TWI533007B - Circuits and methods for measuring a cell voltage in a battery - Google Patents

Circuits and methods for measuring a cell voltage in a battery Download PDF

Info

Publication number
TWI533007B
TWI533007B TW102111707A TW102111707A TWI533007B TW I533007 B TWI533007 B TW I533007B TW 102111707 A TW102111707 A TW 102111707A TW 102111707 A TW102111707 A TW 102111707A TW I533007 B TWI533007 B TW I533007B
Authority
TW
Taiwan
Prior art keywords
current
voltage
voltage difference
battery
port
Prior art date
Application number
TW102111707A
Other languages
Chinese (zh)
Other versions
TW201407178A (en
Inventor
湯小虎
栗國星
Original Assignee
凹凸科技國際股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/586,581 external-priority patent/US9291680B2/en
Application filed by 凹凸科技國際股份有限公司 filed Critical 凹凸科技國際股份有限公司
Publication of TW201407178A publication Critical patent/TW201407178A/en
Application granted granted Critical
Publication of TWI533007B publication Critical patent/TWI533007B/en

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Secondary Cells (AREA)

Description

電池測量電路、系統及方法 Battery measuring circuit, system and method

本發明系有關一種電池領域,特別關於一種電池測量電路、系統及方法。 The present invention relates to the field of batteries, and more particularly to a battery measuring circuit, system and method.

圖1所示為一種傳統測量電池組內電池單元的單元電壓的電池測量電路100的示意圖。電池測量電路100包括電池組110、電位轉移電路120、電阻組130、電容組180、測量單元140、電流產生器160及開關組170。如圖1所示,電池組110包括串聯耦合的電池單元111~電池單元113。電阻組130包括電阻131~電阻134。電容組180包括電容182、電容184及電容186。電阻組130及電容組180過濾在電池組110和開關組170之間傳輸的信號上的雜訊。開關組170從電池單元111~電池單元113中選擇電池單元。電位轉移電路120提供正比於被選電池單元的單元電壓的轉移電壓。測量單元140根據電位轉移電路120產生的轉移電壓計算被選電池單元的單元電壓。 1 is a schematic diagram of a battery measurement circuit 100 that conventionally measures the cell voltage of a battery cell within a battery pack. The battery measuring circuit 100 includes a battery pack 110, a potential transfer circuit 120, a resistor group 130, a capacitor bank 180, a measuring unit 140, a current generator 160, and a switch group 170. As shown in FIG. 1, the battery pack 110 includes battery cells 111 to battery cells 113 coupled in series. The resistor group 130 includes a resistor 131 to a resistor 134. The capacitor bank 180 includes a capacitor 182, a capacitor 184, and a capacitor 186. The resistor bank 130 and the capacitor bank 180 filter noise on signals transmitted between the battery pack 110 and the switch bank 170. The switch group 170 selects a battery unit from the battery unit 111 to the battery unit 113. The potential transfer circuit 120 provides a transfer voltage proportional to the cell voltage of the selected battery cell. The measuring unit 140 calculates the cell voltage of the selected battery cell based on the transfer voltage generated by the potential transfer circuit 120.

電位轉移電路120消耗電池組110的電流。例如,選中電池單元111時,電位轉移電路120消耗電流I'cons1及電流I'cons2。電流I'cons1從電池單元111的正端流出,流經電阻131及開關組170,流向電位轉移電路120。電流I'cons2從電池單元111的負端流出,流經電阻132及開關組170,流向電位轉移電路120。電阻131及電阻132上的電壓降對單元電壓測量的準確性會產生負面影響。為减輕負面影響,電流產生器160產生補償電流I'comp2。補償電流I'comp2流經電位轉移電路120、開關組170及電阻132,流向電池單元111的負端。因此,如補償電流I'comp2與電流I'cons2基本相等,則可忽略電阻132上的電壓降。 The potential transfer circuit 120 consumes the current of the battery pack 110. For example, when the battery unit 111 is selected, the potential transfer circuit 120 consumes the current I'cons1 and the current I'con2 . The current I'con1 flows out from the positive terminal of the battery unit 111, flows through the resistor 131 and the switch group 170, and flows to the potential transfer circuit 120. The current I' cons2 flows from the negative terminal of the battery unit 111, flows through the resistor 132 and the switch group 170, and flows to the potential transfer circuit 120. The voltage drop across resistor 131 and resistor 132 can have a negative impact on the accuracy of the cell voltage measurement. To mitigate the negative effects, current generator 160 produces a compensation current I'comp2 . The compensation current I' comp2 flows through the potential transfer circuit 120, the switch group 170, and the resistor 132, and flows to the negative terminal of the battery unit 111. Thus, as compensation current I 'comp2 current I' cons2 substantially equal, the voltage drop can be ignored on the resistor 132.

然而,電池單元111的正端電壓與電流產生器160的供電電 壓之間的差值可能過小,以致電流產生器160不能產生流進電池單元111正端的補償電流以補償電阻131上的電壓降。因而,電阻131上的電壓降仍然會對單元電壓測量的準確性造成負面影響。 However, the positive terminal voltage of the battery unit 111 and the power supply of the current generator 160 The difference between the pressures may be too small, so that the current generator 160 cannot generate a compensation current flowing into the positive terminal of the battery unit 111 to compensate for the voltage drop across the resistor 131. Thus, the voltage drop across resistor 131 still has a negative impact on the accuracy of the cell voltage measurement.

本發明的目的為提供一種電池測量電路,包括一測量電路以及一電流產生器。該測量電路包括一第一端口及一第二端口,分別透過一第一電阻和一第二電阻耦接一電池單元的一正端和一負端,其中,該測量電路消耗一第一電流及一第二電流,該第一電流從該正端流出,流經該第一電阻,流向該第一端口,該第二電流從該負端流出,流經該第二電阻,流向該第二端口。該電流產生器耦接該電池單元,根據該第一電流產生一第一補償電流,該第一補償電流從該正端流出,流經該第一電阻,流向該第一端口,其中,該第一補償電流除能時,該測量電路接收該第一端口與該第二端口間的一第一電壓差;該第一補償電流致能時,該測量電路接收該第一端口與該第二端口間的一第二電壓差;該測量電路根據該第一電壓差及該第二電壓差計算該電池單元的一單元電壓。 It is an object of the present invention to provide a battery measuring circuit comprising a measuring circuit and a current generator. The measuring circuit includes a first port and a second port, respectively coupled to a positive terminal and a negative terminal of a battery unit through a first resistor and a second resistor, wherein the measuring circuit consumes a first current and a second current flowing from the positive terminal, flowing through the first resistor, flowing to the first port, the second current flowing from the negative terminal, flowing through the second resistor, flowing to the second port . The current generator is coupled to the battery unit, and generates a first compensation current according to the first current. The first compensation current flows from the positive terminal, flows through the first resistor, and flows to the first port, where the first When the compensation current is disabled, the measuring circuit receives a first voltage difference between the first port and the second port; when the first compensation current is enabled, the measuring circuit receives the first port and the second port a second voltage difference between the two; the measuring circuit calculates a cell voltage of the battery cell based on the first voltage difference and the second voltage difference.

本發明還提供一種電池測量系統,包括:多個電池單元;多個電阻,耦接該多個電池單元;一測量電路,包括:一第一端口,透過該多個電阻中的一第一電阻耦接該多個電池單元中的一第一電池單元的一正端;以及一第二端口,透過該多個電阻中的一第二電阻耦接該第一電池單元的一負端,其中,該測量電路消耗一第一電流及一第二電流,該第一電流從該正端流出,流經該第一電阻,流向該第一端口,該第二電流從該負端流出,流經該第二電阻,流向該第二端口;以及一電流產生器,耦接該多個電池單元,根據該第一電流產生一第一補償電流,該第一補償電流從該正端流出,流經該第一電阻,流向該第一端口;其中,該第一補償電流除能時,該第一電阻上產生一第一電壓降,該第一補償電流致能時,該第一電阻上產生一第二電壓降,該測量電路根據該第一電壓降及該第二電壓降計算該第一電池單元的一單元電壓。 The present invention also provides a battery measuring system, comprising: a plurality of battery cells; a plurality of resistors coupled to the plurality of battery cells; a measuring circuit comprising: a first port, through a first one of the plurality of resistors a positive end of the first battery unit is coupled to the first battery unit; and a second port is coupled to a negative end of the first battery unit through a second one of the plurality of resistors, wherein The measuring circuit consumes a first current and a second current, the first current flows from the positive terminal, flows through the first resistor, and flows to the first port, and the second current flows out from the negative terminal, and flows through the a second resistor, flowing to the second port; and a current generator coupled to the plurality of battery cells, generating a first compensation current according to the first current, the first compensation current flowing from the positive terminal, flowing through the a first resistor flowing to the first port; wherein, when the first compensation current is disabled, a first voltage drop is generated on the first resistor, and when the first compensation current is enabled, the first resistor generates a first Two voltage drops, the measurement circuit root The first voltage drop and said second voltage drop of the cell voltage calculating a first battery cell.

一種電池測量方法,包括:消耗一第一電流及一第二 電流,其中,該第一電流從一電池單元的一正端流出,流經一第一電阻,流向一第一端口,該第二電流從該電池單元的一負端流出,流經一第二電阻,流向一第二端口;根據該第一電流產生一第一補償電流,該第一補償電流從該正端流出,流經該第一電阻,流向該第一端口;該第一補償電流除能時,接收該第一端口與該第二端口間的一第一電壓差;該第一補償電流致能時,接收該第一端口與該第二端口間的一第二電壓差;以及根據該第一電壓差及該第二電壓差計算一單元電壓。 A battery measuring method includes: consuming a first current and a second a current flowing from a positive end of a battery unit, flowing through a first resistor to a first port, the second current flowing from a negative end of the battery unit, flowing through a second a resistor, flowing to a second port; generating a first compensation current according to the first current, the first compensation current flowing from the positive terminal, flowing through the first resistor, flowing to the first port; the first compensation current is divided Receiving a first voltage difference between the first port and the second port; and receiving a second voltage difference between the first port and the second port when the first compensation current is enabled; The first voltage difference and the second voltage difference calculate a cell voltage.

