , 2H, 2H-perfluorooctyl-trichlorosilane) layer X3 on the second SU-8 3050 photoresist layer R2 and the upper surface W21 of the second tantalum wafer W2 for surface decane reforming, which will facilitate subsequent stripping Mode, such as a fourth H-graph is shown; (9) a second dimethyl siloxane layer P2 having a thickness of about 100 μm is coated on the upper surface X31 of the third perfluorooctyltrichloromethane layer X3, followed by 85 Baking at ° C for one hour, as shown in FIG. 4; (10) on the lower surface 132 of the first dimethyl fluorene oxide hole layer 13 of the first dimethyl siloxane layer P1 of the first structure S1. Surface-plasma treatment with the upper surface P21 of the second dimethyl siloxane layer P2, and then having the first PDMS carrier layer P5', the second perfluorooctyltrichloromethane layer X2 and the first dimethyl group The first structure of the siloxane layer P1 is superposed on the second dimethyl siloxane layer P2 and baked at 85 ° C for at least one hour to bond the first dimethyl siloxane layer P1 with a second dimethyl azide layer P2, as shown in the fourth J; (11) utilizing the chemical properties of the third perfluorooctyltrichloromethane layer X3, the second dimethyl oxa oxide-containing solid The layer 14 and the second dimethyl azide layer P2 of the second dimethyl siloxane layer 15 are from a second SU-8 3050 photoresist layer R2 and a second germanium wafer from top to bottom. The second female mold M2 of W2 is peeled off and released, as shown in the fourth K diagram. (12) providing a bottom dimethyl siloxane layer P3 having a thickness of about 100 μm as shown in the fourth L; (13) an upper surface P31 and a second surface of the bottom dimethyl siloxane layer P3; The surface 152 of the second dimethyl fluorene oxide hole layer 15 of the dimethyl siloxane layer P2 is subjected to surface plasma treatment, and the second dimethyl siloxane layer P2 is laminated and bonded to the bottom dimethyl group. Above the siloxane layer P3 and baked at 85 ° C for at least one hour to bind the second dimethyl The base oxyalkylene layer P2 and the bottom dimethyl siloxane layer P3 further form a first dimethyl decane carrier layer P5' and a second perfluorooctyltrichloromethane layer X2 from top to bottom. a first dimethyl decane layer P1 comprising a first dimethyl oxyalkylene solid layer 12 and a first dimethyl methoxy siloxane hole layer 13 and a second dimethyl oxa oxide solid layer 14 a second structure S2 of the second dimethyloxane layer P2 of the second dimethyloxane hole layer 15 and one of the bottom dimethyl azide layer P3, as shown in the fourth M; (14) A plurality of solutions of perfluorooctyltriethoxysilane are introduced into the plurality of internal pores H and channels T of the second structure S2 to form a perfluorooctyltriethoxydecane adhesion layer XA5 in each of the holes H and channels. Above T, as shown in the fourth N; (15) introducing a plurality of polytetra-fluoroethylene (Teflon, PTFE for short) solutions into the plurality of internal holes H and channels T of the second structure S2, Forming a polytetrafluoroethylene layer PT on the pores H and the channel T on the perfluorooctyltriethoxydecane adhesion layer XA5, wherein the polytetrafluoroethylene polymer material, The polymer film deposited on the PTFE layer of the PTFE layer is as shown in FIG. 4; (16) using the chemical property of the second perfluorooctyltrichloromethane layer X2, the first dimethyl hydrazine can be used. The oxyalkylene carrier layer P5' is separated from the second perfluorooctyltrichloromethane layer X2 to complete the stacked first dimethyloxane layer P1, the second dimethyloxane layer P2 and the bottom dimethyl oxime The alkane layer P3 is due to the bonding strength between the surface of the dimethyloxane being greater than the bonding strength between the surfaces after the decaneization treatment, as shown in the fourth P diagram; (17) in the first dimethyl anthracene The upper surface 121 of the alkane layer P1 and the lower surface 162 of the bottom dimethyl azide layer P3 form a first 3-thiol-trimethoxydecane adhesion layer. 117 and a second 3-thiol-trimethoxydecane adhesion layer 177, as shown in the fourth Q; (18) forming a first elastic gold film layer 116, respectively, in the first 3-sulfur An alcohol-based trimethoxydecane adhesion layer 117 and a second elastic gold film layer 176 are bonded to the second 3-thiol-trimethoxydecane adhesion layer 177, wherein the first electrode layer 11 comprises a first 3-sulfur An alcohol-based trimethoxydecane adhesion layer 117 and the first elastic gold film 116, the second electrode layer 17 includes a second 3-thiol-trimethoxydecane adhesion layer 177 and the second elastic gold film 176, and The upper surface 1171 of the 3-thiol-trimethoxydecane adhesion layer 117 and the lower surface 1162 of the first elastic gold film 116 are opposite to each other, and the second 3-thiol-trimethoxydecane adhesion layer 177 is under The surface 1772 and the upper surface 1761 of the second elastic gold film 176 are opposite to each other as shown in the fourth R diagram.

