TWI527762B - 金屬氧化物材鍛燒物之用途 - Google Patents

金屬氧化物材鍛燒物之用途 Download PDF

Info

Publication number
TWI527762B
TWI527762B TW102129330A TW102129330A TWI527762B TW I527762 B TWI527762 B TW I527762B TW 102129330 A TW102129330 A TW 102129330A TW 102129330 A TW102129330 A TW 102129330A TW I527762 B TWI527762 B TW I527762B
Authority
TW
Taiwan
Prior art keywords
metal oxide
oxide material
calcined
electrode
cobalt
Prior art date
Application number
TW102129330A
Other languages
English (en)
Other versions
TW201505971A (zh
Inventor
陳軍互
郭承冀
藍文婕
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW102129330A priority Critical patent/TWI527762B/zh
Priority to US14/102,650 priority patent/US9450242B2/en
Publication of TW201505971A publication Critical patent/TW201505971A/zh
Application granted granted Critical
Publication of TWI527762B publication Critical patent/TWI527762B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
    • C01B13/366Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions by hydrothermal processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Complex oxides containing manganese and at least one other metal element
    • C01G45/1221Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof
    • C01G45/1228Manganates or manganites with trivalent manganese, tetravalent manganese or mixtures thereof of the type (MnO2)-, e.g. LiMnO2 or Li(MxMn1-x)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Complex oxides containing cobalt and at least one other metal element
    • C01G51/42Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
    • C01G51/44Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Description

金屬氧化物材鍛燒物之用途
本發明係關於一種金屬氧化物材鍛燒物之製作方法及其用途,特別關於一種製作具有較佳電催化活性及電傳導性金屬氧化物材鍛燒物之方法,以及該金屬氧化物材鍛燒物用於改質生物感測電極之用途。
電極是電化學裝置中的核心部分,習知皆以金、銀、鉑、鈀、銥等貴金屬製備習知電極,係以該等貴金屬具有較佳導電度之特性,使該習知電極可以具有較佳靈敏度;惟,貴金屬價格昂貴,造成該習知電極之製作成本偏高,故尋找成本低、導電度佳之替代貴金屬材料,遂成產業上發展之重點。
此外,雖然RuO2、MnO2或PbO2等金屬氧化物亦可以供製備習知電極,惟,該等金屬氧化物之導電度仍有不足;並且,以金屬有機鹽熱解法製備該等金屬氧化物時,需採用價格昂貴的金屬烷基鹽或羧基鹽做為前驅體,因而提升該等金屬氧化物之製備成本,而無法降低該習知電極之製造成本;或者,以溶膠-凝膠法製備該等金屬氧化物時,雖然可以相對降低製備成本,然而,以溶膠-凝膠法製備之原產物顆粒較大,需再經由研磨至所需粒徑大小,卻容易於研磨過程中參合雜質,因而使該等金屬氧化物之導電效果不佳。
有鑑於此,確實有必要發展一種金屬氧化物材之製作方法,以使產出之金屬氧化物具有較佳電傳導性,因而可作為電極材料之用途,並解決如上所述等問題。
「金屬物」一詞,在此係表示固態金屬及該固態金屬之金屬氧化物。
本發明主要目的乃改善上述問題,以提供一種金屬氧化物材鍛燒物之製作方法,其係能夠生產具有較佳電傳導性之金屬氧化物材鍛燒物。
本發明另一目的係提供一種金屬氧化物材鍛燒物之製作方法,其係能降低製作成本,且同時提升製作便利性之金屬氧化物材鍛燒物。
本發明更一目的係提供一種金屬氧化物材鍛燒物之製作方法,其係能夠產生不含雜質之金屬氧化物材鍛燒物。
本發明之再一目的係提供一種金屬氧化物材鍛燒物用於改質生物感測電極之用途,其係能夠提升生物感測電極之電催化活性及電傳導性者。
為達到前述發明目的,本發明所運用之技術手段及藉由該技術手段所能達到之功效包含有:本發明係提供一種金屬氧化物材鍛燒物之用途,係用於改質生物感測電極,其中,該金屬氧化物材鍛燒物係藉由如下之製作方法所製得:於一反應槽中置入二價鈷(Co2+)、七價錳(Mn7+),使二價鈷與七價錳於一溶劑中,並調整成pH 0~7,於25~200℃之溫度及0~1554.9千帕之壓力下進行氧化還原反應0.5~24小時,以生成一金屬氧化物材;以及於260~900℃之溫度下鍛燒該金屬氧化物材1~24小時,以得一金屬氧化物材鍛燒物。
其中,該生物感測電極係供偵測過氧化氫濃度。
其中,取該金屬氧化物材鍛燒物溶於一溶媒,得一金屬氧化物材鍛燒物溶液,該金屬氧化物材鍛燒物溶液係塗佈於一電極表面,並乾 燥形成一金屬氧化物材鍛燒物層,且於該金屬氧化物材鍛燒物層外再形成一質子交換膜層,以獲得一改質電極。
其中,該溶媒為乙醇。
其中,該質子交換膜層為氟烯磺酸聚合物(Nafion)層。
基於相同之技術概念下,本發明另提供一種金屬氧化物材鍛燒物之用途,係用於改質生物感測電極,其中,於一反應槽中置入二價鈷(Co2+)、六價鉻(Cr6+),使二價鈷與六價鉻於一溶劑中,並調整成pH 0~7,於25~200℃之溫度及0~1554.9千帕之壓力下進行氧化還原反應0.5~24小時,以生成一金屬氧化物材;以及於260~900℃之溫度下鍛燒該金屬氧化物材1~24小時,以得一金屬氧化物材鍛燒物。
基於相同之技術概念下,本發明更提供一種金屬氧化物材鍛燒物之用途,係用於改質生物感測電極,其中,該金屬氧化物材鍛燒物係藉由如下之製作方法所製得:於一反應槽中置入三價鈰(Ce3+)、七價錳(Mn7+),使三價鈰與七價錳於一溶劑中,並調整成pH 0~7,於25~200℃之溫度及0~1554.9千帕之壓力下進行氧化還原反應0.5~24小時,以生成一金屬氧化物材;以及於260~900℃之溫度下鍛燒該金屬氧化物材1~24小時,以得一金屬氧化物材鍛燒物。
綜上,透過本發明金屬氧化物材鍛燒物之製作方法不僅能夠產出不含雜質之金屬氧化物材鍛燒物,以達到提升該金屬氧化物材電催化活性及電傳導性之靈敏度;甚至,本發明亦能夠就此降低製作金屬氧化物材鍛燒物之成本,且同時提升製作便利性,並兼具降低環境汙染等功效。
此外,本發明更可利用該金屬氧化物材鍛燒物取代傳統生物感測器中用以製作電極之貴重金屬,以省去購買貴重金屬所耗費之成本,並藉該金屬氧化物材鍛燒物的高電催化活性及高導電度提升感測過氧化氫之敏感度。
第1圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)的外觀型態掃描式電子顯微鏡圖。
第2圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)的內部結構穿透式電子顯微鏡圖。
第3圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)之晶格間距圖。
第4圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)之能量散佈X光光譜圖。
第5圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)之熱重分析圖。
第6圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)鍛燒1小時之X光粉末繞射圖。
第7圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)鍛燒24小時之X光粉末繞射圖。
第8圖係本發明第一較佳實施例之鈷錳氧化物(Cobalt Manganese Oxide Hydroxide,CMOH)鍛燒前與鍛燒後之X光粉末繞射圖。
第9圖係以電流式反應器測量本發明第一較佳實施例之鈷錳氧化物鍛燒物與市售鈷氧化物製備成不同電極之靈敏度。
第10圖係以循環伏安法測量本發明第一較佳實施例之鈷錳氧化物鍛燒物與市售鈷氧化物製備成不同電極之還原電位。
第11圖係本發明第二較佳實施例之鈷鉻氧化物(Cobalt chromium oxide)之外觀型掃描式電子顯微鏡圖。
第12圖係本發明第二較佳實施例之鈷鉻氧化物(Cobalt chromium oxide) 之能量散佈X光光譜圖。
第13圖係本發明第二較佳實施例之鈷鉻氧化物(Cobalt chromium oxide)鍛燒1小時之X光粉末繞射圖。
第14圖係本發明第二較佳實施例之鈷鉻氧化物(Cobalt chromium oxide)鍛燒24小時之X光粉末繞射圖。
第15圖係以循環伏安法測量本發明第二較佳實施例之鈷鉻氧化物鍛燒物與市售鈷氧化物製備成不同電極之還原電位。
第16圖係本發明第三較佳實施例之鈰錳氧化物鍛燒物之X光粉末繞射圖。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明金屬氧化物材鍛燒物之製作方法係可以水熱法、熱迴流、單純加熱及室溫反應等,此乃所屬技術領域中具有通常知識者可理解;以下遂配合本發明較佳實施例詳細說明之。
本發明金屬氧化物材鍛燒物之製作方法係包含一第一金屬物、一第二金屬物與一溶劑,致使該第一金屬物與該第二金屬物於該溶劑中,經氧化還原至生成一金屬氧化物材。該金屬氧化物材續施予一鍛燒處理,得一金屬氧化物材鍛燒物。
詳言之,第一金屬物與第二金屬物之價數差為1~7,該第一金屬物用以提供電子,且該第二金屬物用以接受電子;較佳地,該第一金屬物呈金屬態或非最高氧化態之金屬氧化態,該第二金屬物呈非金屬態之金屬氧化態。是以,當第一金屬物與第二金屬物混合後,並調整成pH 0~7,遂透過金屬價電子於該第一、第二金屬物之間的價電子轉移,以使該第二金屬物能夠於氧化還原過程中嵌入該第一金屬物之晶格內,進而能透 過簡易一步反應生成不含雜質的金屬氧化物材;較佳者,係施予一反應溫度及一反應壓力,藉此加速氧化還原反應之進行,以於短時間內生成質量穩定之該金屬氧化物材。其中,該反應壓力可視該反應溫度之高低而適當調整,此乃所屬技術領域中具有通常知識者可理解,水熱溫度對照壓力表如表一。本較佳實施例所施予之反應溫度係25~200℃,反應壓力係0~1554.9千帕,較佳係於反應溫度為60~150℃時,維持反應壓力為19.95~198.6千帕,特別是反應溫度為100℃、反應壓力為101.4千帕時尤佳。
接著,金屬氧化物材續施予鍛燒處理,可得一金屬氧化物鍛燒物。詳言之,該金屬氧化物材經由260~900℃溫度下,較佳為500℃溫度下,鍛燒1~24小時,使該金屬氧化物材進行一結晶相之轉變,進而生成該金屬氧化物材鍛燒物。該結晶相之轉變,使該金屬氧化物材鍛燒物具有較大之表面積。
舉例而言,本發明第一較佳實施例中,第一金屬物特別選擇為一二價鈷(Co2+),係由一硫酸鈷(CoSO4‧7H2O)所提供;以及,第二金屬物尤其選擇為一七價錳(Mn7+),係由一高錳酸鉀(KMnO4)所提供,並且以水作為一溶劑。如此,本實施例遂將8.08mmol的該硫酸鈷(CoSO4‧7H2O)、 2.69mmol的該高錳酸鉀(KMnO4)與71ml水混合,並調整成pH 1,置於反應槽中,以使該反應槽自室溫持續升高至200℃,並將反應壓力調整至1554.9千帕,持續反應8~24小時,經由氧化還原過程中,該硫酸鈷與該高錳酸鉀產生結構性取代(structural substitution),以生成一鈷錳氧化物(cobalt manganese oxide hydroxide,CMOH),參見【反應式一】。
3 Co2++Mn7+→3 Co3++Mn4+ 【反應式一】
請詳閱第1圖,其係利用掃描式電子顯微鏡(SEM)拍攝該鈷錳氧化物之外觀圖,由圖可知,該鈷錳氧化物呈三維花狀奈米結構(3D flower-like nanostructures),具有三級結構;其中,一級結構係為層狀結晶、二級結構為三維花狀奈米結構,該花狀奈米結構中之片狀厚度為5~10nm、三級結構係呈球狀型態外觀,其直徑約為500~1000nm。請續閱第2圖及第3圖,其係以不同倍率之穿透式電子顯微鏡(TEM)拍攝該鈷錳氧化物。第2圖顯示本較佳實施例之鈷錳氧化物的三級結構極為緻密,並非中空。第3圖顯示,本較佳實施例之鈷錳氧化物所呈現之晶格間距約為0.29nm,顯然未具有任何額外結晶相或雜質。據此,係證實本發明經氧化還原方法所生成之產物,不須經由另一純化步驟,即可得無雜質之該鈷錳氧化物。第4圖係為該鈷錳氧化物之能量散佈X光光譜圖,該能量散佈X光光譜圖確認該金屬氧化物材之元素組成為鈷(Cobalt,Co)及錳(Manganes,Mn)。
接著,鈷錳氧化物係可以再經由鍛燒處理,以形成尖晶石相;詳言之,該鍛燒處理係將該鈷錳氧化物轉變為一鈷錳氧化物鍛燒物,且該鈷錳氧化物鍛燒物係呈尖晶石相(spinel)。請參閱第5圖所示,係該鈷錳氧化物熱重分析;由此圖可知,於260~900℃溫度下,該鈷錳氧化物之晶相在260度即轉變成尖晶石相,並具有至少九百度以上的極高熱穩定性。請續參閱第6及7圖所示,係該鈷錳氧化物於500℃下鍛燒1及24小 時X光粉末繞射圖,結果顯示,不論是鍛燒1小時(第6圖)或是24小時(第7圖),經與晶體資料庫比對,該鈷錳氧化物皆已轉變成該鈷錳氧化物鍛燒物。於本較佳實施例中,係於500℃下持續鍛燒6小時,致使該鈷錳氧化物轉變為一鈷錳氧化物鍛燒物,且該鈷錳氧化物鍛燒物係呈尖晶石相(spinel),其結果如第8圖。第8圖係為X光粉末繞射圖,第A1組係代表鍛燒前之鈷錳氧化物,第A2組係代表鍛燒後之鈷錳氧化物鍛燒物。由此圖比對晶體資料庫可得知,第A2組係已轉成該鈷錳氧化物鍛燒物。並且,請參照表二,該鈷錳氧化物鍛燒物係具有較大作用表面積。
藉此,本較佳實施例之鈷錳氧化物鍛燒物遂可用於改質生物感測器之電極,以透過其增加之表面積提升電傳導性。其中,利用金屬氧化物材鍛燒物改質生物感測器電極之方法通常為本領域技術人員所知悉,以下僅舉例說明但不以此為限。較佳者,本發明特別係取0.001g該鈷錳氧化物鍛燒物溶於1ml乙醇,於混合均勻後得一鈷錳氧化物鍛燒物溶液,取10ml該鈷錳氧化物鍛燒物溶液塗佈於一電極表面,乾燥10分鐘,再取一質子交換膜塗佈於該電極表面,較佳係取10ml氟烯磺酸聚合物(Nation)溶液為質子交換膜塗液,以獲得一改質電極。
為證實經本較佳實施例之鈷錳氧化物鍛燒物改質後之改質 電極,確實具有較佳過氧化氫(H2O2)偵測敏感度,本試驗特別係透過電流式(amperometric)反應器測試在1mM過氧化氫存在之下,不同電極與電壓及電流之間相互關係,詳如第9圖所示。第B1組係為經市售鈷氧化物(Co3O4)改質之電極,第B2組係為經第一較佳實施例鈷錳氧化物鍛燒物改質之電極。該圖顯示經不同材質改質之電極,對過氧化氫偵測之靈敏度,斜率越大,代表靈敏度愈佳。由第9圖之結果可知,相較於該市售鈷氧化物(Co3O4),經本較佳實施例之該鈷錳氧化物鍛燒物改質之電極,可大幅增加過氧化氫之還原電流強度,其斜率大於10倍以上;由此證明本較佳實施例之該鈷錳氧化物鍛燒物具有高度電化學活性,亦指其具有高導電度,藉以達到偵測過氧化氫的較佳功效。請續閱第10圖,透過循環伏安法(cylic voltammetry,CV)測試在1mM過氧化氫(H2O2)存在下,不同電極之還原電流訊號強度比較圖。第B0組係為未經改質之電極,第B1組係經市售鈷氧化物(Co3O4)改質之電極,第B2組係經本較佳實施例該鈷錳氧化物鍛燒物改質之電極。結果顯示,相較於第B0組與第B1組,經本較佳實施例該鈷錳氧化物鍛燒物改質之電極(第B2組)可大幅增加過氧化氫(H2O2)還原電流之強度。由此可證明本較佳實施例該鈷錳氧化物鍛燒物具有高度電化學活性,換言之即具有高導電度,係可以用於偵測過氧化氫(H2O2)之還原訊號。
除上述之外,本發明金屬氧化物材鍛燒物之製作方法亦可以選用其他金屬物,以作為第一金屬物及第二金屬物。於本發明第二實施例中,係選擇利用含一鉻酸根之金屬物作為第二金屬物,由該鉻酸根之六價鉻(Cr6+)取代高錳酸鉀中所含錳酸根之七價錳(Mn7+),進而經由氧化還原,以生成一鈷鉻氧化物(cobalt chromium oxide)。本較佳實施例之鈷鉻氧化物,係如第11圖所示呈球狀型態,且亦伴隨片狀之奈米顆粒;又續參閱第12圖,第二較佳實施例之鈷鉻氧化物,利用能量散佈X光光譜圖分析,顯示本較佳實施例之鈷鉻氧化物中,確認該金屬氧化物材之元素組成為鈷 (Cobalt,Co)與鉻(Chromium,Cr)元素。
接著,鈷鉻氧化物係經由鍛燒處理,以形成尖晶石相;詳言之,該鍛燒處理係將該鈷鉻氧化物轉變為一鈷鉻氧化物鍛燒物,且該鈷鉻氧化物鍛燒物係呈尖晶石相(spinel)。請參閱第13及14圖所示,係該鈷鉻氧化物於500℃下鍛燒1及24小時X光粉末繞射圖,結果顯示,不論是鍛燒1小時(第13圖)或是24小時(第14圖),經與晶體資料庫比對,該鈷鉻氧化物皆已轉變成該鈷鉻氧化物鍛燒物。於本較佳實施例中,係於500℃下持續鍛燒6小時,致使該鈷鉻氧化物轉變為一鈷鉻氧化物鍛燒物。如此,該鈷鉻氧化物經鍛燒後亦可以如鈷錳氧化物鍛燒物用於改質生物感測器之電極,請參閱第15圖,透過循環伏安法(cylic voltammetry,CV)測試在1mM過氧化氫(H2O2)存在下,不同電極之還原電流訊號強度比較圖。第C1組係為經市售鈷氧化物(Co3O4)改質之電極,第C2組係為經第二較佳實施例鈷鉻氧化物鍛燒物改質之電極。結果顯示,相較於第C1組,經本較佳實施例該鈷鉻氧化物鍛燒物改質之電極(第C2組)可大幅增加過氧化氫(H2O2)還原電流之強度,以同樣達到提升電極導電度之功效。
本發明第三實施例中,係選擇利用含一鈰酸根之金屬物作為第一金屬物,由該鈰酸根之三價鈰(Ce3+)取代硫酸鈷中所含鈷酸根之二價鈷(Co2+),進而經由氧化還原,以生成一鈰錳氧化物,參見【反應式二】。
3 Ce3++Mn7+→3 Ce4++Mn4+ 【反應式二】
接者,續將鈰錳氧化物鍛燒成鈰錳氧化物鍛燒物,並進行X光粉末繞射分析,結果請參閱第16圖所示。由圖可知,經與晶體資料庫比對,該鈰錳氧化物確實已鍛燒成該鈰錳氧化物鍛燒物,該鈰錳氧化物已轉變成二氧化鈰相。本較佳實施例再度證實第一金屬物與第二金屬物之價數差為1~7,並調整成pH 0~7,混合後進行氧化還原反應,即可得金屬氧化物材,並鍛燒該金屬氧化物材,以獲得金屬氧化物材鍛燒物。
綜合上述,本發明金屬氧化物材鍛燒物之製作方法的主要特徵在於:其係利用兩種呈現價數差之金屬物相作用,經由氧化還原過程產生結構性取代現象,及經由鍛燒過程產生結晶相之轉變,進而生成不含雜質之金屬氧化物材鍛燒物。如此,透過本發明金屬氧化物材鍛燒物之製作方法不僅能夠廣泛適用多種金屬物種以產出不含雜質之金屬氧化物材鍛燒物,並且具有提高該金屬氧化物材鍛燒物電催化活性及電傳導性之功效;甚至,本發明亦能夠就此降低製作金屬氧化物材鍛燒物成本之功效。此外,本發明更可利用該金屬氧化物材鍛燒物取代傳統生物感測器中用以製作電極之貴重金屬,以省去購買貴重金屬所耗費之成本,並藉該金屬氧化物材鍛燒物的電催化活性及高導電度提升感測過氧化氫之敏感度。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (15)

  1. 一種金屬氧化物材鍛燒物之用途,係用於改質生物感測電極,其中,該金屬氧化物材鍛燒物係藉由如下之製作方法所製得:於一反應槽中置入二價鈷(Co2+)、七價錳(Mn7+),使二價鈷與七價錳於一溶劑中,並調整成pH 0~7,於25~200℃之溫度及0~1554.9千帕之壓力下進行氧化還原反應0.5~24小時,以生成一金屬氧化物材;以及於260~900℃之溫度下鍛燒該金屬氧化物材1~24小時,以得一金屬氧化物材鍛燒物。
  2. 如申請專利範圍第1項所述之金屬氧化物材鍛燒物之用途,其中,該生物感測電極係供偵測過氧化氫濃度。
  3. 如申請專利範圍第1項所述之金屬氧化物材鍛燒物之用途,其中,取該金屬氧化物材鍛燒物溶於一溶媒,得一金屬氧化物材鍛燒物溶液,該金屬氧化物材鍛燒物溶液係塗佈於一電極表面,並乾燥形成一金屬氧化物材鍛燒物層,且於該金屬氧化物材鍛燒物層外再形成一質子交換膜層,以獲得一改質電極。
  4. 如申請專利範圍第3項所述之金屬氧化物材鍛燒物之用途,其中,該溶媒為乙醇。
  5. 如申請專利範圍第3項所述之金屬氧化物材鍛燒物之用途,其中,該質子交換膜層為氟烯磺酸聚合物(Nafion)層。
  6. 一種金屬氧化物材鍛燒物之用途,係用於改質生物感測電極,其中,該金屬氧化物材鍛燒物係藉由如下之製作方法所製得:於一反應槽中置入二價鈷(Co2+)、六價鉻(Cr6+),使二價鈷與六價鉻於一溶劑中,並調整成pH 0~7,於25~200℃之溫度及0~1554.9千帕之壓力下進行氧化還原反應0.5~24小時,以生成一金屬氧化 物材;以及於260~900℃之溫度下鍛燒該金屬氧化物材1~24小時,以得一金屬氧化物材鍛燒物。
  7. 如申請專利範圍第6項所述之金屬氧化物材鍛燒物之用途,其中,該生物感測電極係供偵測過氧化氫濃度。
  8. 如申請專利範圍第6項所述之金屬氧化物材鍛燒物之用途,其中,取該金屬氧化物材鍛燒物溶於一溶媒,得一金屬氧化物材鍛燒物溶液,該金屬氧化物材鍛燒物溶液係塗佈於一電極表面,並乾燥形成一金屬氧化物材鍛燒物層,且於該金屬氧化物材鍛燒物層外再形成一質子交換膜層,以獲得一改質電極。
  9. 如申請專利範圍第8項所述之金屬氧化物材鍛燒物之用途,其中,該溶媒為乙醇。
  10. 如申請專利範圍第8項所述之金屬氧化物材鍛燒物之用途,其中,該質子交換膜層為氟烯磺酸聚合物(Nation)層。
  11. 一種金屬氧化物材鍛燒物之用途,係用於改質生物感測電極,其中,該金屬氧化物材鍛燒物係藉由如下之製作方法所製得:於一反應槽中置入三價鈰(Ce3+)、七價錳(Mn7+),使三價鈰與七價錳於一溶劑中,並調整成pH 0~7,於25~200℃之溫度及0~1554.9千帕之壓力下進行氧化還原反應0.5~24小時,以生成一金屬氧化物材;以及於260~900℃之溫度下鍛燒該金屬氧化物材1~24小時,以得一金屬氧化物材鍛燒物。
  12. 如申請專利範圍第11項所述之金屬氧化物材鍛燒物之用途,其中,該生物感測電極係供偵測過氧化氫濃度。
  13. 如申請專利範圍第11項所述之金屬氧化物材鍛燒物之用途,其 中,取該金屬氧化物材鍛燒物溶於一溶媒,得一金屬氧化物材鍛燒物溶液,該金屬氧化物材鍛燒物溶液係塗佈於一電極表面,並乾燥形成一金屬氧化物材鍛燒物層,且於該金屬氧化物材鍛燒物層外再形成一質子交換膜層,以獲得一改質電極。
  14. 如申請專利範圍第13項所述之金屬氧化物材鍛燒物之用途,其中,該溶媒為乙醇。
  15. 如申請專利範圍第13項所述之金屬氧化物材鍛燒物之用途,其中,該質子交換膜層為氟烯磺酸聚合物(Nafion)層。
TW102129330A 2013-08-15 2013-08-15 金屬氧化物材鍛燒物之用途 TWI527762B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102129330A TWI527762B (zh) 2013-08-15 2013-08-15 金屬氧化物材鍛燒物之用途
US14/102,650 US9450242B2 (en) 2013-08-15 2013-12-11 Method for manufacturing nanostructured metal oxide calcinate and nanostructured metal oxide calcinate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102129330A TWI527762B (zh) 2013-08-15 2013-08-15 金屬氧化物材鍛燒物之用途

Publications (2)

Publication Number Publication Date
TW201505971A TW201505971A (zh) 2015-02-16
TWI527762B true TWI527762B (zh) 2016-04-01

Family

ID=52466158

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102129330A TWI527762B (zh) 2013-08-15 2013-08-15 金屬氧化物材鍛燒物之用途

Country Status (2)

Country Link
US (1) US9450242B2 (zh)
TW (1) TWI527762B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12098463B2 (en) 2018-12-25 2024-09-24 National Sun Yat-Sen University Method for manufacturing amorphous multielement metal oxide hydroxide film

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1812332C3 (de) 1968-12-03 1978-07-13 Norddeutsche Affinerie, 2000 Hamburg Verfahren zur Fällung von Mangan, Eisen und/oder Kobalt aus Lösungen derselben
US3720618A (en) * 1970-05-08 1973-03-13 Toda Kogyo Corp Method of producing a powder of cobalt-containing needle-like shaped gamma-ferric oxide particles as magnetic recording material
DE10105528A1 (de) 2001-02-07 2002-08-08 Basf Ag Verfahren zur Online-Bestimmung von Wasserstoffperoxid
US20080308456A1 (en) 2005-06-06 2008-12-18 Albemarle Netherlands B.V. Oxidic Metal Composition, Its Preparation And Use As Catalyst Composition
ITRM20110292A1 (it) 2011-06-10 2012-12-11 Nico S P A Materiali compositi nano-strutturati, a base di composizioni di manganese e cerio, utilizzabili quali catalizzatori di ossidazione e/o adsorbitori molecolari.
US9150436B2 (en) * 2013-06-24 2015-10-06 Uop Llc Manganese oxide-based and metallomanganese oxide-based ion-exchangers for removing mercury (+2) ions from liquid streams

Also Published As

Publication number Publication date
US9450242B2 (en) 2016-09-20
TW201505971A (zh) 2015-02-16
US20150048280A1 (en) 2015-02-19

Similar Documents

Publication Publication Date Title
She et al. Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation
Pei et al. Formation of copper vanadate nanobelts and their electrochemical behaviors for the determination of ascorbic acid
Saraf et al. Non-enzymatic amperometric sensing of glucose by employing sucrose templated microspheres of copper oxide (CuO)
Naresh et al. Solvothermal synthesis of MnCo2O4 microspheres for high-performance electrochemical supercapacitors
Wang et al. Rapid synthesis of rGO conjugated hierarchical NiCo2O4 hollow mesoporous nanospheres with enhanced glucose sensitivity
Du et al. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation
Gao et al. Engineering phase transformation of cobalt selenide in carbon cages and the phases’ bifunctional electrocatalytic activity for water splitting
CN108414604B (zh) 碳量子点、纳米金及复合薄膜的制备方法和复合电极
Song et al. Preparation of porous hollow CoOx nanocubes via chemical etching prussian blue analogue for glucose sensing
Jeghan et al. One-dimensional hierarchical nanostructures of NiCo2O4, NiCo2S4 and NiCo2Se4 with superior electrocatalytic activities toward efficient oxygen evolution reaction
CN104810518B (zh) 一种钴锰系尖晶石纳米材料及其制备方法和应用
CN106882841A (zh) 一种二氧化钛纳米线/二维层状碳化钛复合材料及其低温制备法
Nie et al. Efficient oxygen evolution reaction in SrCo0. 8Fe0. 2O3-δ perovskite and surface reconstruction for practical zinc-air batteries
Elakkiya et al. Iron sulphide rice grain nanostructures as potential electrocatalysts for an improved oxygen evolution reaction
Bindu et al. Influence of cations in MFe2O4 (M: Fe, Zn, Ni, Sn) ferrite nanoparticles on the electrocatalytic activity for application in hydrogen peroxide sensor
Zhang et al. Morphological and compositional modification of β-Ni (OH) 2 nanoplates by ferrihydrite for enhanced oxygen evolution reaction
Kong et al. Controlled preparation of spinel CoCr2O4 nanocrystals with variable proportions of mixed redox couplings for enhanced sensing to hydrogen peroxide
CN106872545A (zh) 一种蛛网状复合材料、及其制备方法和在生物传感器方面的应用
Huang et al. Controllable synthesis of BiPr composite oxide nanowires electrocatalyst for sensitive L-cysteine sensing properties
Wei et al. Three-phase composites of NiFe2O4/Ni@ C nanoparticles derived from metal-organic frameworks as electrocatalysts for the oxygen evolution reaction
CN103774175B (zh) 一种嵌入钌锆锡钛氧化物的活性涂层及其制备方法
CN108414597A (zh) 一种镍铝水滑石氧化物/碳量子点/纳米金复合薄膜修饰电极及其制备方法
Cetin et al. Nanowires assembled from iron manganite nanoparticles: Synthesis, characterization, and investigation of electrocatalytic properties for water oxidation reaction
Liu et al. A Facile topochemical preparation of Ni-Fe LDH nanosheets array on nickel foam using in situ generated Ni2+ for electrochemical oxygen evolution
Hung et al. Composite NiCoO 2/NiCo 2 O 4 inverse opals for the oxygen evolution reaction in an alkaline electrolyte