100‧‧‧電池測量電路 100‧‧‧Battery measurement circuit

101~104‧‧‧雙接面電晶體 101~104‧‧‧Double junction transistor

110‧‧‧電池組 110‧‧‧Battery Pack

111~113‧‧‧電池單元 111~113‧‧‧ battery unit

120‧‧‧電位轉移電路 120‧‧‧potential transfer circuit

130‧‧‧電阻組 130‧‧‧Resistance group

131~134‧‧‧電阻 131~134‧‧‧resistance

140‧‧‧測量單元 140‧‧‧Measurement unit

160‧‧‧電流產生器 160‧‧‧current generator

170‧‧‧開關組 170‧‧‧ switch group

180‧‧‧電容組 180‧‧‧capacitor group

182、184、186‧‧‧電容 182, 184, 186‧‧‧ capacitors

200‧‧‧電池測量電路 200‧‧‧Battery measurement circuit

210‧‧‧電池組 210‧‧‧Battery Pack

211~213‧‧‧電池單元 211~213‧‧‧ battery unit

220‧‧‧電位轉移電路 220‧‧‧potentiometric transfer circuit

230‧‧‧電阻組 230‧‧‧resistance group

231~234‧‧‧電阻 231~234‧‧‧resistance

240‧‧‧測量單元 240‧‧‧Measurement unit

260‧‧‧電流產生器 260‧‧‧current generator

270‧‧‧開關組 270‧‧‧ switch group

271~276‧‧‧開關 271~276‧‧‧ switch

280‧‧‧電容組 280‧‧‧capacitor group

282、284、286‧‧‧電容 282, 284, 286‧‧ ‧ capacitor

300‧‧‧電池測量電路 300‧‧‧Battery measurement circuit

331~334‧‧‧電阻 331~334‧‧‧resistance

341、342‧‧‧放大器 341, 342‧ ‧ amplifier

352‧‧‧類比/數位轉換器 352‧‧‧ Analog/Digital Converter

362‧‧‧控制電路 362‧‧‧Control circuit

382、384‧‧‧電流源 382, 384‧‧‧ current source

392‧‧‧開關 392‧‧‧Switch

400‧‧‧電池測量電路 400‧‧‧Battery measurement circuit

422‧‧‧開關 422‧‧‧ switch

500‧‧‧等效電路 500‧‧‧ equivalent circuit

600‧‧‧等效電路 600‧‧‧ equivalent circuit

700‧‧‧電池測量電路 700‧‧‧Battery Measurement Circuit

761~763、765、767、768‧‧‧金屬氧化半導體場效應電晶體 761~763, 765, 767, 768‧‧‧ metal oxide semiconductor field effect transistor

764‧‧‧放大器 764‧‧Amplifier

766‧‧‧電阻 766‧‧‧resistance

801~804‧‧‧金屬氧化半導體場效應電晶體 801~804‧‧‧Metal Oxide Semiconductor Field Effect Transistor

900‧‧‧電池測量方法流程圖 900‧‧‧Battery measurement method flow chart

902、904、906、908、910‧‧‧步驟 902, 904, 906, 908, 910‧ ‧ steps

1000‧‧‧電池測量電路 1000‧‧‧Battery measurement circuit

1040‧‧‧測量單元 1040‧‧‧Measurement unit

1060‧‧‧電流產生器 1060‧‧‧ Current generator

以下結合附圖和具體實施例對本發明的技術方法進行詳細的描述,以使本發明的特徵和優點更為明顯。其中:圖1所示為一種傳統測量電池組內電池單元的單元電壓的電池測量電路200的示意圖;圖2所示為根據本發明一個實施例之測量電池組內電池單元的單元電壓的電池測量電路的結構方塊示意圖;圖3所示為根據本發明一個實施例之測量電池組內電池單元的單元電壓的電池測量電路的結構示意圖;圖4所示為根據本發明另一個實施例之測量電池組內電池單元的單元電壓的電池測量電路的結構示意圖;圖5所示為圖4中電路的一個等效電路的示意圖;圖6所示為圖4中電路的另一個等效電路的示意圖;圖7所示為根據本發明又一個實施例之測量電池組內電池單元的單元電壓的電池測量電路的結構示意圖;圖8所示為圖7中放大器的電路示意圖;圖9所示為根據本發明一個實施例之測量電池組內電池單元的單元電壓的電池測量方法流程圖;圖10所示為根據本發明再一個實施例之測量電池組內電池單元的單元電壓的電池測量電路的結構方塊示意圖。 The technical method of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments to make the features and advantages of the present invention more obvious. 1 is a schematic diagram of a conventional battery measuring circuit 200 for measuring the cell voltage of a battery cell in a battery pack; FIG. 2 is a battery measuring device for measuring a cell voltage of a battery cell in a battery pack according to an embodiment of the present invention. FIG. 3 is a schematic structural diagram of a battery measuring circuit for measuring a cell voltage of a battery cell in a battery pack according to an embodiment of the present invention; FIG. 4 is a view showing a battery according to another embodiment of the present invention. A schematic diagram of a battery measuring circuit of a cell voltage of a battery cell in a group; FIG. 5 is a schematic diagram of an equivalent circuit of the circuit of FIG. 4; FIG. 6 is a schematic diagram of another equivalent circuit of the circuit of FIG. 7 is a schematic structural view of a battery measuring circuit for measuring a cell voltage of a battery cell in a battery pack according to still another embodiment of the present invention; FIG. 8 is a circuit diagram of the amplifier of FIG. 7; A flow chart of a battery measuring method for measuring a cell voltage of a battery cell in a battery pack according to an embodiment; FIG. 10 shows another method according to the present invention. Embodiment circuit block configuration of the battery cell voltage measuring embodiment of a measurement cell battery. FIG.

以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解這並非意指將本發明限定於這些實施例。相反地,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。 A detailed description of the embodiments of the present invention will be given below. While the invention will be described in conjunction with the embodiments, it is understood that the invention is not limited to the embodiments. Rather, the invention is to cover various modifications, equivalents, and equivalents of the invention as defined by the scope of the appended claims.

此外,在以下對本發明的詳細描述中,為了提供針對本發明的完全的理解,提供了大量的具體細節。然而,於本技術領域中具有通常知識者將理解,沒有這些具體細節,本發明同樣可以實施。在另外的一些實例中,對於大家熟知的方法、程序、元件和電路未作詳細描述,以便於凸顯本發明之主旨。 In addition, in the following detailed description of the embodiments of the invention However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components, and circuits have not been described in detail in order to facilitate the invention.

圖2所示為根據本發明一實施例之測量電池組內電池單元的單元電壓的電池測量電路200的結構方塊示意圖。電池測量電路200包括一電池組210、一電阻組230、一電容組280、一開關組270、一電流產生器260及一測量電路。測量電路包括一電位轉移電路220及一測量單元240。電池組210包括串聯耦合的電池單元211~電池單元213。電池組210也可包括其他數目的電池單元,本發明並不以此為限。電阻組230包括電阻231~電阻234。電容組280包括電容282、電容284及電容286。電阻組230及電容組280過濾在電池組210和開關組270之間傳輸的信號上的雜訊。 2 is a block diagram showing the structure of a battery measuring circuit 200 for measuring a cell voltage of a battery cell in a battery pack according to an embodiment of the present invention. The battery measuring circuit 200 includes a battery pack 210, a resistor group 230, a capacitor bank 280, a switch group 270, a current generator 260, and a measuring circuit. The measuring circuit includes a potential transfer circuit 220 and a measuring unit 240. The battery pack 210 includes battery cells 211 to 213 that are coupled in series. The battery pack 210 can also include other numbers of battery cells, and the invention is not limited thereto. The resistor group 230 includes a resistor 231~ a resistor 234. Capacitor bank 280 includes capacitor 282, capacitor 284, and capacitor 286. Resistor group 230 and capacitor bank 280 filter noise on signals transmitted between battery pack 210 and switch block 270.

開關組270包括開關271~開關276,從電池單元211~電池單元213中選擇測量電路200要測量的電池單元。透過選擇一個電池單元,開關組270在第一端口T1與第二端口T2之間提供一個電壓差,指示被選電池單元的單元電壓。例如,當開關271與開關273導通而開關組270內的其他開關斷開時,電池單元211被選中,開關組270在第一端口T1與第二端口T2之間提供的電壓差表示被選電池單元211的單元電壓。 The switch group 270 includes switches 271 to 276, and the battery cells to be measured by the measurement circuit 200 are selected from the battery cells 211 to 213. By selecting a battery cell, switch bank 270 provides a voltage difference between first port T1 and second port T2 indicating the cell voltage of the selected battery cell. For example, when the switch 271 is turned on with the switch 273 and the other switches in the switch group 270 are turned off, the battery unit 211 is selected, and the voltage difference provided between the first port T1 and the second port T2 of the switch block 270 indicates that the switch is selected. The cell voltage of the battery unit 211.

電位轉移電路220接收第一端口T1與第二端口T2間的電壓差,並向測量單元240提供正比於第一端口T1與第二端口T2間的電壓差的轉移電壓差。電位轉移電路220消耗來自被選電池單元的正端及負端的電流。例如,當電池單元211被選中時,第一端口T1透過電阻231及開關271與電池單元211的正端V+耦合,第二端口T2透過電阻232及開關273 與電池單元211的負端V-耦合。在本發明的實施例中,電阻231也稱為第一電阻,電阻232也稱為第二電阻。電位轉移電路220消耗第一電流Icons1及第二電流Icons2。第一電流Icons1從電池單元211的正端V+流出,流經電阻231及開關271,流向第一端口T1。第二電流Icons2從電池單元211的負端V-流出,流經電阻232及開關273,流向第二端口T2。 The potential transfer circuit 220 receives the voltage difference between the first port T1 and the second port T2, and supplies the measurement unit 240 with a transfer voltage difference proportional to the voltage difference between the first port T1 and the second port T2. The potential transfer circuit 220 consumes current from the positive and negative terminals of the selected battery cell. For example, when the battery unit 211 is selected, the first port T1 is coupled to the positive terminal V + of the battery unit 211 through the resistor 231 and the switch 271, and the second port T2 is transmitted through the resistor 232 and the switch 273 and the negative terminal V of the battery unit 211. - Coupling. In an embodiment of the invention, resistor 231 is also referred to as a first resistor and resistor 232 is also referred to as a second resistor. The potential transfer circuit 220 consumes the first current I cons1 and the second current I cons2 . The first current I cons1 flows out from the positive terminal V + of the battery unit 211 , flows through the resistor 231 and the switch 271 , and flows to the first port T1 . The second current Icons2 flows from the negative terminal V − of the battery unit 211 , flows through the resistor 232 and the switch 273 , and flows to the second port T2 .

電流產生器260分別根據第一電流Icons1及第二電流Icons2產生第一補償電流Icomp1及第二補償電流Icomp2。第一補償電流Icomp1從電池單元211的正端V+流出,流經電阻231及開關271,流向第一端口T1。第二補償電流Icomp2從第二端口T2流出,流經開關273及電阻232,流向電池單元211的負端V-。在一個實施例中,第一補償電流Icomp1及第二補償電流Icomp2分別與第一電流Icons1及第二電流Icons2成正比。 The current generator 260 generates a first compensation current I comp1 and a second compensation current I comp2 according to the first current I cons1 and the second current I cons2 , respectively . The first compensation current I comp1 flows out from the positive terminal V + of the battery unit 211 , flows through the resistor 231 and the switch 271 , and flows to the first port T1 . The second compensation current I comp2 flows from the second port T2, flows through the switch 273 and the resistor 232, and flows to the negative terminal V - of the battery unit 211. In one embodiment, the first compensation current I comp1 and the second compensation current I comp2 are proportional to the first current I cons1 and the second current I cons2 , respectively .

電流產生器260可根據來自測量單元240的控制信號CTRL致能或除能第一補償電流Icomp1。第一補償電流Icomp1除能時,電位轉移電路220接收第一端口T1與第二端口T2間的第一電壓差。第一補償電流Icomp1致能時,電位轉移電路220接收第一端口T1與第二端口T2間的第二電壓差。相應地,第一補償電流Icomp1除能時,電位轉移電路220提供用於指示第一電壓差的第一轉移電壓差VO1,第一補償電流Icomp1致能時,電位轉移電路220提供用於指示第二電壓差的第二轉移電壓差VO2The current generator 260 can enable or disable the first compensation current I comp1 according to the control signal CTRL from the measurement unit 240. When the first compensation current I comp1 is disabled , the potential transfer circuit 220 receives the first voltage difference between the first port T1 and the second port T2. When the first compensation current I comp1 is enabled, the potential transfer circuit 220 receives the second voltage difference between the first port T1 and the second port T2. Correspondingly, when the first compensation current I comp1 is disabled , the potential transfer circuit 220 provides a first transfer voltage difference V O1 for indicating the first voltage difference. When the first compensation current I comp1 is enabled, the potential transfer circuit 220 provides And a second transfer voltage difference V O2 indicating the second voltage difference.

第一補償電流Icomp1除能時,測量單元240測量來自電位轉移電路220的第一轉移電壓差VO1,第一補償電流Icomp1致能時,測量單元240測量來自電位轉移電路220的第二轉移電壓差VO2。測量單元240根據第一轉移電壓差VO1及第二轉移電壓差VO2計算被選電池單元211的單元電壓。更具體而言,在一個實施例中,測量單元240計算出正比於第一轉移電壓差VO1的第三電壓VO3,並從第三電壓VO3中减去第二轉移電壓差VO2,進而計算得到被選電池單元211的單元電壓。 When the first compensation current I comp1 is disabled , the measuring unit 240 measures the first transfer voltage difference V O1 from the potential transfer circuit 220. When the first compensation current I comp1 is enabled, the measuring unit 240 measures the second from the potential transfer circuit 220. Transfer voltage difference V O2 . The measuring unit 240 calculates the cell voltage of the selected battery cell 211 based on the first transfer voltage difference V O1 and the second transfer voltage difference V O2 . More specifically, in one embodiment, the measuring unit 240 calculates a third voltage V O3 proportional to the first transfer voltage difference V O1 and subtracts the second transfer voltage difference V O2 from the third voltage V O3 , Further, the cell voltage of the selected battery cell 211 is calculated.

在操作中,若電池單元211被選中,且控制信號CTRL具有第一電壓值(例如,邏輯低電位),電流產生器260除能第一補償電流Icomp1並致能第二補償電流Icomp2。電阻231上產生第一電壓降VDROP1。在一個實施例中,第二補償電流Icomp2與電位轉移電路220消耗的第二電流Icons2基本相 等。因此,第二補償電流Icomp2與第二電流Icons2互相抵消,電阻232上的電壓降可忽略。電位轉移電路220接收第一端口T1與第二端口T2間的第一電壓差VDIFF1。電池單元211的單元電壓VCELL與第一電壓差VDIFF1間的關係為:VDIFF1=VCELL-VDROP1 (1) In operation, when the battery cell 211 is selected, and the control signal CTRL has a first voltage value (e.g., logic low level), the current generator 260 in addition to the first compensation current I comp1 and enable a second compensation current I comp2 . A first voltage drop V DROP1 is produced across resistor 231. It is substantially equal to a second current I cons2 In one embodiment, the second compensation current I comp2 the potential of the transfer circuit 220 is consumed. Therefore, the second compensation current I comp2 and the second current I cons2 cancel each other out, and the voltage drop across the resistor 232 is negligible. The potential transfer circuit 220 receives the first voltage difference V DIFF1 between the first port T1 and the second port T2. The relationship between the cell voltage V CELL of the battery unit 211 and the first voltage difference V DIFF1 is: V DIFF1 =V CELL -V DROP1 (1)

若電池單元211被選中,且控制信號CTRL具有第二電壓值(例如,邏輯高電位),電流產生器260同時致能第一補償電流Icomp1及第二補償電流Icomp2。電阻231上產生第二電壓降VDROP2。在一個實施例中,第一補償電流Icomp1與電位轉移電路220消耗的第一電流Icons1成正比。因此,第一電壓降VDROP1與第二電壓降VDROP2間的關係為:VDROP2=L×VDROP1 (2)其中,L為一常數,指示第一電壓降VDROP1與第二電壓降VDROP2間的比例係數,且L等於(Icons1+Icomp1)/Icons1。電位轉移電路220接收第一端口T1與第二端口T2間的第二電壓差VDIFF2。假設電阻232上的電壓降可以被忽略,則單元電壓VCELL與第二電壓差VDIFF2間的關係為:VDIFF2=VCELL-VDROP2=VCELL-L×VDROP1 (3) When the battery cell 211 is selected, and the control signal CTRL with a second voltage value (e.g., logic high level), the current generator 260 simultaneously enabling the first compensation and the second compensation current I comp1 current I comp2. A second voltage drop V DROP2 is generated across resistor 231. In one embodiment, the first compensation current I COMP1 the potential of the transfer circuit 220 is proportional to the current I consumed by cons1. Therefore, the relationship between the first voltage drop V DROP1 and the second voltage drop V DROP2 is: V DROP2 = L × V DROP1 (2) where L is a constant indicating the first voltage drop V DROP1 and the second voltage drop V proportional coefficient between DROP2, and L is equal to (I cons1 + I comp1) / I cons1. The potential transfer circuit 220 receives the second voltage difference V DIFF2 between the first port T1 and the second port T2. Assuming that the voltage drop across the resistor 232 can be ignored, the relationship between the cell voltage V CELL and the second voltage difference V DIFF2 is: V DIFF2 = V CELL - V DROP2 = V CELL - L × V DROP1 (3)

電位轉移電路220分別接收第一電壓差VDIFF1及第二電壓差VDIFF2,並分別輸出第一轉移電壓差VO1及第二轉移電壓差VO2。測量單元240透過測量第一轉移電壓差VO1及第二轉移電壓差VO2測量第一電壓差VDIFF1及第二電壓差VDIFF2,並根據第一轉移電壓差VO1及第二轉移電壓差VO2計算單元電壓VCELL。在一個實施例中,第一轉移電壓差VO1與第一電壓差VDIFF1間的關係及第二轉移電壓差VO2與第二電壓差VDIFF2間的關係分別為:VO1=K×VDIFF1=K×(VCELL-VDROP1) (4) The potential transfer circuit 220 receives the first voltage difference V DIFF1 and the second voltage difference V DIFF2 , respectively, and outputs a first transfer voltage difference V O1 and a second transfer voltage difference V O2 , respectively . The measuring unit 240 measures the first voltage difference V DIFF1 and the second voltage difference V DIFF2 by measuring the first transfer voltage difference V O1 and the second transfer voltage difference V O2 , and according to the first transfer voltage difference V O1 and the second transfer voltage difference V O2 calculates the cell voltage V CELL . In one embodiment, the relationship between the first transfer voltage difference V O1 and the first voltage difference V DIFF1 and the relationship between the second transfer voltage difference V O2 and the second voltage difference V DIFF2 are: V O1 =K×V DIFF1 = K × (V CELL - V DROP1 ) (4)

VO2=K×VDIFF2=K×(VCELL-L×VDROP1) (5)其中,K為一常數,指示第一轉移電壓差VO1與第一電壓差VDIFF1間的比例係數,也指示第二轉移電壓差VO2與第二電壓差VDIFF2間的比例係數。測量單元240計算正比於第一轉移電壓差VO1的第三電壓VO3,VO3為:VO3=L×VO1=L×K×VCELL-L×K×VDROP1 (6)透過從第三電壓VO3中减去第二轉移電壓差VO2,測量單元240可計算出單元電壓VCELL,VCELL為: VCELL=(VO3-VO2)/(L×K-K) (7) V O2 = K × V DIFF2 = K × (V CELL - L × V DROP1 ) (5) wherein K is a constant indicating a proportional coefficient between the first transfer voltage difference V O1 and the first voltage difference V DIFF1 , A scaling factor between the second transfer voltage difference V O2 and the second voltage difference V DIFF2 is indicated. The measuring unit 240 calculates a third voltage V O3 proportional to the first transfer voltage difference V O1 , and V O3 is: V O3 = L × V O1 = L × K × V CELL - L × K × V DROP1 (6) The second transfer voltage difference V O2 is subtracted from the third voltage V O3 , and the measuring unit 240 can calculate the cell voltage V CELL , V CELL is: V CELL = (V O3 - V O2 ) / (L × KK) (7)

相應地,第一補償電流Icomp1除能時,測量電路接收第一端口T1與第二端口T2間的第一電壓差VDIFF1;第一補償電流Icomp1致能時,測量電路接收第一端口T1與第二端口T2間的第二電壓差VDIFF2。測量電路可根據第一電壓差VDIFF1、第二電壓差VDIFF2及第二電壓降VDROP2與第一電壓降VDROP1之間的比例係數L計算出單元電壓VCELLCorrespondingly, when the first compensation current I comp1 is disabled , the measurement circuit receives the first voltage difference V DIFF1 between the first port T1 and the second port T2; when the first compensation current I comp1 is enabled, the measurement circuit receives the first port A second voltage difference V DIFF2 between T1 and the second port T2. The measuring circuit calculates the cell voltage V CELL according to a proportional coefficient L between the first voltage difference V DIFF1 , the second voltage difference V DIFF2 , and the second voltage drop V DROP2 and the first voltage drop V DROP1 .

有利之處在於,透過產生從電池單元211的正端V+流經電阻231的第一補償電流Icomp1,並在第一補償電流Icomp1除能及致能時分別測量第一端口T1與第二端口T2間的電壓差,可减輕或消除電阻231上的第一電壓降VDROP1對單元電壓的測量造成的負面影響。 The advantage is that the first compensation current I comp1 flowing from the positive terminal V + of the battery unit 211 through the resistor 231 is generated, and the first port T1 and the first port are respectively measured when the first compensation current I comp1 is disabled and enabled. The voltage difference between the two ports T2 can reduce or eliminate the negative impact of the first voltage drop V DROP1 on the resistor 231 on the measurement of the cell voltage.

電池測量電路200可以用相同的方式測量電池單元212及電池單元213的單元電壓,在此不再贅述。此外,測量電池單元212和電池單元213的單元電壓時,補償電流的方向也可以不同於上述方法。例如,當電池單元213被選中時,電位轉移電路220消耗第三電流Icons3及第四電流Icons4。第三電流Icons3從電池單元213的正端V’+流出,流經電阻233及開關274,流向第一端口T1。第四電流Icons4從電池單元213的負端V’-流出,流經電阻234及開關276,流向第二端口T2。電流產生器260分別根據第三電流Icons3及第四電流Icons4產生第三補償電流Icomp3及第四補償電流Icomp4。第三補償電流Icomp3從第一端口T1流出,流經開關274及電阻233,流向電池單元213的正端V’+。第四補償電流Icomp4從第二端口T2流出,流經開關276及電阻234,流向電池單元213的負端V’-。在一個實施例中,第三補償電流Icomp3及第四補償電流Icomp4分別與第三電流Icons3及第四電流Icons4基本相等。測量單元240測量電位轉移電路220產生的正比於電池單元213的單元電壓的轉移電壓差。進而,電池測量電路200得到電池單元213的單元電壓。 The battery measuring circuit 200 can measure the cell voltage of the battery unit 212 and the battery unit 213 in the same manner, and details are not described herein again. Further, when the cell voltages of the battery unit 212 and the battery unit 213 are measured, the direction of the compensation current may be different from the above method. For example, when the battery unit 213 is selected, the potential transfer circuit 220 consumes the third current I cons3 and the fourth current I cons4 . The third current I cons3 flows from the positive terminal V' + of the battery unit 213, flows through the resistor 233 and the switch 274, and flows to the first port T1. I cons4 fourth current from the negative terminal of the battery cell of V 213 '- effluent flowing through the resistor 234 and a switch 276, to the second port T2. The current generator 260 generates a third compensation current I comp3 and a fourth compensation current I comp4 according to the third current I cons3 and the fourth current I cons4 , respectively . The third compensation current I comp3 flows out from the first port T1, flows through the switch 274 and the resistor 233, and flows to the positive terminal V' + of the battery unit 213. The fourth compensation current I comp4 flows from the second port T2, flows through the switch 276 and the resistor 234, and flows to the negative terminal V' - of the battery unit 213. In one embodiment, the third compensation current I comp3 and the fourth compensation current I comp4 are substantially equal to the third current I cons3 and the fourth current I cons4 , respectively . The measuring unit 240 measures the transfer voltage difference generated by the potential transfer circuit 220 proportional to the cell voltage of the battery cell 213. Further, the battery measuring circuit 200 obtains the cell voltage of the battery unit 213.

圖3所示為根據本發明一實施例之測量電池組內電池單元的單元電壓的電池測量電路300的結構示意圖。圖3將結合圖2描述。圖3中以電池測量電路300測量電池單元211的單元電壓為例說明。圖2中的電池組210內的其他電池單元的單元電壓可以采用類似方式測量。 3 is a block diagram showing the structure of a battery measuring circuit 300 for measuring the cell voltage of a battery cell in a battery pack according to an embodiment of the invention. Figure 3 will be described in conjunction with Figure 2. The cell voltage of the battery cell 211 is measured by the battery measuring circuit 300 in FIG. 3 as an example. The cell voltages of other battery cells within battery pack 210 in Figure 2 can be measured in a similar manner.

如圖3所示,電位轉移電路220包括放大器(Operational Amplifier,簡稱OPA)341和放大器342,以及電阻331、電阻332、電阻333和電阻334。電流產生器260包括電流源382及電流源384,產生第一補償電流Icomp1及第二補償電流Icomp2。電流產生器260還包括與電流源384串聯耦合的開關392,開關392用於除能或致能第一補償電流Icomp1。測量單元240包括類比/數位轉換器(Analog-to-Digital Converter,簡稱ADC)352及控制電路362。類比/數位轉換器352將轉移端VOUTP及轉移端VOUTN之間的第一轉移電壓差VO1及第二轉移電壓差VO2轉換成數位信號。控制電路362控制電流產生器260中的開關392,以除能或致能第一補償電流Icomp1,並根據從類比/數位轉換器352接收的指示第一轉移電壓差VO1及第二轉移電壓差VO2的數位信號計算電池單元211的單元電壓VCELLAs shown in FIG. 3, the potential transfer circuit 220 includes an amplifier (Operational Amplifier, OPA for short) 341 and an amplifier 342, and a resistor 331, a resistor 332, a resistor 333, and a resistor 334. The current generator 260 includes a current source 382 and a current source 384 to generate a first compensation current I comp1 and a second compensation current I comp2 . Current generator 260 also includes a switch 392 coupled in series with current source 384 for disabling or enabling first compensation current Icomp1 . The measuring unit 240 includes an Analog-to-Digital Converter (ADC) 352 and a control circuit 362. The analog/digital converter 352 converts the first transfer voltage difference V O1 and the second transfer voltage difference V O2 between the transfer terminal V OUTP and the transfer terminal V OUTN into a digital signal. The control circuit 362 controls the switch 392 in the current generator 260 to disable or enable the first compensation current I comp1 and to determine the first transfer voltage difference V O1 and the second transfer voltage according to the indication received from the analog/digital converter 352. The digital signal of the difference V O2 calculates the cell voltage V CELL of the battery cell 211.

在操作中,當開關271及開關273導通時,電池單元211被選中。電位轉移電路220消耗第一電流Icons1及第二電流Icons2。第一電流Icons1從電池單元211的正端V+流出,流經電阻231、開關271、電阻331、電阻333以及放大器341。第二電流Icons2從電池單元211的負端V-流出,流經電阻232、開關273,電阻332、電阻334以及放大器342。 In operation, when the switch 271 and the switch 273 are turned on, the battery unit 211 is selected. The potential transfer circuit 220 consumes the first current I cons1 and the second current I cons2 . The first current I cons1 flows out from the positive terminal V + of the battery cell 211 and flows through the resistor 231, the switch 271, the resistor 331, the resistor 333, and the amplifier 341. The second current I cons2 flows from the negative terminal V − of the battery unit 211 and flows through the resistor 232 , the switch 273 , the resistor 332 , the resistor 334 , and the amplifier 342 .

控制電路362控制開關392斷開,如此,第一補償電流Icomp1被除能,第二補償電流Icomp2致能。在一個實施例中,第二補償電流Icomp2與電位轉移電路220消耗的第二電流Icons2基本相等。 The control circuit 362 controls the switch 392 is turned off, thus, the first compensation current I comp1 is disabled, the second compensation current I comp2 enabled. It is substantially equal to a second current I cons2 In one embodiment, the second compensation current I comp2 the potential of the transfer circuit 220 is consumed.

放大器341接收預設參考電壓VREF。在一個實施例中,電阻331與電阻332阻值相同,電阻333與電阻334阻值相同。轉移端VOUTP及轉移端VOUTN間的電壓差為:VOUTP-VOUTN=K×(VT1-VT2) (8)其中,常數K為:K=R333/R331 (9)R333為電阻333的阻值,R331為電阻331的阻值。 The amplifier 341 receives the preset reference voltage V REF . In one embodiment, resistor 331 has the same resistance as resistor 332, and resistor 333 has the same resistance as resistor 334. The voltage difference between the transfer terminal V OUTP and the transfer terminal V OUTN is: V OUTP -V OUTN =K ×(V T1 -V T2 ) (8) where the constant K is: K=R 333 /R 331 (9)R 333 is the resistance of the resistor 333, and R 331 is the resistance of the resistor 331.

相應地,電位轉移電路220向類比/數位轉換器352提供第一轉移電壓差VO1。類比/數位轉換器352將第一轉移電壓差VO1轉換成第一數位信號D1。 Accordingly, the potential transfer circuit 220 supplies the analog/digital converter 352 with a first transfer voltage difference V O1 . The analog/digital converter 352 converts the first transfer voltage difference V O1 into a first digital signal D1.

然後,控制電路362控制開關392導通。因此,第一補償電 流Icomp1及第二補償電流Icomp2均被致能。相應地,電位轉移電路220向類比/數位轉換器352提供第二轉移電壓差VO2。類比/數位轉換器352將第二轉移電壓差VO2轉換成第二數位信號D2。控制電路362接收第一數位信號D1及第二數位信號D2,並相應計算出電池單元211的單元電壓VCELLControl circuit 362 then controls switch 392 to conduct. Therefore, both the first compensation current I comp1 and the second compensation current I comp2 are enabled. Accordingly, the potential transfer circuit 220 supplies the analog/digital converter 352 with a second transfer voltage difference V O2 . The analog/digital converter 352 converts the second transfer voltage difference V O2 into a second digital signal D2. The control circuit 362 receives the first digital signal D1 and the second digital signal D2, and calculates the cell voltage V CELL of the battery unit 211 accordingly.

圖4所示為根據本發明另一個實施例的測量電池組內電池單元的單元電壓的電池測量電路400的結構示意圖。圖4中編號與圖3中編號相同的電路元件具有相同的功能,在此不再贅述。圖4將結合圖3進行描述。 4 is a block diagram showing the structure of a battery measuring circuit 400 for measuring a cell voltage of a battery cell in a battery pack according to another embodiment of the present invention. The circuit elements in FIG. 4 numbered the same as those in FIG. 3 have the same functions and will not be described again. Figure 4 will be described in conjunction with Figure 3.

如圖4所示,電位轉移電路220還包括開關422。透過在測量單元電壓VCELL的過程中控制開關422,可减小由於電路元件的非理想因素對單元電壓的測量造成的影響。非理想因素,例如,包括開關271及開關273的導通電阻、電阻331及電阻332間的失配、電阻333及電阻334間的失配、以及放大器342的輸入偏移電壓。 As shown in FIG. 4, the potential transfer circuit 220 further includes a switch 422. By controlling the switch 422 during the measurement of the cell voltage V CELL , the effect on the measurement of the cell voltage due to non-ideal factors of the circuit components can be reduced. Non-ideal factors include, for example, the on-resistance of the switches 271 and 273, the mismatch between the resistors 331 and 332, the mismatch between the resistors 333 and 334, and the input offset voltage of the amplifier 342.

更具體而言,控制電路362控制開關422交替導通及斷開。開關422導通時,測量單元240測量開關271、開關273以及電位轉移電路220的非理想因素,並相應得到測量結果VA。開關422斷開時,電位轉移電路220接收第一端口T1與第二端口T2間的電壓差,測量單元240相應得到測量結果VB。有利之處在於,透過從測量結果VB中减去測量結果VA,可减小非理想因素對單元電壓測量造成的影響。 More specifically, control circuit 362 controls switch 422 to alternately turn on and off. When the switch 422 is turned on, the measuring unit 240 measures the non-ideal factors of the switch 271, the switch 273, and the potential transfer circuit 220, and obtains the measurement result V A correspondingly. When the switch 422 is turned off, the potential transfer circuit 220 receives the voltage difference between the first port T1 and the second port T2, and the measuring unit 240 obtains the measurement result V B correspondingly. Advantageously, by subtracting the measurement V A from the measurement V B , the effect of the non-ideal factor on the cell voltage measurement can be reduced.

在操作中,開關271及開關273導通以選中電池單元211。控制電路362控制開關422導通,並控制開關392斷開,此時第一端口T1和第二端口T2短路。因此,第一補償電流Icomp1被除能,第二補償電流Icomp2致能。假設第二補償電流Icomp2與電位轉移電路220消耗的第二電流Icons2基本相等,開關273上的電壓降可忽略。更進一步地,假設開關271上的電壓降為VSW1,放大器342的輸入偏移電壓為VOS1In operation, switch 271 and switch 273 are turned on to select battery unit 211. The control circuit 362 controls the switch 422 to be turned on, and controls the switch 392 to be turned off, at which time the first port T1 and the second port T2 are short-circuited. Accordingly, the first compensation current I comp1 is disabled, the second compensation current I comp2 enabled. Assuming that the second compensation current I comp2 is substantially equal to the second current I cons2 consumed by the potential transfer circuit 220, the voltage drop across the switch 273 is negligible. Further, assuming that the voltage drop across switch 271 is V SW1 , the input offset voltage of amplifier 342 is V OS1 .

根據第一轉移電壓差VO1及第二轉移電壓差VO2,控制電路362得到被選電池單元211的單元電壓VCELL。如圖4所示,開關422置於節點H與節點S之間。開關422若置於第一端口T1與第二端口T2之間(圖4中未示出此連接方式),也可達到類似的結果。有利之處在於,透過减小 非理想因素對於單元電壓測量的影響,電池測量電路400可更準確地測量單元電壓VCELLBased on the first transfer voltage difference V O1 and the second transfer voltage difference V O2 , the control circuit 362 obtains the cell voltage V CELL of the selected battery cell 211. As shown in FIG. 4, switch 422 is placed between node H and node S. Similar results can be achieved if switch 422 is placed between first port T1 and second port T2 (this connection is not shown in Figure 4). Advantageously, the battery measurement circuit 400 can more accurately measure the cell voltage V CELL by reducing the effects of non-ideal factors on cell voltage measurements.

圖5所示為圖4中開關422導通及開關392斷開時的等效電路500的結構示意圖。圖5中編號與圖4中編號相同的電路元件具有相同的功能,在此不再贅述。圖5將結合圖4進行描述。類比/數位轉換器352透過測量轉移端VOUTP及轉移端VOUTN之間的電壓差(VOUTP-VOUTN)得到第三電壓差VO1A。第三電壓差VO1A為:VO1A=m1×VSW1+n1×VOS1+q1×△R×VIN (10)其中,m1、n1及q1為比例係數,△R為比率R331/R333與比率R332/R334間的差值,VIN為電池單元211的正端V+處的電壓。△R由電阻331和電阻332間的失配及電阻333和電阻334間的失配引起。在一個實施例中,第三電壓差VO1A指示第一補償電流Icomp1被除能、第二補償電流Icomp2致能時的非理想因素(例如,開關271的導通電阻及放大器342的輸入偏移電壓)。 FIG. 5 is a schematic structural view of an equivalent circuit 500 when the switch 422 of FIG. 4 is turned on and the switch 392 is turned off. The circuit elements in FIG. 5 numbered the same as those in FIG. 4 have the same functions and will not be described again. Figure 5 will be described in conjunction with Figure 4. Analog / digital converter 352 through the measured transition voltage difference (V OUTP -V OUTN) to obtain a third voltage V O1A difference between V OUTP and transfer end V OUTN. The third voltage difference V O1A is: V O1A = m 1 × V SW1 + n 1 × V OS1 + q 1 × ΔR × V IN (10) where m 1 , n 1 and q 1 are proportional coefficients, ΔR is the difference between the ratio R 331 / R 333 and the ratio R 332 / R 334, V iN 211 to the battery cell voltage V + at the positive terminal. ΔR is caused by a mismatch between the resistor 331 and the resistor 332 and a mismatch between the resistor 333 and the resistor 334. In one embodiment, the third voltage difference V O1A first compensation current I comp1 indication is disabled, the second compensation current I comp2 non-ideal factors can be induced (e.g., on-resistance of the switch input 271 and an amplifier 342 bias Shift voltage).

控制電路362控制開關422及開關392導通時,第一補償電流Icomp1及第二補償電流Icomp2均致能。此時第一端口T1和第二端口T2短路。類似地,假設開關273上的電壓降可忽略,開關271上的電壓降為VSW2,放大器342的輸入偏移電壓為VOS2,開關422及開關392均導通時的等效電路與圖5所示電路500相似。在一個實施例中,輸入偏移電壓VOS1與輸入偏移電壓VOS2相等。類比/數位轉換器352透過測量轉移端VOUTP及轉移端VOUTN之間的電壓差(VOUTP-VOUTN)得到第四電壓差VO2A。第四電壓差VO2A為:VO2A=m2×VSW2+n2×VOS2+q2×△R×VIN (12)其中,m2、n2及q2為比例係數。在一個實施例中,第四電壓差VO2A指示第一補償電流Icomp1及第二補償電流Icomp2均致能時的非理想因素(例如,開關271的導通電阻及放大器342的輸入偏移電壓)。 When the control circuit 362 controls the switch 422 and the switch 392 to be turned on, the first compensation current I comp1 and the second compensation current I comp2 are both enabled. At this time, the first port T1 and the second port T2 are short-circuited. Similarly, assuming that the voltage drop across switch 273 is negligible, the voltage drop across switch 271 is V SW2 , the input offset voltage of amplifier 342 is V OS2 , and the equivalent circuit when both switch 422 and switch 392 are turned on is shown in Figure 5. The circuit 500 is similar. In one embodiment, the input offset voltage V OS1 is equal to the input offset voltage V OS2 . The analog/digital converter 352 obtains a fourth voltage difference V O2A by measuring a voltage difference (V OUTP -V OUTN ) between the transfer terminal V OUTP and the transfer terminal V OUTN . The fourth voltage difference V O2A is: V O2A = m 2 × V SW2 + n 2 × V OS2 + q 2 × ΔR × V IN (12) where m 2 , n 2 and q 2 are proportional coefficients. In one embodiment, the fourth voltage difference V O2A indicating the first compensation and the second compensation current I comp1 current I comp2 non-ideal factors were induced energy (e.g., the input offset voltage switch 271 on-resistance and an amplifier 342 ).

圖6所示為圖4中開關422及開關392均斷開時的等效電路600的示意圖。圖6中編號與圖4中編號相同的電路元件具有相同的功能,在此不再贅述。圖6將結合圖4進行描述。類比/數位轉換器352透過測量轉移端VOUTP及轉移端VOUTN之間的電壓差(VOUTP-VOUTN)得到測量結果VO1B。測量結果VO1B為: VO1B=VO1+m1×VSW1+n1×VOS1+q1×△R×VIN (11)在一個實施例中,測量結果VO1B指示第一補償電流Icomp1被除能、第二補償電流Icomp2致能時的非理想因素(例如,開關271的導通電阻及放大器342的輸入偏移電壓)及第一轉移電壓差VO1。相應地,控制電路362透過從測量結果VO1B中减去第三電壓差VO1A得到第一轉移電壓差VO1,進而减小開關271的導通電阻及放大器342的輸入偏移電壓對單元電壓測量造成的影響。 FIG. 6 is a schematic diagram of an equivalent circuit 600 when both the switch 422 and the switch 392 of FIG. 4 are open. The circuit elements in FIG. 6 numbered the same as those in FIG. 4 have the same functions and will not be described again. Figure 6 will be described in conjunction with Figure 4. Analog / digital converter 352 through the measured transition voltage difference (V OUTP -V OUTN) V O1B measurement results obtained between V OUTP and transfer end V OUTN. The measurement result V O1B is: V O1B = V O1 + m 1 × V SW1 + n 1 × V OS1 + q 1 × ΔR × V IN (11) In one embodiment, the measurement result V O1B indicates the first compensation current I comp1 is disabled, the second compensation current I comp2 non-ideal factors can be induced (e.g., on-resistance switch 271 and an amplifier input offset voltage 342) and the first transfer differential voltage V O1. Correspondingly, the control circuit 362 obtains the first transfer voltage difference V O1 by subtracting the third voltage difference V O1A from the measurement result V O1B , thereby reducing the on-resistance of the switch 271 and the input offset voltage of the amplifier 342 to measure the cell voltage. The impact.

開關422斷開及開關392導通時的等效電路與圖6所示電路600相似。類似地,類比/數位轉換器352透過測量轉移端VOUTP及轉移端VOUTN之間的電壓差(VOUTP-VOUTN)得到測量結果VO2B。測量結果VO2B為:VO2B=VO2+m2×VSW2+n2×VOS2+q2×△R×VIN (13)在一個實施例中,測量結果VO2B指示第一補償電流Icomp1及第二補償電流Icomp2均致能時的非理想因素(例如,開關271的導通電阻及放大器342的輸入偏移電壓)及第二轉移電壓差VO2。相應地,控制電路362透過從測量結果VO2B中减去第四電壓差VO2A得到第二轉移電壓差VO2,進而减小開關271的導通電阻及放大器342的輸入偏移電壓對單元電壓測量造成的影響。 The equivalent circuit when switch 422 is open and switch 392 is turned on is similar to circuit 600 shown in FIG. Similarly, the analog / digital converter 352 between the end of the transition voltage V OUTP and V OUTN terminal transfer difference (V OUTP -V OUTN) V O2B measurement results obtained through the measurement. The measurement result V O2B is: V O2B = V O2 + m 2 × V SW2 + n 2 × V OS2 + q 2 × ΔR × V IN (13) In one embodiment, the measurement result V O2B indicates the first compensation current I comp1 and the second compensation current I comp2 are non-ideal factors can be induced (e.g., on-resistance switch 271 and an amplifier 342, an input offset voltage) and the voltage difference between the second transfer V O2. Correspondingly, the control circuit 362 obtains the second transfer voltage difference V O2 by subtracting the fourth voltage difference V O2A from the measurement result V O2B , thereby reducing the on-resistance of the switch 271 and the input offset voltage of the amplifier 342 to measure the cell voltage. The impact.

圖7所示為根據本發明又一個實施例的測量電池組內電池單元的單元電壓的電池測量電路700的結構示意圖。如圖7所示,電位轉移電路220中的放大器341監測第一電流Icons1FIG. 7 is a block diagram showing the structure of a battery measuring circuit 700 for measuring the cell voltage of a battery cell in a battery pack according to still another embodiment of the present invention. As shown in FIG. 7, the amplifier 341 in the potential transfer circuit 220 monitors the first current I cons1 .

如圖7所示,電流產生器260根據監測電流ISEN產生第一補償電流Icomp1及第二補償電流Icomp2。更具體而言,電流產生器260包括由金屬氧化半導體場效應電晶體761~金屬氧化半導體場效應電晶體763構成的電流鏡及由金屬氧化半導體場效應電晶體767~金屬氧化半導體場效應電晶體768構成的電流鏡,分別產生第一補償電流Icomp1及第二補償電流Icomp2。監測電流ISEN流經金屬氧化半導體場效應電晶體761。因此,流經金屬氧化半導體場效應電晶體767的第一補償電流Icomp1及流經金屬氧化半導體場效應電晶體763的電流I763正比於監測電流ISEN。在一個實施例中,電流I763與第一電流Icons1基本相等。 As shown in FIG. 7, the current generator 260 generates a first compensation current I comp1 and a second compensation current I comp2 according to the monitoring current I SEN . More specifically, the current generator 260 includes a current mirror composed of a metal oxide semiconductor field effect transistor 761 to a metal oxide semiconductor field effect transistor 763 and a metal oxide semiconductor field effect transistor 767 to a metal oxide semiconductor field effect transistor. A current mirror formed by 768 generates a first compensation current I comp1 and a second compensation current I comp2 , respectively . The monitoring current I SEN flows through the metal oxide semiconductor field effect transistor 761. Therefore, the first compensation current I comp1 flowing through the metal oxide semiconductor field effect transistor 767 and the current I 763 flowing through the metal oxide semiconductor field effect transistor 763 are proportional to the monitoring current I SEN . In one embodiment, current I 763 is substantially equal to first current I cons1 .

電流產生器260還包括放大器764、金屬氧化半導體場效應電晶體765及電阻766。在一個實施例中,電阻766的阻值與電阻333及電 阻334的阻值相等。透過結合方程式(8)和方程式(9),可得流經金屬氧化半導體場效應電晶體765的電流ICELL為:ICELL=(VOUTP-VOUTN)/R766=(VT1-VT2)/R331 (14)其中,R766為電阻766的阻值。 Current generator 260 also includes an amplifier 764, a metal oxide semiconductor field effect transistor 765, and a resistor 766. In one embodiment, the resistance of resistor 766 is equal to the resistance of resistor 333 and resistor 334. By combining equations (8) and (9), the current I CELL flowing through the metal oxide semiconductor field effect transistor 765 is: I CELL = (V OUTP - V OUTN ) / R 766 = (V T1 - V T2 /R 331 (14) where R 766 is the resistance of resistor 766.

第一電流Icons1基本上等於(VT1-VOUTN)/(R331+R333),第二電流Icons2基本上等於(VT2-VOUTP)/(R332+R334)。則第一電流Icons1與第二電流Icons2間的差值為:Icons1-Icons2=(VT1-VOUTN)/(R331+R333)-(VT2-VOUTP)/(R332+R334)=[(VT1-VT2)+(VOUTP-VOUTN)]/(R331+R333)=(VT1-VT2)/R331 (15)透過結合方程式(14)及方程式(15),可得第二電流Icons2為:Icons2=Icons1-ICELL (16)因此,第二補償電流Icomp2等於I763-ICELL,也即等於Icons1-ICELL,也即第二補償電流Icomp2等於第二電流Icons2The first current I cons1 is substantially equal to (V T1 -V OUTN ) / (R 331 +R 333 ), and the second current I cons2 is substantially equal to (V T2 -V OUTP ) / (R 332 +R 334 ). Then, the difference between the first current I cons1 and the second current I cons2 is: I cons1 -I cons2 =(V T1 -V OUTN )/(R 331 +R 333 )-(V T2 -V OUTP )/(R 332 +R 334 )=[(V T1 -V T2 )+(V OUTP -V OUTN )]/(R 331 +R 333 )=(V T1 -V T2 )/R 331 (15) Permeation equation (14) And equation (15), the second current I cons2 is: I cons2 =I cons1 -I CELL (16) Therefore, the second compensation current I comp2 is equal to I 763 -I CELL , which is equal to I cons1 -I CELL That is, the second compensation current I comp2 is equal to the second current I cons2 .

圖8所示為圖7中的包括金屬氧化半導體場效應電晶體(Metal-Oxide-Semiconductor Field Effect Transistors,簡稱MOSFET)的放大器341的結構示意圖。圖8將結合圖7進行描述。金屬氧化半導體場效應電晶體如圖8所示,端口VDD及端口VSS為放大器341的電源電壓端口,端口VBP及端口VBN為偏置電壓端口。金屬氧化半導體場效應電晶體801、金屬氧化半導體場效應電晶體802、金屬氧化半導體場效應電晶體803及金屬氧化半導體場效應電晶體804構成電流鏡。在一個實施例中,流經端口IO的電流正比於流經端口OUT的電流。圖7中的第一電流Icons1流經電阻333並流進放大器341的端口OUT。相應地,圖7中流進端口IO的監測電流ISEN監測第一電流Icons1並正比於第一電流Icons1FIG. 8 is a schematic view showing the structure of an amplifier 341 including a Metal Oxide-Semiconductor Field Effect Transistor (MOSFET) in FIG. Figure 8 will be described in conjunction with Figure 7. The metal oxide semiconductor field effect transistor is shown in FIG. 8. Port V DD and port V SS are the power supply voltage ports of the amplifier 341, and the ports V BP and V BN are the bias voltage ports. The metal oxide semiconductor field effect transistor 801, the metal oxide semiconductor field effect transistor 802, the metal oxide semiconductor field effect transistor 803, and the metal oxide semiconductor field effect transistor 804 constitute a current mirror. In one embodiment, the current flowing through port IO is proportional to the current flowing through port OUT. The first current I cons1 in FIG. 7 flows through the resistor 333 and flows into the port OUT of the amplifier 341. Accordingly, the monitoring current I SEN flowing into the port IO in FIG. 7 monitors the first current I cons1 and is proportional to the first current I cons1 .

圖9所示為根據本發明一個實施例的測量電池組內電池單元的單元電壓的電池測量方法流程圖900。圖9將結合圖2~圖8進行描述。 9 is a flow chart 900 of a battery measurement method for measuring a cell voltage of a battery cell within a battery pack, in accordance with one embodiment of the present invention. Figure 9 will be described in conjunction with Figures 2-8.

在步驟902中,選中電池單元(例如,電池單元211)。 In step 902, a battery unit (eg, battery unit 211) is selected.

在步驟904中,測量電路消耗第一電流及第二電流。第一電流從被選電池單元的正端流出,流經第一電阻,流向第一端口。第二電流從被選電池單元的負端流出,流經第二電阻,流向第二端口。例如,測量 電路消耗第一電流Icons1及第二電流Icons2。第一電流Icons1從電池單元211的正端V+流出,流經電阻231及開關271,流向第一端口T1。第二電流Icons2從電池單元211的負端V-流出,流經電阻232及開關273,流向第二端口T2。 In step 904, the measurement circuit consumes the first current and the second current. The first current flows from the positive terminal of the selected battery cell, flows through the first resistor, and flows to the first port. The second current flows from the negative terminal of the selected battery cell, flows through the second resistor, and flows to the second port. For example, the measurement circuit consumes the first current I cons1 and the second current I cons2 . The first current I cons1 flows out from the positive terminal V + of the battery unit 211 , flows through the resistor 231 and the switch 271 , and flows to the first port T1 . The second current I cons2 flows from the negative terminal V − of the battery unit 211 , flows through the resistor 232 and the switch 273 , and flows to the second port T2 .

在步驟906中,根據第一電流產生第一補償電流,根據第二電流產生第二補償電流。第一補償電流從被選電池單元正端流出,流經第一電阻,流向第一端口。第二補償電流從第二端口流出,流經第二電阻,流向被選電池單元的負端。例如,若選中電池單元211,則根據第一電流Icons1產生第一補償電流Icomp1。第一補償電流Icomp1從正端V+流出,流經電阻231及開關271,流向第一端口T1。同時,根據第二電流Icons2產生第二補償電流Icomp2。第二補償電流Icomp2從第二端口T2流出,流經開關273及電阻232,流向負端V-。在一個實施例中,第一補償電流Icomp1正比於第一電流Icons1,第二補償電流Icomp2基本上等於第二電流Icons2In step 906, a first compensation current is generated according to the first current, and a second compensation current is generated according to the second current. The first compensation current flows from the positive terminal of the selected battery cell, flows through the first resistor, and flows to the first port. The second compensation current flows from the second port, flows through the second resistor, and flows to the negative terminal of the selected battery unit. For example, if the selected cell 211, a first compensation current is generated in accordance with a first current I comp1 I cons1. The first compensation current I comp1 flows from the positive terminal V + , flows through the resistor 231 and the switch 271, and flows to the first port T1. At the same time, generating a second compensation current I comp2 According to a second current I cons2. The second compensation current I comp2 flows out from the second port T2, flows through the switch 273 and the resistor 232, and flows to the negative terminal V . In one embodiment, the first compensation current I comp1 is proportional to the first current I cons1 and the second compensation current I comp2 is substantially equal to the second current I cons2 .

在步驟908中,當第一補償電流除能時,測量電路接收第一端口與第二端口間的第一電壓差,當第一補償電流致能時,測量電路接收第一端口與第二端口間的第二電壓差。更具體而言,第一補償電流除能時,第一電阻上產生第一電壓降,第一補償電流致能時,第一電阻上產生第二電壓降。第一電壓差指示被選電池單元的單元電壓與第一電壓降之間的差值。第二電壓差指示被選電池單元的單元電壓與第二電壓降之間的差值。測量電路還提供指示第一電壓差的第一轉移電壓差及指示第二電壓差的第二轉移電壓差。 In step 908, when the first compensation current is disabled, the measurement circuit receives a first voltage difference between the first port and the second port, and when the first compensation current is enabled, the measurement circuit receives the first port and the second port. The second voltage difference between. More specifically, when the first compensation current is disabled, a first voltage drop is generated on the first resistor, and when the first compensation current is enabled, a second voltage drop is generated on the first resistor. The first voltage difference indicates a difference between a cell voltage of the selected battery cell and a first voltage drop. The second voltage difference indicates a difference between a cell voltage of the selected battery cell and a second voltage drop. The measurement circuit also provides a first transfer voltage difference indicative of the first voltage difference and a second transfer voltage difference indicative of the second voltage difference.

例如,第一補償電流Icomp1除能時,電阻231上產生第一電壓降VDROP1。測量電路接收第一端口T1與第二端口T2間的第一電壓差VDIFF1。第一電壓差VDIFF1指示電池單元211的單元電壓VCELL與第一電壓降VDROP1間的差值。相應地,測量電路提供轉移端VOUTP與轉移端VOUTN間的第一轉移電壓差VO1。第一轉移電壓差VO1指示第一電壓差VDIFF1。第一補償電流Icomp1致能時,電阻231上產生第二電壓降VDROP2。測量電路接收第一端口T1與第二端口T2間的第二電壓差VDIFF2。第二電壓差VDIFF2指示單元電壓VCELL與第二電壓降VDROP2間的差值。相應地,測量電路提供轉移端VOUTP與轉移端VOUTN間的第二轉移電壓差VO2。第二轉移電壓差VO2指示第二電壓差VDIFF2For example, the first compensation current I comp1 except when enabled, generates a first voltage drop across the resistor 231 V DROP1. The measuring circuit receives the first voltage difference V DIFF1 between the first port T1 and the second port T2. The first voltage difference V DIFF1 indicates a difference between the cell voltage V CELL of the battery cell 211 and the first voltage drop V DROP1 . Correspondingly, the measuring circuit provides a first transfer voltage difference V O1 between the transfer terminal V OUTP and the transfer terminal V OUTN . The first transfer voltage difference V O1 indicates the first voltage difference V DIFF1 . When the first compensation current I comp1 is enabled, a second voltage drop V DROP2 is generated across the resistor 231. The measurement circuit receives a second voltage difference V DIFF2 between the first port T1 and the second port T2. The second voltage difference V DIFF2 indicates the difference between the cell voltage V CELL and the second voltage drop V DROP2 . Correspondingly, the measuring circuit provides a second transfer voltage difference V O2 between the transfer terminal V OUTP and the transfer terminal V OUTN . The second transfer voltage difference V O2 indicates the second voltage difference V DIFF2 .

在步驟910中,測量電路根據第一電壓差及第二電壓差計算被選電池單元的單元電壓。更具體而言,測量電路計算出正比於第一轉移電壓差的第三電壓,並從第三電壓中减去第二轉移電壓差。例如,測量電路計算出正比於第一轉移電壓差VO1的第三電壓VO3。透過從第三電壓VO3中减去第二轉移電壓差VO2,可得到被選電池單元的單元電壓VCELL。也就是說,測量電路根據第二電壓降VDROP2與第一電壓降VDROP1之間的比例係數計算出被選電池單元的單元電壓VCELLIn step 910, the measurement circuit calculates a cell voltage of the selected battery cell based on the first voltage difference and the second voltage difference. More specifically, the measurement circuit calculates a third voltage proportional to the first transfer voltage difference and subtracts the second transfer voltage difference from the third voltage. For example, the measurement circuit calculates a third voltage V O3 that is proportional to the first transfer voltage difference V O1 . By subtracting the second transfer voltage difference V O2 from the third voltage V O3 , the cell voltage V CELL of the selected battery cell can be obtained. That is, the measuring circuit calculates the cell voltage V CELL of the selected battery cell based on the proportional coefficient between the second voltage drop V DROP2 and the first voltage drop V DROP1 .

圖10所示為根據本發明再一個實施例的測量電池組內電池單元的單元電壓的電池測量電路1000的結構方塊示意圖。圖10中與圖2中標號相同的元件有相同或相似的功能。 FIG. 10 is a block diagram showing the structure of a battery measuring circuit 1000 for measuring a cell voltage of a battery cell in a battery pack according to still another embodiment of the present invention. Elements in Figure 10 that have the same reference numerals as in Figure 2 have the same or similar functions.

電池測量電路1000包括電池組210、電阻組230、電容組280、開關組270、電流產生器1060及測量電路。測量電路包括電位轉移電路220和測量單元1040。電池測量電路1000還包括雙接面電晶體101及雙接面電晶體102。電池單元211被選中時,雙接面電晶體101及雙接面電晶體102可减小電流Icons10及電流Icons20對單元電壓測量的影響。電阻103及電阻104用於在雙接面電晶體101及雙接面電晶體102的基極與射級之間產生偏置電壓。更具體而言,電池單元211被選中時,假設流經電阻103及電阻104的電流可忽略,電流Icons10及電流Icons20為雙接面電晶體101及雙接面電晶體102的基極電流,流進電位轉移電路220的電流為雙接面電晶體101及雙接面電晶體102的射極電流。對雙接面電晶體而言,基極電流小於射級電流。因此,電流Icons10及電流Icons20小於流進電位轉移電路220的電流。在一個實施例中,可忽略電流Icons10及電流Icons20,因此,電阻231上的電壓降及電阻232上的電壓降也可忽略。電位轉移電路220接收第一端口T1與第二端口T2間的電壓差,並提供正比於被選電池單元211的單元電壓的轉移電壓差。測量單元1040測量電位轉移電路220產生的轉移電壓差。如此,電池測量電路1000得到電池單元211的單元電壓VCELL。電池測量電路1000測量電池單元212及電池單元213的單元電壓的方式與圖2中的電池測量電路200測量電池單元212及電池單元213的單元電壓的方式相似。也就是說,與圖2中的電流產生器260相似,測量電池單元212及電池單元213的單元 電壓時,電流產生器1060產生補償電流。但測量電池單元211的單元電壓時,由於電位轉移電路220消耗的電流可忽略,電流產生器1060不產生第一補償電流Icomp1及第二補償電流Icomp2Battery measurement circuit 1000 includes battery pack 210, resistor bank 230, capacitor bank 280, switch bank 270, current generator 1060, and measurement circuitry. The measurement circuit includes a potential transfer circuit 220 and a measurement unit 1040. Battery measurement circuit 1000 also includes dual junction transistor 101 and dual junction transistor 102. When the battery unit 211 is selected, the double junction transistor 101 and the double junction transistor 102 can reduce the influence of the current I cons10 and the current I cons20 on the cell voltage measurement. The resistor 103 and the resistor 104 are used to generate a bias voltage between the base and the emitter of the double junction transistor 101 and the double junction transistor 102. More specifically, when the battery unit 211 is selected, it is assumed that the current flowing through the resistor 103 and the resistor 104 is negligible, and the current I cons10 and the current I cons20 are the bases of the double junction transistor 101 and the double junction transistor 102. The current flowing into the potential transfer circuit 220 is the emitter current of the double junction transistor 101 and the double junction transistor 102. For a double junction transistor, the base current is less than the emitter current. Therefore, the current I cons10 and the current I cons20 are smaller than the current flowing into the potential transfer circuit 220. In one embodiment, current I cons10 and current I cons20 may be ignored, so that the voltage drop across resistor 231 and the voltage drop across resistor 232 are also negligible. The potential transfer circuit 220 receives the voltage difference between the first port T1 and the second port T2 and provides a transfer voltage difference proportional to the cell voltage of the selected battery cell 211. The measuring unit 1040 measures the transfer voltage difference generated by the potential transfer circuit 220. Thus, the battery measuring circuit 1000 obtains the cell voltage V CELL of the battery cell 211. The manner in which the battery measuring circuit 1000 measures the cell voltages of the battery cells 212 and the battery cells 213 is similar to the manner in which the battery measuring circuit 200 in FIG. 2 measures the cell voltages of the battery cells 212 and the battery cells 213. That is, similar to the current generator 260 of FIG. 2, when the cell voltages of the battery cells 212 and the battery cells 213 are measured, the current generator 1060 generates a compensation current. However, when the cell voltage of the battery cell 211 is measured, since the current consumed by the potential transfer circuit 220 is negligible, the current generator 1060 does not generate the first compensation current I comp1 and the second compensation current I comp2 .

上文具體實施方式和附圖僅為本發明之常用實施例。顯然,在不脫離後附申請專利範圍所界定的本發明精神和保護範圍的前提下可以有各種增補、修改和替換。本技術領域中具有通常知識者應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈局、比例、材料、元素、元件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附申請專利範圍及其合法均等物界定,而不限於先前之描述。 The above detailed description and the accompanying drawings are only typical embodiments of the invention. It is apparent that various additions, modifications and substitutions are possible without departing from the spirit and scope of the invention as defined by the appended claims. It should be understood by those of ordinary skill in the art that the present invention may be applied in the form of the form, structure, arrangement, ratio, material, element, element, and other aspects in the actual application without departing from the invention. Changed. Therefore, the embodiments disclosed herein are intended to be illustrative and not limiting, and the scope of the invention is defined by the scope of the appended claims and their legal equivalents.

200‧‧‧電池測量電路 200‧‧‧Battery measurement circuit

210‧‧‧電池組 210‧‧‧Battery Pack

211~213‧‧‧電池單元 211~213‧‧‧ battery unit

220‧‧‧電位轉移電路 220‧‧‧potentiometric transfer circuit

230‧‧‧電阻組 230‧‧‧resistance group

231~234‧‧‧電阻 231~234‧‧‧resistance

240‧‧‧測量單元 240‧‧‧Measurement unit

260‧‧‧電流產生器 260‧‧‧current generator

270‧‧‧開關組 270‧‧‧ switch group

271~276‧‧‧開關 271~276‧‧‧ switch

280‧‧‧電容組 280‧‧‧capacitor group

282、284、286‧‧‧電容 282, 284, 286‧‧ ‧ capacitor

Claims (17)

一種電池測量電路,包括:一測量電路,包括:一第一端口,透過一第一電阻耦接一電池單元的一正端;以及一第二端口,透過一第二電阻耦接該電池單元的一負端,其中,該測量電路消耗一第一電流及一第二電流,該第一電流從該正端流出,流經該第一電阻,流向該第一端口,該第二電流從該負端流出,流經該第二電阻,流向該第二端口;以及一電流產生器,耦接該電池單元,根據該第一電流產生一第一補償電流,該第一補償電流從該正端流出,流經該第一電阻,流向該第一端口,其中,該第一補償電流除能時,該測量電路接收該第一端口與該第二端口間的一第一電壓差;該第一補償電流致能時,該測量電路接收該第一端口與該第二端口間的一第二電壓差;該測量電路根據該第一電壓差及該第二電壓差計算該電池單元的一單元電壓,其中,該第一補償電流除能時,該第一電阻上產生一第一電壓降,該第一補償電流致能時,該第一電阻上產生一第二電壓降,該測量電路根據該第二電壓降與該第一電壓降的一比例計算該單元電壓。 A battery measuring circuit comprising: a measuring circuit comprising: a first port coupled to a positive terminal of a battery unit via a first resistor; and a second port coupled to the battery unit via a second resistor a negative terminal, wherein the measuring circuit consumes a first current and a second current, the first current flows from the positive terminal, flows through the first resistor, and flows to the first port, and the second current flows from the negative a current flowing out through the second resistor to the second port; and a current generator coupled to the battery unit, generating a first compensation current according to the first current, the first compensation current flowing from the positive terminal And flowing through the first resistor to the first port, wherein when the first compensation current is disabled, the measuring circuit receives a first voltage difference between the first port and the second port; the first compensation When the current is enabled, the measuring circuit receives a second voltage difference between the first port and the second port; the measuring circuit calculates a cell voltage of the battery unit according to the first voltage difference and the second voltage difference, Among them, the first When the compensation current is disabled, a first voltage drop is generated on the first resistor, and when the first compensation current is enabled, a second voltage drop is generated on the first resistor, and the measuring circuit is configured according to the second voltage drop. A ratio of the first voltage drop is calculated for the cell voltage. 如申請專利範圍第1項之電池測量電路,其中,該第一補償電流與該第一電流成正比。 The battery measuring circuit of claim 1, wherein the first compensation current is proportional to the first current. 如申請專利範圍第1項之電池測量電路,其中,該測量電路還包括一電位轉移電路,若該第一補償電流除能,該電位轉移電路提供指示該第一電壓差的一第一轉移電壓差;若該第一補償電流致能,該電位轉移電路提供指示該第二電壓差的一第二轉移電壓差。 The battery measuring circuit of claim 1, wherein the measuring circuit further comprises a potential transfer circuit, and if the first compensation current is disabled, the potential transfer circuit provides a first transfer voltage indicating the first voltage difference Poor; if the first compensation current is enabled, the potential transfer circuit provides a second transfer voltage difference indicative of the second voltage difference. 如申請專利範圍第3項之電池測量電路,其中,該測量電路計算出正比於該第一轉移電壓差的一第三電壓,並從該第三電壓中减去該第二轉移電壓差,以計算出該單元電壓。 The battery measuring circuit of claim 3, wherein the measuring circuit calculates a third voltage proportional to the first transfer voltage difference, and subtracts the second transfer voltage difference from the third voltage to Calculate the cell voltage. 如申請專利範圍第3項之電池測量電路,其中,該電位轉移電路包括一放大器,該放大器根據該第一電流產生一監測電流,並接收一預設參考電壓,該電流產生器根據該監測電流產生該第一補償電流。 The battery measuring circuit of claim 3, wherein the potential transfer circuit comprises an amplifier, the amplifier generates a monitoring current according to the first current, and receives a preset reference voltage, the current generator is configured according to the monitoring current The first compensation current is generated. 如申請專利範圍第1項之電池測量電路,其中,該第一端口與該第二端口短路且該第一補償電流除能時,該測量電路測量一第三電壓差;該第一端口與該第二端口短路且該第一補償電流致能時,該測量電路測量一第四電壓差,該測量電路根據該第三電壓差及該第四電壓差計算該單元電壓。 The battery measuring circuit of claim 1, wherein the first port is short-circuited with the second port and the first compensation current is disabled, the measuring circuit measures a third voltage difference; the first port and the first port When the second port is short-circuited and the first compensation current is enabled, the measuring circuit measures a fourth voltage difference, and the measuring circuit calculates the cell voltage according to the third voltage difference and the fourth voltage difference. 如申請專利範圍第1項之電池測量電路,其中,該電流產生器根據該第二電流產生一第二補償電流,該第二補償電流從該第二端口流出,流經該第二電阻,流向該負端。 The battery measuring circuit of claim 1, wherein the current generator generates a second compensation current according to the second current, the second compensation current flows out from the second port, flows through the second resistor, and flows The negative end. 如申請專利範圍第1項之電池測量電路,其中,該測量電路還包括一類比/數位轉換器,該類比/數位轉換器將指示該第一電壓差及該第二電壓差的一信號轉換成一數位信號,該測量電路根據該數位信號計算該單元電壓。 The battery measuring circuit of claim 1, wherein the measuring circuit further comprises an analog/digital converter, wherein the analog/digital converter converts a signal indicating the first voltage difference and the second voltage difference into one A digital signal, the measuring circuit calculates the cell voltage based on the digital signal. 一種電池測量系統,包括:多個電池單元; 多個電阻,耦接該多個電池單元;一測量電路,包括:一第一端口,透過該多個電阻中的一第一電阻耦接該多個電池單元中的一第一電池單元的一正端;以及一第二端口,透過該多個電阻中的一第二電阻耦接該第一電池單元的一負端,其中,該測量電路消耗一第一電流及一第二電流,該第一電流從該正端流出,流經該第一電阻,流向該第一端口,該第二電流從該負端流出,流經該第二電阻,流向該第二端口;以及一電流產生器,耦接該多個電池單元,根據該第一電流產生一第一補償電流;該第一補償電流從該正端流出,流經該第一電阻,流向該第一端口;其中,該第一補償電流除能時,該第一電阻上產生一第一電壓降,該第一補償電流致能時,該第一電阻上產生一第二電壓降,該測量電路根據該第一電壓降及該第二電壓降計算該第一電池單元的一單元電壓,其中,該測量電路接收表示該單元電壓與該第一電壓降之間的一差值的一第一電壓差,接收表示該單元電壓與該第二電壓降之間的差值的一第二電壓差,該測量電路根據該第一電壓差及該第二電壓差計算該單元電壓。 A battery measuring system comprising: a plurality of battery units; a plurality of resistors coupled to the plurality of battery cells; a measuring circuit comprising: a first port, coupled to a first one of the plurality of battery cells through a first one of the plurality of resistors And a second port coupled to a negative end of the first battery unit through a second resistor of the plurality of resistors, wherein the measuring circuit consumes a first current and a second current, the first a current flowing from the positive terminal, flowing through the first resistor, to the first port, the second current flowing from the negative terminal, flowing through the second resistor, to the second port; and a current generator, Coupling the plurality of battery cells, generating a first compensation current according to the first current; flowing the first compensation current from the positive terminal, flowing through the first resistor, to the first port; wherein the first compensation When the current is dissipated, a first voltage drop is generated on the first resistor, and when the first compensation current is enabled, a second voltage drop is generated on the first resistor, and the measuring circuit is configured according to the first voltage drop and the first voltage drop Two voltage drops are calculated for one of the first battery cells a voltage voltage, wherein the measurement circuit receives a first voltage difference indicating a difference between the cell voltage and the first voltage drop, and receives a difference indicating a difference between the cell voltage and the second voltage drop The second voltage difference, the measuring circuit calculates the cell voltage according to the first voltage difference and the second voltage difference. 如申請專利範圍第9項之電池測量系統,其中,該第一補償電流與該第一電流成正比。 The battery measuring system of claim 9, wherein the first compensation current is proportional to the first current. 如申請專利範圍第9項之電池測量系統,其中,該測量電路還包括一電位轉移電路,若該第一補償電流除能,該電位轉 移電路提供指示該第一電壓差的一第一轉移電壓差;若該第一補償電流致能,該電位轉移電路提供指示該第二電壓差的一第二轉移電壓差。 The battery measuring system of claim 9, wherein the measuring circuit further comprises a potential transfer circuit, and if the first compensation current is disabled, the potential is turned The shift circuit provides a first transfer voltage difference indicative of the first voltage difference; and if the first compensation current is enabled, the potential transfer circuit provides a second transfer voltage difference indicative of the second voltage difference. 如申請專利範圍第11項之電池測量系統,其中,該測量電路計算出正比於該第一轉移電壓差的一第三電壓,並從該第三電壓中减去該第二轉移電壓差,以計算出該單元電壓。 The battery measuring system of claim 11, wherein the measuring circuit calculates a third voltage proportional to the first transfer voltage difference, and subtracts the second transfer voltage difference from the third voltage to Calculate the cell voltage. 如申請專利範圍第9項之電池測量系統,其中,該電流產生器根據該第二電流產生一第二補償電流,該第二補償電流從該第二端口流出,流經該第二電阻,流向該負端。 The battery measuring system of claim 9, wherein the current generator generates a second compensation current according to the second current, the second compensation current flows out from the second port, flows through the second resistor, and flows The negative end. 一種電池測量方法,包括:消耗一第一電流及一第二電流,其中,該第一電流從一電池單元的一正端流出,流經一第一電阻,流向一第一端口,該第二電流從該電池單元的一負端流出,流經一第二電阻,流向一第二端口;根據該第一電流產生一第一補償電流,該第一補償電流從該正端流出,流經該第一電阻,流向該第一端口;該第一補償電流除能時,接收該第一端口與該第二端口間的一第一電壓差;該第一補償電流致能時,接收該第一端口與該第二端口間的一第二電壓差;以及根據該第一電壓差及該第二電壓差計算一單元電壓,其中,該第一補償電流除能時,該第一電阻上產生一第一電壓降;該第一償電流致能時,該第一電阻上產生一第二電壓降,該電池測量方法還包括根據該第二電壓降與該第一電壓降的一比例計算該單元電壓。 A battery measuring method includes: consuming a first current and a second current, wherein the first current flows from a positive end of a battery unit, flows through a first resistor, and flows to a first port, the second Current flows from a negative terminal of the battery unit, flows through a second resistor, and flows to a second port; and generates a first compensation current according to the first current, the first compensation current flows out from the positive terminal, and flows through the current The first resistor flows to the first port; when the first compensation current is disabled, receiving a first voltage difference between the first port and the second port; when the first compensation current is enabled, receiving the first a second voltage difference between the port and the second port; and calculating a cell voltage according to the first voltage difference and the second voltage difference, wherein when the first compensation current is disabled, the first resistor generates a a first voltage drop; a second voltage drop is generated on the first resistor when the first current is enabled, the battery measurement method further comprising calculating the unit according to a ratio of the second voltage drop to the first voltage drop Voltage. 如申請專利範圍第14項之電池測量方法,其中,該第一電壓差指示該單元電壓與該第一電壓降之間的一第一差值,該 第二電壓差指示該單元電壓與該第二電壓降之間的一第二差值。 The battery measuring method of claim 14, wherein the first voltage difference indicates a first difference between the cell voltage and the first voltage drop, The second voltage difference is indicative of a second difference between the cell voltage and the second voltage drop. 如申請專利範圍第14項之電池測量方法,其中,在接收該第一電壓差和該第二電壓差的步驟之後,在根據該第一電壓差及該第二電壓差計算該單元電壓的步驟之前,該電池測量方法還包括:提供指示該第一電壓差的一第一轉移電壓差及提供指示該第二電壓差的一第二轉移電壓差。 The battery measuring method of claim 14, wherein the step of calculating the cell voltage based on the first voltage difference and the second voltage difference after the step of receiving the first voltage difference and the second voltage difference Previously, the battery measuring method further includes: providing a first transfer voltage difference indicating the first voltage difference and providing a second transfer voltage difference indicating the second voltage difference. 如申請專利範圍第16項之電池測量方法,其中,在提供指示該第一電壓差的該第一轉移電壓差及提供指示該第二電壓差的該第二轉移電壓差的步驟之後,該電池測量方法還包括:計算出正比於該第一轉移電壓差的一第三電壓;以及從該第三電壓中减去該第二轉移電壓差。 The battery measuring method of claim 16, wherein the battery is provided after the step of providing the first transfer voltage difference indicating the first voltage difference and providing the second transfer voltage difference indicating the second voltage difference The measuring method further includes: calculating a third voltage proportional to the first transfer voltage difference; and subtracting the second transfer voltage difference from the third voltage.
TW102111707A 2012-08-15 2013-04-01 Circuits and methods for measuring a cell voltage in a battery TWI533007B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/586,581 US9291680B2 (en) 2009-12-29 2012-08-15 Circuits and methods for measuring a cell voltage in a battery

Publications (2)

Publication Number Publication Date
TW201407178A TW201407178A (en) 2014-02-16
TWI533007B true TWI533007B (en) 2016-05-11

Family

ID=50082817

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102111707A TWI533007B (en) 2012-08-15 2013-04-01 Circuits and methods for measuring a cell voltage in a battery

Country Status (2)

Country Link
CN (1) CN103592603B (en)
TW (1) TWI533007B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219016A1 (en) * 2017-10-24 2019-04-25 Continental Automotive Gmbh Method for operating a battery sensor and battery sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3791767B2 (en) * 2001-03-27 2006-06-28 株式会社デンソー Flying capacitor voltage detection circuit
JP4913458B2 (en) * 2006-03-27 2012-04-11 日置電機株式会社 measuring device
US7965061B2 (en) * 2008-02-01 2011-06-21 O2Micro, Inc. Conversion systems with balanced cell currents
US8258792B2 (en) * 2009-05-11 2012-09-04 Semiconductor Components Industries, Llc. Monitoring system and method
US8030973B2 (en) * 2009-12-29 2011-10-04 O2Micro Inc. Calculating a parameter indicative of an error factor of a circuit
US8629679B2 (en) * 2009-12-29 2014-01-14 O2Micro, Inc. Circuits and methods for measuring cell voltages in battery packs

Also Published As

Publication number Publication date
TW201407178A (en) 2014-02-16
CN103592603B (en) 2015-11-18
CN103592603A (en) 2014-02-19

Similar Documents

Publication Publication Date Title
TWI418114B (en) Compensating circuit and method in battery packs
US8253427B2 (en) Resistance bridge architecture and method
JP5464389B2 (en) Insulation resistance measurement circuit not affected by battery voltage
TWI460451B (en) Multi-channel converter and battery management systems with self-diagnosis functionality and self-diagnosis method
US8305035B2 (en) Energy storage device
CN111174810B (en) High-precision IF conversion module applied to inertial navigation system
US20070103174A1 (en) Direct current test apparatus
JP6270403B2 (en) Semiconductor device and electronic control device
JP4719972B2 (en) Charge / discharge current measuring device
TWI533007B (en) Circuits and methods for measuring a cell voltage in a battery
JP2010025889A (en) Electric current detector
US9291680B2 (en) Circuits and methods for measuring a cell voltage in a battery
TWI413789B (en) Voltage detection circuit and method thereof
JP2009074900A (en) Voltage application current measurement circuit
WO2005116672A1 (en) Power supply current measuring apparatus and testing apparatus
JP2006098111A (en) Power conversion efficiency measuring apparatus
JP2012242294A (en) Three-wire system resistance measurement instrument
TWI596348B (en) Measuring device
US8729964B2 (en) Power envelope controller and method
TWI310839B (en) Ic tester
KR101854457B1 (en) Intelligent battery sensor for measuring accurate current and method thereof
CN111273080A (en) Precision measurement circuit
US11656252B2 (en) Method for measuring current and measurement apparatus
JP2018013425A (en) Voltage detection circuit
RU2731033C1 (en) Bridge-type pressure transducer