請參考第五A至第五C圖,係本發明之具壓電特性的橡膠材料薄膜結構的多層鑄造微結構內部孔洞的獨立孔洞示意圖、本發明之具壓電特性的橡膠材料薄膜結構的多層鑄造微結構內部通道連接的孔洞之示意圖及本發明之具壓電特性的橡膠材料薄膜結構的多層鑄造微結構內各孔洞連通如棋盤狀之示意圖,第五B及第五C圖所描述內部之孔洞結構彼此相連接,且皆為開放性並與外界大氣環境相連通,可提供後續進行內部孔洞之表面改質步驟,而第五C圖為形成之柱狀結構的二甲基矽氧烷,再者,第五A圖與第五C圖在光罩的定義上為正負片的關係,所以在進行翻模之後,第五A圖的獨立孔洞會成為第五C圖的柱狀結構的二甲基矽 氧烷。如步驟(10)中所提到的表面電漿處理,係使用手持式的表面電暈處理器(BD-20AC,Electro-Technic Products),其功用為使周圍空氣離子化以產生局部電漿,促使被處理樣本的表面進行不可逆的結合。此電暈處理器的電漿密度被設定在相對較低的程度,以產生較穩定且溫和的電漿,防止樣本損壞與燒毀。電暈處理器的線狀電極,被置於欲處理樣本表面之上約3 mm處,持續來回掃過約30秒至一分鐘,處理時間的長短則依據樣本的表面尺寸再做調整。經表面處理過後的樣本,互相疊合並於85℃下烘烤至少一小時,以完成不可逆的結合。在初步測試中,多層堆疊結構為兩層孔洞層加上三層實心層,整體二甲基矽氧烷薄膜結構的厚度約為300μm,面積約為3 cm×3 cm大小。如第五A圖所示,內部孔洞的大小為50×50×50 μm3,孔洞間彼此的距離是50μm。除獨立孔洞結構外,互相接通的孔洞結構其製備也如同上述製備程序。第五B圖為接通的孔洞結構幾何形狀示意圖,相鄰孔洞間由寬20μm深50μm的通道連接,因此孔洞表面的修飾與改質較容易進行。第五C圖為現今使用之結構設計,將各孔洞連通如棋盤狀之結構,寬與深皆為50μm之連通流道,橡膠材料結構部分則為長寬深皆為50μm之柱狀結構做為支撐整體薄膜結構,與第五A圖和第五B圖所示相同,內部孔洞的大小為50×50×50 μm3,孔洞間彼此的距離是50μm。此設計可提供較大之電荷儲存面積,將有效提升儲存之電荷量。一般認為半晶格化結構的高分子其捕捉儲存電荷的能力較強,能幫助提升所製備出多孔性橡膠材料結構的壓電特性。為 此,在互相連接的孔洞結構中填入PTFE溶液(Teflon,DuPont),當溶劑蒸發後,將可沉積材料在孔洞表面形成半晶格化結構的高分子膜,其厚度約為1μm左右,如第四N圖與第四O圖所示。完成結構製作後,在橡膠材料薄膜的上下表面加上金薄膜當作電極使用,厚度約為100 nm,如第四Q圖與第四R圖所示,並於一強大電場中使電荷佈植於結構內表面。在實驗中,外加電壓到8kV時,其對應的電場強度約為27 MV/m,可使孔洞內的空氣開始離子化。一旦達到解離電場,會自行熄滅的微電漿放電現象將同時發生在各個孔洞內,並伴隨短暫的發光現象,同時電荷被加速撞擊並埋入各孔洞表面上。實驗中所使用驅動電壓的波型為三角波,振幅在7.5到11.5 kV間,以低於0.5 Hz的頻率反覆對橡膠材料薄膜結構進行充電15分鐘,同時在充電過程中加熱樣本以保持約100℃的溫度,以提升充電的效果。一旦內部完成充電,多孔性橡膠材料薄膜便成為具有優良彈性及壓電感應靈敏度的材料,可應用於聲能與電能,或電能與機械能等各種能量轉換的場合。 Please refer to FIGS. 5A to 5C, which are schematic diagrams of independent pores of the inner hole of the multi-layer casting microstructure of the film structure of the rubber material with piezoelectric characteristics of the present invention, and the multilayer structure of the film structure of the rubber material with piezoelectric characteristics of the present invention. Schematic diagram of the hole connecting the internal passage of the cast microstructure and the hole in the multi-layer casting microstructure of the film structure of the rubber material of the present invention are connected as a checkerboard pattern, and the inside of the fifth and fifth C drawings The pore structures are connected to each other, and both are open and connected to the external atmosphere, and can provide a surface modification step of the subsequent internal pores, and the fifth C is a columnar structure of dimethyloxane. Furthermore, the fifth A diagram and the fifth C diagram are positive and negative in the definition of the reticle, so after the overmolding, the independent aperture of the fifth A diagram will become the columnar structure of the fifth C diagram. Methyl decane. As the surface plasma treatment mentioned in the step (10), a hand-held surface corona processor (BD-20AC, Electro-Technic Products) is used, which functions to ionize the surrounding air to generate a local plasma. The surface of the treated sample is caused to irreversibly combine. The plasma density of this corona processor is set to a relatively low level to produce a more stable and gentle plasma that prevents sample damage and burnout. The linear electrode of the corona processor is placed about 3 mm above the surface of the sample to be treated, and is continuously swept back and forth for about 30 seconds to one minute. The length of the treatment time is adjusted according to the surface size of the sample. The surface treated samples were stacked on top of each other and baked at 85 ° C for at least one hour to complete irreversible binding. In the preliminary test, the multi-layer stack structure was a two-layered void layer plus three solid layers. The overall dimethyl fluorene oxide film structure had a thickness of about 300 μm and an area of about 3 cm × 3 cm. As shown in the fifth A diagram, the size of the internal holes is 50 × 50 × 50 μm 3 , and the distance between the holes is 50 μm. In addition to the independent pore structure, the mutually connected pore structure is prepared as described above. The fifth B is a schematic diagram of the geometry of the hole structure that is connected. The adjacent holes are connected by a channel having a width of 20 μm and a depth of 50 μm, so that the modification and modification of the surface of the hole is easier. The fifth C picture shows the structural design used today. The holes are connected to a checkerboard-like structure, and the width and depth are 50 μm. The rubber material structure is a columnar structure with a length, width and depth of 50 μm. The overall film structure was supported, and as shown in Figs. 5A and 5B, the size of the internal holes was 50 × 50 × 50 μm 3 , and the distance between the holes was 50 μm. This design provides a large charge storage area that will effectively increase the amount of charge stored. It is generally believed that a semi-latticated polymer has a strong ability to capture stored charges and can help improve the piezoelectric properties of the porous rubber material structure. To this end, a PTFE solution (Teflon, DuPont) is filled in the interconnected pore structure, and when the solvent is evaporated, a polymer film having a semi-latticized structure is formed on the surface of the pore, and the thickness thereof is about 1 μm. As shown in the fourth N diagram and the fourth O diagram. After the structure is completed, a gold film is applied to the upper and lower surfaces of the rubber material film as an electrode, and the thickness is about 100 nm, as shown in the fourth Q diagram and the fourth R diagram, and the charge is implanted in a strong electric field. On the inner surface of the structure. In the experiment, when the applied voltage is 8kV, the corresponding electric field strength is about 27 MV/m, which can make the air in the hole begin to ionize. Once the dissociation electric field is reached, the self-extinguishing microplasma discharge phenomenon will occur in each hole at the same time, accompanied by a short-term luminescence phenomenon, while the charge is accelerated and impinged on the surface of each hole. The driving voltage used in the experiment is a triangular wave with an amplitude between 7.5 and 11.5 kV, and the rubber material film structure is repeatedly charged at a frequency lower than 0.5 Hz for 15 minutes while heating the sample to maintain about 100 ° C during charging. The temperature to enhance the charging effect. Once the internal charging is completed, the porous rubber material film becomes a material having excellent elasticity and piezoelectric sensing sensitivity, and can be applied to various energy conversion occasions such as acoustic energy and electric energy, or electric energy and mechanical energy.

因此,本發明開發了可有效製造並控制多孔微結構的多層結構鑄造、堆疊、表面改質、及微電漿放電(micro plasma discharge process)製程,使其能快速製造所需的多孔並具良好機電感應特性的壓電橡膠材料薄膜。佈植後成對的電荷具有電偶極的特性,可產生多樣的機電感應關係。橡膠材料以及相關製程與傳統微機電製程具極高的相容性,因此橡膠材料壓電薄膜製程將可望與微機電系統順利整合。該多孔性橡膠材料壓電薄膜具有很低 的有效彈性係數(E),其值低於500 kPa,另外其壓電係數(d33)則高達1000 pC N-1以上,已超越一般壓電陶瓷三倍以上的水準,並且遠比傳統壓電高分子(如PVDF等)要高上三十倍以上。利用多孔性橡膠材料薄膜結構的低彈性係數,以及聚四氟乙烯(polytetrafluoroethylene,以下簡稱PTFE)薄膜的高電荷密度,可產生非常強烈的壓電特性。除此之外,橡膠材料壓電薄膜的特性也可藉由改變內部孔洞結構的尺寸與分佈做一調控。如以上所述,壓電橡膠材料薄膜具非常高的潛力可應用於微系統中,製作高彈性及高機電感應靈敏度特性的元件,且能滿足各項感測與能量轉換等應用的需求。 Accordingly, the present invention develops a multilayer structure casting, stacking, surface modification, and micro plasma discharge process that can efficiently manufacture and control porous microstructures, enabling rapid fabrication of desired porosity and good Piezoelectric rubber material film with electromechanical sensing characteristics. The paired charges after implantation have the characteristics of electric dipoles, which can produce various electromechanical sensing relationships. The rubber material and related processes are highly compatible with traditional micro-electromechanical processes, so the piezoelectric film process for rubber materials is expected to be smoothly integrated with MEMS. The porous rubber material piezoelectric film has a very low effective modulus (E), and its value is less than 500 kPa, and its piezoelectric coefficient (d 33 ) is as high as 1000 pC N -1 or more, which has surpassed the general piezoelectric ceramics. More than three times the level, and far more than thirty times higher than traditional piezoelectric polymers (such as PVDF). The low elastic modulus of the porous rubber material film structure and the high charge density of the polytetrafluoroethylene (PTFE) film can produce very strong piezoelectric characteristics. In addition, the properties of the piezoelectric film of the rubber material can also be controlled by changing the size and distribution of the internal pore structure. As described above, the piezoelectric rubber material film has a very high potential for use in a micro system, and is capable of producing components with high elasticity and high electromechanical sensing sensitivity characteristics, and can satisfy various sensing and energy conversion applications.

於是,本發明專利申請案係利用發明人豐富的經驗,以極富創意的構思,設計出簡單卻能充分解決習知技術的問題。因此,本發明專利申請案的功能,確實符合具有新穎性與進步性的專利要件。 Thus, the patent application of the present invention utilizes the inventor's rich experience to design a simple but fully problematic solution to the conventional technology with a very creative concept. Therefore, the function of the patent application of the present invention does meet the patent requirements of novelty and progress.

唯以上所述者,僅為本發明之較佳實施例,當不能以之限制本發明範圍。即大凡依本發明申請專利範圍所做之均等變化及修飾,仍將不失本發明之要義所在,亦不脫離本發明之精神和範圍,故都應視為本發明的進一步實施狀況。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as a further embodiment of the present invention.

1‧‧‧橡膠材料薄膜結構 1‧‧‧Metal material film structure

11‧‧‧第一電極層 11‧‧‧First electrode layer

112‧‧‧下表面 112‧‧‧ lower surface

12‧‧‧第一二甲基矽氧烷實心層 12‧‧‧First dimethyl oxane solid layer

121‧‧‧上表面 121‧‧‧ upper surface

122‧‧‧下表面 122‧‧‧ lower surface

13‧‧‧第一二甲基矽氧烷孔洞層 13‧‧‧First dimethyloxane hole layer

131‧‧‧上表面 131‧‧‧ upper surface

132‧‧‧下表面 132‧‧‧ lower surface

14‧‧‧第二二甲基矽氧烷實心層 14‧‧‧Second dimethyl oxa oxide solid layer

141‧‧‧上表面 141‧‧‧ upper surface

142‧‧‧下表面 142‧‧‧ lower surface

15‧‧‧第二二甲基矽氧烷孔洞層 15‧‧‧Second dimethyloxane hole layer

151‧‧‧上表面 151‧‧‧ upper surface

152‧‧‧下表面 152‧‧‧ lower surface

16‧‧‧底部二甲基矽氧烷實心層 16‧‧‧Bottom dimethyl oxa oxide solid layer

161‧‧‧上表面 161‧‧‧ upper surface

162‧‧‧下表面 162‧‧‧ lower surface

17‧‧‧第二電極層 17‧‧‧Second electrode layer

171‧‧‧上表面 171‧‧‧ upper surface

Claims (15)

一種具壓電特性的橡膠材料薄膜結構,至少包括:一第一電極層,係具有一下表面;一第一二甲基矽氧烷(polydimethylsiloxane,簡稱PDMS)實心層,係具有一上表面與一下表面,該第一二甲基矽氧烷實心層之該上表面與該第一電極層之該下表面係為彼此之相對面;一第一二甲基矽氧烷孔洞層,係具有一上表面與一下表面,該第一二甲基矽氧烷孔洞層之該上表面與第一二甲基矽氧烷實心層之該下表面係為彼此之相對面;一底部二甲基矽氧烷實心層,係具有一上表面與一下表面,該底部二甲基矽氧烷實心層之該上表面與第一二甲基矽氧烷孔洞層之該下表面係為彼此之相對面;及一第二電極層,係具有一上表面,該第二電極層之該上表面與底部二甲基矽氧烷實心層之該下表面係為彼此之相對面。 A film structure of a rubber material having piezoelectric properties, comprising at least: a first electrode layer having a lower surface; a first solid layer of polydimethylsiloxane (PDMS) having an upper surface and a lower surface a surface, the upper surface of the first layer of the first dimethyl oxyalkylene and the lower surface of the first electrode layer are opposite to each other; a first dimethyl methoxy siloxane hole layer having an upper surface a surface and a lower surface, the upper surface of the first dimethyloxane hole layer and the lower surface of the first dimethyl methoxyalkane solid layer are opposite to each other; a bottom dimethyl methoxy oxane a solid layer having an upper surface and a lower surface, the upper surface of the bottom layer of the bottom dimethyl siloxane and the lower surface of the first dimethyl siloxane oxide layer being opposite to each other; The second electrode layer has an upper surface, and the upper surface of the second electrode layer and the lower surface of the bottom solid layer of dimethyl methoxyoxane are opposite to each other. 如申請專利範圍第1項所述之具壓電特性的橡膠材料薄膜結構,更包括:一第二二甲基矽氧烷實心層,係具有一上表面與一下表面,該第二二甲基矽氧烷實心層之該上表面與該第一二甲基矽氧烷孔洞層之該下表面係為彼此之相對面;及 一第二二甲基矽氧烷孔洞層,係具有一上表面與一下表面,該第二二甲基矽氧烷孔洞層之該上表面與該第二二甲基矽氧烷實心層之該下表面係為彼此之相對面;其中,第二二甲基矽氧烷孔洞層之該下表面與該底部二甲基矽氧烷實心層之該上表面係為彼此之相對面。 The film structure of the rubber material having the piezoelectric property as described in claim 1, further comprising: a solid layer of a second dimethyl siloxane having an upper surface and a lower surface, the second dimethyl group The upper surface of the solid layer of the oxyalkylene and the lower surface of the first dimethyloxane hole layer are opposite to each other; a second dimethyloxane hole layer having an upper surface and a lower surface, the upper surface of the second dimethyl azide hole layer and the second dimethyl siloxane solid layer The lower surfaces are opposite to each other; wherein the lower surface of the second dimethyl azide hole layer and the upper surface of the bottom dimethyl siloxane solid layer are opposite to each other. 如申請專利範圍第1項所述之具壓電特性的橡膠材料薄膜結構,其中,該第一電極層包括:一第一彈性金薄膜(elastic gold film)層,係具有一下表面;及一第一3-硫醇基三甲氧基矽烷(3-mereaptopropyltrimethoxysilane;MPTMS)黏結層,係具有一上表面與一下表面,該第一彈性金薄膜(elastic gold film)層之該下表面與該第一3-硫醇基三甲氧基矽烷黏結層之該上表面係為彼此之相對面。 The film structure of the rubber material having the piezoelectric property according to the first aspect of the invention, wherein the first electrode layer comprises: a first elastic gold film layer having a lower surface; a 3-mereaptopropyltrimethoxysilane (MPTMS) adhesive layer having an upper surface and a lower surface, the lower surface of the first elastic gold film layer and the first 3 The upper surface of the thiol-group trimethoxydecane bonding layer is opposite to each other. 如申請專利範圍第3項所述之具壓電特性的橡膠材料薄膜結構,其中,該第一3-硫醇基三甲氧基矽烷黏結層之該下表面與該第一電極層之該下表面係一相同面。 The film structure of a rubber material having piezoelectric properties according to claim 3, wherein the lower surface of the first 3-thiol-trimethoxydecane bonding layer and the lower surface of the first electrode layer One is the same side. 如申請專利範圍第1項所述之具壓電特性的橡膠材料薄膜結構,其中,該第二電極層包括:一第二3-硫醇基三甲氧基矽烷黏結層,係具有一上表面與一下表面;及 一第二彈性金薄膜層,係具有一上表面,該第二3-硫醇基三甲氧基矽烷黏結層之該下表面與該第二彈性金薄膜層之該上表面係彼此之相對面。 The film structure of a rubber material having piezoelectric properties according to claim 1, wherein the second electrode layer comprises: a second 3-thiol-trimethoxydecane bonding layer having an upper surface and Look at the surface; and A second elastic gold film layer has an upper surface, and the lower surface of the second 3-thiol-trimethoxydecane bonding layer and the upper surface of the second elastic gold film layer are opposite to each other. 如申請專利範圍第5項所述之具壓電特性的橡膠材料薄膜結構,其中,該第二3-硫醇基三甲氧基矽烷黏結層之該上表面與該第二電極層之該上表面係一相同面。 The film structure of a rubber material having piezoelectric properties according to claim 5, wherein the upper surface of the second 3-thiol-trimethoxydecane bonding layer and the upper surface of the second electrode layer One is the same side. 一種具壓電特性的橡膠材料薄膜結構的製造方法,包括以下步驟:(1)製作出一第一母模,並利用固化與脫膜程序形成一第一二甲基矽氧烷實心層與一第一二甲基矽氧烷孔洞層,該第一二甲基矽氧烷實心層具有一上表面與一下表面,該第一二甲基矽氧烷孔洞層具有一上表面與一下表面,第一二甲基矽氧烷孔洞層之該上表面與第一二甲基矽氧烷實心層之該下表面係彼此之相對面;(2)提供一底部二甲基矽氧烷實心層,該底部二甲基矽氧烷實心層具有一上表面與一下表面,且底部二甲基矽氧烷實心層之該上表面與第一二甲基矽氧烷孔洞層之該下表面係為彼此之相對面;及(3)提供一第一電極層與一第二電極層,該第一電極層具有一下表面,而該第二電極層具有一上表面,以使得第一電極層的該下表面與第一二甲基矽氧烷實心層之該上表面成為彼此之 相對面,且第二電極層的該上表面與該底部二甲基矽氧烷實心層之該下表面成為彼此之相對面。 A method for manufacturing a film structure of a rubber material having piezoelectric properties, comprising the steps of: (1) preparing a first master mold, and forming a solid layer of the first dimethyloxane by using a curing and stripping procedure; a first dimethyloxane hole layer having a top surface and a lower surface, the first dimethyl azide hole layer having an upper surface and a lower surface, The upper surface of the monodimethyl siloxane oxide layer and the lower surface of the first solid layer of dimethyl methoxyalkane are opposite to each other; (2) providing a solid layer of bottom dimethyl methoxy hydride, The bottom dimethyl siloxane solid layer has an upper surface and a lower surface, and the upper surface of the bottom dimethyl siloxane solid layer and the lower surface of the first dimethyl siloxane oxide layer are mutually And (3) providing a first electrode layer and a second electrode layer, the first electrode layer having a lower surface, and the second electrode layer having an upper surface such that the lower surface of the first electrode layer The upper surface of the solid layer of the first dimethyl methoxyoxane becomes mutually The opposite surface, and the upper surface of the second electrode layer and the lower surface of the bottom solid layer of dimethyl siloxane are opposite to each other. 如申請專利範圍第7項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1)更包括以下步驟:(11)定義一圖形於一第一矽晶圓之一上表面上,以製備出該第一母模,即依據該圖形塗佈一厚約50μm的第一SU-8 3050光阻層於該第一矽晶圓之該上表面上,以形成第一母模;(12)將第一母模放置於一真空容器中,並塗佈一第一全氟辛基三氯矽烷(1H,1H,2H,2H-perfluorooctyl-trichlorosilane)層於該第一SU-8 3050光阻層與第一矽晶圓之上表面,以進行表面矽烷化改質,將有利於後續的剝離脫模;(13)將一厚度為100μm的第一二甲基矽氧烷層塗佈於該第一全氟辛基三氯矽烷層之一上表面,接著在85℃下烘烤一小時;(14)該固化的第一二甲基矽氧烷層之一上表面塗佈一第二全氟辛基三氯矽烷層,以進行表面矽烷化改質;(15)於該第二全氟辛基三氯矽烷層之一上表面塗佈一厚度約2mm的二甲基矽氧烷層,以作為一第一二甲基矽氧烷載體層;及(16)利用該第一全氟辛基三氯矽烷層,可將從上至下的該第一二甲基矽氧烷載體層、第二全氟辛基三氯矽烷層、含第一二甲基矽氧烷實心層及第一二甲基矽氧烷孔洞層之第一二甲基 矽氧烷層從包含了從上至下的第一SU-8 3050光阻層與第一矽晶圓之第一母模中剝離而脫膜。 The method for manufacturing a film structure of a rubber material having piezoelectric characteristics according to claim 7, wherein the step (1) further comprises the following steps: (11) defining a pattern on one of the first wafers. Surfacely, the first master mold is prepared, that is, a first SU-8 3050 photoresist layer having a thickness of about 50 μm is coated on the upper surface of the first germanium wafer according to the pattern to form a first mother. (12) placing the first master mold in a vacuum vessel and coating a first layer of perfluorooctyltrichlorosilane (1H, 1H, 2H, 2H-perfluorooctyl-trichlorosilane) on the first SU- 8 3050 photoresist layer and the upper surface of the first germanium wafer for surface decane reforming, which will facilitate subsequent stripping and demolding; (13) a first dimethyl siloxane layer having a thickness of 100 μm Coating on one surface of the first perfluorooctyltrichloromethane layer, followed by baking at 85 ° C for one hour; (14) coating the upper surface of one of the cured first dimethyl siloxane layers a second perfluorooctyltrichloromethane layer for surface decanoation modification; (15) a surface of one of the second perfluorooctyltrichloromethane layers coated with a thickness of about 2 mm a dimethyloxane layer as a first dimethyl oxane carrier layer; and (16) a first perfluorooctyltrichloromethane layer, which may be the first two from top to bottom a methyl oxane carrier layer, a second perfluorooctyltrichloromethane layer, a first dimethyl group comprising a first dimethyl methoxyoxane solid layer and a first dimethyl methoxy oxane hole layer The siloxane layer is stripped from the first master mold comprising the first SU-8 3050 photoresist layer from top to bottom and the first ruthenium wafer. 如申請專利範圍第7項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1)之後更包括以下步驟:(1A)製作出一第二母模,並利用固化程序形成一第二二甲基矽氧烷實心層與一第二二甲基矽氧烷孔洞層,該第二二甲基矽氧烷實心層具有一上表面與一下表面,該第二二甲基矽氧烷孔洞層具有一上表面與一下表面,第二二甲基矽氧烷孔洞層之該上表面與第二二甲基矽氧烷實心層之該下表面係彼此之相對面,且第二二甲基矽氧烷孔洞層仍連結於該第二母模;(1B)將該第一二甲基矽氧烷實心層與該第一二甲基矽氧烷孔洞層連結第二二甲基矽氧烷實心層與第二二甲基矽氧烷孔洞層;(1C)利用脫膜程序,將第二二甲基矽氧烷實心層與第二二甲基矽氧烷孔洞層脫離第二母模;及(1D)將第二二甲基矽氧烷孔洞層之該下表面連結該底部二甲基矽氧烷實心層之該上表面。 The method for manufacturing a film structure of a rubber material having piezoelectric characteristics according to claim 7, wherein the step (1) further comprises the following steps: (1A) preparing a second master mold and utilizing a curing procedure Forming a second solid layer of dimethyl methoxyoxane and a second dimethyl siloxane oxide layer having a top surface and a lower surface, the second dimethyl group The oxane hole layer has an upper surface and a lower surface, and the upper surface of the second dimethyl siloxane oxide layer and the lower surface of the second dimethyl siloxane solid layer are opposite to each other, and a dimethyl methoxy siloxane hole layer is still attached to the second master mold; (1B) the first dimethyl methoxy oxyalkylene solid layer is bonded to the first dimethyl methoxy oxane hole layer a solid layer of bismuth oxyalkylene and a second dimethyloxane hole layer; (1C) using a stripping procedure to separate the second layer of the second dimethyl siloxane from the second dimethyl methoxy hydride hole layer a second master mold; and (1D) joining the lower surface of the second dimethyloxane hole layer to the bottom dimethyl methoxyane solid layer Surface. 如申請專利範圍第9項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1A)更包括以下步驟:(1A1)定義一圖形於一第二矽晶圓之一上表面上,以製備出一第二母模,即依據該圖形塗佈一厚約50μm的第二SU-8 3050光阻層於該第二矽晶圓之該上表面上,以形成該第二母模; (1A2)將該完成的第二母模放置於一真空容器中,並塗佈一第三全氟辛基三氯矽烷(1H,1H,2H,2H-perfluorooctyl-trichlorosilane)層於該第二SU-8 3050光阻層與第二矽晶圓之上表面,以進行表面矽烷化改質,將有利於後續的剝離脫模;及(1A3)將一厚度為100μm的第二二甲基矽氧烷層塗佈於該第三全氟辛基三氯矽烷層之一上表面,接著在85℃下烘烤一小時。 The method for manufacturing a film structure of a rubber material having piezoelectric characteristics according to claim 9, wherein the step (1A) further comprises the step of: (1A1) defining a pattern on one of the second wafers. Surfacely, a second master mold is prepared, that is, a second SU-8 3050 photoresist layer having a thickness of about 50 μm is coated on the upper surface of the second tantalum wafer according to the pattern to form the second mold. Master model (1A2) placing the completed second master in a vacuum vessel and coating a layer of a third perfluorooctyltrichlorosilane (1H, 1H, 2H, 2H-perfluorooctyl-trichlorosilane) on the second SU -8 3050 photoresist layer and the upper surface of the second germanium wafer for surface decane reforming, which will facilitate subsequent stripping demolding; and (1A3) a second dimethyloxy group with a thickness of 100 μm An alkane layer was coated on the upper surface of one of the third perfluorooctyltrichloromethane layers, followed by baking at 85 ° C for one hour. 如申請專利範圍第9項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1B)更包括以下步驟:(1B1)對第一二甲基矽氧烷孔洞層之一下表面與第二二甲基矽氧烷層之一上表面進行表面電漿處理,再將具有第一二甲基矽氧烷載體層、第二全氟辛基三氯矽烷層及第一二甲基矽氧烷層之一第一結構疊合連結於第二二甲基矽氧烷層之上,並於85℃下烘烤至少一小時,以結合第一二甲基矽氧烷層與第二二甲基矽氧烷層。 The method for manufacturing a film structure of a rubber material having piezoelectric properties according to claim 9 , wherein the step (1B) further comprises the step of: (1B1) laying down one of the first dimethyl azide hole layers; The surface is surface-plasma treated with one surface of the second dimethyl siloxane layer, and then has a first dimethyl siloxane carrier layer, a second perfluorooctyl chloroform layer and a first dimethyl group. The first structure of one of the oxyalkylene layers is superposed on the second dimethyl siloxane layer and baked at 85 ° C for at least one hour to bond the first dimethyl siloxane layer with the first Dimethyl siloxane layer. 如申請專利範圍第9項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1C)更包括以下步驟:(1C1)利用該第三全氟辛基三氯矽烷層的化學特性,將含第二二甲基矽氧烷實心層及第二二甲基矽氧烷孔洞層之第二二甲基矽氧烷層從包含了從上至下的第二SU-8 3050光阻層與第二矽晶圓之第二母模中剝離而脫膜。 The method for producing a film structure of a rubber material having piezoelectric properties according to claim 9, wherein the step (1C) further comprises the step of: (1C1) utilizing the third perfluorooctyltrichloromethane layer; Chemically characterized, comprising a second dimethyl siloxane layer comprising a solid layer of a second dimethyl methoxyoxane and a second dimethyl siloxane chain layer from a second SU-8 3050 comprising a top to bottom The photoresist layer is peeled off from the second master of the second germanium wafer to release the film. 如申請專利範圍第9項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1D)更包括以下步驟:(1D1)提供該厚度為100μm的底部二甲基矽氧烷層;及(1D2)對該底部二甲基矽氧烷層之一上表面與第二二甲基矽氧烷層之第二二甲基矽氧烷孔洞層之一下表面進行表面電漿處理,再將第二二甲基矽氧烷層疊合連結於底部二甲基矽氧烷層之上,並於85℃下烘烤至少一小時,以結合第二二甲基矽氧烷層與底部二甲基矽氧烷層,進而形成包含一從上至下的第一二甲基矽氧烷載體層、第二全氟辛基三氯矽烷層、含第一二甲基矽氧烷實心層及第一二甲基矽氧烷孔洞層之第一二甲基矽氧烷層、含第二二甲基矽氧烷實心層及第二二甲基矽氧烷孔洞層之第二二甲基矽氧烷層及底部二甲基矽氧烷層之一第二結構。 The method for manufacturing a film structure of a rubber material having piezoelectric characteristics according to claim 9, wherein the step (1D) further comprises the step of: (1D1) providing the bottom dimethyl methoxyoxane having a thickness of 100 μm. And (1D2) surface-treating the lower surface of one of the upper surface of the bottom dimethyl azide layer and the second dimethyl siloxane layer of the second dimethyl siloxane layer, Then, the second dimethyl methoxy alkane is laminated on the bottom dimethyl siloxane layer and baked at 85 ° C for at least one hour to bond the second dimethyl siloxane layer with the bottom two a methyl siloxane layer, further comprising a first dimethyl decane carrier layer comprising a top to bottom, a second perfluorooctyltrichloromethane layer, a first dimethyl oxa oxide solid layer and a first dimethyl fluorene oxide layer of the first dimethyl fluorene oxide hole layer, a second dimethyl hydrazine layer containing a second dimethyl methoxy oxyalkylene solid layer and a second dimethyl methoxy oxane hole layer A second structure of one of an oxyalkylene layer and a bottom dimethyl siloxane layer. 如申請專利範圍第13項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(1D2)之後更包括以下步驟:(1D2A)將複數滴全氟辛基三乙氧基矽烷溶液引入該第二結構之複數個內部孔洞與通道,以形成一全氟辛基三乙氧基矽烷黏著層於各孔洞與通道之上;及(1D2B)將複數滴聚四氟乙烯(polytetra-fluoroethylene,俗稱Teflon,簡稱PTFE)溶液引入該第二結構之複數個內部孔洞與通道,以形成一聚四氟乙烯層於各孔洞與通道上的該全氟辛 基三乙氧基矽烷黏著層之上,其中,該聚四氟乙烯係高分子材料,故該聚四氟乙烯層係沉積的高分子膜;及(1D2C)第一二甲基矽氧烷載體層與第二全氟辛基三氯矽烷層脫離完成堆疊的第一二甲基矽氧烷層、第二二甲基矽氧烷層及底部二甲基矽氧烷層,係由於二甲基矽氧烷表面間的鍵結強度大於經矽烷化處理後的表面間鍵結強度。 The method for manufacturing a film structure of a rubber material having piezoelectric characteristics according to claim 13 , wherein the step (1D2) further comprises the following steps: (1D2A), a plurality of drops of perfluorooctyltriethoxydecane The solution is introduced into a plurality of internal pores and channels of the second structure to form a perfluorooctyltriethoxydecane adhesion layer on each of the pores and the channel; and (1D2B) a plurality of polytetrafluoroethylene (polytetra-) A fluoroethylene (commonly known as Teflon, PTFE for short) solution is introduced into a plurality of internal pores and channels of the second structure to form a polytetrafluoroethylene layer on the pores and channels of the perfluorooctyl a polytrifluoroethylene-based polymer material, wherein the polytetrafluoroethylene layer is deposited on the adhesive layer; and (1D2C) first dimethyloxane carrier The layer is separated from the second perfluorooctyltrichloromethane layer to complete the stacked first dimethyloxane layer, the second dimethyloxane layer and the bottom dimethyloxane layer, due to the dimethyl group. The bonding strength between the surface of the oxirane is greater than the bonding strength between the surfaces after the decaneization treatment. 如申請專利範圍第7項所述之具壓電特性的橡膠材料薄膜結構的製造方法,其中,步驟(3)更包括以下步驟:(31)於第一二甲基矽氧烷層之一上表面與底部二甲基矽氧烷層之下表面分別形成一第一3-硫醇基三甲氧基矽烷黏著層與一第二3-硫醇基三甲氧基矽烷黏著層;及(32)分別形成一第一彈性金薄膜(elastic gold film)於該第一3-硫醇基三甲氧基矽烷黏著層上與一第二彈性金薄膜於該第二3-硫醇基三甲氧基矽烷,其中,該第一電極層包括第一3-硫醇基三甲氧基矽烷黏著層與該第一彈性金薄膜,該第二電極層包括第二3-硫醇基三甲氧基矽烷黏著層與該第二彈性金薄膜,且第一3-硫醇基三甲氧基矽烷黏著層之一上表面與第一彈性金薄膜之一下表面成為彼此之相對面,第二3-硫醇基三甲氧基矽烷黏著層之一下表面與第二彈性金薄膜之一上表面成為彼此之相對面。 The method for manufacturing a film structure of a rubber material having piezoelectric characteristics according to claim 7, wherein the step (3) further comprises the step of: (31) working on one of the first dimethyl siloxane layers; Forming a first 3-thiol-trimethoxydecane adhesion layer and a second 3-thiol-trimethoxydecane adhesion layer on the lower surface of the surface and the bottom dimethyl azide layer; and (32) respectively Forming a first elastic gold film on the first 3-thiol-trimethoxydecane adhesion layer and a second elastic gold film on the second 3-thiol-trimethoxydecane, wherein The first electrode layer includes a first 3-thiol trimethoxydecane adhesive layer and the first elastic gold film, and the second electrode layer includes a second 3-thiol trimethoxydecane adhesive layer and the first electrode layer a second elastic gold film, and the upper surface of one of the first 3-thiol-trimethoxydecane adhesion layer and the lower surface of one of the first elastic gold films are opposite to each other, and the second 3-thiol-trimethoxydecane is adhered One of the lower surface of the layer and one of the upper surfaces of the second elastic gold film are opposite to each other.
TW102107965A 2013-03-06 2013-03-06 Thin film fabrication of rubber material with piezoelectric characteristics TWI535084B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102107965A TWI535084B (en) 2013-03-06 2013-03-06 Thin film fabrication of rubber material with piezoelectric characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102107965A TWI535084B (en) 2013-03-06 2013-03-06 Thin film fabrication of rubber material with piezoelectric characteristics

Publications (2)

Publication Number Publication Date
TW201436312A TW201436312A (en) 2014-09-16
TWI535084B true TWI535084B (en) 2016-05-21

Family

ID=51943490

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107965A TWI535084B (en) 2013-03-06 2013-03-06 Thin film fabrication of rubber material with piezoelectric characteristics

Country Status (1)

Country Link
TW (1) TWI535084B (en)

Also Published As

Publication number Publication date
TW201436312A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
Duduta et al. Multilayer dielectric elastomers for fast, programmable actuation without prestretch
US8549715B2 (en) Piezoelectric microspeaker and method of fabricating the same
CN108063183B (en) A method of closing porous piezoelectric electret energy accumulator is prepared based on nano impression
EP2819293B1 (en) Gel actuator and method for producing same
US20150069617A1 (en) Extremely stretchable electronics
US20120319174A1 (en) Cmos compatible mems microphone and method for manufacturing the same
EP2902293A2 (en) Extremely stretchable electronics
WO2013181952A1 (en) A hybrid piezoelectric and triboelectric nanogenerator
US8410658B2 (en) Multi-layer electrostatic energy harvester and method of making the same
US9212045B1 (en) Micro mechanical structure and method for fabricating the same
WO2013033032A2 (en) Method and apparatus for release-assisted microcontact printing of mems
JP5628197B2 (en) Ferro-electret multilayer composite and method for producing ferro-electret multilayer composite with parallel tubular channels
KR101695932B1 (en) Triboelectric generator and method for manufacturing the generator
US9048427B2 (en) Thin film fabrication of rubber material with piezoelectric characteristics
JP2016039343A (en) Electronic device and manufacturing method of the same
EP2902294A2 (en) Extremely stretchable electronics
Shi et al. Optimization a structure of MEMS based PDMS ferroelectret for human body energy harvesting and sensing
TWI535084B (en) Thin film fabrication of rubber material with piezoelectric characteristics
US10092928B2 (en) Process for the manufacture of a component comprising a stack of a functional layer on a composite film
US20190261110A1 (en) Acoustic apparatus, system and method of fabrication
KR101972091B1 (en) Triboelectric nanogenerator and fabricating method thereof
KR101703379B1 (en) Mems device having a membrane and method of manufacturing
Brunne et al. In-plane DEAP stack actuators for optical MEMS applications
JP6199820B2 (en) Manufacturing method of spring for micro vibration element
CN107770706B (en) Microphone sensor and preparation method thereof