TWI531650B - 用於預防及治療非酒精性脂肪肝疾病的腺病毒ad36 e4orf1蛋白 - Google Patents

用於預防及治療非酒精性脂肪肝疾病的腺病毒ad36 e4orf1蛋白 Download PDF

Info

Publication number
TWI531650B
TWI531650B TW100124173A TW100124173A TWI531650B TW I531650 B TWI531650 B TW I531650B TW 100124173 A TW100124173 A TW 100124173A TW 100124173 A TW100124173 A TW 100124173A TW I531650 B TWI531650 B TW I531650B
Authority
TW
Taiwan
Prior art keywords
protein
adenovirus
nucleic acid
liver
seq
Prior art date
Application number
TW100124173A
Other languages
English (en)
Other versions
TW201217529A (en
Inventor
尼克西爾 度朗哈
Original Assignee
路易斯安那州立大學暨農業機械學院管委會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 路易斯安那州立大學暨農業機械學院管委會 filed Critical 路易斯安那州立大學暨農業機械學院管委會
Publication of TW201217529A publication Critical patent/TW201217529A/zh
Application granted granted Critical
Publication of TWI531650B publication Critical patent/TWI531650B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/162Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10333Use of viral protein as therapeutic agent other than vaccine, e.g. apoptosis inducing or anti-inflammatory

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Endocrinology (AREA)
  • Biotechnology (AREA)
  • Emergency Medicine (AREA)
  • Molecular Biology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

