TWI530688B - Manufacturing micro/nano probes apparatus and method thereof - Google Patents

Manufacturing micro/nano probes apparatus and method thereof Download PDF

Info

Publication number
TWI530688B
TWI530688B TW103139882A TW103139882A TWI530688B TW I530688 B TWI530688 B TW I530688B TW 103139882 A TW103139882 A TW 103139882A TW 103139882 A TW103139882 A TW 103139882A TW I530688 B TWI530688 B TW I530688B
Authority
TW
Taiwan
Prior art keywords
unit
electrochemical etching
micro
metal
probe
Prior art date
Application number
TW103139882A
Other languages
Chinese (zh)
Other versions
TW201619612A (en
Inventor
彭顯智
林沛彥
洪國永
Original Assignee
彭顯智
林沛彥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭顯智, 林沛彥 filed Critical 彭顯智
Priority to TW103139882A priority Critical patent/TWI530688B/en
Application granted granted Critical
Publication of TWI530688B publication Critical patent/TWI530688B/en
Publication of TW201619612A publication Critical patent/TW201619612A/en

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Description

製備微奈米探針設備及方法Micro-nano probe device and method

本發明係關於一種製備微奈米探針設備及方法,特別是關於一種可大量快速生產具有超細針尖探針的製備微奈米探針設備及方法。 The present invention relates to a device and method for preparing a micronanoprobe, and more particularly to a device and method for preparing a micronanoprobe which can rapidly and rapidly produce an ultrafine tip probe.

在掃描探針顯微技術(Scanning Probe Microscopy,SPM)廣泛地應用各種領域中,諸如奈米微影、奈米電子學、電化學、細胞生物學及電子顯微技術中。在此技術中,探針針尖的尺寸、形狀及成分影響了顯微解析度,譬如探針頭越尖越能提供高解析度,是故探針頭形狀的可控性、一致性與再現性,不論在產業界或是在學界均十分重要。 Scanning Probe Microscopy (SPM) is widely used in various fields such as nanolithography, nanoelectronics, electrochemistry, cell biology and electron microscopy. In this technique, the size, shape and composition of the probe tip affect the microscopic resolution. For example, the tip of the probe can provide high resolution, so that the shape of the probe head can be controlled, consistent and reproducible. Whether in the industry or in the academic world is very important.

在習知各種製備掃描探針顯微技術之探針的各種方法中,電化學蝕刻(electrochemical etching)是目前最常被用來製備超細針尖的方法,具有低成本、快速及可靠度高的優勢。然而,蝕刻後的針尖表面具有粗糙且無法有效控制針尖寬度及形狀的缺點,以及現有的電化學蝕刻方法每次僅能生產一根探針,且製備流程需要分由不同設備及人工協力完成,不僅產能有限,生產出的探針品質更是良莠不一,是故產學界均極需一種能夠達成自動化批次製備具有極尖探針的設備及方法。 Among various methods for preparing probes for scanning probe microscopy, electrochemical etching is currently the most commonly used method for preparing ultra-fine needle tips, and is low-cost, fast, and highly reliable. Advantage. However, the surface of the tip after etching has the disadvantage of being rough and unable to effectively control the width and shape of the tip, and the existing electrochemical etching method can only produce one probe at a time, and the preparation process needs to be completed by different equipments and manual cooperation. Not only the limited production capacity, but also the quality of the probes produced are different. Therefore, the industry and academia are in great need of an equipment and method capable of achieving automated batch preparation with extremely sharp probes.

本發明之目的在於提供一種高效率且自動化批次製備具有極尖微奈米探針的設備及方法,藉此快速量產兼具一致性高且再現性高等優點的超細金屬微奈米探針。 The object of the present invention is to provide a high-efficiency and automated batch preparation apparatus and method having a very sharp micro-nano probe, thereby rapidly mass-producing ultra-fine metal micro-nano probes with high consistency and high reproducibility. needle.

為達成上述目的,本發明提供了一種製備微奈米探針設備,其包含一電化學蝕刻單元、一傳送單元、一電源供應器、一振動單元、一清洗單元以及一儲放單元。電化學蝕刻單元容置一電化學蝕刻液,該電化學蝕刻液具有一蝕刻液表面。傳送單元具一夾取部,該夾取部可夾取一金屬材料之一端,將該金屬材料傳送至該電化學蝕刻單元,並將該金屬材料之另一端浸置於該電化學蝕刻液中。電源供應器具有一電源正極和該夾取部電連接,一電源負極和該電化學蝕刻液電連結。振動單元連結該夾取部,使該金屬材料之另一端可以相對於該蝕刻液表面進行一上下位移,以動態蝕刻形成一金屬探針。清洗單元具有一清洗液,該傳送單元將該金屬探針傳送至該清洗單元,並將該金屬探針浸置於該清洗液中,以移除該金屬探針表面上所殘留之電化學蝕刻液。儲放單元可以收置該被移除電化學蝕刻液後之金屬探針。 To achieve the above object, the present invention provides a micronanoprobe device comprising an electrochemical etching unit, a transfer unit, a power supply, a vibration unit, a cleaning unit, and a storage unit. The electrochemical etching unit houses an electrochemical etching solution having an etching liquid surface. The conveying unit has a clamping portion, the clamping portion can clamp one end of a metal material, transfer the metal material to the electrochemical etching unit, and immerse the other end of the metal material in the electrochemical etching solution . The power supply has a positive pole of the power source and the clamping part is electrically connected, and a negative pole of the power source and the electrochemical etching liquid are electrically connected. The vibration unit is coupled to the clamping portion such that the other end of the metal material can be displaced up and down with respect to the surface of the etching liquid to form a metal probe by dynamic etching. The cleaning unit has a cleaning liquid, the transfer unit transfers the metal probe to the cleaning unit, and the metal probe is immersed in the cleaning liquid to remove the electrochemical etching remaining on the surface of the metal probe. liquid. The storage unit can receive the metal probe after the electrochemical etching solution is removed.

本發明更提供一種製備微奈米探針方法,包含:提供容置一電化學蝕刻液之一電化學蝕刻單元,該電化學蝕刻液具一蝕刻液表面;夾取一金屬材料之一端,將該金屬材料傳送至該電化學蝕刻單元,並將該金屬材料之另一端浸置於該電化學蝕刻液中;以及使該金屬材料之另一端相對於該蝕刻液表面進行一上下位移,以動態蝕刻形成一金屬探針。 The invention further provides a method for preparing a micro-nano probe, comprising: providing an electrochemical etching unit for accommodating an electrochemical etching liquid, the electrochemical etching liquid having an etching liquid surface; and clamping one end of a metal material, Transferring the metal material to the electrochemical etching unit, and immersing the other end of the metal material in the electrochemical etching solution; and moving the other end of the metal material up and down with respect to the surface of the etching liquid to dynamically Etching forms a metal probe.

為了讓上述的目的、技術特徵和優點能夠更為本領域之人士所知悉並應用,下文係以本發明之數個較佳實施例以及附圖進行詳細的說明。 The above objects, technical features and advantages will be apparent to those skilled in the art, and the following detailed description of the preferred embodiments of the invention.

1‧‧‧製備微奈米探針設備 1‧‧‧Preparation of micronano probe equipment

10‧‧‧電源供應器 10‧‧‧Power supply

101‧‧‧電源正極 101‧‧‧Power positive

103‧‧‧電源負極 103‧‧‧Power negative

105‧‧‧負電極棒 105‧‧‧Negative electrode rod

11‧‧‧電化學蝕刻單元 11‧‧‧Electrochemical etching unit

111‧‧‧電化學蝕刻液 111‧‧‧Electrochemical etching solution

112‧‧‧蝕刻液表面 112‧‧‧etching liquid surface

12‧‧‧傳送單元 12‧‧‧Transfer unit

121‧‧‧夾取部 121‧‧‧Capture Department

13‧‧‧振動單元 13‧‧‧Vibration unit

14‧‧‧控制單元 14‧‧‧Control unit

15‧‧‧清洗單元 15‧‧‧cleaning unit

151‧‧‧清洗液 151‧‧‧ cleaning solution

16‧‧‧儲放單元 16‧‧‧Storage unit

17‧‧‧加熱單元 17‧‧‧heating unit

171‧‧‧包覆加熱帶 171‧‧‧Cover heating belt

173‧‧‧溫度感測器 173‧‧‧temperature sensor

2‧‧‧金屬材料 2‧‧‧Metal materials

2’‧‧‧金屬探針 2'‧‧‧Metal probe

21‧‧‧主體部 21‧‧‧ Main body

23‧‧‧針頭部 23‧‧‧ needle head

25‧‧‧針尖部 25‧‧‧Needle

27‧‧‧反曲點 27‧‧‧Recurve points

a、b‧‧‧距離 a, b‧‧‧ distance

圖1為本發明實施例中製備微奈米探針設備生產微奈米探針之示意圖; 圖2為本發明實施例中製備微奈米探針設備加熱單元之示意圖;圖3(a)、圖3(b)分別為本發明實施例中製備微奈米探針設備使金屬材料之其中一端離開液面及浸入液面之示意圖;以及圖4(a)~圖4(d)分別為本發明實施例中金屬探針之之各種外形示意圖。 1 is a schematic view showing the preparation of a micro-nano probe by preparing a micro-nano probe device according to an embodiment of the present invention; 2 is a schematic view showing a heating unit for preparing a micro-nano probe device according to an embodiment of the present invention; and FIG. 3(a) and FIG. 3(b) are respectively a preparation of a micro-nano probe device in the embodiment of the present invention; A schematic diagram of one end leaving the liquid surface and immersed in the liquid surface; and FIGS. 4(a) to 4(d) are respectively schematic views of various shapes of the metal probe in the embodiment of the present invention.

以下將透過實施例來解釋本發明內容,然而,關於實施例中之說明僅為闡釋本發明之技術內容及其目的功效,而非用以直接限制本發明之範圍。需說明者,以下實施例及圖式中,與本發明無關之元件已省略而未繪示,且圖式中各元件間之尺寸關係僅為求容易瞭解,非用以限制實際比例。 The present invention will be explained by the following examples, but the description of the embodiments is merely illustrative of the technical contents of the present invention and the purpose thereof, and is not intended to limit the scope of the present invention. It is to be noted that in the following embodiments and drawings, elements that are not related to the present invention have been omitted and are not shown, and the dimensional relationships between the elements in the drawings are merely for ease of understanding and are not intended to limit the actual ratio.

如圖1及圖2所示,本發明之實施例係為一製備微奈米探針設備1,用於自動化地從金屬材料量產規格一致之微奈米金屬探針。製備微奈米探針設備1包含一電源供應器10、一電化學蝕刻單元11、一傳送單元12、一振動單元13、一控制單元14、一清洗單元15、一儲放單元16以及一加熱單元17(為便於說明,僅於圖2繪示)。 As shown in FIGS. 1 and 2, an embodiment of the present invention is a micron probe device 1 for automatically mass-producing a micronanometal probe of a uniform specification from a metal material. The micro-nano probe device 1 comprises a power supply 10, an electrochemical etching unit 11, a transfer unit 12, a vibration unit 13, a control unit 14, a cleaning unit 15, a storage unit 16, and a heating unit. Unit 17 (shown only in Figure 2 for ease of illustration).

電源供應器10具有一電源正極101、一電源負極103及連接至電源負極103之一負電極棒105於本發明中,負電極棒可採用鈦、鉑或不鏽鋼製成,最佳為以鉑製成。於本實施例中,電源供應器10係為一直流電源供應器,其自電源正極101與電源負極103提供5~30伏特且0.2~5安培之直流電源;然於其他實施態樣中,亦可採用脈衝電源供應器,脈衝電壓值之工作週期(duty cycle)為0.1~1。本發明所述之負電極棒僅為其中一種實施態樣,在其它實施例中,不論是使用電極網或板等,都不會影響本發明所欲保護的範圍。 The power supply 10 has a power supply positive electrode 101, a power supply negative electrode 103, and a negative electrode rod 105 connected to the power supply negative electrode 103. The negative electrode rod can be made of titanium, platinum or stainless steel, preferably made of platinum. to make. In this embodiment, the power supply 10 is a DC power supply, which provides 5 to 30 volts and 0.2 to 5 amps of DC power from the power supply positive electrode 101 and the power supply negative electrode 103. However, in other implementations, A pulse power supply can be used, and the duty cycle of the pulse voltage value is 0.1 to 1. The negative electrode rod of the present invention is only one of the embodiments. In other embodiments, the use of an electrode mesh or a plate or the like does not affect the scope of the present invention.

電化學蝕刻單元11容置一電化學蝕刻液111,電化學蝕刻液111具有一蝕刻液表面112,並與電源負極103電性連接。於本發明中,電化學蝕刻液111 可為硫酸、鹽酸、硝酸、磷酸、氯化鈉、氯化鉀、氯化銨、氫氧化鉀、氫氧化鈉、氫氧化鈣、氫氧化鋁、檸檬酸、草酸及氫氧化銨至少其中之一之混和液,且電化學蝕刻液111之ph大於9。在一較佳的實施例中,可以選用鹽酸2~30%、硝酸2~30%、磷酸2~30%、氫氧化銨2~50%和草酸1~10%的混合電化學蝕刻液111。 The electrochemical etching unit 11 houses an electrochemical etching solution 111. The electrochemical etching liquid 111 has an etching liquid surface 112 and is electrically connected to the power source negative electrode 103. In the present invention, the electrochemical etching solution 111 It may be at least one of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, sodium chloride, potassium chloride, ammonium chloride, potassium hydroxide, sodium hydroxide, calcium hydroxide, aluminum hydroxide, citric acid, oxalic acid and ammonium hydroxide. The mixed solution, and the pH of the electrochemical etching solution 111 is greater than 9. In a preferred embodiment, a mixed electrochemical etching solution 111 of 2 to 30% hydrochloric acid, 2 to 30% nitric acid, 2 to 30% phosphoric acid, 2 to 50% ammonium hydroxide, and 1 to 10% oxalic acid may be used.

傳送單元12具有電連接至一電源正極101之一夾取部121,夾取部121可夾取至少一金屬材料2之一端,將金屬材料2傳送至電化學蝕刻單元11,並將金屬材料2之另一端浸置於電化學蝕刻液111中。於本實施例中,夾取部121每次可夾取2~4根金屬材料2以分別形成微奈米金屬探針2’。金屬材料2可為一圓柱狀,其直徑範圍為0.5-5mm。於本實施例中,此金屬材料2可為鈹銅絲。在另一個實施態樣中,金屬材料2在傳送至電化學蝕刻單元11之前,可以先進行一前處理步驟,利用酒精、丙酮或氫氧化鉀等去除金屬材料2表面的油脂。 The transfer unit 12 has a clamping portion 121 electrically connected to one of the positive electrodes 101 of the power source. The clamping portion 121 can pick up one end of the at least one metal material 2, transfer the metal material 2 to the electrochemical etching unit 11, and the metal material 2 The other end is immersed in the electrochemical etching solution 111. In the present embodiment, the gripping portion 121 can take 2 to 4 metal materials 2 each time to form the micronanometal probe 2', respectively. The metal material 2 may have a cylindrical shape with a diameter ranging from 0.5 to 5 mm. In this embodiment, the metal material 2 may be a beryllium copper wire. In another embodiment, before the metal material 2 is transferred to the electrochemical etching unit 11, a pre-treatment step may be performed to remove the grease on the surface of the metal material 2 by using alcohol, acetone or potassium hydroxide.

振動單元13連結夾取部121,使金屬材料2之另一端(亦即不受夾取部121夾取之一端)可以相對於蝕刻液表面112進行一上下位移,將金屬材料2之另一端於電化學蝕刻液111中重覆浸入並移出,亦即使金屬材料2以離開液面及浸入液面之方式振動,以將金屬材料2動態蝕刻成一金屬探針2’。如圖3(a)及圖3(b)所示,上下位移具有一振幅範圍,其中振幅範圍包括金屬材料2之另一端位移到蝕刻液表面112上和蝕刻液表面112之距離a及位移到蝕刻液表面112下和蝕刻液表面112之距離b。於本發明中,位移到蝕刻液表面112上和蝕刻液表面112之距離範圍為3mm以上,而位移到蝕刻液表面112下和蝕刻液表面112之距離範圍為2-17mm。振動單元13所進行之上下位移具有0.2-10Hz之一振動頻率。 The vibrating unit 13 is coupled to the gripping portion 121 such that the other end of the metal material 2 (that is, one end not sandwiched by the gripping portion 121) can be displaced up and down with respect to the etching liquid surface 112, and the other end of the metal material 2 is The electrochemical etching solution 111 is repeatedly immersed and removed, and even if the metal material 2 vibrates away from the liquid surface and immersed in the liquid surface, the metal material 2 is dynamically etched into a metal probe 2'. As shown in FIG. 3(a) and FIG. 3(b), the upper and lower displacements have an amplitude range, wherein the amplitude range includes the displacement of the other end of the metal material 2 onto the etching liquid surface 112 and the etching liquid surface 112 and the displacement to The distance b between the etchant surface 112 and the etchant surface 112. In the present invention, the distance from the displacement onto the etchant surface 112 to the etchant surface 112 is in the range of 3 mm or more, and the displacement to the etchant surface 112 and the etchant surface 112 is in the range of 2-17 mm. The upper and lower displacements of the vibration unit 13 have a vibration frequency of 0.2 to 10 Hz.

控制單元14可傳送一控制指令至振動單元13,其中控制指令可以控制振動單元13使為一振動模式。詳細而言,控制指令可以控制振動單元13使夾取部121快速下降至蝕刻液表面112下的振幅範圍,再緩緩上升至蝕刻液表面112上的振幅範圍。於其他實施態樣中,控制指令亦可為控制振動單元13使夾取部121 緩緩下降至蝕刻液表面112下的振幅範圍,再快速上升至蝕刻液表面112上的振幅範圍。 The control unit 14 can transmit a control command to the vibration unit 13, wherein the control command can control the vibration unit 13 to be in a vibration mode. In detail, the control command can control the vibration unit 13 to rapidly lower the gripping portion 121 to the amplitude range under the etching liquid surface 112, and then gradually rise to the amplitude range on the etching liquid surface 112. In other implementations, the control command may also be to control the vibration unit 13 to enable the clamping portion 121. The amplitude range is gradually lowered to the surface of the etchant surface 112 and rapidly rises to the amplitude range on the etchant surface 112.

清洗單元15容置一清洗液151,此清洗液151為去離子水,可為循環清洗液或新鮮清洗液。傳送單元12將金屬探針2’傳送至清洗單元15,並將金屬探針2’浸置於清洗液151中,輕晃1~3秒鐘,以移除金屬探針2’表面上所殘留之電化學蝕刻液111。 The cleaning unit 15 houses a cleaning liquid 151 which is deionized water and can be a circulating cleaning solution or a fresh cleaning solution. The transfer unit 12 transfers the metal probe 2' to the cleaning unit 15, and immerses the metal probe 2' in the cleaning liquid 151, and shakes for 1 to 3 seconds to remove the residue on the surface of the metal probe 2'. Electrochemical etching solution 111.

儲放單元16係用於使被移除電化學蝕刻液後之金屬探針2’自然風乾,並批次存放收置,並平放於一卡槽內(圖未示)。 The storage unit 16 is used for naturally drying the metal probe 2' after the electrochemical etching solution is removed, and is stored in a batch and placed in a card slot (not shown).

加熱單元17電連接置控制單元14,並如圖2所示,加熱單元17包含一包覆加熱帶171及一溫度感測器173。包覆加熱帶171裹於電化學蝕刻單元11周圍,溫度感測器173貼附於電化學蝕刻單元11表面。於本實施例中,溫度感測器173為熱電耦式感測器(thermocouple sensor),感測電化學蝕刻單元11之溫度,傳送至控制單元14後,由控制單元14運算判斷後,控制包覆加熱帶171對電化學蝕刻單元11之加熱溫控動作,以調整電化學蝕刻液111對金屬材料2之蝕刻化學反應速度。 The heating unit 17 is electrically connected to the control unit 14, and as shown in FIG. 2, the heating unit 17 includes a coated heating belt 171 and a temperature sensor 173. The coated heating tape 171 is wrapped around the electrochemical etching unit 11, and the temperature sensor 173 is attached to the surface of the electrochemical etching unit 11. In this embodiment, the temperature sensor 173 is a thermocouple sensor, and senses the temperature of the electrochemical etching unit 11, and after being transmitted to the control unit 14, the control unit 14 calculates and determines the control package. The heating belt 171 heats the temperature of the electrochemical etching unit 11 to adjust the etching reaction rate of the electrochemical etching solution 111 to the metal material 2.

如圖1所示,本實施例之電源供應器10、電化學蝕刻單元11、清洗單元15以及儲放單元16係設置於傳送單元12四周,藉由傳送單元12之機械手臂便可於所及範圍內之各單元進行極尖金屬探針2’之製備微奈米探針方法。於其他實施例中,亦可將傳送單元12架設於可移動之自走式動力設備上,或將電源供應器10、電化學蝕刻單元11、清洗單元15以及儲放單元16設置於輸送線上,俾使製備微奈米探針方法可流暢進行。 As shown in FIG. 1 , the power supply 10 , the electrochemical etching unit 11 , the cleaning unit 15 , and the storage unit 16 of the embodiment are disposed around the transmission unit 12 , and can be accessed by the robot arm of the transmission unit 12 . Each unit within the range performs a micronano probe method for the preparation of the polar tip metal probe 2'. In other embodiments, the transmitting unit 12 may be mounted on the movable self-propelled power device, or the power supply 10, the electrochemical etching unit 11, the cleaning unit 15, and the storage unit 16 may be disposed on the conveying line. The method of preparing the micronano probe can be carried out smoothly.

詳細而言,本實施例之傳送單元12的夾取部121夾取金屬材料2,使該等金屬材料2連接至電源正極101,以控制單元14之控制指令控制振動單元13,使夾取部121以1~3cm/sec的速率、0.2~10Hz之頻率,將該等金屬材料2之另一 端相對於電化學蝕刻液111之蝕刻液表面112進行一上下位移,該等金屬材料2之另一端向上升至蝕刻液表面112高度為2mm,向下浸置於電化學蝕刻液111之蝕刻液表面112下之深度1-17mm。而該等金屬材料2局部地浸置於電化學蝕刻液111中的時間長度為10至30秒,夾取部121夾著金屬材料2上下位移以進行動態蝕刻。此時金屬材料2與負電極棒105為平行設置,且兩者之垂直距離為3~15公分,控制單元14之控制指令使振動單元13停止振動,並使夾取部121將由該等金屬材料2形成之金屬探針2’向上位移離開電化學蝕刻液111。再將金屬探針2’浸置於成分為去離子水之清洗液151中三秒,藉此清洗移除殘留之電化學蝕刻液111後,放置於儲放單元16,使之風乾儲存。在不同實施例中,可以依不同探針規格需求,搭配不同的深度與時間控制指令,利用本製備微奈米探針設備1以製作出不同規格的金屬探針2’。 In detail, the clamping portion 121 of the transmitting unit 12 of the present embodiment picks up the metal material 2, connects the metal materials 2 to the power source positive electrode 101, and controls the vibration unit 13 with the control command of the control unit 14 to make the clamping portion. 121 at a rate of 1 to 3 cm/sec, at a frequency of 0.2 to 10 Hz, the other of the metal materials 2 The end is displaced upward and downward with respect to the etching liquid surface 112 of the electrochemical etching solution 111, and the other end of the metal material 2 is raised to a height of 2 mm to the etching liquid surface 112, and is immersed in the etching liquid of the electrochemical etching liquid 111 downward. The depth below the surface 112 is 1-17 mm. The metal material 2 is partially immersed in the electrochemical etching solution 111 for a length of time of 10 to 30 seconds, and the sandwiching portion 121 is vertically displaced by sandwiching the metal material 2 for dynamic etching. At this time, the metal material 2 and the negative electrode rod 105 are disposed in parallel, and the vertical distance between the two is 3 to 15 cm. The control command of the control unit 14 stops the vibration unit 13 from vibrating, and causes the clamping portion 121 to be composed of the metal materials. The formed metal probe 2' is displaced upward away from the electrochemical etchant 111. Then, the metal probe 2' is immersed in the cleaning liquid 151 containing deionized water for three seconds, thereby removing and removing the residual electrochemical etching liquid 111, and then placing it in the storage unit 16 to be air-dried and stored. In various embodiments, the micronanoprobe device 1 can be fabricated to produce metal probes 2' of different specifications, depending on the requirements of different probe specifications, with different depth and time control commands.

需特別說明的是,由於本發明之金屬材料2未受夾取之一端,係以完全離開電化學蝕刻液之蝕刻液表面112,以進行大幅度的振盪。若將金屬材料2浸入電化學蝕刻液111之該端保持於蝕刻液表面112下振盪,則會使電化學蝕刻液111於浸入之金屬材料2周圍蝕刻液表面112產生蝕刻渦流(vortex),更詳細而言,此蝕刻渦流係產生於蝕刻液表面112之新月形液面處,使得蝕刻作用於此蝕刻渦流處更為強烈。此種現象控制了探針形狀及探針深寬比。 It should be particularly noted that since the metal material 2 of the present invention is not pinched at one end, it is completely left from the etching liquid surface 112 of the electrochemical etching liquid to perform a large oscillation. If the metal material 2 is immersed in the end of the electrochemical etching solution 111 and kept under the etching liquid surface 112, the etching liquid vortex is generated on the etching liquid surface 112 of the electrochemical etching liquid 111 around the immersed metal material 2, and In detail, the etch eddy current is generated at the meniscus level of the etchant surface 112 such that the etch is more intense at the etch vortex. This phenomenon controls the shape of the probe and the aspect ratio of the probe.

更進一步而言,由於本發明控制了電化學蝕刻液111的流體動作,將針尖完全移出蝕刻液表面112,故避免了在液面附近形成蝕刻渦流。且因僅有針尖處於電化學蝕刻液111中上下位移,故電化學蝕刻液111僅對針尖進行蝕刻作用,相較於將針尖保持於蝕刻液表面112以下之上下位移蝕刻,而於金屬材料中間進行蝕刻,進而造成蝕刻後端處之掉落現象(drop off),本發明僅於端處進行蝕刻,故電化學蝕刻液中不會有掉落的金屬材料固體殘留物,避免金屬材料浪費。 Furthermore, since the present invention controls the fluid action of the electrochemical etching solution 111, the tip of the needle is completely removed from the surface 112 of the etching liquid, thereby avoiding the formation of an etching vortex near the liquid surface. Because only the tip of the needle is displaced up and down in the electrochemical etching solution 111, the electrochemical etching solution 111 only etches the tip of the needle, and is etched and etched under the surface of the etchant surface 112, and is in the middle of the metal material. The etching is performed to cause drop off at the back end of the etching. The present invention etches only at the end, so that there is no solid residue of the metal material falling in the electrochemical etching solution, and the metal material is prevented from being wasted.

本發明之製備微奈米探針方法所得之蝕刻後金屬探針具有一深寬比,該深寬比介於10-250。本發明之製備微奈米探針設備可精確製作出具有各種針尖形狀之金屬探針2’,諸如平針尖、鈍針尖及尖針尖,針尖曲率半徑介於2-100μm為平針尖、針尖曲率半徑介於200-2000nm為鈍針尖、針尖曲率半徑介於2-200nm為尖針尖等。且亦可於金屬材料之特定位置形成反曲點,製作出不同針頭形狀之探針。如圖4(a)至圖4(d)所示,金屬探針2’均具有一主體部21、一針頭部23及一針尖部25,但各圖所示之金屬探針2’具有不同外形。詳細而言,圖4(a)係用於說明本發明可製作出具有細長針頭之金屬探針2’,此種態樣之針頭部23接近針尖部25處外型細長,例如具有4-5μm之直徑,在針頭部23具有一反曲點27,形成於距針尖部25之一段距離。又於圖4(b)、圖4(c)所示態樣中,金屬探針之針頭部23分別為具有兩個反曲點27,圖4(b)和圖4(a)的差異在於,圖4(b)的針頭部23因具有兩個反曲點27,故為一階梯式的漸縮,接近針尖部25處的直徑小於接近主體部21的直徑,且接近針尖部25處外型細長;圖4(c)和圖4(b)雖均具有兩個反曲點27而呈階梯式,但兩者的差異在於,圖4(c)的針頭部23在接近針尖部25處為一圓錐狀的漸縮。在其它實施例中,針頭部23的反曲點27數量可以為一個或兩個以上,針頭部23寬度可以製備為細長外型或是多個階梯式的漸縮,依不同的量測需求去設計不同的針頭部23外形。圖4(d)之金屬探針2’不具反曲點,故主體部21係直接與針尖部25連接。須說明的是,上述舉例僅用於說明,本發明並不限製備以上四種型態尺寸之金屬探針,本發明的製備微奈米探針設備及方法可以依實際需要的外形,在控制單元14上設定好參數。 The post-etched metal probe obtained by the method for preparing a micronanoprobe of the present invention has an aspect ratio which is between 10 and 250. The preparation of the micro-nano probe device of the invention can accurately produce metal probes 2' having various tip shapes, such as flat needle tips, blunt needle tips and sharp needle tips, and the tip radius of curvature is 2-100 μm, which is a flat needle tip and a tip radius of curvature. The tip of the needle is between 200-2000 nm, the radius of curvature of the tip is between 2 and 200 nm, and the tip is sharp. It is also possible to form an inflection point at a specific position of the metal material to produce probes having different needle shapes. As shown in FIGS. 4(a) to 4(d), the metal probes 2' each have a main body portion 21, a needle head portion 23, and a needle tip portion 25, but the metal probes 2' shown in the respective drawings have different shape. In detail, FIG. 4(a) is for explaining that the present invention can produce a metal probe 2' having an elongated needle, and the needle head 23 of such an aspect is elongated near the tip end portion 25, for example, having 4-5 μm. The diameter of the needle head 23 has an inflection point 27 formed at a distance from the tip end portion 25. 4(b) and 4(c), the needle tip 23 of the metal probe has two inflection points 27, respectively, and the difference between FIG. 4(b) and FIG. 4(a) is that The needle head 23 of FIG. 4(b) has a stepwise taper because it has two inflection points 27, and the diameter near the tip end portion 25 is smaller than the diameter of the main body portion 21, and is close to the needle tip portion 25. Figure 4 (c) and Figure 4 (b) are both stepped with two inflection points 27, but the difference is that the needle head 23 of Figure 4 (c) is near the tip 25 It is tapered like a cone. In other embodiments, the number of inflection points 27 of the needle head 23 may be one or more, and the width of the needle head 23 may be prepared as an elongated shape or a plurality of stepwise tapers, depending on different measurement requirements. Design different pin head 23 profiles. Since the metal probe 2' of Fig. 4(d) has no inflection point, the main body portion 21 is directly connected to the tip end portion 25. It should be noted that the above examples are for illustrative purposes only, and the present invention is not limited to the preparation of the above four types of metal probes. The micro-nano probe device and method of the present invention can be controlled according to the actual shape. The parameters are set on unit 14.

於本實施例中,傳送單元12花費4分鐘抓取2根金屬材料2,使金屬材料2於電化學蝕刻液111中進行動態蝕刻15分鐘,再將成形後之金屬探針2’以清洗液151清洗3分鐘,最後於儲放單元16放置3分鐘使之乾燥,單次製備方法總共花費25分鐘,共完成2支微奈米金屬探針2’,平均每支工時12.5分鐘。 In the present embodiment, the transfer unit 12 takes 2 minutes to grasp 2 metal materials 2, and the metal material 2 is dynamically etched in the electrochemical etching solution 111 for 15 minutes, and then the formed metal probe 2' is used as a cleaning liquid. The 151 was cleaned for 3 minutes, and finally left in the storage unit 16 for 3 minutes to dry. The single preparation method took a total of 25 minutes to complete two micronano metal probes 2', with an average of 12.5 minutes per working hour.

本發明之製備微奈米探針設備可決定探針的形貌,諸如曲率半徑、探針尖鈍及深寬比,且本發明可製備之金屬探針的深寬比大於250。換言之,本發明可依需求大量有效率地生產特定形狀之微奈米金屬探針,且此等探針具有極高之一致性與再現性,提供各個微奈米領域更為便捷、穩定、有效率之測試工具。 The micronanoprobe device of the present invention can determine the morphology of the probe, such as radius of curvature, probe tip and aspect ratio, and the metal probes of the present invention can have an aspect ratio greater than 250. In other words, the present invention can efficiently and efficiently produce micro-nano metal probes of a specific shape according to requirements, and these probes have extremely high consistency and reproducibility, and are more convenient and stable in providing various micro-nano fields. Test tool for efficiency.

本發明在上文中已以較佳實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。 The invention has been described above in terms of the preferred embodiments, and it should be understood by those skilled in the art that the present invention is not intended to limit the scope of the invention. It should be noted that variations and permutations equivalent to those of the embodiments are intended to be included within the scope of the present invention. Therefore, the scope of protection of the present invention is defined by the scope of the patent application.

1‧‧‧製備微奈米探針設備 1‧‧‧Preparation of micronano probe equipment

10‧‧‧電源供應器 10‧‧‧Power supply

101‧‧‧電源正極 101‧‧‧Power positive

103‧‧‧電源負極 103‧‧‧Power negative

105‧‧‧負電極棒 105‧‧‧Negative electrode rod

11‧‧‧電化學蝕刻單元 11‧‧‧Electrochemical etching unit

111‧‧‧電化學蝕刻液 111‧‧‧Electrochemical etching solution

112‧‧‧蝕刻液表面 112‧‧‧etching liquid surface

12‧‧‧傳送單元 12‧‧‧Transfer unit

121‧‧‧夾取部 121‧‧‧Capture Department

13‧‧‧振動單元 13‧‧‧Vibration unit

14‧‧‧控制單元 14‧‧‧Control unit

15‧‧‧清洗單元 15‧‧‧cleaning unit

151‧‧‧清洗液 151‧‧‧ cleaning solution

16‧‧‧儲放單元 16‧‧‧Storage unit

2‧‧‧金屬材料 2‧‧‧Metal materials

2’‧‧‧金屬探針 2'‧‧‧Metal probe

Claims (10)

一種製備微奈米探針設備,包含: 一電化學蝕刻單元,容置一電化學蝕刻液,該電化學蝕刻液具有一蝕刻液表面; 一傳送單元,具一夾取部,該夾取部可夾取一金屬材料之一端,將該金屬材料傳送至該電化學蝕刻單元,並將該金屬材料之另一端浸置於該電化學蝕刻液中; 一電源供應器,具有一電源正極和該夾取部電連接,一電源負極和該電化學蝕刻液電連結; 一振動單元,連結該夾取部,使該金屬材料之另一端可以相對於該蝕刻液表面進行一上下位移,以動態蝕刻形成一金屬探針; 一清洗單元,具有一清洗液,該傳送單元將該金屬探針傳送至該清洗單元,並將該金屬探針浸置於該清洗液中,以移除該金屬探針表面上所殘留之電化學蝕刻液;以及 一儲放單元,可以收置該被移除電化學蝕刻液後之金屬探針。A micro-nano probe device comprises: an electrochemical etching unit, accommodating an electrochemical etching solution, the electrochemical etching liquid having an etching liquid surface; a conveying unit having a clamping portion, the clamping portion Capturing one end of a metal material, transferring the metal material to the electrochemical etching unit, and immersing the other end of the metal material in the electrochemical etching solution; a power supply having a positive electrode and the power supply The clamping portion is electrically connected, a negative electrode of the power source and the electrochemical etching liquid are electrically connected; a vibration unit is coupled to the clamping portion, so that the other end of the metal material can be vertically displaced relative to the surface of the etching liquid for dynamic etching Forming a metal probe; a cleaning unit having a cleaning liquid, the transfer unit transferring the metal probe to the cleaning unit, and immersing the metal probe in the cleaning liquid to remove the metal probe An electrochemical etching solution remaining on the surface; and a storage unit for accommodating the metal probe after the electrochemical etching solution is removed. 如請求項1所述之製備微奈米探針設備,該上下位移具有一振幅範圍,其中該振幅範圍包括該金屬材料之另一端位移到該蝕刻液表面上和該蝕刻液表面之距離及位移到蝕刻液表面下和該蝕刻液表面之距離。The micro-nano probe device according to claim 1, wherein the upper and lower displacements have an amplitude range, wherein the amplitude range includes a displacement of the other end of the metal material onto the surface of the etching liquid and a distance and displacement of the etching liquid surface. The distance from the surface of the etchant to the surface of the etchant. 如請求項2所述之製備微奈米探針設備,其中位移到該蝕刻液表面上和該蝕刻液表面之距離範圍為2mm以上。The micro-nano probe device according to claim 2, wherein the distance from the surface of the etching liquid to the surface of the etching liquid is 2 mm or more. 如請求項2所述之製備微奈米探針設備,其中位移到該蝕刻液表面下和該蝕刻液表面之距離範圍為1-17mm。A micronanoprobe device as claimed in claim 2, wherein the distance from the surface of the etchant to the surface of the etchant is from 1 to 17 mm. 如請求項2所述之製備微奈米探針設備,該上下位移具有一振動頻率為0.2-10Hz。The micro-nano probe device according to claim 2, wherein the up-and-down displacement has a vibration frequency of 0.2 to 10 Hz. 如請求項2所述之製備微奈米探針設備,其中該電化學蝕刻液為硫酸、鹽酸、硝酸、磷酸、氯化鈉、氯化鉀、氯化銨、氫氧化鉀、氫氧化鈉、氫氧化鈣、氫氧化鋁及氫氧化銨至少其中之一之混和液,且該電化學蝕刻液之ph大於9。The micro-nano probe device according to claim 2, wherein the electrochemical etching solution is sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, sodium chloride, potassium chloride, ammonium chloride, potassium hydroxide, sodium hydroxide, a mixture of at least one of calcium hydroxide, aluminum hydroxide and ammonium hydroxide, and the pH of the electrochemical etching solution is greater than 9. 如請求項2所述之製備微奈米探針設備,其中該金屬材料為一圓柱狀,該圓柱狀之直徑範圍為0.5-5mm。The micro-nano probe device according to claim 2, wherein the metal material has a cylindrical shape, and the cylindrical shape has a diameter ranging from 0.5 to 5 mm. 如請求項2所述之製備微奈米探針設備,其中蝕刻後之該金屬探針具有一深寬比,該深寬比介於10-250。The micro-nano probe device according to claim 2, wherein the metal probe after etching has an aspect ratio, and the aspect ratio is between 10 and 250. 如請求項2所述之製備微奈米探針設備,更包括一加熱單元。The preparation of the micro-nano probe device as claimed in claim 2 further comprises a heating unit. 如請求項9所述之製備微奈米探針設備,其中該加熱單元為一包覆加熱帶。A micronanoprobe device as claimed in claim 9 wherein the heating unit is a coated heating strip.
TW103139882A 2014-11-18 2014-11-18 Manufacturing micro/nano probes apparatus and method thereof TWI530688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103139882A TWI530688B (en) 2014-11-18 2014-11-18 Manufacturing micro/nano probes apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103139882A TWI530688B (en) 2014-11-18 2014-11-18 Manufacturing micro/nano probes apparatus and method thereof

Publications (2)

Publication Number Publication Date
TWI530688B true TWI530688B (en) 2016-04-21
TW201619612A TW201619612A (en) 2016-06-01

Family

ID=56361503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103139882A TWI530688B (en) 2014-11-18 2014-11-18 Manufacturing micro/nano probes apparatus and method thereof

Country Status (1)

Country Link
TW (1) TWI530688B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201903892UA (en) * 2016-11-02 2019-05-30 Janssen Pharmaceutica Nv [1,2,4]triazolo[1,5-a]pyrimidine derivatives as pde2 inhibitors
MX2019005123A (en) 2016-11-02 2019-06-20 Janssen Pharmaceutica Nv [1,2,4]triazolo[1,5-a]pyrimidine compounds as pde2 inhibitors.

Also Published As

Publication number Publication date
TW201619612A (en) 2016-06-01

Similar Documents

Publication Publication Date Title
CN102586854B (en) High-efficiency automatic tungsten needle manufacturing device and method
CN105203607B (en) A kind of preparation method of carbon fibre ultramicro-electrode
TWI530688B (en) Manufacturing micro/nano probes apparatus and method thereof
Grundfest et al. Stainless steel micro‐needle electrodes made by electrolytic pointing
CN103680760B (en) Sub-micron ball tip electrode preparation method
CN103014826A (en) Preparation method and preparation device of tungsten probe for electrical measurement of nanometer device
CN109706515A (en) A kind of preparation facilities and preparation method of the tungsten wire needle point of controllable draw ratio
CN104785871B (en) A kind of preparation method of probe and preparation facilitiess
US20140173786A1 (en) Electrochemically-grown nanowires and uses thereof
TWM496763U (en) Micro/nano probes
CN116695230A (en) Preparation device and method for high-deflection micro-shovel structure metal needle tip and electrode
CN105908241A (en) Preparing method of TiO2 nanotube array in controllable three-dimensional shape
Zhang et al. Electrochemical micro-machining of high aspect ratio micro-tools using quasi-solid electrolyte
US6249965B1 (en) Methods for making small-diameter iridium electrodes
CN112014429B (en) Cell membrane vibration detection method based on ultramicro electroosmotic flow regulation and control
CN211227338U (en) Chemical silvering ultrasonic device
Wang et al. Fabrication of sub-micro spherical probes by liquid membrane pulsed electrochemical etching
CN111304730B (en) Device and method for processing hole wall of SMT laser template
CN201017692Y (en) Real time monitoring system for manufacturing nano detecting probe with electrochemical corrosion
Zhan et al. Observation and modulation of gas film and plasma behavior in electrolytic plasma hybrid etching of semiconductor material 4H–SiC
CN213507284U (en) Electrochemical surface treatment device
Zhang et al. Comparison of different laser-assisted electrochemical methods based on surface morphology characteristics
CN102650073A (en) Electrochemical etching method for directly obtaining micro nanowire at one end of macroscopic filament
CN101984148B (en) Controllable preparation method of Sb monocrystal nanowires in different growth directions
CN206177991U (en) Scanning tunnel microscope scanning probe's control circuit

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees