TWI528528B - Integrated circuit configuration and fabricating method thereof - Google Patents
Integrated circuit configuration and fabricating method thereof Download PDFInfo
- Publication number
- TWI528528B TWI528528B TW100149250A TW100149250A TWI528528B TW I528528 B TWI528528 B TW I528528B TW 100149250 A TW100149250 A TW 100149250A TW 100149250 A TW100149250 A TW 100149250A TW I528528 B TWI528528 B TW I528528B
- Authority
- TW
- Taiwan
- Prior art keywords
- integrated circuit
- substrate
- extended conductor
- diffusion region
- circuit component
- Prior art date
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
Description
本案係為一種積體電路元件構造與製造方法,尤指應用於增加電路布局彈性之積體電路元件構造與製造方法。 The present invention is a method and a manufacturing method for an integrated circuit component, and particularly relates to an integrated circuit component construction and manufacturing method for increasing the flexibility of circuit layout.
積體電路製造技術的發展過程中,追求元件的小型化是相當重要的部份。而在數位邏輯電路中,經常重複使用許多邏輯閘來組合出不同的功能電路。因此,若能針對邏輯閘於積體電路中所佔用面積進行改善,將可使功能電路整體所佔用之面積大幅下降,進而達到縮小尺寸與節省成本之功效。 In the development of integrated circuit manufacturing technology, the pursuit of miniaturization of components is a very important part. In digital logic circuits, many logic gates are often used repeatedly to combine different functional circuits. Therefore, if the area occupied by the logic gate in the integrated circuit is improved, the area occupied by the functional circuit as a whole can be greatly reduced, thereby achieving the effect of downsizing and cost saving.
請參見圖1A,其係一反及閘(NAND gate)之電路示意圖,其主要是利用兩個P型金氧半電晶體P1、P2與兩個N型金氧半電晶體N1、N2所構成。當輸入端A、B均為高電壓時,輸出端Y為低電壓,若輸入端A、B中至少有一個為低電壓時,輸出端Y則為高電壓。 Please refer to FIG. 1A , which is a circuit diagram of a NAND gate, which mainly uses two P-type MOS transistors P1 and P2 and two N-type MOS transistors N1 and N2. . When the input terminals A and B are both high voltage, the output terminal Y is a low voltage. If at least one of the input terminals A and B is a low voltage, the output terminal Y is a high voltage.
而如圖1A所示之反及閘等功能電路,元件庫(cell library)中皆有相對應之標準元件(standard cell)來完成,而如何提出更好的標準元件布局來改善習用手段缺失,進而有效縮短元件尺寸與增加電路布局彈性,係為發展本案之主要目的。 As shown in FIG. 1A, the functional circuit such as the anti-gate and the cell library have corresponding standard cells, and how to propose a better standard component layout to improve the lack of conventional means. Further reducing the component size and increasing the flexibility of the circuit layout is the main purpose of developing the case.
本發明的一目的在於提供一種積體電路元件構造,其包含:一基板;一擴散區,形成於基板中;一閘極結構,形成於基板上方並跨過擴散區;一延伸導體結構,形成於基板上方並與擴散區接觸,其沿基板表面向外延伸至一第一位置,第一位置超出擴散區的範圍;一介電層,形成於基板、閘極結構與延伸導體結構之上方;一接觸結構,穿過介電層而接觸至延伸導體結構之第一位置;以及一金屬導線,形成於介電層表面上並接觸至接觸結構。 An object of the present invention is to provide an integrated circuit device structure comprising: a substrate; a diffusion region formed in the substrate; a gate structure formed over the substrate and across the diffusion region; and an extended conductor structure formed Above the substrate and in contact with the diffusion region, extending outward along the surface of the substrate to a first position, the first position being outside the range of the diffusion region; a dielectric layer formed over the substrate, the gate structure and the extended conductor structure; a contact structure that contacts the first location of the extended conductor structure through the dielectric layer; and a metal wire formed on the surface of the dielectric layer and in contact with the contact structure.
在本發明的較佳實施例中,上述基板為一半導體基板。 In a preferred embodiment of the invention, the substrate is a semiconductor substrate.
在本發明的較佳實施例中,上述擴散區包含一通道區、一源極區以及一汲極區,上述通道區位於上述閘極結構下方。 In a preferred embodiment of the invention, the diffusion region includes a channel region, a source region, and a drain region, and the channel region is located below the gate structure.
在本發明的較佳實施例中,上述延伸導體結構接觸至上述擴散區中之上述源極區。 In a preferred embodiment of the invention, the extended conductor structure contacts the source region of the diffusion region.
在本發明的較佳實施例中,上述延伸導體結構接觸至上述擴散區中之上述汲極區。 In a preferred embodiment of the invention, the extended conductor structure contacts the drain region of the diffusion region.
在本發明的較佳實施例中,上述延伸導體結構為一第零層金屬結構。 In a preferred embodiment of the invention, the extended conductor structure is a zeroth layer metal structure.
在本發明的較佳實施例中,上述延伸導體結構包含一條型接觸結構與一第零層金屬結構。 In a preferred embodiment of the invention, the extended conductor structure comprises a strip contact structure and a zero layer metal structure.
在本發明的較佳實施例中,上述接觸結構由一第零層接觸結構所完成。 In a preferred embodiment of the invention, the contact structure is completed by a zeroth layer contact structure.
在本發明的較佳實施例中,上述介電層為一金屬層間介電層。 In a preferred embodiment of the invention, the dielectric layer is a metal interlayer dielectric layer.
在本發明的較佳實施例中,上述金屬導線通過上述閘極結構之上方。 In a preferred embodiment of the invention, the metal wire passes over the gate structure.
本發明的另一目的在於提供一種積體電路元件製造方法,其包含下列步驟:提供一基板;於基板中形成一擴散區;於基板上方形成一閘極結構,閘極結構跨過擴散區;於基板上方形成一延 伸導體結構,延伸導體結構與擴散區接觸,延伸導體結構沿基板表面向外延伸至一第一位置,第一位置超出擴散區的範圍;於基板、閘極結構與延伸導體結構之上方形成一介電層;於介電層中形成一接觸結構,穿過介電層而接觸至延伸導體結構之第一位置;以及於介電層表面上形成一金屬導線,金屬導線接觸至接觸結構。 Another object of the present invention is to provide a method for fabricating an integrated circuit component, comprising the steps of: providing a substrate; forming a diffusion region in the substrate; forming a gate structure over the substrate, the gate structure spanning the diffusion region; Forming a delay above the substrate Extending the conductor structure, the extended conductor structure is in contact with the diffusion region, the extended conductor structure extends outward along the surface of the substrate to a first position, the first position is beyond the range of the diffusion region; and a substrate is formed above the gate structure and the extended conductor structure a dielectric layer; forming a contact structure in the dielectric layer, contacting the first position of the extended conductor structure through the dielectric layer; and forming a metal wire on the surface of the dielectric layer, the metal wire contacting the contact structure.
在本發明的較佳實施例中,上述基板為一半導體基板。 In a preferred embodiment of the invention, the substrate is a semiconductor substrate.
在本發明的較佳實施例中,形成上述擴散區之方法包含下列步驟:形成一通道區,上述通道區位於上述閘極結構下方;形成一源極區以及形成一汲極區。 In a preferred embodiment of the invention, the method of forming the diffusion region includes the steps of: forming a channel region, the channel region being below the gate structure; forming a source region and forming a drain region.
在本發明的較佳實施例中,上述延伸導體結構接觸至上述擴散區中之上述源極區。 In a preferred embodiment of the invention, the extended conductor structure contacts the source region of the diffusion region.
在本發明的較佳實施例中,上述延伸導體結構接觸至上述擴散區中之上述汲極區。 In a preferred embodiment of the invention, the extended conductor structure contacts the drain region of the diffusion region.
在本發明的較佳實施例中,上述延伸導體結構為一第零層金屬結構。 In a preferred embodiment of the invention, the extended conductor structure is a zeroth layer metal structure.
在本發明的較佳實施例中,形成上述延伸導體結構之方法包含下列步驟:形成一條型接觸結構以及一第零層金屬結構。 In a preferred embodiment of the invention, the method of forming the extended conductor structure comprises the steps of forming a strip contact structure and a zero layer metal structure.
在本發明的較佳實施例中,上述接觸結構由一第零層接觸結構所完成。 In a preferred embodiment of the invention, the contact structure is completed by a zeroth layer contact structure.
在本發明的較佳實施例中,上述介電層為一金屬層間介電層。 In a preferred embodiment of the invention, the dielectric layer is a metal interlayer dielectric layer.
在本發明的較佳實施例中,上述金屬導線通過上述閘極結構之上方。 In a preferred embodiment of the invention, the metal wire passes over the gate structure.
再請參見圖1B,其係申請人針對圖1A之反及閘電路構造所發展出之布局上視示意圖,其中虛線區代表N型井區10,而N型井區10外便為P型半導體基板1,而N型井區10中完成有N型金氧半電晶體N1、N2共用之P型擴散區11以及N型基體接觸區19,而P型金氧半電晶體P1、P2共用之N型擴散區12以及P型基體接觸區18完成於P型半導體基板1中。而橫跨P型擴散區11與N型擴散區12之閘極結構13、14係完成圖1A中之輸入端A、B,至於透過接觸點16與P型擴散區11、N型基體接觸區19、N型擴散區12以及P型基體接觸區18完成電性連接之金屬導線150、151及152,則分別連接至工作電壓VDD、接地點以及輸出端Y,進而完成一反及閘電路單元。 Referring to FIG. 1B, it is a schematic top view of the layout developed by the applicant for the structure of the anti-gate circuit of FIG. 1A, wherein the dotted line area represents the N-type well area 10, and the N-type well area 10 is a P-type semiconductor. The substrate 1 and the P-type diffusion region 11 and the N-type substrate contact region 19 shared by the N-type MOS transistors N1 and N2 are completed in the N-type well region 10, and the P-type MOS transistors P1 and P2 are shared. The N-type diffusion region 12 and the P-type substrate contact region 18 are completed in the P-type semiconductor substrate 1. The gate structures 13 and 14 across the P-type diffusion region 11 and the N-type diffusion region 12 complete the input terminals A and B in FIG. 1A, and the contact point 16 and the P-type diffusion region 11 and the N-type substrate contact region. 19. The N-type diffusion region 12 and the P-type substrate contact region 18 are electrically connected to the metal wires 150, 151 and 152, respectively connected to the working voltage VDD, the grounding point and the output terminal Y, thereby completing a reverse gate circuit unit. .
而由圖式可清楚看出,分別連接至工作電壓VDD與接地點之金屬導線150、151間之距離h,相當程度決定了此反及閘電路構造之尺寸大小,而其它邏輯電路單元也是如此。因此,如何再更有效縮短距離h,係為下一個實施例所要表達的。 As can be clearly seen from the drawing, the distance h between the metal wires 150 and 151 respectively connected to the working voltage VDD and the grounding point determines the size of the reverse gate circuit structure to a considerable extent, and other logic circuit units are also the same. . Therefore, how to shorten the distance h more effectively is what is to be expressed in the next embodiment.
請參見圖2A至圖2D,其表示出本案所發展出來用以增加電路布局彈性之上視結構示意圖。其圖2A中表示出一金氧半電晶體之電路布局示意圖,其中閘極結構21橫跨過擴散區22而將擴散區22分成源極區221、汲極區222與閘極結構21下方之通道區223,而為能增加金氧半電晶體之布局彈性,本實施例係將接觸透孔結構231、232之位置移動至擴散區22之兩側,使得形成於介電層(本圖未示出)上方之金屬導線241、242可以改變布局位置。而位置之改變主要是透過位於介電層(本圖未示出)下方且分別與源極區221、汲極區222接觸之延伸導體結構251、252來達成。如此一來,就可讓金屬導線241避開左側的密封環29,並且讓金屬導線241與金屬導線242間具有符合設計規則的間距。 Referring to FIG. 2A to FIG. 2D, there is shown a schematic diagram of the top view of the present invention for increasing the flexibility of the circuit layout. FIG. 2A shows a circuit layout diagram of a MOS transistor, in which the gate structure 21 straddles the diffusion region 22 and divides the diffusion region 22 into a source region 221, a drain region 222 and a gate structure 21. In the channel region 223, in order to increase the layout elasticity of the MOS transistor, the position of the contact via structures 231, 232 is moved to both sides of the diffusion region 22 so as to be formed on the dielectric layer (this figure is not The metal wires 241, 242 shown above can change the layout position. The change in position is mainly achieved by the extended conductor structures 251, 252 located under the dielectric layer (not shown in this figure) and in contact with the source region 221 and the drain region 222, respectively. In this way, the metal wire 241 can be prevented from avoiding the seal ring 29 on the left side, and the metal wire 241 and the metal wire 242 have a pitch that conforms to the design rule.
再請參見圖2B,其中表示出兩個圖2A所示之金氧半電晶體並排之電路布局示意圖,而由於延伸導體結構251、252之增設,不但讓金屬導線241與金屬導線242間具有符合設計規則的間距,還方便多個金氧半電晶體完成連接。 Referring to FIG. 2B, a circuit layout diagram of two metal oxide semi-transistors shown in FIG. 2A is shown, and the extension of the conductor structures 251 and 252 not only makes the metal wires 241 and the metal wires 242 conform to each other. The spacing of the design rules also facilitates the connection of multiple MOS transistors.
再請參見圖2C,其中表示出另一種金氧半電晶體之電路布局示意圖,同樣是利用延伸導體結構251、252來調整金屬導線241與金屬導線242間之間距,本例是將金屬導線241與金屬導線242間之間距增大,使得另一金屬導線243可位於金屬導線241與金屬導線242之間。 Referring to FIG. 2C, a circuit layout diagram of another metal oxide semi-transistor is shown. Similarly, the extended conductor structures 251 and 252 are used to adjust the distance between the metal wire 241 and the metal wire 242. In this example, the metal wire 241 is used. The distance between the metal wires 242 and the metal wires 242 is increased such that the other metal wires 243 can be located between the metal wires 241 and the metal wires 242.
再請參見圖2D,其中表示出另一種金氧半電晶體之電路布局示意圖,本例是利用延伸導體結構251、252以及接觸透孔結構231、232來調整金屬導線241與金屬導線242間之延伸方向,然後金屬導線241與金屬導線242再藉由另外的接觸透孔結構261、262連接至更上層的金屬導線271與金屬導線272。如此將使得此元件占用面積達到極小化。 Referring to FIG. 2D, a circuit layout diagram of another metal oxide semi-transistor is shown. In this example, the extended conductor structures 251 and 252 and the contact via structures 231 and 232 are used to adjust the metal conductor 241 and the metal conductor 242. Extending the direction, the metal wire 241 and the metal wire 242 are then connected to the upper metal wire 271 and the metal wire 272 by additional contact via structures 261, 262. This will minimize the footprint of this component.
再請見圖3,其係利用延伸導體結構來縮小邏輯電路標準單元(standard cell)之電路布局示意圖,本圖中所示為一互補式金氧半電晶體製程所完成之反及閘(NAND gate)布局結構,用以完成圖1A中所示之反及閘功能電路,因此輸入端與輸出端之標示皆沿用圖1A。如圖3所示,金屬導線350、351及352分別連接至工作電壓VDD、接地點以及輸出端Y。而為能達到縮小尺寸的目的,本例利用延伸導體結構來改變布局,進而將分別連接至工作電壓VDD與接地點之金屬導線350、351間之距離縮短,最後將此標準單元之長度h縮小至圖中所示。由圖中可看出,虛線區代表N型井區30,而N型井區30外便為P型半導體基板3,而N型井區30中完成有N型金氧半電晶體N1、N2共用之P型擴散區31 以及N型基體接觸區39,而P型金氧半電晶體P1、P2共用之N型擴散區32以及P型基體接觸區38完成於P型半導體基板3中。而橫跨P型擴散區31與N型擴散區32之閘極結構33、34係完成圖1A中之輸入端A、B。而透過延伸導體結構361、362、363、364、365以及接觸結構371、372、373、374、375之電性連接,分別將P型擴散區31、N型基體接觸區39、N型擴散區32以及P型基體接觸區38電性連接至金屬導線350、351及352,其中,延伸導體結構361電性連接至P型擴散區31與N型基體接觸區39,然後再透過接觸結構371電性連接至上方之金屬導線350。而延伸導體結構365電性連接至P型基體接觸區38與N型擴散區32,然後再透過接觸結構375電性連接至上方之金屬導線351。延伸導體結構362電性連接至P型擴散區31,然後再透過接觸結構372電性連接至上方之金屬導線352。而延伸導體結構363電性連接至P型擴散區31,然後再透過接觸結構373電性連接至上方之金屬導線350。至於延伸導體結構364電性連接至N型擴散區32,然後再透過接觸結構374電性連接至上方之金屬導線352。進而完成一反及閘電路單元。而由圖可看出,由於金屬導線350及351內縮,因此元件高度h將有效縮小,達成發展本案之目的。 Please refer to FIG. 3, which is a schematic diagram of the circuit layout of the standard cell by using the extended conductor structure. The figure shows the reverse gate of a complementary MOS transistor process (NAND). Gate) layout structure, used to complete the anti-gate function circuit shown in Figure 1A, so the input and output indicators are labeled with Figure 1A. As shown in FIG. 3, metal wires 350, 351, and 352 are connected to the operating voltage VDD, the grounding point, and the output terminal Y, respectively. In order to achieve the purpose of downsizing, this example uses the extended conductor structure to change the layout, thereby shortening the distance between the metal wires 350 and 351 respectively connected to the working voltage VDD and the ground point, and finally shortening the length h of the standard unit. As shown in the figure. As can be seen from the figure, the dotted line area represents the N-type well area 30, and the N-type well area 30 is the P-type semiconductor substrate 3, and the N-type well area 30 is completed with the N-type MOS semi-transistors N1, N2. Shared P-type diffusion region 31 And an N-type substrate contact region 39, and the N-type diffusion region 32 and the P-type substrate contact region 38 shared by the P-type MOS transistors P1 and P2 are completed in the P-type semiconductor substrate 3. The gate structures 33, 34 across the P-type diffusion region 31 and the N-type diffusion region 32 complete the input terminals A, B in FIG. 1A. The P-type diffusion region 31, the N-type substrate contact region 39, and the N-type diffusion region are respectively connected through the electrical connection of the extended conductor structures 361, 362, 363, 364, 365 and the contact structures 371, 372, 373, 374, and 375. 32 and the P-type base contact region 38 are electrically connected to the metal wires 350, 351 and 352, wherein the extended conductor structure 361 is electrically connected to the P-type diffusion region 31 and the N-type substrate contact region 39, and then through the contact structure 371. The metal wire 350 is connected to the upper side. The extended conductor structure 365 is electrically connected to the P-type base contact region 38 and the N-type diffusion region 32, and then electrically connected to the upper metal wire 351 through the contact structure 375. The extended conductor structure 362 is electrically connected to the P-type diffusion region 31 and then electrically connected to the upper metal wire 352 through the contact structure 372. The extended conductor structure 363 is electrically connected to the P-type diffusion region 31, and then electrically connected to the upper metal wire 350 through the contact structure 373. The extended conductor structure 364 is electrically connected to the N-type diffusion region 32, and then electrically connected to the upper metal wire 352 through the contact structure 374. Then, a reverse gate circuit unit is completed. As can be seen from the figure, since the metal wires 350 and 351 are retracted, the component height h will be effectively reduced, and the purpose of the development of the case is achieved.
再請參見圖4A、4B,其中圖4A為完成上述延伸導體結構與接觸結構之第一種實施例剖面示意圖,其主要表示該延伸導體結構可整合至一般製程中也具有之第零層金屬結構(M0)41(材質可為銅或鎢)來一並完成,接觸結構則由一般製程中也具有之第零層接觸結構42所完成,至於金屬導線350、351及352則由第一層金屬結構43(材質可為銅或鎢)來完成。第零層金屬結構41係穿過內層介電層(ILD)401與金屬沈積前介電層(Pre-metal dielectric,PMD)402來與第零層接觸結構42完成接觸,進而連接至金屬層間 介電層(IMD)403中之第一層金屬結構43(材質可為銅或鎢)。 4A and 4B, wherein FIG. 4A is a schematic cross-sectional view showing the first embodiment of the above-mentioned extended conductor structure and contact structure, which mainly shows that the extended conductor structure can be integrated into a general process and also has a zero-thick metal structure. (M0) 41 (material may be copper or tungsten) is completed together, and the contact structure is completed by the zeroth layer contact structure 42 also in the general process, and the metal wires 350, 351 and 352 are made of the first layer of metal. Structure 43 (material can be copper or tungsten) is used. The zero-layer metal structure 41 passes through the inner dielectric layer (ILD) 401 and the pre-metal dielectric (PMD) 402 to complete contact with the zero-layer contact structure 42 and is then connected between the metal layers. The first layer of metal structure 43 (the material may be copper or tungsten) in the dielectric layer (IMD) 403.
再請參見圖4B,其係完成延伸導體結構與接觸結構之第二種實施例剖面示意圖,其主要表示該延伸導體結構可整合至一般製程中也具有之條型接觸結構(slot contact)50以及第零層金屬結構(M0)51來一併完成,接觸結構則由一般製程中也具有之第零層接觸結構42所完成,至於金屬導線350、351及352則由第一層金屬結構43來完成。條型接觸結構(slot contact)50穿過內層介電層(ILD)401來與第零層金屬結構51完成接觸,而第零層金屬結構51係穿過金屬沈積前介電層(Pre-metal dielectric,PMD)402來與第零層接觸結構42完成接觸,進而連接至金屬層間介電層(IMD)403中之第一層金屬結構43。 Referring to FIG. 4B, which is a cross-sectional view showing a second embodiment of the extended conductor structure and the contact structure, which mainly shows that the extended conductor structure can be integrated into a general-purpose process and has a strip contact 50 and The zero-thick metal structure (M0) 51 is completed together, and the contact structure is completed by the zero-thick contact structure 42 also in the general process, and the metal wires 350, 351 and 352 are formed by the first metal structure 43. carry out. A slot contact 50 passes through the inner dielectric layer (ILD) 401 to complete contact with the zeroth layer metal structure 51, and the zeroth layer metal structure 51 passes through the pre-metal deposition dielectric layer (Pre- The metal dielectric (PMD) 402 is in contact with the zero-layer contact structure 42 and is then connected to the first metal structure 43 in the inter-metal dielectric layer (IMD) 403.
再請參見圖5,係表示出利用延伸導體結構來縮小邏輯電路標準單元(standard cell)之另一電路布局示意圖,本圖中所示為一互補式金氧半電晶體製程所完成之反閘(inverter)布局結構。如圖5所示,金屬導線650、651及652分別連接至工作電壓VDD、接地點以及輸出端Y。本例之反閘(inverter)為能達到縮小尺寸的目的,同樣利用延伸導體結構來改變布局,進而將分別連接至工作電壓VDD與接地點之金屬導線650、651間之距離縮短,最後將此標準單元之高度h縮小至圖中所示。由圖中可看出,虛線區代表N型井區60,而N型井區60外便為P型半導體基板6,而N型井區60中完成有N型金氧半電晶體之P型擴散區61,而P型金氧半電晶體之N型擴散區62完成於P型半導體基板6中。橫跨P型擴散區61與N型擴散區62之閘極結構63係完成反閘之輸入端。而透過延伸導體結構661、662、663以及接觸結構671、672、673之電性連接,分別將P型擴散區61、N型擴散區62電性連接至金屬導線650、651及652,進而完成一反及閘電路單元。而由 圖可看出,由於金屬導線650及651內縮,又可讓該等金屬導線通過該閘極結構之上方,因此元件高度h將有效縮小,達成發展本案之目的。 Referring to FIG. 5, another circuit layout diagram of the standard structure of the logic circuit is illustrated by using the extended conductor structure. The figure shows a reverse gate completed by a complementary MOS transistor process. (inverter) layout structure. As shown in FIG. 5, metal wires 650, 651, and 652 are connected to the operating voltage VDD, the grounding point, and the output terminal Y, respectively. In this example, the inverter is capable of reducing the size, and the extension conductor structure is also used to change the layout, thereby shortening the distance between the metal wires 650 and 651 respectively connected to the working voltage VDD and the ground point, and finally shortening the distance. The height h of the standard unit is reduced to the one shown in the figure. As can be seen from the figure, the dotted area represents the N-type well region 60, while the N-type well region 60 is the P-type semiconductor substrate 6, and the N-type well region 60 is completed with the N-type oxy-oxygen semiconductor P-type. The diffusion region 61 is formed, and the N-type diffusion region 62 of the P-type MOS transistor is completed in the P-type semiconductor substrate 6. The gate structure 63 spanning the P-type diffusion region 61 and the N-type diffusion region 62 completes the input terminal of the reverse gate. The P-type diffusion region 61 and the N-type diffusion region 62 are electrically connected to the metal wires 650, 651, and 652 through the electrical connection of the extended conductor structures 661, 662, and 663 and the contact structures 671, 672, and 673, respectively. A reverse gate circuit unit. By It can be seen that since the metal wires 650 and 651 are retracted and the metal wires can pass above the gate structure, the component height h will be effectively reduced, and the purpose of the development of the present invention is achieved.
綜上所述,在本發明對技術進行改良後,已可有效改善習用手段的問題。雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, after the technology of the present invention is improved, the problem of the conventional means can be effectively improved. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.
1、3、6‧‧‧基板 1, 3, 6‧‧‧ substrates
10、30、60‧‧‧N型井區 10, 30, 60‧‧‧N type well area
11、31、61‧‧‧P型擴散區 11, 31, 61‧‧‧P type diffusion zone
12、32、62‧‧‧N型擴散區 12, 32, 62‧‧‧N type diffusion zone
13、14、21、33、34、63‧‧‧閘極結構 13, 14, 21, 33, 34, 63‧‧ ‧ gate structure
16‧‧‧接觸點 16‧‧‧Contact points
18、38‧‧‧P型基體接觸區 18, 38‧‧‧P type substrate contact area
19、39‧‧‧N型基體接觸區 19, 39‧‧‧N type substrate contact area
22‧‧‧擴散區 22‧‧‧Diffusion zone
29‧‧‧密封環 29‧‧‧Seal ring
41、51‧‧‧第零層金屬結構 41, 51‧‧‧ zero-layer metal structure
42‧‧‧第零層接觸結構 42‧‧‧ Zero-layer contact structure
43‧‧‧第一層金屬結構 43‧‧‧First metal structure
50‧‧‧條型接觸結構 50‧‧‧ strip contact structure
150、151、152‧‧‧金屬導線 150, 151, 152‧‧‧Metal wires
221‧‧‧源極區 221‧‧‧ source area
222‧‧‧汲極區 222‧‧‧Bungee Area
223‧‧‧通道區 223‧‧‧Channel area
231、232、261、262‧‧‧接觸透孔結構 231, 232, 261, 262‧ ‧ contact through-hole structure
241、242、243、271、272‧‧‧金屬導線 241, 242, 243, 271, 272‧‧‧ metal wires
251、252‧‧‧延伸導體結構 251, 252‧‧‧Extended conductor structure
350、351、352‧‧‧金屬導線 350, 351, 352‧‧‧Metal wires
361、362、363、364、365‧‧‧延伸導體結構 361, 362, 363, 364, 365‧‧‧ extended conductor structure
371、372、373、374、375‧‧‧接觸結構 371, 372, 373, 374, 375 ‧ ‧ contact structure
401‧‧‧內層介電層 401‧‧‧Internal dielectric layer
402‧‧‧金屬沈積前介電層 402‧‧‧Dielectric layer before metal deposition
403‧‧‧金屬層間介電層 403‧‧‧Metal interlayer dielectric layer
650、651、652‧‧‧金屬導線 650, 651, 652‧‧‧ metal wires
661、662、663‧‧‧延伸導體結構 661, 662, 663‧‧‧ Extended conductor structure
671、672、673‧‧‧接觸結構 671, 672, 673‧‧ ‧ contact structure
A、B‧‧‧輸入端 A, B‧‧‧ input
h‧‧‧邏輯電路標準單元之長度 h‧‧‧The length of the standard unit of the logic circuit
N1、N2‧‧‧N型金氧半電晶體 N1, N2‧‧‧N type gold oxide semi-transistor
P1、P2‧‧‧P型金氧半電晶體 P1, P2‧‧‧P type gold oxide semi-transistor
Y‧‧‧輸出端 Y‧‧‧ output
圖1A顯示一反及閘(NAND gate)之電路示意圖。 Figure 1A shows a circuit diagram of a NAND gate.
圖1B顯示圖1A之反及閘電路構造之一種布局上視示意圖。 FIG. 1B is a top plan view showing a layout of the anti-gate circuit of FIG. 1A.
圖2A至圖2D顯示本案所發展出來用以增加電路布局彈性之上視結構示意圖。 FIG. 2A to FIG. 2D are schematic diagrams showing the top view of the circuit layout for increasing the flexibility of the circuit layout.
圖3顯示利用延伸導體結構來縮小邏輯電路標準單元之電路布局示意圖。 Figure 3 shows a schematic diagram of the circuit layout of a standard unit for reducing logic using an extended conductor structure.
圖4A顯示完成圖3之延伸導體結構與接觸結構之第一種實施例剖面示意圖。 4A is a cross-sectional view showing the first embodiment of the extended conductor structure and contact structure of FIG. 3.
圖4B顯示完成圖3之延伸導體結構與接觸結構之第二種實施例剖面示意圖。 4B is a cross-sectional view showing a second embodiment of the extended conductor structure and contact structure of FIG. 3.
圖5顯示利用延伸導體結構來縮小邏輯電路標準單元之另一電路布局示意圖。 Figure 5 shows a schematic diagram of another circuit layout that utilizes an extended conductor structure to reduce the standard cells of a logic circuit.
21‧‧‧閘極結構 21‧‧‧ gate structure
22‧‧‧擴散區 22‧‧‧Diffusion zone
29‧‧‧密封環 29‧‧‧Seal ring
221‧‧‧源極區 221‧‧‧ source area
222‧‧‧汲極區 222‧‧‧Bungee Area
223‧‧‧通道區 223‧‧‧Channel area
231、232‧‧‧接觸透孔結構 231, 232‧‧‧ contact through-hole structure
241、242‧‧‧金屬導線 241, 242‧‧‧Metal wires
251、252‧‧‧延伸導體結構 251, 252‧‧‧Extended conductor structure
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100149250A TWI528528B (en) | 2011-12-28 | 2011-12-28 | Integrated circuit configuration and fabricating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100149250A TWI528528B (en) | 2011-12-28 | 2011-12-28 | Integrated circuit configuration and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201327782A TW201327782A (en) | 2013-07-01 |
TWI528528B true TWI528528B (en) | 2016-04-01 |
Family
ID=49225207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100149250A TWI528528B (en) | 2011-12-28 | 2011-12-28 | Integrated circuit configuration and fabricating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI528528B (en) |
-
2011
- 2011-12-28 TW TW100149250A patent/TWI528528B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201327782A (en) | 2013-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11056477B2 (en) | Semiconductor device having a first cell row and a second cell row | |
US10199378B2 (en) | Special construct for continuous non-uniform active region FinFET standard cells | |
US10290653B2 (en) | Integrated circuit layout structure | |
US9478533B2 (en) | Method and apparatus for forming an integrated circuit with a metalized resistor in a standard cell configuration | |
JP5410082B2 (en) | Semiconductor integrated circuit device | |
KR102337403B1 (en) | Semiconductor device and fabricating method thereof | |
TWI593031B (en) | Semiconductor integrated circuit device | |
US9379067B2 (en) | Semiconductor devices and methods of manufacture thereof having guard ring structure | |
US10777579B2 (en) | Semiconductor integrated circuit device | |
US10032779B2 (en) | Semiconductor device with plasma damage protecting elements | |
JP6122556B2 (en) | Semiconductor device | |
TWI387012B (en) | Lateral diffused metal oxide semiconductor transistor and method for increasing break down voltage of lateral diffused metal oxide semiconductor transistor | |
TWI528528B (en) | Integrated circuit configuration and fabricating method thereof | |
KR101743864B1 (en) | Vertical type cmos inverter device | |
JP2009194369A (en) | Semiconductor device | |
CN110707070B (en) | Interconnection structure, three-dimensional memory device and manufacturing method of interconnection structure | |
US20140042515A1 (en) | High voltage device | |
US8835996B2 (en) | Integrated circuit configuration having extension conductor structure and fabricating method thereof | |
US11978738B2 (en) | Digital blocks with electrically insulated and orthogonal polysilicon layers | |
TWI720077B (en) | Layout of semiconductor device | |
TW201503325A (en) | Integrated electric circuit device structure and fabrication method thereof |