用於預防及治療非酒精性脂肪肝疾病的腺病毒AD36 E4ORF1蛋白
相關申請案之交叉引用
本申請案主張2010年7月8日申請之名稱為「Adenovirus Ad36 E4orf1 Protein for Prevention and Treatment of Non-alcoholic Fatty Liver Disease,」的美國臨時專利申請案第61/362,443號之權益,該案之全文出於所有目的以引用的方式併入本文中。
政府資助
本發明之研發由政府在來自國立衛生研究院(National Institutes of Health)之補助金(第R01 DK066164號補助金)下部分資助。政府對本發明具有某些權利。
本發明係關於治療或預防非酒精性脂肪肝疾病之症狀的方法、減少肝臟中過多脂肪的方法、改善血糖控制之方法、及治療或預防肝臟功能障礙的方法。
肝臟在脂肪代謝中起主要作用且通常積聚脂質(脂肪),但僅積聚至「正常含量」。肝細胞中脂質積聚過多導致肝脂肪變性,其在代謝上有害且可由多種肝臟功能障礙引起,諸如脂蛋白之β氧化減少或分泌減少。肝臟之許多功能中之另一種為釋放葡萄糖至循環中。在健康個體中,肝細胞定期釋放葡萄糖以調節血糖含量。相比之下,在患有糖尿病之個體中,肝細胞不受控制地釋放葡萄糖,此使血糖含量增加。因此,減少肝臟細胞(liver cell)(肝細胞(hepatocyte))之葡萄糖釋放可極有效地控制糖尿病。
肝臟中之過多脂質積聚可造成胰島素抗性,且因此使血糖控制不良。脂聯素(Adiponectin),一種由脂肪組織(fat tissue/adipose tissue)分泌的蛋白質以許多方式改善胰島素敏感性。脂聯素經由脂聯素受體AdipoR1及AdipoR2起作用來活化AMPK及PPARα路徑(32)、減少全身性及肝胰島素抗性以及減輕肝臟炎症及纖維化(32)。其為肝脂質含量之強決定性因素,如由脂聯素KO或過表現之小鼠模型所指示(14,33)。脂聯素藉由上調AMPK介導之肝脂質氧化來降低肝脂肪變性(34)。
非酒精性脂肪肝疾病(NAFLD)在美國影響多達20%之成人,且包括肝臟中脂肪積聚過多(肝脂肪變性)。其通常與肥胖症及胰島素抗性有關(1,2)。NAFLD之流行率在患有第2型糖尿病或肥胖症之成人中為約70%-80%(3-5),在所有兒童中為3%-10%,且在肥胖兒童中高達40%-70%(4)。NAFLD與較高總體及肝臟相關之死亡率有關(6,7)。除脂肪變性之外,可能發生炎症及纖維化且NAFLD可能發展成非酒精性脂肪肝炎(non-alcoholic steato-hepatitis,NASH)、肝硬化、肝衰竭及肝細胞癌。雖然脂肪變性可能具有可逆性,但一旦其發展成NASH,則不存在確立之治療,且少數可用之藥物治療顯示有限的成功率(8,9)。因此,及時預防及/或治療肝脂肪變性至關重要。然而,即使對於NAFLD,藥物治療亦僅具有較低成功率(10),且減少飲食脂肪攝取及減少肥胖為治療之主要手段(11)。儘管有明顯健康益處,但已證明對於一般人群而言順應生活方式改變以達成飲食或肥胖之持續改善具有挑戰性。
雖然過度肥胖或高脂肪(HF)飲食為NAFLD之風險因素,但腺病毒36(Ad36)即使在持續HF飲食下亦減輕小鼠之肝脂肪變性且不會減少內臟或皮下肥胖。Ad36似乎改造現存脂肪組織之品質以減輕HF飲食誘發之肝脂肪變性。Ad36使脂肪組織代謝品質發生之此改變包括脂肪酸之吸收增加及釋放減少,以及脂聯素分泌增加(12,13)。Ad36之此獨特能力提供以新穎方式消除過度肥胖或過度飲食脂肪攝取(而無需減少)之有害作用的顯著模型。噻唑啶二酮(Thiazolidinediones;TZD)類藥物亦可改善脂肪組織之代謝品質、上調脂聯素及改善肝脂肪變性(14-16)。已報導TZD之嚴重副作用(17-19)。
Ad36並未導致動物發病或意外死亡。此外,Ad36似乎具有優於TZD之作用的明顯優點,尤其在存在HF飲食下。不同於TZD,Ad36並未增加進食HF飼料之小鼠的肥胖(20,21)。在存在HF飲食下,TZD可改善血糖控制,但其同時促進各種器官(包括肝臟)中之脂質儲存(20,22,23)。若不減少脂肪攝取,則此會限制TZD之範圍。由於Ad36之作用不具飲食脂肪及肥胖相關性,因此Ad36對多種代謝路徑之潛在作用可提供在臨床上更具吸引力且因此可能更有效的新穎抗脂肪變性方法。
出於有益目的利用病毒之某些性質已創造性地使用若干年,包括使用噬菌體病毒之殺菌性質(27)、突變型腺病毒之溶瘤能力(28)、或使用疱疹單純型病毒及若干其他病毒單獨或與各種協同藥物一起(30,31)來治療癌(29)。
因此,與肥胖或飲食脂肪攝取無關的降低肝脂肪變性之藥劑將極具吸引力且具有實際益處。
本發明係關於以下發現:Ad36感染與肝臟病理學及功能障礙之發病率減少有關,且Ad36 E4orf1蛋白可用於改變基因表現及生物化學路徑,從而使肝臟功能得到改善。
本發明大體係關於治療或預防個體之非酒精性脂肪肝疾病之症狀的方法。在一些態樣中,該方法包含向個體投予治療有效量之腺病毒-36 E4orf1蛋白,其中該個體之症狀在投予後改善。
本發明亦係關於減少個體肝臟中之過多脂肪的方法。在一些態樣中,該方法包含向個體投予治療有效量之腺病毒-36 E4orf1蛋白,其中肝臟中之脂肪在投予後減少。
本發明亦係關於改善個體之血糖控制的方法。在一些態樣中,該方法包含向個體投予治療有效量之Ad36 E4orf1蛋白,其中胰島素敏感性在投予後增強。
本發明亦係關於治療或預防特徵在於脂肪肝及/或胰島素抗性之肝臟功能障礙的方法。在一些態樣中,該方法包含向個體投予治療有效量之Ad36 E4orf1蛋白,其中肝臟脂肪積聚在投予後改善。肝臟脂肪積聚改善之特徵可在於脂質氧化增加或脂質自肝臟之轉運增加。
本發明亦係關於減少或預防NASH之方法。在一些態樣中,該方法包含向個體投予治療有效量之Ad36 E4orf1蛋白,其中由肝功能障礙引起之高血糖症得以減輕。
腺病毒-36 E4orf1蛋白之胺基酸序列可為SEQ ID NO:2或其功能變異體。腺病毒-36 E4orf1之核酸序列可包含SEQ ID NO:1或其功能變異體。個體可為人類。
可藉由將編碼腺病毒-36 E4orf1蛋白之核酸分子以允許腺病毒-36 E4orf1蛋白表現之方式引入個體體內來向該個體投予腺病毒-36 E4orf1蛋白。可藉由使用任何適合方法來引入核酸序列。此項技術中習知許多適合方法,諸如電穿孔、DEAE聚葡萄糖轉染、磷酸鈣轉染、陽離子性脂質體融合、原生質體融合、產生活體內電場、經DNA塗佈之微彈轟擊、注射重組複製缺陷型病毒、同源重組、活體內基因療法、活體外基因療法、奈米粒子傳遞、病毒載體及裸DNA轉移。
概述
本發明係關於以下發現:Ad36感染與肝臟病理學及功能障礙之發病率減少有關,且Ad36 E4orf1蛋白可用於改變基因表現及生物化學路徑,從而使肝臟功能得到改善。基於此等發現,可藉由將Ad36或經分離或重組Ad36 E4orf1蛋白投予個體來治療或甚至預防非酒精性脂肪肝疾病(NAFLD)。因此,在此項技術中熟知NAFLD經常因治療或減少NAFLD之病理性過程而發展成NASH,發展成NASH之進展可減少或預防。因此,本發明亦包括用於減少或預防NASH之方法。雖然許多病毒導致嚴重肝臟損傷(25,26),但意外的是Ad36及Ad36 E4orf1藉由有利地調節多種代謝路徑而保護肝臟,藉此對肝脂肪變性及肝臟功能具有有益作用。
如本文所用,「血糖控制」係指身體保持葡萄糖含量處於正常範圍內的能力。當胰島素敏感性增強時血糖控制得到改善。胰島素抗性對血糖控制具有相反作用。
如本文所用,「葡萄糖吸收」係指細胞自其周圍獲取之葡萄糖之量。一般而言,肌細胞或脂肪細胞(脂肪細胞及前脂肪細胞)之葡萄糖吸收較高為有益的,因為其自循環中清除葡萄糖且改善高血糖症(高於血液中之正常葡萄糖)。
已發現在人類之天然Ad36感染與較佳血糖控制及較低肝脂質之間存在關聯。在動物模型中進一步研究此關聯,且結果證實Ad36感染出乎意料地降低肝脂質含量且改善血糖控制。其他研究揭示Ad36作用由Ad36 E4orf1蛋白介導。如本文所述,所進行研究之結果顯示Ad36 E4orf1蛋白增加肝臟中之脂肪氧化、增加脂肪自肝臟之轉運及減少自肝臟釋放之葡萄糖。因此,本發明者已發現病毒蛋白質Ad36 E4orf1擔負Ad36對NAFLD之保護作用,及對肝臟功能及血糖控制的有益作用。Ad36 E4orf1結構及某些代謝功能描述於作為國際公開案第WO 2007/064836號於2007年6月7日公開的國際申請案第PCT/US2006/045919號中。
如本文所示,Ad36之E4orf1蛋白為Ad36病毒對肝脂肪變性之保護作用的介體。經Ad36感染之小鼠甚至在感染後5個月仍繼續在其肝臟中表現E4orf1基因。此等肝臟顯示顯著較低之脂質積聚,及促進脂質氧化及脂質輸出之基因的較高表現。此外,Ad36 E4orf1上調脂聯素,且以Ad36 E4orf1轉染HepG2細胞(肝細胞細胞株)下調Glut2豐度及葡萄糖釋放。
不希望受任何特定理論束縛,咸信脂聯素為肝脂肪變性之關鍵效應物且由脂肪組織分泌。單獨Ad36 E4orf1蛋白之表現使細胞之脂聯素分泌穩固增加。此表明Ad36經由E4orf1介導之脂聯素上調來降低肝脂質積聚。此外,Ad36 E4orf1下調Glut2豐度及葡萄糖釋放,此可有助於降低肝臟中之脂質積聚。因此,咸信Ad36藉由直接作用於肝細胞及經由藉由脂聯素之間接作用來保護肝臟不發生肝脂肪變性,且E4orf1蛋白為此等作用之介體。
治療方法
本發明提供用於治療或預防NAFLD、減少肝臟之過多脂肪、改善血糖控制及治療或預防肝臟功能障礙的治療方法。
在一態樣中,本發明提供用於治療及預防非酒精性脂肪肝疾病(NAFLD)之症狀的方法。向有需要之個體(例如哺乳動物,諸如人類或其他靈長類動物)投予治療有效量之Ad36組成物來治療或預防NAFLD。
在一態樣中,本發明提供用於預防NASH之方法。向有需要之個體(例如哺乳動物,諸如人類或其他靈長類動物)投予治療有效量之Ad36組成物以藉由減少由肝功能障礙引起之高血糖症來預防NASH。
在一態樣中,本發明提供用於減少個體(例如,哺乳動物,諸如人類或其他靈長類動物)肝臟中之過多脂肪的方法。向有需要之個體投予治療有效量之Ad36組成物來減少個體肝臟中之過多脂肪。
在一態樣中,本發明提供用於改善個體(例如,哺乳動物,諸如人類或其他靈長類動物)之血糖控制的方法。向有需要之個體投予治療有效量之Ad36組成物來改善該個體之血糖控制。
在一態樣中,本發明提供用於治療或預防特徵在於脂肪肝及/或胰島素抗性之肝臟功能障礙的方法。向有需要之個體(例如哺乳動物,諸如人類或其他靈長類動物)投予治療有效量之Ad36組成物來治療或預防特徵在於脂肪肝及/或胰島素抗性之肝臟功能障礙。
在本文所述之任何方法之較佳具體實例中,所投予之Ad36組成物為經分離或重組Ad36 E4orf1蛋白或其功能變異體。在本文所述之任何方法之其他具體實例中,所投予之Ad36組成物為編碼Ad36 E4orf1蛋白或其功能變異體的經分離或重組核酸。
Ad36組成物
根據本發明投予之Ad36組成物可具有多種形式。組成物較佳包含E4orf1或其功能變異體。舉例而言,Ad36組成物可為Ad36病毒或Ad36之減毒變異體或不活化形式,諸如經熱殺死或漂白劑殺死之Ad36或複製缺陷型重組Ad36。Ad36組成物可包含經分離或重組Ad36蛋白,較佳為E4orf1蛋白或其功能變異體。Ad36組成物可包含編碼E4orf1蛋白或其功能變異體之核酸。Ad36組成物可包含E4orf1蛋白之類似物,例如化學類似物或結構類似物。
蛋白質及肽
Ad36組成物可包含經分離或重組Ad36蛋白,較佳為E4orf1蛋白或其功能變異體。
本文中稱作「經分離」之蛋白質或多肽為以下蛋白質或多肽:該等蛋白質或多肽純化至超過其在受感染哺乳動物細胞中所存在之狀態。Ad36蛋白,包括E4orf1及其功能變異體,可使用熟知方法(諸如重組表現及純化)、化學合成(例如合成肽)或藉由生物及化學方法之組合及經分離之重組蛋白質或多肽來製造。所獲得之蛋白質可呈至少約50重量%、較佳至少約75重量%之經分離狀態,且更佳呈基本上純之形式。本文中稱作「重組」之蛋白質或多肽為藉由重組核酸之表現所產生之蛋白質或多肽。
如本文所用,「Ad36 E4orf1」係指來自腺病毒36之天然產生或內源性E4orf1蛋白、具有與天然產生或內源性相應Ad36 E4orf1蛋白相同之胺基酸序列的蛋白質(例如重組蛋白質)及上述各物之功能變異體(例如經由突變誘發及/或重組技術產生之功能片段及/或突變體)。因此,如本文所定義,該術語包括成熟Ad36 E4orf1、糖基化或未糖基化Ad36 E4orf1蛋白、Ad36 E4orf1之多形或對偶基因變異體及其他同功異構物(例如,由替代性拼接或其他細胞過程所產生),及功能片段。
Ad36 E4orf1之「功能變異體」包括功能片段、功能突變型蛋白質及/或功能融合蛋白。一般而言,本發明所涵蓋之Ad36 E4orf1之片段或部分包括相對於成熟Ad36 E4orf1具有胺基酸(亦即一或多個胺基酸)缺失(亦即一或多個缺失)者(諸如N端、C端或內部缺失)。亦設想相對於成熟Ad36 E4orf1而言僅缺失鄰接胺基酸或缺失非鄰接胺基酸之片段或部分。一般而言,本發明所涵蓋之Ad36 E4orf1之突變體或衍生物包括差異在於添加、缺失及/或取代一或多個鄰接或非鄰接胺基酸殘基的天然或人工變異體,或一或多個殘基經修飾之經修飾多肽,及包含一或多個經修飾殘基的突變體。較佳突變體為差異在於添加、缺失及/或取代一或多個鄰接或非鄰接胺基酸殘基的Ad36 E4orf1之天然或人工變異體。
Ad36 E4orf1之「功能片段或部分」係指經分離及/或重組蛋白質或寡肽,其具有Ad36 E4orf1所特有之至少一種性質、活性及/或功能,諸如減輕肝脂肪變性、增強葡萄糖處置及/或改善血糖控制。
一般而言,Ad36 E4orf1或功能變異體具有在變異體之長度範圍內與SEQ ID NO:2或SEQ ID NO:4至少約85%相似、至少約90%相似、至少約95%相似、至少約96%相似、至少約97%相似、至少約98%相似或至少約99%相似的胺基酸序列。
在一些實施例中,例如使用當前可用之重組蛋白質製備,使用SEQ ID NO:1或SEQ ID NO:3來製備Ad-36 E4orf1之經純化蛋白質。可使用適合胺基酸序列比對演算法,諸如CLUSTAL W,使用預設參數來確定胺基酸序列一致性。(Thompson J. D.等人,Nucleic Acids Res. 22:4673-4680(1994))。
核酸及載體
Ad36組成物可包含編碼Ad36之蛋白質,較佳E4orf1蛋白或其功能變異體的經分離或重組核酸或載體。
可投予具有編碼Ad36 E4orf1蛋白或其功能變異體之序列的經分離及/或重組(包括例如基本上純)核酸來原位產生Ad36 E4orf1。本文稱作「經分離」之核酸為自原始來源之基因體DNA或細胞RNA(例如,當其存在於細胞或諸如文庫之核酸混合物中時)分離出來之核酸,且可已經歷進一步處理。「經分離」核酸包括藉由本文所述之方法、類似方法或其他適合方法所獲得之核酸,包括基本上純的核酸、藉由化學合成產生之核酸、藉由生物及化學方法之組合產生之核酸、及經分離之重組核酸。本文稱作「重組」之核酸為藉由重組DNA方法所產生之核酸,包括藉由依賴於人工重組方法的程序所產生之核酸,該人工重組方法諸如聚合酶鏈反應(PCR)及/或使用限制酶選殖至載體中。「重組」核酸亦為由經由細胞之天然機制所進行之重組事件所產生、但在經設計以允許及可能產生所要重組事件之核酸引入細胞後所選擇的核酸。
滿足此等準則之經分離及/或重組核酸包含序列與編碼天然產生之Ad36 E4orf1及其部分之序列一致的核酸,或天然產生之序列的功能變異體。該等變異體包括差異在於添加、缺失或取代一或多個殘基之突變體、一或多個殘基經修飾之經修飾核酸(例如DNA或RNA類似物)及包含一或多個經修飾殘基之突變體。序列可經密碼子最佳化或密碼子去最佳化以供在個體中表現。
在一態樣中,Ad36 E4orf1或功能變異體具有在變異體之長度範圍內與SEQ ID NO:1或SEQ ID NO:3至少約85%相似、至少約90%相似、至少約95%相似、至少約96%相似、至少約97%相似、至少約98%相似或至少約99%相似的核酸序列。可使用適合核酸序列比對演算法,諸如CLUSTAL W,使用預設參數來確定核酸序列一致性。(Thompson J. D.等人,Nucleic Acids Res. 22:4673-4680(1994))。
核酸可呈DNA、RNA形式,且可為單股或雙股。一般而言,核酸可操作地連接至表現控制序列,諸如複製起點、啟動子及強化子(參見例如Queen,等人,Immunol. Rev. 89:49-68,1986)。用於在所要細胞中表現重組蛋白質的許多適合載體為此項技術中所熟知及習知。適合載體可含有多種組分,包括(但不限於)以下一或多者:複製起點;可選擇標記基因;一或多個表現控制元件,諸如轉錄控制元件(例如啟動子、強化子、終止子),及/或一或多個轉譯信號;及靶向所選宿主細胞中之分泌路徑的信號序列或前導序列。必要時,載體可包括可偵測標記。
在某些實施例中,表現載體用於基因療法中。表現需要在載體中提供適當信號,且其包括來自病毒及哺乳動物來源之驅動所關注基因在宿主細胞中表現的各種調節元件,諸如強化子/啟動子。亦已知經設計以最佳化宿主細胞中之信使RNA穩定性及可轉譯性的元件。
存在多種可供將表現載體引入細胞中之方式。在本發明之某些實施例中,表現構築體包含病毒或來源於病毒基因體之經工程改造之構築體。某些病毒經由受體介導之內飲作用進入細胞、整合至宿主細胞基因體中及穩定且有效地表現病毒基因之能力使其成為用於將外來基因轉移至哺乳動物細胞中的有吸引力之候選者(Ridgeway,1988;Nicolas及Rubinstein,:Vectors: A survey of molecular cloning vectors and their uses,Rodriguez及Denhardt編,Stoneham: Butterworth,第494-513頁,1988.;Baichwal及Sugden,Baichwal,:Gene Transfer,Kucherlapati R編,New. York,Plenum Press,第117-148頁,1986. 1986;Temin,:Gene Transfer,Kucherlapati,R編,New York,Plenum Press,第149-188頁,1986)。較佳基因療法載體一般為病毒載體。
投予Ad36 E4orf1
可能利用多種投藥途徑,包括(但不必限於)非經腸(例如靜脈內、動脈內、肌肉內、皮下注射)、經口(例如飲食)、局部、吸入(例如支氣管內、鼻內或經口吸入、鼻內滴劑)或經直腸。
可藉由將編碼腺病毒-36 E4orf1蛋白之核酸序列以允許腺病毒-36 E4orf1蛋白表現之方式引入哺乳動物體內來投予腺病毒-36 E4orf1蛋白。在該方法中,可藉由選自由以下者所組成之群組之方法引入核酸序列:電穿孔、DEAE聚葡萄糖轉染、磷酸鈣轉染、陽離子性脂質體融合、原生質體融合、產生活體內電場、經DNA塗佈之微彈轟擊、注射重組複製缺陷型病毒、同源重組、活體內基因療法、活體外基因療法、病毒載體及裸DNA轉移。
欲投予之Ad36組成物之調配物將根據所選擇之投藥途徑(例如溶液、乳液、膠囊)及欲治療之個體而變化。可在生理上可接受之媒劑或載劑中製備包含欲投予之化合物的適當組成物。對於溶液或乳液,適合載劑包括例如水溶液或醇/水溶液、乳液或懸浮液,包括鹽水及緩衝介質。非經腸媒劑可包括氯化鈉溶液、林格氏右旋糖(Ringer's dextrose)、右旋糖及氯化鈉、乳酸化林格氏溶液(lactated Ringer's)或不揮發性油。靜脈內媒劑可包括各種添加劑、防腐劑或流體、營養素或電解質補充劑(一般而言,參見Remington's Pharmaceutical Science,第16版,Mack編,1980)。對於吸入,將化合物溶解且裝載至適合投藥分配器中(例如霧化器、噴霧器或加壓氣霧劑分配器),或調配成可吸入乾粉。
Ad36組成物可以單次劑量或多次劑量投予。投予治療有效量。治療有效量為在投藥條件下足以產生預期效果之量。舉例而言,可投予足以增加脂肪氧化、增加脂肪輸出肝臟、降低肝臟中之Glut2豐度、減少肝臟中之G6Pase、提高脂聯素及/或Glut4、改善血糖控制及/或改善肝臟功能之量。可由熟習普通技術之臨床醫師使用此項技術中已知之方法考慮個體之年齡、對藥物之敏感性、耐受性藥物、疾病嚴重程度及總體健康狀況以及其他因素來確定適當劑量。適合劑量可為每次治療每公斤體重約0.1 mg至約10.0 mg。
投予Ad36組成物之個體可經由非侵襲性測試(例如使用超音波)篩選以確定治療是否有效。在一些態樣中,將使用超音波篩選個體。在一些態樣中,個體將經歷肝臟功能測試以量測肝臟酶。
藉此本文引用之所有文獻之全部教示內容以引入的方式併入本文中。
Ad36 E4orf1序列
Ad-36 E4 orf 1 DNA序列(SEQ ID NO. 1)
Ad-36 E4 orf 1蛋白轉譯(SEQ ID NO. 2)
Ad-36 E4 orf 1 ΔPDZ DNA序列(SEQ ID NO. 3)
Ad-36 E4 orf 1 ΔPDZ蛋白轉譯(SEQ ID NO. 4)
實施例
本文揭示之研究結果揭示在人類之Ad36感染與較低肝脂質含量及較佳血糖控制之間存在關聯。結果亦表明Ad36 E4orf1蛋白為Ad36病毒之保護作用的介體且該作用可能經由改變若干基因(包括脂聯素及Glut2豐度)的表現來介導。因此,本文揭示之此等研究表明Ad36、Ad36 E4orf1及其功能變異體可用於治療或預防NAFLD、減少哺乳動物肝臟中之過多脂肪、改善血糖控制及治療或預防肝臟功能障礙。
技術及分析:
病毒製備。Ad-36係獲自美國菌種保存中心(American Type Culture collection)(ATCC目錄號VR913),如先前所描述及使用(45,44),經溶菌斑純化且在A549細胞(人類肺癌細胞株)中繁殖。Ad-2亦獲自ATCC(目錄號VR846)且在A549細胞中繁殖。病毒效價藉由溶菌斑分析(45)測定且接種表述為溶菌斑形成單位(PFU)。
b.生物化學分析:
葡萄糖:使用Raichem葡萄糖氧化酶方法(R80038)以96孔板格式量測來自每隻小鼠之2 μL血清。在500 nm下讀取吸光度。胰島素:使用超敏感性小鼠胰島素ELISA套組(Crystal Chem,編號90090)來測定胰島素。使用Cardiochek脂質組成測試條(Lipid panel test strip)來測定三酸甘油酯。
qRT-PCR:使用RNeasy微型套組根據製造商之說明書(Qiagen,編號74101)自進食高脂肪飼料之小鼠之脂肪組織萃取mRNA。藉由使用擴增級去氧核糖核酸酶I(Invitrogen,編號18068-015)來去除殘餘DNA。使用iscriptTM cDNA合成套組(BioRad,編號170-8890)根據製造商之方案將1 μg總RNA反轉錄成cDNA。使用PCR核心系統II(Promega,編號M7665)來擴增cDNA。進行定量RT-PCR來檢驗基因TNFα(腫瘤壞死因子α,Applied Biosystems,編號Mm00443259_g1)、抵抗素(Resistin)(Applied Biosystems,編號Mm00445641_m1)、MCP-1(巨噬細胞化學引誘劑蛋白;Applied Biosystems,編號Mm00441243_g1)、CD68(Applied Biosystems,編號Mm03047343_m1)、TLR4(Toll樣受體4;Applied Biosystems,編號Mm00445274_m1)、MCSF(巨噬細胞群落刺激因子;Applied Biosystems編號Mm00432688_m1)及IL6(介白素6;Applied Biosystems,編號Mm00446191_m1)相較於GAPDH(甘油醛3磷酸去氫酶;Applied Biosystems,編號Mm99999915_g1)的相對表現量。藉由T檢驗比較平均值。顯著性設置為p<0.05。
c.證實感染: 抗體效價:
藉由『恆定病毒降低血清(constant virus-decreasing serum)』方法(一種用於測定中和抗體之敏感性、特異性及最高準則分析,如所詳細描述(92))來測定血清中中和抗體之存在。簡言之,在96孔板中將熱不活化測試血清自1:2起連續稀釋(兩倍)至1:512。向各孔中添加總共100 TCID-50(組織培養感染劑量50)各別腺病毒工作儲備液,隨後在37℃下培育1小時後添加A549細胞。一式兩份操作各測試血清。各分析中包括血清對照(血清及細胞,但無病毒)、細胞對照(單獨細胞,無病毒,無血清)及病毒對照(細胞及病毒,無血清)。將各板在37℃下培育13天且記錄CPE(細胞病變效應)之存在。稀釋度為1:8或更高的無CPE之血清樣品視為對於針對各別病毒之中和抗體之存在為陽性,及先前受到該病毒感染之證據。效價低於1:8之樣品視為關於病毒抗體之存在為陰性。在各分析中進行病毒反滴定作為品質檢查。
篩選病毒DNA及RNA: DNA分離:使用QIAMP DNA微型套組(編號51306)分離DNA。針對Ad36、Ad2之E4基因以及小鼠β-肌動蛋白設計引子。藉由PCR擴增DNA。引子序列如下:
Ad36前置引子:5'-GGCATACTAACCCAGTCCGATG-3',
Ad36反置引子:5'-TCACTCTCAGCAGCAGCAGG-3';
Ad2前置引子:5'-CCTAGGCAGGAGGGTTTTTC-3',
Ad2反置引子:5'-ATAGCCCGGGGGAATACATA-3';
小鼠β-肌動蛋白前置引子5'-GATCTTCATGGTGCTAGGAG-3',
小鼠β-肌動蛋白反置引子5'-ACGTTGACATCCGTAAAGAC-3'。
陰性PCR對照:水。陽性PCR對照:來自經Ad36或Ad2感染之A549細胞的DNA。在95℃下使DNA變性2分鐘且經受35個PCR循環(94℃下1分鐘,55℃下1分鐘,72℃下2分鐘隨後在72℃下培育5分鐘)。使用RNeasy微型套組根據製造商之說明書(Qiagen,編號74101)萃取RNA。藉由使用擴增級去氧核糖核酸酶I(Invitrogen,編號18068-015)來去除殘餘DNA。使用iscriptTM cDNA合成套組(BioRad,編號170-8890)根據製造商之方案將1 μg總RNA反轉錄成cDNA。使用PCR核心系統II(Promega,編號M7665)來擴增cDNA。
d.葡萄糖耐受性測試:
在16小時空腹之後,向神智清醒之小鼠腹膜內注射D-葡萄糖(每公克體重2.5 mg)。在注射葡萄糖之前(時間0)及注射後10分鐘、20分鐘、30分鐘、60分鐘、120分鐘及150分鐘自尾靜脈收集血液。使用血糖計(Contour,Bayer)測定血糖。
e.西方墨點分析:
免疫沈澱:為進行IR、IRS1及IRS2之免疫沈澱,將組織樣品在含有50 mM HEPES(pH 7.4)、2 mM原釩酸鈉、10 mM氟化鈉、2 mM EDTA、1% NP-40、0.25%去氧膽酸鈉及蛋白酶抑制劑之緩衝液中均質化。隨後用3 μg一級抗體對勻漿(250 μg)進行免疫沈澱。樣品使用4-20%梯度凝膠進行SDS-PAGE並轉移至PVDF膜。用抗磷酸抗體對該等膜進行免疫墨點法。使用針對磷酸化-tyr-1322-Ir-β(Millipore,編號04-300)及總IR-β受體(Millipore,編號05-1104)、總IRS1(Santacruz,編號Sc-559)及pIRS1-(tyr-989)(Santacruz,編號Sc-17200)、pIRS1-(ser307)(Cell signaling,編號2381)、IRS2(Milipore,編號06-506)及p-IRS2(tyr-612)(Santacruz,編號Sc-17195-R)的抗體。
西方墨點法:藉由二辛可寧酸(bicinchoninic acid)分析對蛋白質濃度進行定量且以相等量負載至4%-20%或聚丙烯醯胺凝膠。隨後將蛋白質轉移至PVDF膜。將膜在含有3% BSA之PBS Tween-20中阻斷且與分別識別總AKT(Cell signaling,編號4691)、p-AKT(ser-473)(Cell signaling,編號9271)、Ras(Cell signaling,編號3965)、Glut1(Abcam,編號35826)、Glut4(Abcam,編號14683)、Glut2(Santacruz,編號9117)、葡萄糖6-磷酸酶(Santacruz,編號7291)、總AMPKα(Cell signaling,編號2603)、p-AMPKα(Thr-172)(Cell signaling,編號2535)及瘦素(leptin)(Abcam,編號2095)抗體的多株或單株抗體一起培育。在與辣根過氧化酶(horse reddish peroxidase)結合之二級抗體後,藉由增強型化學發光(enhanced chemiluminiscence)偵測信號。使用AlphaEaseFC分析器軟體以掃描光密度測定法對特定頻帶進行定量且藉由針對GAPDH(Ambion,編號4300)豐度進行正規化來評估相等負載。
分析脂聯素之不同寡聚物形式:用不含DTT、β-巰基乙醇之5X非還原緩衝液處理30μg自脂肪組織分離之蛋白質且在室溫下培育1小時。樣品在4%-20% Tris-甘胺酸SDS-PAGE凝膠上電泳且轉移至PVDF膜。使用脂聯素之抗球蛋白域抗體(Millipore,編號MAB3608,Temmecula,CA)進行西方墨點法。
f.組織化學:
對3隻小鼠(各來自Ad36、Ad2及模擬感染之進食高脂肪飼料之小鼠)及一隻如所報導(41)作為對照之模擬感染之進食普通飼料之小鼠的急驟冷凍肝臟樣品進行肝糖染色。將組織樣品嵌入OCT固定介質中且以8 μm厚度切片。使用過碘酸希夫氏染色(periodic acid-schiff stain;PAS)對肝糖進行染色。在4℃下固定肝臟樣品10分鐘以提高肝糖保存且幫助防止人工產物流至卡諾依氏固定液(Carnoy's fixative)(6份乙醇、3份氯仿及1份冰乙酸)。固定後,切片在蒸餾水中經由沖洗數次進行洗滌,且隨後在室溫下在1%過碘酸溶液中培育5分鐘。在用蒸餾水洗滌後,添加希夫氏試劑(Schiff's reagent)且培育11分鐘。所有載玻片在冷的流動自來水中沖洗10分鐘。將載玻片風乾且使用permount施加蓋玻片。肝糖染色使切片呈洋紅色,其中較深之染色指示較多肝糖。
在固定期間脂質離開樣品,且因此載玻片上之白色空白區域指示脂質小滴(96)。用Zeiss Axioskop 40 FL產生影像。使用影像J來分析每份樣品之三份試樣及每份試樣之三個影像以便定量肝糖及脂質。將影像轉換成8位元,且僅可見肝糖特異性染色時確定臨限值,且在此臨限值下肝糖之量計算為像素2。自總面積中減去此數值以獲得空白空間之面積,從而定量脂質,如所報導(96)。
實施例1 Ad36及人類
針對Ad36抗體作為既往感染之指示篩選來自四個群組之血清樣品。該等群組為:A)HERITAGE家庭研究(49)(n=671,白人及黑人男性及女性);B)PBRC(彭寧頓生物醫學研究中心(Pennington Biomedical Research Center))研究(206名白人及黑人男性及女性);C)MET研究(50,51)(n=45,青春期前白人及黑人男孩及女孩);D)VIVA LA家族研究(52)(585名西班牙男孩及女孩)。Ad36抗體之出現率在HERITAGE、PBRC、MET及Viva La家族研究中分別為13%、18%、22%及7%。較佳血糖控制之各種指標(包括胰島素敏感性或素因指數)與此等群組中之Ad36感染顯著相關,而與年齡、性別、種族及肥胖無關(例如表1及表2展示PBRC及MET群組)。重要的是,Ad36與較佳血糖控制之關聯在超過1,500名個體之不同年齡組及種族之此等群組中顯著一致。此等資料表明Ad36感染可改善人類之血糖控制。
表1:PBRC研究(n=206;黑人/白人/其他74/118/14),平均值(95% Cl),相對於年齡、性別、種族及體脂肪質量進行調整。*p<0.05或更佳。**針對脾臟密度進行正規化。較高之HU值等於較低之脂質含量。
表2:MET研究,青春期前男孩及女孩(n=45;黑人/白人/其他;10/32/3)。平均值a(95%Cl),相對於性別及體脂肪質量進行調整。a對於葡萄糖為算術平均值;對於胰島素HOMA-IR及肝內脂質為幾何平均值。
實施例2: Ad36改善進食普通飼料之小鼠的胰島素敏感性
年齡、體重及體脂肪匹配之雌性C57BL/6J小鼠進行模擬感染或用Ad36或Ad2感染且保持標準飲食。4週齡雌性C57B6/6J小鼠購自Jackson實驗室(Bar Harbour,Maine,USA)。適應1週後,藉由Bruker Minispec mq10 NMR(核磁共振)分析器測定總體脂肪。將小鼠分為體重及體脂肪相匹配之3組且用107PFU之Ad36(N=3)或Ad2(用作對照之普通人類腺病毒;N=4)鼻內、經口及腹膜內接種或用組織培養基(n=6)模擬感染。使小鼠在25℃下處於12小時光-暗循環且在一房間中在生物安全性2級密封度下圈養於微型隔離籠中,且允許隨意獲取水及齧齒動物普通飼料(Purina LabDiet 5001)。
在12週實驗期間,該3組小鼠之總體重未顯示出差異。
針對腺病毒之中和抗體,及/或各種小鼠組織中對於病毒DNA及/或mRNA之PCR分析證實模擬感染或由預期病毒感染(表3)。在感染前,儘管所有3組小鼠之間具有類似的基線空腹血清葡萄糖及胰島素含量,但僅經Ad36感染之小鼠的此等含量隨實驗過程逐漸減少(圖1A及B)。此外,在感染後12週(pi),經Ad36-感染之小鼠之腹膜後脂肪墊及肝臟之質量分別為模擬感染小鼠之2倍高(p<0.03)或低10%(p<0.04)(表4,圖1)。因此,在進食標準普通飼料之小鼠中,Ad36感染而非Ad2感染藉由減少空腹葡萄糖及胰島素含量而改善全身血糖控制。
表3:顯示病毒抗體、病毒DNA及RNA之小鼠之百分比。
NA:在此等樣品中未測定病毒RNA。
表4:進食普通飼料之小鼠的基線及最終特徵。平均值±SE。
每週一次量測體重,且自空腹4小時之經麻醉小鼠的眼眶內眼球後竇(intra orbital retrobulbar sinus)獲取血液樣品。在感染後12週處死小鼠。收集軀幹血液且分離血清。仔細地分離肝臟、腹膜後脂肪蓄積,稱重且在液氮中急驟冷凍並儲存於-80℃下直至使用。使用血清來測定葡萄糖及胰島素。
藉由史都登氏『t』試驗(student's 『t』 test)分析體重、肝臟、脂肪墊重量、及葡萄糖及胰島素含量的差異。機率度設置為p<0.05。
實施例3: Ad36改善進食高脂肪飼料之小鼠的高血糖症
此實驗研究Ad36是否在以造成飲食誘發之高血糖症之高脂肪(HF,60千卡%)飲食所產生之糖尿病小鼠中具有類似作用。
在發展成如由高空腹血清葡萄糖含量(>200 mg/dL)所表明之糖尿病病況之前8週以HF飲食飼喂年齡、體重及體脂肪匹配之雄性C57BL/6J小鼠(14週齡)。此時,小鼠進行模擬感染或以Ad36或Ad2感染。在感染後20週,所有3組顯示類似累積食物攝入,以及總體重及脂肪墊質量(表5,圖2)。14週齡雄性C57B6/6J小鼠購自Jackson實驗室(Bar Harbour,Maine,USA),其在6週齡開始飼喂高脂肪(60千卡%)飲食(Research Diets公司D12492i)。適應1週後,藉由NMR測定基線體脂肪且將小鼠分成體脂肪及體重相匹配之3組(每組n=10)。該等組以鼻內、腹膜內及經口方式進行Ad36(0.6×106PFU)、Ad2(3×106PFU)或模擬感染,且再持續進食高脂肪飲食(60千卡%)20週。使小鼠在25℃下處於12小時光-暗循環且在一房間中在生物安全性2級密封度下單獨圈養於微型隔離籠中。食物消失且在16週中每週一次量測體重,且自經麻醉小鼠的眼眶內眼球後竇獲取血液樣品。在移除食物後4小時收集空腹樣品。在自由進食狀態下接種後20週處死小鼠。收集軀幹血液且分離血清。仔細地分離肝臟、附睾、腹膜後脂肪蓄積,稱重且在液氮中急驟冷凍並儲存於-80℃下直至使用。
在感染期後20週,藉由測定空腹葡萄糖及胰島素、葡萄糖耐受性測試以及藉由測定自由進食狀態下之葡萄糖含量來以多種方式評估血糖控制。如所預期,由於HF飲食誘發之胰島素抗性,模擬感染之小鼠顯示空腹血清葡萄糖及胰島素含量增加,然而,此等增加分別在感染後8週或感染後4週的經Ad36感染之小鼠中顯著減弱(圖3C及3D及4A)。經Ad36感染之小鼠亦在感染後12週回應於腹膜內葡萄糖耐受性測試(ipGTT)顯示顯著較快之血糖清除(圖3E)及在感染後20週顯示較低自由進食血清葡萄糖含量(圖3F及4B)。實際上,在感染後20週,所有經Ad36感染之小鼠之自由進食血清葡萄糖含量均在模擬感染小鼠中所測得之含量的50%以下(圖4B)(χ測試p=0.01)。儘管在此實驗中使用相比於Ad36劑量達5倍高之Ad2,但相較於模擬感染之對照小鼠,經Ad2感染之小鼠仍未能顯示顯著改善之血糖代謝障礙。因此,在空腹及進食條件下在糖尿病小鼠中Ad36感染均同樣特異性地改善血糖反應。
表5:進食HF之小鼠的基線及最終特徵。平均值±SE。
對來自實施例2之小鼠進行之西方墨點(WB)分析揭示與試管內資料一致(76,12),相較於感染後20週之模擬感染小鼠(圖5),如Ras及磷酸-Akt在骨骼肌、脂肪組織及肝臟中之較高豐度所指示,Ad36上調\Ras-PI3K路徑。對於經Ad36感染之小鼠,骨骼肌及脂肪組織中之較高Glut4及Glut1蛋白豐度表明Ad36藉以增加此等組織中之葡萄糖吸收的機制,而肝臟中之較低Glut2豐度及葡萄糖-6-磷酸酶(G6Pase)表明Ad36減少肝葡萄糖釋放(圖5C),此又可促成較佳血糖控制。如所預期,進食HF飲食之小鼠的肝臟切片與進食標準普通飼料之小鼠相比顯示較少肝糖及較多脂質(圖6A)。然而,在進食HF飲食之小鼠中,相較於模擬感染小鼠,經Ad36感染之小鼠之肝臟顯示防止HF飲食之病理性影響的較高保護性,如由肝糖增加及較低脂質含量所表明(圖6A至6C)(p<0.02)。由Ad36介導的對HF飲食誘發之肝臟病理學的保護作用與吾等人類資料一致,在感染Ad36之成人及青春期前少年兩者中均顯示較低肝脂質積聚。因此,本文呈示之發現支持一種模型,其中Ad36增加骨骼肌及脂肪組織之葡萄糖吸收並減少肝臟之葡萄糖釋放,藉此顯著改善動物之全身性血糖控制。
藉由史都登氏『t』試驗分析食物攝入、體重、肝臟、脂肪墊重量、及葡萄糖及胰島素含量的差異。機率度設置為p<0.05。
實施例4: Ad36改善脂肪組織之代謝型態的標記
使用來自在感染後20週在自由進食狀態下處死的進食HF飼料之小鼠之脂肪組織蛋白質如上所述進行西方墨點法(每組3隻小鼠)。GAPDH用作負載對照。如由較高AKT磷酸化及較高Glut4及Glut 1豐度所指示,Ad36似乎上調PI3K路徑及下游葡萄糖吸收。回應於感染,Ad2而非Ad36組中之脂肪組織相較於模擬組具有較高巨噬細胞浸潤(p<.05)。重要的是,Ad36組具有顯著較高的脂聯素豐度(圖4A),脂聯素為關鍵胰島素增敏劑及葡萄糖吸收促進劑(53)以及對抗肝脂肪變性之保護劑(54)(55)。脂聯素以較高、中等及較低分子量(MW)形式存在,不過較高MW形式與胰島素敏感性之關聯最強(56,57)。Ad36顯著增加進食HF飲食之小鼠之脂肪組織中所有形式之脂聯素的含量(圖7B)。始終觀察到脂聯素受Ad36上調,包括其在經Ad36感染之人類脂肪組織外植體中顯著較高之mRNA及蛋白質豐度(12)。此等改變共同指示Ad36改善脂肪組織之代謝品質。考慮到脂聯素之強烈肝作用(54,55),咸信脂聯素為Ad36之抗脂肪變性作用的關鍵介體。
實施例5: Ad36減輕脂肪變性並改善肝臟中之代謝型態
進食HF飲食之小鼠的肝臟切片與進食標準普通飼料之小鼠相比顯示較少肝糖及較多脂質(圖6A)。然而,在進食HF飲食之小鼠中,相較於模擬感染組,經Ad36感染之小鼠之肝臟顯示防止HF飲食之不良影響的較高保護性,如由肝糖增加及較低脂質含量所表明(圖6A)(p<.02)。Ad36組之肝臟中的較低Glut2豐度及葡萄糖-6-磷酸酶(G6Pase)(圖8)表明肝葡萄糖釋放減少,其又可促成較佳血糖控制。Ad36而非Ad2組之肝臟顯示較高AMPK-磷酸化,其為脂聯素保護肝臟以防止脂肪變性之已知目標(54)。
肝臟mRNA:測試進食普通飼料(圖9)或進食HF飼料之小鼠(圖10)之肝臟中所選基因的表現。儘管此等分子亦在多個路徑中執行重疊作用,但吾人考慮FAS(脂肪酸合成酶)、SREBP1c(固醇反應元件結合蛋白1c)及FOXO1(叉頭框O1(Forkhead Box O1))作為脂質生成之調節劑(58);CPT1(肉鹼棕櫚基醯基轉移酶)、LXR(肝臟X受體)及PPARα指示脂質氧化(59-61);且MTP(微粒體三酸甘油酯轉移蛋白)及ApoB(脂蛋白元B)作為脂質輸出之指標(62-66)。由於與炎症結合之肝脂肪變性可為發展成NASH之信號,因此測定炎症之標記。在接種後12至20週測定肝基因表現(表3)。雖然該種長期及HF飲食可掩蔽一些改變,但來自進食普通飼料及進食HF飼料之小鼠之基因表現共同表明Ad36在肝臟中減少脂質生成、上調脂質氧化及輸出,以及減少炎症(表6)。
表6:進食普通飼料或HF飲食之小鼠之的肝臟中之基因之表現的qRT-PCR資料。箭頭指示相較於模擬感染組,由Ad36誘導之改變的方向。*p<.05或更佳。若p值介於.05與0.1之間,則所表示之p值亦指示趨勢。NS:無顯著差異。
實施例6: Ad36 E4orf1減輕肝脂肪變性而無體重減輕
在獨立實驗中,用E4orf1或空pcDNA載體轉染HepG2細胞或小鼠初級肝細胞。在轉染後48小時測定HepG2細胞之棕櫚酸酯氧化及apoB分泌,以及初級肝細胞之基底及升糖素刺激之葡萄糖輸出。
相較於空載體轉染之細胞,E4orf1使脂肪氧化增加2倍(p<0.0001),且使apoB分泌增加1.5倍(p<0.003),以及使基底及升糖素刺激之葡萄糖輸出分別減少45%(p=0.0008)及22%(p<0.02)。
肝細胞之此試管內轉染顯示E4orf1介導Ad36對肝代謝之作用。資料顯示在肝細胞中,Ad36 E4orf1增加脂肪氧化及脂肪輸出至肝臟外部的轉運,且減少葡萄糖釋放。
實施例7: E4orf1誘導PPARγ
PPARγ為脂肪生成之主要調節劑,脂肪生成為身體製造脂肪細胞之過程。Ad36上調PPARγ,誘導脂肪生成,增加脂聯素及改善血糖控制。此研究探查脂聯素表現是否可與PPARγ誘導或脂肪生成去偶聯。
以下細胞類型用人類腺病毒Ad36或Ad2感染,或進行模擬感染:a)具有完整PPARγ之3T3-L1小鼠胚胎纖維母細胞(MEF);b)具有異常PPARγ表現之NIH/3T3 MEF;及c)來自PPARγ基因剔除小鼠之MEF(MEF -/-)。儘管下調或不存在PPARγ,但與模擬或Ad2感染之細胞相比,Ad36增強細胞葡萄糖吸收、脂聯素、Glut4及Glut1蛋白豐度。如所預期,脂肪生成誘導作用增加3T3-L1而非NIH/3T3或MEF -/-中之脂質。此指示Ad36上調葡萄糖吸收及脂聯素分泌而不募集PPARγ或增強脂肪生成。在人類中,如由Ad36抗體之存在所確定之天然Ad36感染預測較高脂聯素含量,表明此等作用之治療相關性。此進一步強化吾人提出之主張:與TZD之作用不同,E4orf1可能改善葡萄糖吸收而不增加體脂肪。
實施例8 E4orf1蛋白增強葡萄糖處置
開發回應於多西環素(doxycyclin)(3T3-E4)誘導性表現E4orf1的穩定3T3-L1細胞株來研究細胞信號轉導及測試Ad36是否需要其E4orf1蛋白來上調3T3-L1前脂肪細胞中之葡萄糖吸收。相較於模擬感染細胞,Ad36使基底葡萄糖吸收增加3倍,當以siRNA阻斷E4orf1之基因表現時則使該增加消除。此表明Ad36經由E4orf1增強細胞之葡萄糖吸收。相較於具有空載體之細胞,3T3-E4細胞以誘導依賴性方式增加葡萄糖吸收。E4orf1使Ras之豐度及活化增加,Ras為Ad36誘導之葡萄糖吸收中之專性分子。詳言之,E4orf1活化H-Ras同功異構物。因此,E4orf1使Ad36之抗高血糖作用縮窄至單一蛋白質。
實施例9 E4orf1調節脂肪細胞及肝細胞中之葡萄糖處置
在獨立實驗中,用表現E4orf1(pcDNA-V5-AD36-E4orf1)或空載體(pcDNA-V5-DEST)之經V-5標籤標記之質體轉染3T3-L1前脂肪細胞或脂肪細胞、C2C12肌母細胞或HepG2肝細胞。
考慮到脂肪組織及骨骼肌之葡萄糖吸收及肝臟之葡萄糖輸出有助於全身性血糖控制,因此測定Ad36 E4orf1對代表此等組織之細胞株中基底及胰島素刺激之葡萄糖處置的影響。將用E4orf1表現質體轉染之3T3-L1前脂肪細胞或脂肪細胞、C2C12肌母細胞或HepG2肝細胞中之葡萄糖處置與經空載體轉染之細胞相比較。
E4orf1表現使3T3-L1前脂肪細胞、脂肪細胞及C2C12肌母細胞中之基底2DG吸收增加(圖11A-C)。在脂肪細胞中,E4orf1進一步增加胰島素刺激之2DG吸收(p=0.003)。在不具有完全胰島素反應性之前脂肪細胞及肌母細胞中,E4orf1未增強胰島素刺激之2DG吸收。
儘管肝臟之多種代謝功能(諸如葡萄糖吸收、肝糖合成、肝糖分解)有助於全身性血糖控制,但肝葡萄糖輸出通常由於胰島素抗性而不受控制,且可為2型糖尿病之高血糖的關鍵因素。因此,關注點集中於確定E4orf1對肝細胞之葡萄糖釋放之作用。E4orf1轉染在基底以及胰島素刺激條件下顯著減少HepG2細胞之葡萄糖輸出(分別p<0.000001及<0.001;圖5D)。
此實驗表明Ad36 E4orf1影響脂肪組織、骨骼肌及肝臟之葡萄糖處置。
參考文獻
1. Fabbrini E,Magkos F,Mohammed BS等人Intrahepatic fat,not visceral fat,is linked with metabolic complications of obesity. Proc Natl Acad Sci U S A 2009;106:15430-15435。
2. Deivanayagam S,Mohammed BS,Vitola BE等人Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescents. Am J Clin Nutr 2008;88:257-262。
3. Targher G,Bertolini L,Padovani R等人Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care 2007;30:1212-1218。
4. Bellentani S,Scaglioni F,Marino M,Bedogni G. Epidemiology of non-alcoholic fatty liver disease. Dig Dis 2010;28:155-161。
5. Parekh S,Anania FA. Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology 2007;132:2191-2207。
6. Adams LA,Lymp JF,St Sauver J等人The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005;129:113-121。
7. Ekstedt M,Franzen LE,Mathiesen UL等人Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006;44:865-873。
8. Gupta AK,Bray GA,Greenway FL,Martin CK,Johnson WD,Smith SR. Pioglitazone,but not metformin,reduces liver fat in Type-2 diabetes mellitus independent of weight changes. J Diabetes Complications 2009。
9. Sanyal AJ,Chalasani N,Kowdley KV等人Pioglitazone,vitamin E,or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362:1675-1685。
10. Duvnjak M,Tomasic V,Gomercic M,Smircic Duvnjak L,Barsic N,Lerotic I. Therapy of nonalcoholic fatty liver disease: current status. J Physiol Pharmacol 2009;60增刊7:57-66。
11. Mishra P,Younossi ZM. Current treatment strategies for non-alcoholic fatty liver disease(NAFLD). Curr Drug Discov Technol 2007;4:133-140。
12. Rogers PM MN,Rathod MA,Dubuisson O,Wang ZQ,Dasuri K,Babin S,Gupta A,Markward N,Cefalu WT,Dhurandhar NV. Metabolically Favorable Remodeling of Human Adipose Tissue by Human Adenovirus Ad-36 Diabetes 2008;57:2321-2331。
13. Pasarica M,Mashtalir,N,McAllister,EJ,Kilroy,GE,Koska,J,Permana,P,de Courten,B,Yu,M,Ravussin,E,Gimble,JM,Dhurandhar,NV.. Adipogenic human adenovirus Ad-36 induces commitment,differentiation and lipid accumulation in human adipose-derived stem cells. Stem Cells 2008 26:969-978。
14. Nawrocki AR,Rajala MW,Tomas E等人Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. J Biol Chem 2006;281:2654-2660。
15. Lutchman G,Promrat K,Kleiner DE等人Changes in serum adipokine levels during pioglitazone treatment for nonalcoholic steatohepatitis: relationship to histological improvement. Clin Gastroenterol Hepatol 2006;4:1048-1052。
16. Shen Z,Liang X,Rogers CQ,Rideout D,You M. Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 2010;298:G364-374。
17. Habib ZA,Havstad SL,Wells K,Divine G,Pladevall M,Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010;95:592-600。
18. Ramos-Nino ME,MacLean CD,Littenberg B. Association between cancer prevalence and use of thiazolidinediones: results from the Vermont Diabetes Information System. BMC Med 2007;5:17。
19. Lipscombe LL,Gomes T,Levesque LE,Hux JE,Juurlink DN,Alter DA. Thiazolidinediones and cardiovascular outcomes in older patients with diabetes. JAMA 2007;298:2634-2643。
20. Fernandes-Santos C,Evangelista Carneiro R,de Souza Mendonca L,Barbosa Aguila M,Mandarim-de-Lacerda CA. Rosiglitazone aggravates nonalcoholic Fatty pancreatic disease in C57BL/6 mice fed high-fat and high-sucrose diet. Pancreas 2009;38:e80-86。
21. Fernandes-Santos C,Carneiro RE,de Souza Mendonca L,Aguila MB,Mandarim-de-Lacerda CA. Pan-PPAR agonist beneficial effects in overweight mice fed a high-fat high-sucrose diet. Nutrition 2009;25:818-827。
22. Todd MK,Watt MJ,Le J,Hevener AL,Turcotte LP. Thiazolidinediones enhance skeletal muscle triacylglycerol synthesis while protecting against fatty acid-induced inflammation and insulin resistance. Am J Physiol Endocrinol Metab 2007;292:E485-493。
23. Kuda O,Stankova B,Tvrzicka E等人Prominent role of liver in elevated plasma palmitoleate levels in response to rosiglitazone in mice fed high-fat diet. J Physiol Pharmacol 2009;60:135-140。
24. Trovato GM,Martines GF,Garozzo A等人Ad36 adipogenic adenovirus in human non-alcoholic fatty liver disease. Liver Int 2009。
25. Mengshol JA,Golden-Mason L,Rosen HR. Mechanisms of Disease: HCV-induced liver injury. Nat Clin Pract Gastroenterol Hepatol 2007;4:622-634。
26. Tsai WL,Chung RT. Viral hepatocarcinogenesis. Oncogene 2010;29:2309-2324。
27. Hanlon GW. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 2007;30:118-128。
28. Bischoff JR,Kirn DH,Williams A等人An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373-376。
29. Crompton AM,Kirn DH. From ONYX-015 to armed vaccinia viruses: the education and evolution of oncolytic virus development. Curr Cancer Drug Targets 2007;7:133-139。
30. Pan Q,Liu B,Liu J,Cai R,Wang Y,Qian C. Synergistic induction of tumor cell death by combining cisplatin with an oncolytic adenovirus carrying TRAIL. Mol Cell Biochem 2007。
31. Libertini S,Iacuzzo I,Ferraro A等人Lovastatin Enhances the Replication of the Oncolytic Adenovirus dl1520 and its Antineoplastic Activity Against Anaplastic Thyroid Carcinoma Cells. Endocrinology 2007。
32. Heiker JT,Kosel D,Beck-Sickinger AG. Molecular advances of adiponectin and adiponectin receptors. Biol Chem 2010。
33. Kim JY,van de Wall E,Laplante M等人Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007;117:2621-2637。
34. Xu A,Wang Y,Keshaw H,Xu LY,Lam KS,Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 2003;112:91-100。
35. Vitola BE,Deivanayagam S,Stein RI,Mohammed BS,Magkos F,Kirk EP,等人Weight loss reduces liver fat and improves hepatic and skeletal muscle insulin sensitivity in obese adolescents. Obesity(Silver Spring) 2009;17: 1744-1748。
36. Wang ZQ CW,Zhang XH,Yongmei Y,Qin J,Son L,Rogers PM,Mashtalir N,Bordelon JR,Ye J,Dhurandhar NV. Human adenovirus type 36 enhances glucose uptake in diabetic and non-diabetic human skeletal muscle cells independent of insulin signaling. Diabetes 2008;57 1805-1813。
37.. Pasarica M,Shin AC,Yu M,Ou Yang HM,Rathod M,Jen KL,等人Human adenovirus 36 induces adiposity,increases insulin sensitivity,and alters hypothalamic monoamines in rats. Obesity(Silver Spring) 2006;14: 1905-1913。
38. Kantartzis K,Schick F,Haring HU,Stefan N. Environmental and genetic determinants of fatty liver in humans. Dig Dis 2010;28: 169-178。
39. Magkos F,Fabbrini E,Mohammed BS,Patterson BW,Klein S. Increased Whole-Body Adiposity Without a Concomitant Increase in Liver Fat is Not Associated With Augmented Metabolic Dysfunction. Obesity(Silver Spring) 2010。
40. Foy HM,Grayston JT. Adenoviruses. "Viral infections of humans: Epidemiology and control". Evans Alfred S.編. Plenum Medical.: New York,1976,第53-70頁。
41. Horvath J,Palkonyay L,Weber J. Group C adenovirus DNA sequences in human lymphoid cells. J Virol 1986;59: 189-192。
42. Hierholzer JC,Wigand R,Anderson LJ,Adrian T,Gold JW. Adenoviruses from patients with AIDS: a plethora of serotypes and a description of five new serotypes of subgenus D(types 43-47). J Infect Dis 1988;158: 804-813。
43. Wigand R,Gelderblom H,Wadell G. New human adenovirus(candidate adenovirus 36),a novel member of subgroup D. Arch Virol 1980;64: 225-233。
44. Dhurandhar NV,Israel BA,Kolesar JM,Mayhew G,Cook ME,Atkinson RL. Transmissibility of adenovirus-induced adiposity in a chicken model. Int J Obes Relat Metab Disord 2001;25: 990-996。
45. Dhurandhar NV,Israel BA,Kolesar JM,Mayhew GF,Cook ME,Atkinson RL. Increased adiposity in animals due to a human virus. Int J Obes Relat Metab Disord 2000;24: 989-996。
46. Dhurandhar NV,Whigham LD,Abbott DH,Schultz-Darken NJ,Israel BA,Bradley SM,等人Human adenovirus Ad-36 promotes weight gain in male rhesus and marmoset monkeys. J Nutr 2002;132: 3155-3160。
47. Pasarica M,Loiler S,Dhurandhar NV. Acute effect of infection by adipogenic human adenovirus Ad36. Archives of Virology 2008;153(11): 2097-2102。
48. Atkinson R,Dhurandhar N,Allison D,Bower R,Israel B. Evidence for an association of an obesity virus with human obesity at three sites in the United States. Int J Obes 1998;22: S57。
49. Bouchard C,Leon AS,Rao DC,Skinner JS,Wilmore JH,Gagnon J. The HERITAGE family study. Aims,design,and measurement protocol. Med Sci Sports Exerc 1995;27: 721-729。
50. Tompkins CL,Cefalu W,Ravussin E,Goran M,Soros A,Volaufova J,等人Feasibility of intravenous glucose tolerance testing prior to puberty. Int J Pediatr Obes 2010;5: 51-55。
51. Larson-Meyer DE,Newcomer BR,VanVrancken-Tompkins CL,Sothern M. Feasibility of assessing liver lipid by proton magnetic resonance spectroscopy in healthy normal and overweight prepubertal children. Diabetes Technol Ther 2010;12: 207-212。
52. Butte NF,Cai G,Cole SA,Wilson TA,Fisher JO,Zakeri IF,等人Metabolic and behavioral predictors of weight gain in Hispanic children: the Viva la Familia Study. Am J Clin Nutr 2007;85: 1478-1485。
53. Yamauchi T,Kamon J,Minokoshi Y,Ito Y,Waki H,Uchida S,等人Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002;8: 1288-1295。
54. You M,Considine RV,Leone TC,Kelly DP,Crabb DW. Role of adiponectin in the protective action of dietary saturated fat against alcoholic fatty liver in mice. Hepatology 2005;42: 568-577。
55. Pajvani UB,Scherer PE. Adiponectin: systemic contributor to insulin sensitivity. Curr Diab Rep 2003;3: 207-213。
56. Waki H,Yamauchi T,Kamon J,Ito Y,Uchida S,Kita S,等人Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. J Biol Chem 2003;278: 40352-40363。
57. Schraw T,Wang ZV,Halberg N,Hawkins M,Scherer PE. Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 2008;149: 2270-2282。
58. Zhang W,Patil S,Chauhan B,Guo S,Powell DR,Le J,等人FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic,glycolytic,and lipogenic gene expression. J Biol Chem 2006;281: 10105-10117。
59. Yoon M. The role of PPARalpha in lipid metabolism and obesity: focusing on the effects of estrogen on PPARalpha actions. Pharmacol Res 2009;60: 151-159。
60. Louet JF,Le May C,Pegorier JP,Decaux JF,Girard J. Regulation of liver carnitine palmitoyltransferase I gene expression by hormones and fatty acids. Biochem Soc Trans 2001;29: 310-316。
61. Kotokorpi P,Ellis E,Parini P,Nilsson LM,Strom S,Steffensen KR,等人Physiological differences between human and rat primary hepatocytes in response to liver X receptor activation by 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyl oxy]phenylacetic acid hydrochloride(GW3965). Mol Pharmacol 2007;72: 947-955。
62. Liao W,Kobayashi K,Chan L. Adenovirus-mediated overexpression of microsomal triglyceride transfer protein(MTP): mechanistic studies on the role of MTP in apolipoprotein B-100 biogenesis. Biochemistry 1999;38: 10215。
63. Liao W,Kobayashi K,Chan L. Adenovirus-mediated overexpression of microsomal triglyceride transfer protein(MTP): mechanistic studies on the role of MTP in apolipoprotein B-100 biogenesis. Biochemistry 1999;38: 7532-7544。
64. Tietge UJ,Bakillah A,Maugeais C,Tsukamoto K,Hussain M,Rader DJ. Hepatic overexpression of microsomal triglyceride transfer protein(MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res 1999;40: 2134-2139。
65. Dixon JL,Ginsberg HN. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. J Lipid Res 1993;34: 167-179。
66. Davidson NO,Shelness GS. APOLIPOPROTEIN B: mRNA editing,lipoprotein assembly,and presecretory degradation. Annu Rev Nutr 2000;20: 169-193。
67. Polyzos SA,Kountouras J,Zavos C,Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 2010;12: 365-383。
68. Gao Z,Yin J,Zhang J,He Q,McGuinness OP,Ye J. Inactivation of NF-kappaB p50 leads to insulin sensitization in liver through post-translational inhibition of p70S6K. J Biol Chem 2009;284: 18368-18376。
69. Xu F,Gao Z,Zhang J,Rivera CA,Yin J,Weng J,等人Lack of SIRT1(Mammalian Sirtuin 1) activity leads to liver steatosis in the SIRT1+/- mice: a role of lipid mobilization and inflammation. Endocrinology 2010;151: 2504-2514。
70. Vangipuram SD,Sheele J,Atkinson RL,Holland TC,Dhurandhar NV. A human adenovirus enhances preadipocyte differentiation. Obes Res 2004;12: 770-777。
71. Gao Z,Wang Z,Zhang X,Butler AA,Zuberi A,Gawronska-Kozak B,等人Inactivation of PKCtheta leads to increased susceptibility to obesity and dietary insulin resistance in mice. Am J Physiol Endocrinol Metab 2007;292: E84-91。
72. Cefalu WT,Wang ZQ,Bell-Farrow A,Ralapati S. Liver and kidney tissue membranes as tissue markers for nonenzymatic glycosylation. Diabetes 1991;40: 902-907。
73. Lupo MA,Cefalu WT,Pardridge WM. Kinetics of lactate transport into rat liver in vivo. Metabolism 1990;39: 374-377。
74. Hillyard LA,Lin CY,Abraham S. Lipogenic enzyme activities in primary cultures of adult mouse hepatocytes. Lipids 1988;23: 242-247。
75. Amatruda JM,Danahy SA,Chang CL. The effects of glucocorticoids on insulin-stimulated lipogenesis in primary cultures of rat hepatocytes. Biochem J 1983;212: 135-141。
76. C. W. Wang ZQ,Zhang XH,Yongmei Y,Qin J,Son L,Rogers PM,Mashtalir N,Bordelon JR,Ye J,Dhurandhar NV.,Diabetes 57 1805(2008)。
77. G. Sesti,M. Federici,D. Lauro,P. Sbraccia,R. Lauro,Diabetes Metab Res Rev 17,363(2001年9月-10月)。
78. G. Sesti等人,FASEB J 15,2099(2001年10月)。
79. R. K. Semple等人,Diabetes Care 31,977(2008年5月)。
80. R. K. Semple等人,J Clin Invest 119,315(2009年2月)。
81. J. E. Pessin,A. R. Saltiel,J Clin Invest 106,165(2000年7月)。
82. L. J. Goodyear等人,J Clin Invest 95,2195(1995年5月)。
83. M. J. Pagliassotti,J. Kang,J. S. Thresher,C. K. Sung,M. E. Bizeau,Am J Physiol Endocrinol Metab 282,E170(2002年1月)。
84. N. G. Boule等人,Diabetes Care 28,108(2005年1月)。
85. N. F. Butte,G. Cai,S. A. Cole,A. G. Comuzzie,Am J Clin Nutr 84,646(2006年9月)。
86. C. C. Cowie等人,Diabetes Care 32,287(2009年2月)。
87. G. Zhou等人,J Clin Invest 108,1167(2001年10月)。
88. G. D. Cartee,J. F. Wojtaszewski,Appl Physiol Nutr Metab 32,557(2007年6月)。
89. Z. Gao等人,J Biol Chem 277,48115(2002年12月13日)。
90. E. Maury,S. M. Brichard,Mol Cell Endocrinol 314,1(1月15日)。
91. M. Qatanani,M. A. Lazar,Genes Dev 21,1443(2007年6月15日)。
92. R. L. Atkinson等人,Int J Obes(Lond) 29,281(2005年3月)。
93. P. An等人,Metabolism 52,246(2003年2月)。
94. R. C. Boston等人,Diabetes Technol Ther 5,1003(2003)。
95. S. Bajpeyi等人,J Appl Physiol 106,1079(2009年4月)。
96. F. Aoki等人,Biosci Biotechnol Biochem 71,206(2007年1月)。
97. A. Raben,N. Haulrik,N. Dhurandhar,R. Atkinson,A. Astrup,Int J Obes 25(增刊2),S46(2001)。
圖1為展示進食普通飼料(chow-fed)之小鼠腹膜後脂肪墊及肝臟之重量的圖。
圖2為展示進食高脂肪(HF)飼料之小鼠之體重的圖。
圖3A為展示進食普通飼料之小鼠之空腹血清葡萄糖的圖。圖3B為展示進食普通飼料之小鼠之血清胰島素的圖。
圖3C為展示進食HF飼料之小鼠之空腹血清葡萄糖含量改變的圖。圖3D為展示進食HF飼料之小鼠之空腹血清胰島素改變的圖。圖3E為展示進食HF飼料之小鼠在感染後12週進行葡萄糖耐受性測試之結果的圖。圖3F為展示進食HF飼料之小鼠在感染後20週自由進食的血清葡萄糖之圖。
圖4A為展示進食HF飼料之小鼠之空腹血清葡萄糖的圖。圖4B為展示進食HF飼料之小鼠在感染後20週自由進食的血清葡萄糖之圖。
圖5A為展示進食HF飼料之小鼠的骨骼肌中蛋白質豐度的西方墨點圖。圖5B為展示進食HF飼料之小鼠的脂肪組織中蛋白質豐度的西方墨點圖。圖5C為展示進食HF飼料之小鼠的肝臟中蛋白質豐度的西方墨點圖。
圖6A為C57Bl/6J小鼠之肝臟組織之一組過碘酸希夫氏染色(Periodic acid-Schiff stain)。深色染色展示肝糖且白色區域指示脂質積聚。進食普通飼料之對照小鼠展示最低脂質積聚。進食HF飼料之組展示較高脂質積聚。然而,如由較低脂質積聚及較高肝糖所指示,Ad36而非Ad2顯著減輕HF飲食誘發之脂肪變性(進食HF飼料模擬感染對比進食HF飼料Ad36感染;p<.02)。圖6B為展示進食HF飼料之小鼠的肝臟切片之肝糖含量的圖。圖6C為展示進食HF飼料之小鼠的肝臟切片之脂質含量的圖。
圖7為展示使用來自在感染後20週在自由進食狀態下處死的進食HF飼料之小鼠之脂肪組織蛋白質所得的西方墨點圖。(3隻小鼠/組)。圖7A:GAPDH為負載對照。相較於模擬組,Ad36組而非Ad2組中磷酸-AKT、Glut1、Glut 4及脂聯素較高(p<.05)。圖7B:相較於模擬組,Ad36組而非Ad2組中,在非還原、非變性條件下所分析之各脂聯素寡聚物較高(p<.03)。
圖8展示使用進食HF飼料之小鼠之肝臟蛋白質獲得的西方墨點圖。相較於模擬組,Ad36組而非Ad2組中p-AMPK較高且Glut2及G6pase較低(p<.05)。
圖9A及9B為展示進食普通飼料之小鼠在基線時(第0週)及感染後達12週時空腹血糖(A)及空腹血清胰島素(B)的圖。相對於模擬組,*p<.05。
圖10A-D為展示Ad36、Ad2或模擬組中進食HF飲食之小鼠之感染後血清葡萄糖及胰島素時程的圖。(A)第4週及第8週:調節至基線的空腹血清葡萄糖(第0週)。(B):第12週:在每公克2.5毫克後進行之腹膜內葡萄糖耐受性測試。(C):第20週:自由進食葡萄糖。(D):自第0週起空腹胰島素之改變。相較於各別研究之模擬組,*p<.05或更小。
圖11A-C為展示在3T3-L1(A)前脂肪細胞、(B)脂肪細胞及(C)C2C12肌母細胞中E4orf1表現使基底2DG葡萄糖吸收顯著增加的圖。圖11D為展示在基底以及胰島素刺激條件下在HepG2細胞中E4orf1表現使葡萄糖輸出顯著減少的圖。
<110> 路易斯安那州立大學暨農業機械學院管委會
<120> 用於預防及治療非酒精性脂肪肝疾病的腺病毒AD36 E40RF1蛋白
<140> TW 100124173
<141> 2011-07-08
<150> US 61/362,443
<151> 2010-07-08
<160> 10
<170> PatentIn第3.5版
<210> 1
<211> 378
<212> DNA
<213> 人類腺病毒36
<400> 1
<210> 2
<211> 125
<212> PRT
<213> 人類腺病毒36
<400> 2
<210> 3
<211> 366
<212> DNA
<213> 人類腺病毒36
<400> 3
<210> 4
<211> 121
<212> PRT
<213> 人類腺病毒36
<400> 4
<210> 5
<211> 22
<212> DNA
<213> 人工序列
<220>
<221> 來源
<223> /附註=「人工序列之描述:合成的引子」
<400> 5
<210> 6
<211> 20
<212> DNA
<213> 人工序列
<220>
<221> 來源
<223> /附註=「人工序列之描述:合成的引子」
<400> 6
<210> 7
<211> 20
<212> DNA
<213> 人工序列
<220>
<221> 來源
<223> /附註=「人工序列之描述:合成的引子」
<400> 7
<210> 8
<211> 20
<212> DNA
<213> 人工序列
<220>
<221> 來源
<223> /附註=「人工序列之描述:合成的引子」
<400> 8
<210> 9
<211> 20
<212> DNA
<213> 人工序列
<220>
<221> 來源
<223> /附註=「人工序列之描述:合成的引子」
<400> 9
<210> 10
<211> 20
<212> DNA
<213> 人工序列
<220>
<221> 來源
<223> /附註=「人工序列之描述:合成的引子」
<400> 10

Claims (22)

  1. 一種治療有效量之腺病毒-36 E4orf1蛋白或編碼腺病毒-36 E4orf1蛋白的核酸之用途,其係用於製造供治療或預防個體之非酒精性脂肪肝疾病的醫藥品,其中該蛋白為SEQ ID NO:2或其功能變異體,其中該功能變異體與SEQ ID NO:2具有至少85%的序列一致性。
  2. 如申請專利範圍第1項之用途,其中編碼腺病毒-36E4orf1蛋白之核酸被製造以用於藉由將編碼該腺病毒-36E4orf1蛋白之核酸序列以允許該腺病毒-36 E4orf1蛋白表現之方式引入個體內來投予。
  3. 如申請專利範圍第2項之用途,其中藉由選自由以下者所組成之群組的方法引入該核酸序列:電穿孔、DEAE聚葡萄糖轉染、磷酸鈣轉染、陽離子性脂質體融合、原生質體融合、產生活體內電場、經DNA塗佈之微彈轟擊(microprojectile bombardment)、注射重組複製缺陷型病毒、同源重組、活體內基因療法、活體外基因療法、病毒載體及裸DNA轉移。
  4. 如申請專利範圍第2項之用途,其中該核酸序列包含SEQ ID NO:1或其功能變異體,其中該功能變異體與SEQ ID NO:1具有至少85%的序列一致性。
  5. 如申請專利範圍第2項之用途,其中該個體為人類。
  6. 一種治療有效量之腺病毒-36 E4orf1蛋白或其功能變異體之用途,其係用於製造供減少個體之肝臟中之過多脂肪的醫藥品,其中該蛋白為SEQ ID NO:2或與SEQ ID NO: 2具有至少85%的序列一致性的功能變異體。
  7. 如申請專利範圍第6項之用途,其中該個體為人類。
  8. 一種治療有效量之編碼腺病毒-36 E4orf1蛋白的核酸序列之用途,其係用於製造供減少個體之肝臟中之過多脂肪的醫藥品,其中該蛋白為SEQ ID NO:2或其功能變異體,其中該功能變異體與SEQ ID NO:2具有至少85%的序列一致性,其中該核酸序列係以允許該腺病毒-36 E4orf1蛋白表現之方式引入該個體。
  9. 如申請專利範圍第8項之用途,其中藉由選自由以下者所組成之群組的方法引入該核酸序列:電穿孔、DEAE聚葡萄糖轉染、磷酸鈣轉染、陽離子性脂質體融合、原生質體融合、產生活體內電場、經DNA塗佈之微彈轟擊、注射重組複製缺陷型病毒、同源重組、活體內基因療法、活體外基因療法、病毒載體及裸DNA轉移。
  10. 如申請專利範圍第8項之用途,其中該核酸序列包含SEQ ID NO:1或其功能變異體,其中該功能變異體與SEQ ID NO:1具有至少85%的序列一致性。
  11. 一種治療有效量之Ad36 E4orf1蛋白或其功能變異體之用途,其係用於製造供治療或預防特徵在於脂肪肝及胰島素抗性之肝臟功能障礙的醫藥品,其中該蛋白為SEQ ID NO:2或與SEQ ID NO:2具有至少85%的序列一致性的功能變異體。
  12. 如申請專利範圍第11項之用途,其中該肝臟脂肪積聚改善之特徵在於脂質氧化增加或脂質自肝臟之轉運增 加。
  13. 如申請專利範圍第11項之用途,其中編碼腺病毒-36 E4orf1蛋白之核酸被製造以用於藉由將編碼該腺病毒-36 E4orf1蛋白之核酸序列以允許該腺病毒-36 E4orf1蛋白表現之方式引入個體內來投予。
  14. 如申請專利範圍第13項之用途,其中藉由選自由以下者所組成之群組的方法引入該核酸序列:電穿孔、DEAE聚葡萄糖轉染、磷酸鈣轉染、陽離子性脂質體融合、原生質體融合、產生活體內電場、經DNA塗佈之微彈轟擊、注射重組複製缺陷型病毒、同源重組、活體內基因療法、活體外基因療法、病毒載體及裸DNA轉移。
  15. 如申請專利範圍第13項之用途,其中該核酸序列包含SEQ ID NO:1或其功能變異體,其中該功能變異體與SEQ ID NO:1具有至少85%的序列一致性。
  16. 如申請專利範圍第13項之用途,其中該個體為人類。
  17. 一種治療有效量之Ad36 E4orf1蛋白或其功能變異體之用途,其係用於製造供減少或預防非酒精性脂肪肝炎(NASH)的醫藥品,其中該蛋白為SEQ ID NO:2或與SEQ ID NO:2具有至少85%的序列一致性的功能變異體。
  18. 如申請專利範圍第17項之用途,其中由肝功能障礙引起之高血糖症減少。
  19. 如申請專利範圍第17項之用途,其中編碼腺病毒-36 E4orf1蛋白之核酸被製造以用於藉由將編碼腺病毒-36 E4orf1蛋白之核酸序列以允許該腺病毒-36 E4orf1蛋白表現之方式引入個體內來投予。
  20. 如申請專利範圍第19項之用途,其中藉由選自由以下者所組成之群組的方法引入該核酸序列:電穿孔、DEAE聚葡萄糖轉染、磷酸鈣轉染、陽離子性脂質體融合、原生質體融合、產生活體內電場、經DNA塗佈之微彈轟擊、注射重組複製缺陷型病毒、同源重組、活體內基因療法、活體外基因療法、病毒載體及裸DNA轉移。
  21. 如申請專利範圍第19項之用途,其中該核酸序列包含SEQ ID NO:1或其功能變異體,其中該功能變異體與SEQ ID NO:1具有至少85%的序列一致性。
  22. 如申請專利範圍第19項之用途,其中該個體為人類。
TW100124173A 2010-07-08 2011-07-08 用於預防及治療非酒精性脂肪肝疾病的腺病毒ad36 e4orf1蛋白 TWI531650B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US36244310P 2010-07-08 2010-07-08

Publications (2)

Publication Number Publication Date
TW201217529A TW201217529A (en) 2012-05-01
TWI531650B true TWI531650B (zh) 2016-05-01

Family

ID=44629893

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100124173A TWI531650B (zh) 2010-07-08 2011-07-08 用於預防及治療非酒精性脂肪肝疾病的腺病毒ad36 e4orf1蛋白

Country Status (12)

Country Link
US (2) US8951980B2 (zh)
EP (1) EP2590665B1 (zh)
JP (1) JP5965397B2 (zh)
KR (1) KR101831638B1 (zh)
CN (1) CN103052397B (zh)
AU (1) AU2011274537B9 (zh)
CA (1) CA2803787C (zh)
ES (1) ES2550962T3 (zh)
HK (1) HK1185261A1 (zh)
NZ (1) NZ606236A (zh)
TW (1) TWI531650B (zh)
WO (1) WO2012006512A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2909216B1 (en) 2012-10-17 2016-12-21 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College Compositions and methods for improving glucose uptake
US9354963B2 (en) * 2014-02-26 2016-05-31 Microsoft Technology Licensing, Llc Service metric analysis from structured logging schema of usage data
EP3134417B1 (en) 2014-04-23 2019-07-31 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College Small molecule analogs of e4orf1
GB201910299D0 (en) * 2019-07-18 2019-09-04 Aouadi Myriam Medical uses, methods and uses

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE354097T1 (de) * 2004-08-12 2007-03-15 Hoffmann La Roche Verfahren zur diagnose von leberfibrose.
US20060045919A1 (en) 2004-08-27 2006-03-02 Samueli Institute Homeopathic compositions and methods for the treatment of cancer
JP2008105945A (ja) * 2005-02-07 2008-05-08 Ajinomoto Co Inc アディポネクチンの分泌促進又は誘導作用を有するアシルアミド化合物
EP1954131B1 (en) * 2005-11-30 2014-04-02 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College Adenovirus 36 e4 orf 1 gene and protein and their uses
AU2006342053A1 (en) * 2005-12-27 2007-10-25 Obetech, Llc Adipogenic adenoviruses as a biomarker for disease
JP2008273938A (ja) * 2007-03-30 2008-11-13 Shiseido Co Ltd アディポネクチン産生促進剤

Also Published As

Publication number Publication date
JP2013531681A (ja) 2013-08-08
US20170340699A1 (en) 2017-11-30
WO2012006512A1 (en) 2012-01-12
CA2803787C (en) 2018-12-04
EP2590665B1 (en) 2015-09-16
CA2803787A1 (en) 2012-01-12
JP5965397B2 (ja) 2016-08-03
US20120027845A1 (en) 2012-02-02
CN103052397B (zh) 2017-09-19
AU2011274537B9 (en) 2017-02-23
CN103052397A (zh) 2013-04-17
TW201217529A (en) 2012-05-01
HK1185261A1 (zh) 2014-02-14
US8951980B2 (en) 2015-02-10
ES2550962T3 (es) 2015-11-13
KR101831638B1 (ko) 2018-02-23
NZ606236A (en) 2014-09-26
EP2590665A1 (en) 2013-05-15
KR20130100262A (ko) 2013-09-10
AU2011274537A1 (en) 2013-02-14
AU2011274537B2 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
Krishnapuram et al. Template to improve glycemic control without reducing adiposity or dietary fat
Badmus et al. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): Functional analysis of lipid metabolism pathways
Kim et al. The adiponectin receptor agonist AdipoRon ameliorates diabetic nephropathy in a model of type 2 diabetes
Choe et al. Macrophage HIF-2α ameliorates adipose tissue inflammation and insulin resistance in obesity
Dadson et al. Adiponectin action: a combination of endocrine and autocrine/paracrine effects
Duan et al. Obesity, adipokines and hepatocellular carcinoma
Steinberg et al. The AMP-activated protein kinase: role in regulation of skeletal muscle metabolism and insulin sensitivity
Cariou The metabolic triad of non‐alcoholic fatty liver disease, visceral adiposity and type 2 diabetes: Implications for treatment
Kim et al. Involvement of activated SUMO-2 conjugation in cardiomyopathy
TWI531650B (zh) 用於預防及治療非酒精性脂肪肝疾病的腺病毒ad36 e4orf1蛋白
Sharma et al. The adiponectin signalling pathway-A therapeutic target for the cardiac complications of type 2 diabetes?
Qiu et al. Hepatocyte-secreted autotaxin exacerbates nonalcoholic fatty liver disease through autocrine inhibition of the PPARα/FGF21 axis
Tojima et al. Hepatocyte growth factor overexpression ameliorates liver inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis
Iizuka et al. Impact of discontinuation of fish oil after pioglitazone–fish oil combination therapy in diabetic KK mice
Guo et al. A novel NEDD4L-TXNIP-CHOP axis in the pathogenesis of nonalcoholic steatohepatitis
US10729634B2 (en) Sex hormone-binding globulin for use as a medicament
Côté et al. iBAT sympathetic innervation is not required for body weight loss induced by central leptin delivery
WO2018028433A1 (zh) Creg蛋白用于预防或治疗体重超重、肥胖及其相关疾病的医药用途
Baiges et al. Predicting heart failure after TIPS: still more questions than answers
KR20110008022A (ko) 카베올린을 유효성분으로 함유하는 당뇨병의 치료 및 개선용 조성물 및 이를 이용한 당뇨병의 치료방법
Cefalu et al. Template to improve glycemic control without
WO2024036044A1 (en) Compositions and methods for treating and preventing metabolic disorders
Zhao et al. Hepatic Neuronal Nitric Oxide Synthase Impaired Hepatic Insulin Sensitivity Through Activation of p38 MAPK
Dhurandhar et al. Viral infections and adiposity
Cheng Studies of Sodium-Glucose Cotransporter 2 and Fibroblast Growth Factor 21 on Islet Function and Glucose Homeostasis in Diabetes Mellitus

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees