TWI525802B - Zoom lens, optical device, method for manufacturing the same, and handheld electronic device comprising the same - Google Patents

Zoom lens, optical device, method for manufacturing the same, and handheld electronic device comprising the same Download PDF

Info

Publication number
TWI525802B
TWI525802B TW102140658A TW102140658A TWI525802B TW I525802 B TWI525802 B TW I525802B TW 102140658 A TW102140658 A TW 102140658A TW 102140658 A TW102140658 A TW 102140658A TW I525802 B TWI525802 B TW I525802B
Authority
TW
Taiwan
Prior art keywords
lens
optical
prism
variable focus
light
Prior art date
Application number
TW102140658A
Other languages
Chinese (zh)
Other versions
TW201426986A (en
Inventor
章焜霖
侯昌倫
Original Assignee
威動光私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威動光私人有限公司 filed Critical 威動光私人有限公司
Publication of TW201426986A publication Critical patent/TW201426986A/en
Application granted granted Critical
Publication of TWI525802B publication Critical patent/TWI525802B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/13File access structures, e.g. distributed indices
    • G06F16/137Hash-based
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/02Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective
    • G02B15/04Optical objectives with means for varying the magnification by changing, adding, or subtracting a part of the objective, e.g. convertible objective by changing a part
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/15Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective compensation by means of only one movement or by means of only linearly related movements, e.g. optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/14Error detection or correction of the data by redundancy in operation
    • G06F11/1402Saving, restoring, recovering or retrying
    • G06F11/1446Point-in-time backing up or restoration of persistent data
    • G06F11/1448Management of the data involved in backup or backup restore
    • G06F11/1451Management of the data involved in backup or backup restore by selection of backup contents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/95Retrieval from the web
    • G06F16/951Indexing; Web crawling techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/145Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Mining & Analysis (AREA)
  • Virology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)

Description

變焦透鏡、光學裝置、用以製造其之方法及包含其之手持式 電子器件 Zoom lens, optical device, method for manufacturing the same, and handheld device therewith Electronic device

本發明係關於光學系統及其製造方法;且更具體而言,係關於變焦透鏡系統及其製造方法。 The present invention relates to an optical system and a method of fabricating the same; and, more particularly, to a zoom lens system and a method of fabricating the same.

光學系統中各組件之對準係達成最佳系統效能及一期望影像品質之一重要因素。用於例如各種手持式裝置(例如行動電話及手持式照相機)之小型光學系統之激增使對準公差(alignment tolerance)面臨更多挑戰,乃因此種裝置中之光學組件具有小的尺寸。因此,需要改善光學系統中各組件之對準,以在使系統之總體形狀因數(form factor)最小化之同時達到最佳效能。此外,有必要將用於例如消費者裝置(例如電話及手持式照相機)之光學系統之尺寸最小化。 The alignment of the various components in the optical system is an important factor in achieving optimal system performance and a desired image quality. The proliferation of small optical systems for, for example, various handheld devices, such as mobile phones and hand-held cameras, poses more challenges to alignment tolerances, and thus the optical components in such devices have a small size. Therefore, there is a need to improve the alignment of components in an optical system to achieve optimal performance while minimizing the overall form factor of the system. Moreover, it is necessary to minimize the size of optical systems used for, for example, consumer devices such as telephones and hand-held cameras.

所揭露之實施例係關於改善一光學系統中各光學組件之對準之系統及方法。所揭露之實施例更係關於微型變焦透鏡系統及其製造及組裝方法,該等方法能夠以簡化之方式製造小的透鏡系統。在某些實例性實施例中,所揭露之實施例用於對準一光學系統之可變焦距透鏡,以減小 該系統之總體尺寸,同時最佳化其效能。 The disclosed embodiments are directed to systems and methods for improving the alignment of optical components in an optical system. The disclosed embodiments are directed to a miniature zoom lens system and method of making and assembling the same that can produce a small lens system in a simplified manner. In certain exemplary embodiments, the disclosed embodiments are used to align a variable focus lens of an optical system to reduce The overall size of the system while optimizing its performance.

在具有移動光學組件之系統(例如變焦透鏡系統)中,光學組件之對準由於其行動性(mobility)而變得複雜。在某些系統中,光學組件僅沿光軸(即沿z軸)移動,使得沿光軸之對準尤其重要。作為另一選擇或另外,在某些系統中(例如在一阿瓦雷茲透鏡(Alvarez-like lens)配置中),光學組件可垂直於光軸移動,使得在多個維度中正確對準各元件更具挑戰性。在其中所用組件具有非球面或自由表面之系統中,由於此等組件可能不具有一對稱軸,因而對準問題可進一步加劇。 In systems with moving optics, such as zoom lens systems, the alignment of the optical components is complicated by their mobility. In some systems, the optical components move only along the optical axis (ie, along the z-axis) such that alignment along the optical axis is particularly important. Alternatively or additionally, in some systems (eg, in an Alvarez-like lens configuration), the optical assembly can be moved perpendicular to the optical axis such that each of the dimensions is properly aligned Components are more challenging. In systems where the components used have an aspherical or free surface, the alignment problems can be further exacerbated since such components may not have an axis of symmetry.

所揭露之實施例試圖提供以下方法及系統:所述方法及系統藉由使光學組件沿z軸(即光軸)及垂直於z軸二方向移動而正確對準該等光學組件,以在保持此種光學系統所擷取影像之品質之同時使光徑長度最小化。利用自由透鏡(例如阿瓦雷茲(Alvarez)透鏡),除使透鏡及其他光學組件沿z軸移動之外,藉由相對於z軸成直角致動透鏡,亦可在小空間中達成一影像之最佳聚焦及變焦。 The disclosed embodiments attempt to provide methods and systems that correctly align optical components by moving the optical components along the z-axis (ie, the optical axis) and perpendicular to the z-axis to maintain The optical system captures the quality of the image while minimizing the length of the optical path. Using a free lens (such as an Avarez lens), in addition to moving the lens and other optical components along the z-axis, an image can be achieved in a small space by actuating the lens at right angles to the z-axis. Best focus and zoom.

光徑長度之減小會使光學系統之總尺寸減小,乃因經由系統透鏡載送一影像所需之空間減小。因此,根據所揭露實施例之一微型光學系統中透鏡元件之最佳對準會使利用此種系統之裝置(例如行動電話及數位照相機)具有更小之光學系統。光學系統尺寸之減小使此種裝置具有更多空間用於放置其他組件(例如電池及處理器),抑或能夠使其總體尺寸減小。由於此等裝置變得愈來愈小,關鍵技術組件之微型化對於維持製造及出售此種裝置之企業之競爭優勢而言至關重要。 A reduction in the length of the optical path results in a reduction in the overall size of the optical system due to the reduced space required to carry an image through the system lens. Thus, optimal alignment of lens elements in a micro-optical system in accordance with one embodiment of the disclosed embodiments results in devices having such systems (e.g., mobile phones and digital cameras) having smaller optical systems. The reduction in size of the optical system allows such a device to have more room for placement of other components, such as batteries and processors, or to reduce its overall size. As these devices become smaller and smaller, the miniaturization of key technology components is critical to maintaining the competitive advantage of the companies that manufacture and sell such devices.

所揭露實施例之一態樣係關於一種一體式光學裝置,該一體 式裝置包含:一彈性懸置固定件,係利用一第一製程製作而成;以及一光學元件,該光學元件被整合(integrated)至該彈性懸置固定件中。該光學元件係利用一第二製程製作而成。在一個實例性實施例中,該第一製程包含如下製程其中之一:一注射成型製程;一模內裝飾(in-mold decoration)製程;一熱衝壓製程;一金屬衝壓製程;一微加工製程,用以製作一基於晶片之模具(chip-based mold);或一插入成型製程。在另一實例性實施例中,該第二製程包含如下製程其中之一:一注射成型製程;一由一模具進行鑄造之製程(casting from a molde process);一模內裝飾製程;一熱衝壓製程;一金屬衝壓製程;一微加工製程,用以製作一基於晶片之模具;或一插入成型製程。 One aspect of the disclosed embodiment relates to an integrated optical device that is integrated The device comprises: an elastic suspension fixture made by a first process; and an optical component integrated into the elastic suspension fixture. The optical component is fabricated using a second process. In an exemplary embodiment, the first process includes one of the following processes: an injection molding process; an in-mold decoration process; a hot stamping process; a metal stamping process; and a micromachining process. For making a chip-based mold; or an insert molding process. In another exemplary embodiment, the second process comprises one of the following processes: an injection molding process; a casting from a molde process; an in-mold decoration process; and a hot stamping process. Process; a metal stamping process; a micromachining process for making a wafer-based mold; or an insert molding process.

根據一個實例性實施例,該一體式光學裝置更包含如下其中之一或多者:一框架;一或多個對齊結構;一致動器,用以使該光學元件移位;一或多個附加光學元件;一或多個附加彈性元件;或一或多個剛性元件。在又一實例性實施例中,該彈性固定件被設置成使該光學元件沿一或多個方向移動。在再一實例性實施例中,該彈性固定件被設置成使該光學元件以三維方式移動。 According to an exemplary embodiment, the integrated optical device further comprises one or more of: a frame; one or more alignment structures; an actuator for displacing the optical component; one or more additional Optical element; one or more additional elastic elements; or one or more rigid elements. In yet another exemplary embodiment, the resilient mount is configured to move the optical element in one or more directions. In still another exemplary embodiment, the resilient mount is configured to move the optical element in three dimensions.

在一個實例性實施例中,該一體式光學裝置更包含一致動器,該致動器用以使該彈性特徵移位,藉此使該光學元件移位。在另一實例性實施例中,該光學元件包含如下表面至少其中之一:一球面、一非球面、或一自由表面。 In an exemplary embodiment, the unitary optical device further includes an actuator for displacing the elastic feature thereby displacing the optical element. In another exemplary embodiment, the optical element comprises at least one of a surface: a spherical surface, an aspheric surface, or a free surface.

所揭露實施例之另一態樣係關於一種包含上述一體式光學裝置之變焦透鏡。所揭露實施例之又一態樣係關於一種包含上述一體式光 學裝置之手持式電子裝置。 Another aspect of the disclosed embodiment relates to a zoom lens comprising the above described integrated optical device. Yet another aspect of the disclosed embodiment relates to an integrated light comprising the above Handheld electronic device for learning devices.

所揭露實施例之另一態樣係關於一種用於加工一一體式光學裝置之方法,該方法包含:獲得一第一模具,該第一模具之結構被配置成形成一彈性懸置固定件;注射一第一注射材料至該第一模具中;以及將一第二模具放置成接觸該第一模具及該第一模具內之該第一注射材料,其中該第二模具之結構被配置成形成一光學元件。該方法亦包含:注射一第二注射材料至該第二模具中;移除該第二模具;以及移除該第一模具,以獲得該彈性懸置固定件,該光學元件被整合至該彈性懸置固定件。 Another aspect of the disclosed embodiment relates to a method for processing an integrated optical device, the method comprising: obtaining a first mold, the first mold being configured to form a resilient suspension fixture Injecting a first injection material into the first mold; and placing a second mold to contact the first mold and the first injection material in the first mold, wherein the structure of the second mold is configured to An optical component is formed. The method also includes: injecting a second injection material into the second mold; removing the second mold; and removing the first mold to obtain the elastic suspension fixture, the optical element being integrated into the elasticity Suspend the fixture.

在一個實例性實施例中,該第一注射材料包含一第一聚合物,該第一聚合物適於形成該彈性懸置固定件,且該第二注射材料包含一第二聚合物,該第二聚合物適於形成該光學元件。在另一實例性實施例中,該方法更包含:更利用一精密機械加工工具來精製該一體式光學裝置之結構。在又一實例性實施例中,該方法更包含在移除該第一模具之前:將一第三模具放置成接觸該第一模具及該第一注射材料,其中該第三模具之結構被配置成形成一附加元件;以及注射一第三注射材料至該第三模具中。 In an exemplary embodiment, the first injection material comprises a first polymer, the first polymer is adapted to form the elastic suspension fixture, and the second injection material comprises a second polymer, the first The dipolymer is suitable for forming the optical element. In another exemplary embodiment, the method further includes refining the structure of the unitary optical device with a precision machining tool. In still another exemplary embodiment, the method further includes: placing a third mold in contact with the first mold and the first injection material before removing the first mold, wherein the structure of the third mold is configured Forming an additional component; and injecting a third injection material into the third mold.

根據另一實例性實施例,該附加元件係為如下其中之一:一附加光學元件;一附加彈性固定件;或一剛性固定件。在一個實例性實施例中,該附加元件係為一對齊固定件。在又一實例性實施例中,該一體式光學裝置中之組件係按照介於1微米至5微米間之一公差而被定位。在另一實例性實施例中,該第三注射材料係為與該第一注射材料與該第二注射材料其中之一相同之材料。 According to another exemplary embodiment, the additional component is one of: an additional optical component; an additional resilient fastener; or a rigid fixture. In an exemplary embodiment, the additional component is an alignment fixture. In yet another exemplary embodiment, the components in the unitary optical device are positioned with a tolerance of between 1 micrometer and 5 micrometers. In another exemplary embodiment, the third injection material is the same material as one of the first injection material and the second injection material.

在一個實例性實施例中,該第一模具之結構被進一步配置成 包含用於放置一致動機構之一溝槽。在另一實例性實施例中,上述方法更包含整合一金屬框架至該彈性懸置固定件中。在另一實例性實施例中,該金屬框架係利用一金屬衝壓技術而形成。 In an exemplary embodiment, the structure of the first mold is further configured to Contains a groove for placing an actuator. In another exemplary embodiment, the above method further includes integrating a metal frame into the elastic suspension fixture. In another exemplary embodiment, the metal frame is formed using a metal stamping technique.

所揭露實施例之另一態樣係關於一種用於加工一一體式光學裝置之方法,該方法包含:獲得一第一模具,該第一模具之結構被配置成形成一彈性懸置固定件及一光學元件;注射一第一注射材料至該第一模具中;注射一第二注射材料至該第一模具中;以及移除該第一模具,以獲得整合有該光學元件之該彈性懸置固定件。 Another aspect of the disclosed embodiment relates to a method for processing an integrated optical device, the method comprising: obtaining a first mold, the first mold being configured to form a resilient suspension fixture And an optical component; injecting a first injection material into the first mold; injecting a second injection material into the first mold; and removing the first mold to obtain the elastic suspension incorporating the optical element Set the fixture.

所揭露實施例之另一態樣係關於一種用於加工一一體式光學裝置之方法,該方法包含:獲得一模具,該模具之結構被配置成形成一彈性懸置固定件以及容置一光學元件;將該光學元件放置於該模具中;注射一第一注射材料至該模具中,以形成一彈性懸置固定件;以及移除該模具,以獲得整合有該光學元件之該彈性懸置固定件。在一個實例性實施例中,在將該光學元件放置於該模具中之前,將該光學元件由一模具鑄造而成。 Another aspect of the disclosed embodiment relates to a method for processing an integrated optical device, the method comprising: obtaining a mold configured to form a resilient suspension fixture and accommodating a An optical component; placing the optical component in the mold; injecting a first injection material into the mold to form an elastic suspension fixture; and removing the mold to obtain the elastic suspension incorporating the optical component Set the fixture. In an exemplary embodiment, the optical component is cast from a mold prior to placing the optical component in the mold.

所揭露實施例之另一態樣係關於一種微型變焦透鏡系統,其包含:一第一棱鏡,被定位成經由該第一棱鏡之一第一面而自該微型透鏡系統之一入口接收入射光,並在使該光自該第一棱鏡之一第二面出射之前,使所接收之該光彎曲約90度;以及至少一第一可變焦距透鏡(varifocal lens),被定位成接收自該棱鏡之該第二面出射之該光。該微型變焦透鏡系統更包含:至少一個基體透鏡(base lens),被定位成在該光穿過該第一可變焦距透鏡之後接收該光;一偵測器,被定位成在該光穿過該基體透鏡之 後接收該光;以及一第一致動器,被設置成使該第一可變焦距透鏡沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡之該光之傳播軸線。 Another aspect of the disclosed embodiment relates to a miniature zoom lens system including: a first prism positioned to receive incident light from an entrance of one of the microlens systems via a first side of the first prism And bending the received light by about 90 degrees before exiting the light from the second side of the first prism; and at least one first varifocal lens positioned to receive from the The light emitted by the second side of the prism. The micro zoom lens system further includes: at least one base lens positioned to receive the light after the light passes through the first variable focus lens; a detector positioned to pass the light The base lens Receiving the light; and a first actuator configured to move the first variable focus lens in at least one direction that is perpendicular to the propagation of the light through the first variable focus lens Axis.

在一個實例性實施例中,該第一棱鏡之至少一個面具有一自由表面。在另一實例性實施例中,該第一可變焦距透鏡係為如下其中之一:一液晶透鏡、一液體透鏡、或一阿瓦雷茲透鏡(Alvarez-like lens)。在另一實例性實施例中,該偵測器包含一互補金屬氧化物半導體(complementary metal-oxide semiconductor;CMOS)。在又一實例性實施例中,該第一致動器包含一線圈或一磁鐵其中之一。在再一實例性實施例中,上述微型變焦透鏡系統包含一結構平台,以使如下其中之一被直接模製於該結構平台上、被製作於該結構平台上、或與該結構平台整合為一體:該第一棱鏡、一第二棱鏡、該第一可變焦距透鏡、或一第二可變焦距透鏡。在一個實例性實施例中,該結構平台包含一彈簧撓曲元件(spring flexure element)。在另一實例性實施例中,該結構平台包含一框架及一臂。 In an exemplary embodiment, at least one of the masks of the first prism has a free surface. In another exemplary embodiment, the first variable focus lens is one of: a liquid crystal lens, a liquid lens, or an Alvarez-like lens. In another exemplary embodiment, the detector includes a complementary metal-oxide semiconductor (CMOS). In still another exemplary embodiment, the first actuator comprises one of a coil or a magnet. In still another exemplary embodiment, the micro zoom lens system includes a structural platform such that one of the following is directly molded on the structural platform, fabricated on the structural platform, or integrated with the structural platform. Integral: the first prism, a second prism, the first variable focal length lens, or a second variable focal length lens. In an exemplary embodiment, the structural platform includes a spring flexure element. In another exemplary embodiment, the structural platform includes a frame and an arm.

根據另一實例性實施例,該結構平台框架包含一引線框架金屬結構,該引線框架金屬結構係為如下其中之一或多者:一金屬衝壓結構、一雷射切割結構、一碾磨結構(milled structure)、一蝕刻結構、或一模製結構。在此種實例性實施例中,該臂係被模製於該引線框架結構上,且該第一棱鏡、一第二棱鏡、該第一可變焦距透鏡、或一第二可變焦距透鏡的其中之一或多者被模製於該引線框架上。 According to another exemplary embodiment, the structural platform frame comprises a lead frame metal structure, one or more of which are: a metal stamping structure, a laser cutting structure, a grinding structure ( Milled structure), an etched structure, or a molded structure. In such an exemplary embodiment, the arm system is molded on the lead frame structure, and the first prism, a second prism, the first variable focal length lens, or a second variable focal length lens One or more of them are molded on the lead frame.

在一個實例性實施例中,具有一預成型透鏡元件之一晶圓級光學組件被結合至該平台。在另一實例性實施例中,該第一致動器係為具 有一雙向驅動(bidirectional drive)之一音圈(voice-coil)致動器。在又一實例性實施例中,該微型變焦透鏡系統亦包含第二致動器,該第二致動器係被設置成使該微型變焦透鏡系統中除該第一可變焦距透鏡之外之一光學組件移動。在再一實例性實施例中,該第二致動器及該第一致動器係被設置成使除該第一可變焦距透鏡外之該光學組件及該第一可變焦距透鏡二者沿同一方向移位相同之距離。在一個實例性實施例中,除該第一可變焦距透鏡之外之該光學組件係為如下其中之一:一第二可變焦距透鏡、該至少一個基體透鏡、該第一棱鏡、或一第二棱鏡。 In an exemplary embodiment, a wafer level optical component having a preformed lens element is bonded to the platform. In another exemplary embodiment, the first actuator is There is a voice-coil actuator of a bidirectional drive. In still another exemplary embodiment, the micro zoom lens system also includes a second actuator that is configured to cause the micro zoom lens system to be other than the first variable focus lens. An optical component moves. In still another exemplary embodiment, the second actuator and the first actuator are configured to cause both the optical component and the first variable focus lens except the first variable focal length lens Shift the same distance in the same direction. In an exemplary embodiment, the optical component other than the first variable focal length lens is one of: a second variable focal length lens, the at least one base lens, the first prism, or a Second prism.

根據另一實例性實施例,該第一可變焦距透鏡具有一矩形或一橢圓形橫截面,該矩形或橢圓形橫截面包圍僅該第一可變焦距透鏡之一實質有效區域(active area)。在另一實例性實施例中,該微型變焦透鏡系統更包含一第二可變焦距透鏡,該第二可變焦距透鏡被定位成在自該第一可變焦距透鏡出射之該光到達該至少一個基體透鏡之前接收該光。在又一實例性實施例中,該第二可變焦距透鏡具有一矩形或一橢圓形橫截面,該矩形或橢圓形橫截面包圍僅該第二可變焦距透鏡之一實質有效區域。在再一實施例中,該第一可變焦距透鏡與該第二可變焦距透鏡皆可相對於彼此移動,以為該透鏡系統提供光學變焦能力。 According to another exemplary embodiment, the first variable focal length lens has a rectangular or elliptical cross section that encompasses only one of the first variable focal length lens's active area . In another exemplary embodiment, the micro zoom lens system further includes a second variable focal length lens, the second variable focus lens being positioned to reach the at least the light emitted from the first variable focus lens A substrate lens receives the light before. In still another exemplary embodiment, the second variable focus lens has a rectangular or elliptical cross section that encloses only one of the substantially variable effective areas of the second variable focus lens. In still another embodiment, the first variable focus lens and the second variable focus lens are movable relative to each other to provide optical zoom capability to the lens system.

在一個實例性實施例中,該至少一個基體透鏡被設置成沿該基體透鏡之光軸移動,以僅藉由該基體透鏡之移動而為該透鏡系統提供光學聚焦能力。在另一實例性實施例中,該第一可變焦距透鏡、該第二可變焦距透鏡、或該至少一個基體透鏡的其中之一或多者係為:一液體透鏡、一液晶透鏡、一基於微機電系統(micro-electromechanical system;MEMS) 之透鏡、一阿瓦雷茲透鏡、一壓電透鏡(piezo-based lens)、或其一組合。 在另一實例性實施例中,該彈簧撓曲件係為一簡支樑撓曲件(simple beam flexure)或一級聯支樑撓曲件(cascaded beam flexure)其中之一。 In an exemplary embodiment, the at least one base lens is configured to move along an optical axis of the base lens to provide optical focusing capability to the lens system solely by movement of the base lens. In another exemplary embodiment, one or more of the first variable focal length lens, the second variable focus lens, or the at least one base lens are: a liquid lens, a liquid crystal lens, and a Based on micro-electromechanical system (MEMS) a lens, an Avarez lens, a piezo-based lens, or a combination thereof. In another exemplary embodiment, the spring flexure is one of a simple beam flexure or a cascaded beam flexure.

所揭露實施例之另一態樣係關於一種微型變焦透鏡系統,其包含:一第一棱鏡,被定位成經由該第一棱鏡之一第一面而自該微型透鏡系統之一入口接收入射光,並在使該光自該第一棱鏡之一第二面出射之前,使所接收之該光彎曲約90度;以及一第一可變焦距透鏡,被定位成接收自該棱鏡之該第二面出射之該光。此種微型變焦透鏡系統亦包含:一第二可變焦距透鏡,被定位成接收自第一可變焦距透鏡出射之該光;至少一個基體透鏡,被定位成在該光穿過該第二可變焦距透鏡之後接收該光;一第二棱鏡,被定位成經由該第二棱鏡之一第一面而接收自該至少一個基體透鏡出射之該光,並在使該光自該第二棱鏡之一第二面出射之前,使該第二棱鏡所接收之該光彎曲約90度;一偵測器,被定位成在該光自該第二棱鏡出射之後接收該光;以及至少一個致動器,被設置成使該第一可變焦距透鏡與該第二可變焦距透鏡其中之一或二者沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡或該第二可變焦距透鏡之該光之傳播軸線。 Another aspect of the disclosed embodiment relates to a miniature zoom lens system including: a first prism positioned to receive incident light from an entrance of one of the microlens systems via a first side of the first prism And bending the received light by about 90 degrees before exiting the light from the second side of the first prism; and a first variable focus lens positioned to receive the second from the prism The light that emerges from the surface. The miniature zoom lens system also includes: a second variable focus lens positioned to receive the light emitted from the first variable focus lens; at least one base lens positioned to pass the second through the light Receiving the light after the varifocal lens; a second prism positioned to receive the light exiting the at least one base lens via a first side of the second prism and to cause the light to be from the second prism Before the second surface exits, the light received by the second prism is bent by about 90 degrees; a detector is positioned to receive the light after the light exits the second prism; and at least one actuator Causing to move one or both of the first variable focus lens and the second variable focus lens in at least one direction perpendicular to the first variable focal length lens or the first The propagation axis of the light of the two variable focal length lens.

所揭露實施例之另一態樣係關於一種微型變焦透鏡系統,其包含:一第一可變焦距透鏡,被定位成自該微型透鏡系統之一入口接收入射光;一第一棱鏡,被定位成經由該第一棱鏡之一第一面而接收自該第一可變焦距透鏡出射之該光,並在使該光自該第一棱鏡之一第二面出射之前,使該第一棱鏡所接收之該光彎曲約90度;一第二可變焦距透鏡,被定 位成接收自第一棱鏡出射之該光;至少一個基體透鏡,被定位成在該光穿過該第二可變焦距透鏡之後接收該光;一第二棱鏡,被定位成經由該第二棱鏡之一第一面而接收自該至少一個基體透鏡出射之該光,並在使該光自該第二棱鏡之一第二面出射之前,使該第二棱鏡所接收之該光彎曲約90度;一偵測器,被定位成在該光自該第二棱鏡出射之後接收該光;以及至少一個致動器,被設置成使該第一可變焦距透鏡與該第二可變焦距透鏡的其中之一或二者沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡或該第二可變焦距透鏡之該光之傳播軸線。 Another aspect of the disclosed embodiment relates to a miniature zoom lens system comprising: a first variable focus lens positioned to receive incident light from an entrance of the microlens system; a first prism positioned Receiving the light emitted from the first variable focal length lens via a first side of the first prism, and causing the light to be emitted from the second side of the first prism The received light is bent by about 90 degrees; a second variable focal length lens is determined Positioning the light that is received from the first prism; at least one base lens positioned to receive the light after the light passes through the second variable focus lens; and a second prism positioned to pass the second prism Receiving, by the first side, the light emitted from the at least one base lens, and bending the light received by the second prism by about 90 degrees before the light is emitted from the second side of the second prism a detector positioned to receive the light after the light exits the second prism; and at least one actuator configured to cause the first variable focus lens and the second variable focus lens One or both of them move in at least one direction that is perpendicular to a propagation axis of the light passing through the first variable focus lens or the second variable focus lens.

在一個實例性實施例中,該第二棱鏡被定向成使該偵測器與該微型變焦透鏡系統之該入口置於該微型變焦透鏡系統之同一側上。在另一實例性實施例中,該第二棱鏡被定向成使該偵測器置於該微型變焦透鏡系統之一側上,該側係與該微型變焦透鏡系統之該入口相對。 In an exemplary embodiment, the second prism is oriented such that the detector and the inlet of the micro zoom lens system are placed on the same side of the micro zoom lens system. In another exemplary embodiment, the second prism is oriented such that the detector is placed on one side of the miniature zoom lens system, the side being opposite the entrance of the miniature zoom lens system.

所揭露實施例之另一態樣係關於一種微型變焦透鏡系統,其包含:一第一可變焦距透鏡,被定位成自該微型透鏡系統之一入口接收入射光;一第一棱鏡,被定位成經由該第一棱鏡之一第一面而接收自該第一可變焦距透鏡出射之該光,並在使該光自該第一棱鏡之一第二面出射之前,使該第一棱鏡所接收之該光彎曲約90度;一第二可變焦距透鏡,被定位成接收自該第一棱鏡出射之該光;至少一個基體透鏡,被定位成在該光穿過該第二可變焦距透鏡之後接收該光;一偵測器,沿該至少一個基體透鏡之該光軸定位,以在該光自該至少一個基體透鏡出射之後接收該光;以及至少一個致動器,用以使該第一可變焦距透鏡與該第二可變焦距透鏡其中之一或二者沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦 距透鏡或該第二可變焦距透鏡之該光之傳播軸線。 Another aspect of the disclosed embodiment relates to a miniature zoom lens system comprising: a first variable focus lens positioned to receive incident light from an entrance of the microlens system; a first prism positioned Receiving the light emitted from the first variable focal length lens via a first side of the first prism, and causing the light to be emitted from the second side of the first prism Receiving the light bent about 90 degrees; a second variable focus lens positioned to receive the light exiting the first prism; at least one base lens positioned to pass the second variable focus Receiving the light after the lens; a detector positioned along the optical axis of the at least one base lens to receive the light after the light exits the at least one base lens; and at least one actuator for One or both of the first variable focal length lens and the second variable focus lens move in at least one direction, the at least one direction being perpendicular to passing through the first variable focus The propagation axis of the light from the lens or the second variable focus lens.

在一個實例性實施例中,該第一可變焦距透鏡與該第一棱鏡被形成為一一體式結構(integrated structure),藉此縮短穿過該微型透鏡系統而傳播之光之光程長度。在另一實例性實施例中,該第一可變焦距透鏡之一或多個光學元件被定位成將該第一可變焦距透鏡設置成具有一負屈光力(optical power)之一透鏡,且該第二可變焦距透鏡之一或多個光學元件被定位成將該第二可變焦距透鏡設置成具有一正屈光力之一透鏡。 In an exemplary embodiment, the first variable focal length lens and the first prism are formed as an integrated structure, thereby shortening the optical path length of light propagating through the microlens system. . In another exemplary embodiment, one or more optical elements of the first variable focus lens are positioned to position the first variable focus lens to have one lens having a negative optical power, and One or more optical elements of the second variable focus lens are positioned to position the second variable focus lens to have one of the positive refractive powers.

在又一實例性實施例中,該第一可變焦距透鏡之一或多個光學元件被定位成將該第一可變焦距透鏡設置成具有一正屈光力之一透鏡,且該第二可變焦距透鏡之一或多個光學元件被定位成將該第二可變焦距透鏡設置成具有一負屈光力之一透鏡。在再一實例性實施例中,該第一可變焦距透鏡之一或多個光學元件係可移動,以使該第一可變焦距透鏡之一屈光力因應於該第一可變焦距透鏡之該一或多個光學元件之移動而改變。在一個實例性實施例中,該第二可變焦距透鏡之一或多個光學元件係可移動,以使該第二可變焦距透鏡之一屈光力因應於該第一可變焦距透鏡之該一或多個光學元件之移動而改變。 In still another exemplary embodiment, one or more optical elements of the first variable focus lens are positioned to position the first variable focus lens to have one lens having a positive refractive power, and the second variable One or more optical elements of the focal length lens are positioned to position the second variable focus lens to have a lens having a negative refractive power. In still another exemplary embodiment, one or more optical components of the first variable focal length lens are movable such that one of the first variable focus lenses has a refractive power corresponding to the first variable focal length lens The movement of one or more optical elements changes. In an exemplary embodiment, one or more optical components of the second variable focal length lens are movable to cause one of the second variable focal length lenses to have a refractive power corresponding to the one of the first variable focal length lenses Or the movement of a plurality of optical elements changes.

所揭露實施例之另一態樣係關於一種阿瓦雷茲透鏡配置,其包含一第一光學元件及一第二光學元件,各該光學元件包含二表面,該二表面實質上垂直於該阿瓦雷茲透鏡配置之一光軸,各該光學元件之一第一表面係為一平面,且各該光學元件之一第二表面係為由一多項式表徵之一表面。該第一光學元件被定位於距該第二光學元件一特定距離處,俾使該第一光學元件之該第二表面面向該第二光學元件之該第二表面,該第一光 學元件與該第二光學元件其中每一者皆被設置成實質上垂直於該光軸移動。 Another aspect of the disclosed embodiment relates to an Avarez lens configuration comprising a first optical component and a second optical component, each optical component comprising two surfaces, the two surfaces being substantially perpendicular to the The optical axis of one of the optical elements, the first surface of each of the optical elements is a plane, and the second surface of each of the optical elements is a surface characterized by a polynomial. The first optical element is positioned at a specific distance from the second optical element such that the second surface of the first optical element faces the second surface of the second optical element, the first light Each of the learning element and the second optical element is arranged to move substantially perpendicular to the optical axis.

所揭露實施例之另一態樣係關於一種種阿瓦雷茲透鏡配置,其包含一第一光學元件及一第二光學元件,其中各該光學元件包含二表面,該二表面實質上垂直於該阿瓦雷茲透鏡配置之一光軸。各該光學元件之一第一表面係為一自由表面,且各該光學元件之一第二表面係為由一多項式表徵之一表面。該第一光學元件被定位於距該第二光學元件一特定距離處,俾使該第一光學元件之該第二表面面向該第二光學元件之該第二表面,該第一光學元件與該第二光學元件其中每一者皆被設置成實質上垂直於該光軸移動。 Another aspect of the disclosed embodiment relates to an Avarez lens configuration comprising a first optical component and a second optical component, wherein each of the optical components comprises two surfaces, the two surfaces being substantially perpendicular to The Avarez lens is configured with one of the optical axes. One of the first surfaces of each of the optical elements is a free surface, and one of the second surfaces of each of the optical elements is a surface characterized by a polynomial. The first optical element is positioned at a specific distance from the second optical element such that the second surface of the first optical element faces the second surface of the second optical element, the first optical element Each of the second optical elements is arranged to move substantially perpendicular to the optical axis.

在一個實例性實施例中,該第一光學元件被設置成沿該第二光學元件之該移動之相反方向與該第二光學元件同步地移動。在另一實例性實施例中,該第一光學元件與該第二光學元件被設置成垂直於該光軸沿相反之方向移動相同之量。 In an exemplary embodiment, the first optical element is configured to move in synchronization with the second optical element in a direction opposite the movement of the second optical element. In another exemplary embodiment, the first optical element and the second optical element are arranged to move the same amount in opposite directions perpendicular to the optical axis.

在與上述系統中任一者相關之某些實施例中,達成至少6毫米之一z軸高度。在與上述系統中任一者相關之某些實施例中,達成介於60度至75度間之一視野。 In certain embodiments associated with any of the above systems, a z-axis height of at least 6 mm is achieved. In certain embodiments associated with any of the above systems, a field of view between 60 degrees and 75 degrees is achieved.

所揭露實施例之另一態樣係關於一種用於製造一微型透鏡系統之方法,該方法包含:製作一結構平台,該結構平台包含一框架及一臂;以及在製作該結構平台之後,且作為與製作該結構平台獨立之一步驟,在該結構平台之該框架上模製複數個光學元件,該等光學元件包含:一第一可變焦距透鏡、一第一棱鏡、及一第一基體透鏡。在一個實例性實施例 中,製作該結構平台包含:將該臂模製於該結構平台之該框架上。在另一實例性實施例中,上述方法更包含:連接一或多個致動器至該結構平台之該臂,該一或多個致動器耦合至該等光學元件其中之一或多者,以使該一或多個光學元件進行移動。在又一實例性實施例中,上述方法更包含:結合一晶圓級光學組件至該結構平台,該晶圓級光學組件具有一預成型透鏡元件。 Another aspect of the disclosed embodiments relates to a method for fabricating a microlens system, the method comprising: fabricating a structural platform comprising a frame and an arm; and after fabricating the structural platform, and As a step separate from the fabrication of the structural platform, a plurality of optical components are molded on the frame of the structural platform, the optical components comprising: a first variable focal length lens, a first prism, and a first substrate lens. In an exemplary embodiment The fabricating the structural platform includes molding the arm onto the frame of the structural platform. In another exemplary embodiment, the method further includes: connecting one or more actuators to the arm of the structural platform, the one or more actuators coupled to one or more of the optical elements To move the one or more optical components. In still another exemplary embodiment, the method further includes bonding a wafer level optical component to the structural platform, the wafer level optical component having a preformed lens component.

a~d‧‧‧操作 a~d‧‧‧ operation

1~4‧‧‧元件 1~4‧‧‧ components

400~600‧‧‧一組操作 400~600‧‧‧A group of operations

402~412‧‧‧操作 402~412‧‧‧ operation

502~508‧‧‧操作 502~508‧‧‧ operation

702‧‧‧棱鏡 702‧‧ ‧ Prism

704‧‧‧可變焦距透鏡 704‧‧‧Scalable lens

706‧‧‧可變焦距透鏡 706‧‧‧Scalable lens

708‧‧‧棱鏡 708‧‧ ‧ Prism

710‧‧‧CMOS偵測器 710‧‧‧ CMOS detector

712‧‧‧光圈 712‧‧‧ aperture

714‧‧‧固定/基體透鏡 714‧‧‧Fixed/matrix lens

802‧‧‧棱鏡 802‧‧ ‧ Prism

804‧‧‧可變焦距透鏡 804‧‧‧Scalable lens

806‧‧‧可變焦距透鏡 806‧‧‧Scalable lens

808‧‧‧棱鏡 808‧‧ ‧ Prism

810‧‧‧CMOS偵測器 810‧‧‧ CMOS detector

812‧‧‧光圈 812‧‧‧ aperture

904‧‧‧透鏡狀元件/一體式可變焦距透鏡與棱鏡 904‧‧‧Lens-like components/integral variable focal length lens and prism

906‧‧‧可變焦距透鏡 906‧‧‧Scalable lens

910‧‧‧CMOS偵測器 910‧‧‧ CMOS detector

912‧‧‧光圈 912‧‧ ‧ aperture

914‧‧‧固定/基體透鏡組 914‧‧‧Fixed/matrix lens set

1004‧‧‧阿瓦雷茲透鏡 1004‧‧‧Avarez lens

1006‧‧‧阿瓦雷茲透鏡 1006‧‧‧Avalez lens

1010‧‧‧偵測器 1010‧‧‧Detector

1014‧‧‧固定/基體透鏡組 1014‧‧‧Fixed/matrix lens set

1104‧‧‧阿瓦雷茲透鏡 1104‧‧ Avarez lens

1106‧‧‧阿瓦雷茲透鏡 1106‧‧‧Avalez lens

1110‧‧‧偵測器 1110‧‧‧Detector

1114‧‧‧固定/基體透鏡組 1114‧‧‧Fixed/matrix lens set

1202‧‧‧第一可變焦距透鏡 1202‧‧‧First zoom lens

1204‧‧‧第二可變焦距透鏡 1204‧‧‧Second variable focal length lens

1302‧‧‧第一可變焦距透鏡 1302‧‧‧First zoom lens

1304‧‧‧第二可變焦距透鏡 1304‧‧‧Second variable focal length lens

1307‧‧‧操作 1307‧‧‧ operation

1700‧‧‧一組操作 1700‧‧‧A set of operations

第1圖繪示根據所揭露實施例及其他技術執行之一精密注射成型方法之尺寸公差與組件尺寸間之關係;第2圖例示在根據一實例性實施例製造一一體式光學系統時可執行之一系列操作;第3圖例示根據一實例性實施例製造之一模製結構之俯視圖;第4圖例示在根據一實例性實施例製造一一體式光學裝置時可執行之一組操作;第5圖例示在根據一實例性實施例製造一一體式光學裝置時可執行之一組操作;第6圖例示在根據另一實例性實施例製造一一體式光學裝置時可執行之一組操作;第7圖繪示根據一實例性實施例之一光學系統,其中光徑被折疊兩次,且可變焦距透鏡位於折疊光學器件之間;第8圖繪示根據一實例性實施例之一光學系統,其中可變焦距透鏡位於 視窗處,光徑在到達第二可變焦距透鏡之前被折疊,且在到達互補金屬氧化物半導體(CMOS)偵測器之前被再次折疊;第9圖繪示根據一實例性實施例之一光學系統,該光學系統包含與一棱鏡元件整合之一可變焦距透鏡元件以及垂直直立放置之一CMOS偵測器;第10圖係為根據一實例性實施例之一光學系統之光線圖;第11圖係為根據另一實例性實施例之一光學系統之光線圖;第12圖例示根據一實例性實施例之一對包含平面表面之可變焦距透鏡;第13圖例示根據一實例性實施例之一對包含自由表面之可變焦距透鏡;第14圖繪示根據一實例性實施例之一阿瓦雷茲透鏡之有效區域;第15圖繪示具有一自由表面之實例性棱鏡元件,該棱鏡元件可用於所揭露實施例之至少一個光學系統中;第16圖繪示根據一實例性實施例之一一體式透鏡平台及其相關組件;以及第17圖例示在根據一實例性實施例製造一微型透鏡系統時可執行之一組操作。 1 is a diagram showing the relationship between dimensional tolerances and component dimensions of one precision injection molding method performed in accordance with the disclosed embodiments and other techniques; and FIG. 2 illustrates an example of manufacturing an integrated optical system according to an exemplary embodiment. Performing a series of operations; FIG. 3 illustrates a top view of one of the molded structures in accordance with an exemplary embodiment; and FIG. 4 illustrates a group of operations that may be performed when manufacturing an integrated optical device in accordance with an exemplary embodiment. FIG. 5 illustrates one set of operations that may be performed when manufacturing an integrated optical device in accordance with an exemplary embodiment; and FIG. 6 illustrates that may be performed when an integrated optical device is fabricated in accordance with another exemplary embodiment. A set of operations; FIG. 7 illustrates an optical system in accordance with an exemplary embodiment in which the optical path is folded twice and the variable focus lens is positioned between the folding optics; and FIG. 8 illustrates an exemplary implementation according to an exemplary embodiment. An optical system in which the variable focus lens is located At the window, the optical path is folded before reaching the second variable focus lens and is folded again before reaching the complementary metal oxide semiconductor (CMOS) detector; FIG. 9 illustrates one optical according to an exemplary embodiment. a system comprising: a variable focus lens element integrated with a prism element and a CMOS detector placed vertically upright; FIG. 10 is a light pattern of an optical system according to an exemplary embodiment; 1 is a ray diagram of an optical system according to another exemplary embodiment; FIG. 12 illustrates a varifocal lens including a planar surface according to one of the exemplary embodiments; FIG. 13 illustrates an exemplary embodiment according to an exemplary embodiment One pair of variable focal length lenses including a free surface; FIG. 14 illustrates an effective area of an Avarez lens according to an exemplary embodiment; and FIG. 15 illustrates an exemplary prismatic element having a free surface, The prismatic element can be used in at least one optical system of the disclosed embodiment; FIG. 16 illustrates an integrated lens platform and related components in accordance with an exemplary embodiment; and FIG. 17 is illustrated in According to an exemplary embodiment may perform one set of operations when manufacturing a micro lens system.

除用於在一光學系統中配置各組件之系統及方法之外,所揭露之實施例亦係關於有利於設計及製造對準能力得到改善且總體尺寸減小之光學系統之方法、裝置、及製造製程。 In addition to systems and methods for configuring various components in an optical system, the disclosed embodiments are also directed to methods, apparatus, and methods for facilitating the design and manufacture of optical systems having improved alignment capabilities and reduced overall size. Manufacturing process.

為達成一光學組件(例如一透鏡)沿光軸(即z軸)或垂直 於光軸(即,沿x軸及y軸)之移動,可利用彈簧撓曲件(spring flexure)使該光學組件側向移動。該彈簧撓曲件可係為簡支樑撓曲件或級聯支樑撓曲件。 To achieve an optical component (such as a lens) along the optical axis (ie z-axis) or vertical The movement of the optical axis (i.e., along the x-axis and the y-axis) allows the optical assembly to be moved laterally using a spring flexure. The spring flexure can be a simply supported beam flexure or a cascaded beam flexure.

在一種方法中,可經由一成型製程來製造一光學系統中之透鏡元件,在該成型製程中,製作一模具、注射液體塑膠樹脂至該模具中、以及透過UV或加熱使塑膠樹脂硬化。該等彈簧撓曲件例如可利用微加工製程單獨製造。接著可組裝透鏡元件與彈簧撓曲件。然而,在此種方法中,對準可係為一個重大問題。舉例而言,與典型之球面透鏡元件不同,自由表面可能不具有旋轉對稱性。因此,除通常之面內定位問題之外,透鏡元件與彈簧撓曲件結構之間存在額外之旋轉對準。無論透過黏合劑抑或其他方式進行組裝,實際組裝步驟皆亦有可能干擾對準過程。 In one method, a lens element in an optical system can be fabricated via a molding process in which a mold is produced, a liquid plastic resin is injected into the mold, and the plastic resin is hardened by UV or heat. The spring flexures can be fabricated separately, for example, using a micromachining process. The lens element and the spring flexure can then be assembled. However, alignment can be a major problem in this approach. For example, unlike typical spherical lens elements, the free surface may not have rotational symmetry. Thus, in addition to the usual in-plane positioning problems, there is additional rotational alignment between the lens elements and the spring flexure structure. Whether assembled by adhesive or other means, the actual assembly steps may also interfere with the alignment process.

所揭露實施例有利於一光學系統中各光學組件之對準,該光學系統可包含具有球面、非球面、及/或自由表面之光學組件,該等光學組件可更在該光學系統中沿任意方向移動。在某些實施例中,透鏡元件、彈簧撓曲件、及支撐結構之單片集成(monolithic integration)會使進行整合之後組裝步驟數目最小化並減少可能之錯位(misalignment)問題。 The disclosed embodiments facilitate alignment of optical components in an optical system that can include optical components having spherical, aspherical, and/or free surfaces, which can be further along the optical system Move in direction. In some embodiments, monolithic integration of the lens elements, spring flexures, and support structures minimizes the number of assembly steps after integration and reduces possible misalignment issues.

某些所揭露之實施例依賴於精密注射成型,以製造可包含透鏡及其他光學組件以及機械組件(例如撓性或剛性固定件)之光學系統。 第1圖提供根據所揭露實施例執行之一精密注射成型方法之尺寸公差相對於組件尺寸之一比較。如第1圖所示,相較於其他技術,精密注射成型能夠以較佳之公差製造較小之組件。如以下段落中所述,根據所揭露實施例之技術,可依序引入多次注射成型來製造一體式微型光學裝置。 Certain disclosed embodiments rely on precision injection molding to fabricate optical systems that can include lenses and other optical components as well as mechanical components such as flexible or rigid fasteners. Figure 1 provides a comparison of dimensional tolerances versus component dimensions for one precision injection molding process performed in accordance with the disclosed embodiments. As shown in Figure 1, precision injection molding enables the manufacture of smaller components with better tolerances than other techniques. As described in the following paragraphs, in accordance with the techniques of the disclosed embodiments, multiple injection moldings can be introduced in sequence to produce an integrated micro-optical device.

根據所揭露之實施例,可藉由單個步驟製造一一體式光學裝置之透鏡及撓曲件。此可以若干種方式達成。透鏡元件實質上係為具有某種表面輪廓之一折射元件。所需表面輪廓可透過由一模具進行鑄造而製成。可藉由將附加之彈簧撓曲件繞製於與透鏡相同之模具上來達成透鏡連同彈簧撓曲件之製造。因此,當將塑膠樹脂注射至模具中時,所得結構係為附接有彈簧撓曲件之一透鏡元件。如此一來,可將單獨鑄造出之透鏡元件與支撐結構組裝於一起。亦可在同一步驟中模製該結構之其他部件。以舉例而非限制方式而言,此種其他部件可包含用於與其他透鏡元件組裝於一起之結構或用於定位及對準之結構。 In accordance with the disclosed embodiments, the lens and flexure of an integral optical device can be fabricated in a single step. This can be done in several ways. The lens element is essentially a refractive element having a certain surface profile. The desired surface profile can be made by casting from a mold. The manufacture of the lens together with the spring flexure can be achieved by winding the additional spring flexure on the same mold as the lens. Therefore, when the plastic resin is injected into the mold, the resulting structure is a lens element to which one of the spring flexures is attached. In this way, the separately cast lens element can be assembled with the support structure. Other components of the structure can also be molded in the same step. By way of example and not limitation, such other components may include structures for assembly with other lens elements or structures for positioning and alignment.

在其中由於例如設計靈活性之限制而使單注(single-shot)式成型製程不可行之情景中,可利用多注(例如兩注、三注、四注等)式精密注射成型製造製程來製造一體式光學系統。舉例而言,在一兩注式製造製程中,第一注可鑄造出彈簧撓曲件,且用於第二注之第二模具可鑄造出與先前所鑄造彈簧撓曲件整合為一體之透鏡元件。在移除模具時,若需要,可藉由現場微機械加工(例如以一精密電腦數控(computer numerical control;CNC)機器)完成對尺寸之進一步微調。 In a scenario in which a single-shot molding process is not feasible due to, for example, design flexibility limitations, a multi-note (eg, two-, three-, four-note, etc.) precision injection molding manufacturing process can be utilized. Manufacture of an integrated optical system. For example, in a two-injection manufacturing process, the first shot can cast a spring flexure, and the second mold for the second shot can cast a lens integrated with the previously cast spring flexure. element. When the mold is removed, further fine-tuning of the dimensions can be accomplished by on-site micromachining (e.g., by a computer numerical control (CNC) machine) if desired.

根據某些實施例,另外或作為另一選擇,可利用金屬衝壓以一具有成本效益之方式批量生產各部件。在此種情形中,金屬衝壓模具可形成能夠用於強化後續成型步驟之彈簧撓曲件骨架結構。接著,該成型步驟可在該金屬骨架結構上鑄造出透鏡元件。 Additionally or alternatively, metal stamping may be utilized to mass produce the components in a cost effective manner, in accordance with certain embodiments. In this case, the metal stamping die can form a spring flexure skeleton structure that can be used to reinforce subsequent forming steps. Next, the forming step can cast a lens element on the metal skeleton structure.

除在金屬骨架結構上模製透鏡元件之外,亦可在一單獨製程中模製透鏡元件。此可使成型製程期間施加於有效透鏡區域上之應力最小 化。在此種情景中,可透過一單獨製程(例如超音波焊接或黏合劑)而將透鏡元件組裝至骨架結構上。 In addition to molding the lens elements on the metal skeleton structure, the lens elements can also be molded in a separate process. This minimizes the stress applied to the effective lens area during the molding process Chemical. In such a scenario, the lens elements can be assembled to the skeletal structure through a separate process such as ultrasonic welding or bonding.

根據某些實施例,另外或作為另一選擇,可利用微加工方法來製造一基於晶片(chip-based)之模具。利用微加工技術製造之晶片或晶圓可包含蝕刻出之溝槽,該等溝槽對應於彈簧撓曲件之位置。接著可單獨鑄造出透鏡元件並將其定位於各別晶片或晶圓上。接著可灌注紫外光(UV)或熱固化樹脂來填蓋溝槽連同透鏡元件,且隨後將樹脂固化。所得塑膠部件此時即為附接有彈簧撓曲件且已對準之透鏡元件。 Additionally or alternatively, a micro-machining method can be utilized to fabricate a chip-based mold, in accordance with certain embodiments. A wafer or wafer fabricated using micromachining techniques can include etched trenches that correspond to the location of the spring flexure. The lens elements can then be cast separately and positioned on individual wafers or wafers. Ultraviolet light (UV) or thermosetting resin can then be applied to fill the trench along with the lens elements and then cure the resin. The resulting plastic part is now the lens element to which the spring flexure is attached and aligned.

在另一次重複中,可接著利用上述技術其中之一或多者將上述所製造之一體式彈簧撓曲件-透鏡與其他組件或另一彈簧撓曲件-透鏡總成組裝於一起。因此,可將其他結構併入至成型製程中。因其他組件亦需要進行組裝,故可將對齊結構模製為整體結構之一部分。 In another iteration, one of the above-described techniques can be used to assemble one of the above-described fabricated body spring flexure-lenses with other components or another spring flexure-lens assembly. Therefore, other structures can be incorporated into the molding process. Since the other components also need to be assembled, the alignment structure can be molded as part of the overall structure.

在要求一或多個光學組件移動之實施例中,需要具有一致動機構以使透鏡移動。此致動機構亦可被併入至模具設計中。舉例而言,可利用組裝於一體式彈簧撓曲件-透鏡上之一微型線圈來執行電磁致動。為此,可設計一溝槽以將該微型線圈保持於該一體式彈簧撓曲件-透鏡上。 In embodiments where one or more optical components are required to be moved, it is desirable to have an actuating mechanism to move the lens. This actuation mechanism can also be incorporated into the mold design. For example, electromagnetic actuation can be performed using a microcoil assembled on an integral spring flexure-lens. To this end, a groove can be designed to hold the microcoil on the integral spring flexure-lens.

如前所述,在塑膠樹脂步驟之後,可立即經由例如在所鑄造塑膠結構上執行之一精密微機械加工來執行進一步精製,以進一步改善各組件之公差。 As previously mentioned, further refining can be performed immediately after the plastic resin step by performing one of the precision micromachinings, for example on the cast plastic structure, to further improve the tolerances of the various components.

第2圖例示在根據本發明之一實例性實施例製造一一體式光學系統時可執行之一系列操作。第2圖中之操作首先形成彈性懸置模具(elastic suspension mold)。緊接著,將第一注彈性懸置材料注射至該模具 中。接著,藉由一第二注而鑄造出透鏡。在移除透鏡模具(在操作(d)中)及移除一體式裝置(在操作(e)中)後,便獲得彈性懸置框架及微型透鏡。 儘管第2圖中之實例性操作繪示具有彈性懸置結構之單透鏡總成之製造製程,然而應理解,可透過現有或附加之注射成型步驟將額外光學結構、機械結構(包括對準結構)整合至光學系統中。此外,此等額外結構可為剛性或彈性的。 Figure 2 illustrates a series of operations that may be performed when fabricating an integrated optical system in accordance with an exemplary embodiment of the present invention. The operation in Figure 2 first forms an elastic suspension mold. Next, the first injection elastic suspension material is injected into the mold in. Next, the lens is cast by a second shot. After the lens mold is removed (in operation (d)) and the unitary device is removed (in operation (e)), an elastic suspension frame and a microlens are obtained. Although the exemplary operation in FIG. 2 illustrates a manufacturing process for a single lens assembly having an elastic suspension structure, it should be understood that additional optical structures, mechanical structures (including alignment structures) may be incorporated through existing or additional injection molding steps. ) integrated into the optical system. Moreover, such additional structures may be rigid or resilient.

第3圖例示根據本發明之一實例性實施例製成之一模製結構之俯視圖。第3圖中所示之結構包含一支撐結構、一透鏡元件、一用於透鏡致動器之保持器、以及彈性(例如彈簧)固定件,該彈性固定件使透鏡能夠沿箭頭所示之上/下方向移動。儘管第3圖之實例性結構僅顯示透鏡沿單個方向移動,然而應理解,能夠使透鏡以三維方式移動。舉例而言,該結構中可包含附加彈性固定件及適當之致動機構。 Figure 3 illustrates a top view of a molded structure made in accordance with an exemplary embodiment of the present invention. The structure shown in Fig. 3 comprises a support structure, a lens element, a holder for the lens actuator, and an elastic (e.g., spring) holder that enables the lens to be placed along the arrow / Move in the down direction. Although the exemplary structure of Figure 3 only shows that the lens is moving in a single direction, it should be understood that the lens can be moved in three dimensions. For example, an additional resilient fastener and a suitable actuation mechanism can be included in the structure.

此外,可在根據所揭露實施例製造之一體式系統中併入替代或附加之光學組件。此等組件可包含但不限於:透鏡、光柵(grating)、衍射光學元件等等。所揭露實施例提供一系列製造製程,該等製造製程對於包含彈性懸置件、剛性框架、及光學組件之一一體式平台具有介於1微米至5微米間之公差。估計製造此等組件之成本遠低於習知之MEMS微加工。 Moreover, alternative or additional optical components can be incorporated in a one-piece system for manufacturing in accordance with the disclosed embodiments. Such components may include, but are not limited to, lenses, gratings, diffractive optical elements, and the like. The disclosed embodiments provide a series of manufacturing processes having tolerances ranging from 1 micron to 5 microns for an integrated platform comprising an elastic suspension, a rigid frame, and an optical assembly. It is estimated that the cost of manufacturing such components is much lower than the conventional MEMS micromachining.

用於根據所揭露實施例製造一體式系統之精密製造技術可包含注射成型、模內裝飾、熱衝壓、及/或插入成型。此等製程能夠批量製造可在一彈性懸置平台上包含一微型透鏡之一體式光學系統。在某些實施例中,彈性懸置件係由一金屬骨架製成,該金屬骨架係利用例如金屬衝壓及隨後之一聚合物成型(第一注)而製成。金屬框架可增強懸置件之彈性 及框架之牢固性。在某些實施例中,彈性懸置件係在無金屬骨架之情況下製成。第二注可係為適用於一光學透鏡之一聚合物材料。接著,將此種組件組裝至構成一光學透鏡模組之一較大結構中。可執行多次注射成型製程步驟來達成多組件一體化(multi-component integration)。 Precision manufacturing techniques for fabricating an integrated system in accordance with the disclosed embodiments can include injection molding, in-mold decoration, hot stamping, and/or insert molding. These processes are capable of mass production of a bulk optical system that includes a microlens on a resilient suspension platform. In some embodiments, the elastic suspension is made from a metal skeleton that is made using, for example, metal stamping and subsequent one polymer molding (first shot). Metal frame enhances the elasticity of the suspension And the solidity of the framework. In some embodiments, the elastic suspension is made without a metal skeleton. The second note can be applied to a polymeric material of one of the optical lenses. This assembly is then assembled into a larger structure that forms one of the optical lens modules. Multiple injection molding process steps can be performed to achieve multi-component integration.

第4圖例示在根據一實例性實施例製造一一體式光學裝置時可執行之一組操作400。在402中,獲得一第一模具,該第一模具之結構被配置成形成一彈性懸置固定件。在404中,注射一第一注射材料至該第一模具中。在406中,將一第二模具放置成接觸該第一模具及該第一模具內之該第一注射材料。該第二模具之結構被配置成形成一光學元件。在408中,注射一第二注射材料至該第二模具中。在410中移除該第二模具,且在412中移除該第一模具,以獲得該彈性懸置固定件,該光學元件被整合至該彈性懸置固定件。 FIG. 4 illustrates a set of operations 400 performed when an integrated optical device is fabricated in accordance with an exemplary embodiment. At 402, a first mold is obtained, the first mold being configured to form a resilient suspension fixture. At 404, a first injection material is injected into the first mold. At 406, a second mold is placed in contact with the first mold and the first injection material within the first mold. The structure of the second mold is configured to form an optical element. At 408, a second injection material is injected into the second mold. The second mold is removed at 410 and the first mold is removed in 412 to obtain the elastic suspension fixture, the optical element being integrated into the elastic suspension fixture.

第5圖及第6圖分別例示在根據其他實例性實施例製造一一體式光學裝置時可執行之二組操作500及600。在第5圖之實例性實施例中,在502中,獲得一第一模具,該第一模具之結構被配置成形成一彈性懸置固定件及一光學元件。在504中,注射一第一注射材料至該第一模具中,且在506中,注射一第二注射材料至該第一模具中。在508中,移除該第一模具,以獲得整合有該光學元件之該彈性懸置固定件。在第6圖之實例性操作600中,在602中,獲得一模具,該模具之結構被配置成形成一彈性懸置固定件以及容置一光學元件。在604中,將該光學元件放置於該模具中,且在606中,注射一第一注射材料至該模具中,以形成一彈性懸置固定件。在608中,移除該模具,以獲得整合有該光學元件之該彈性懸置固定件。 5 and 6 respectively illustrate two sets of operations 500 and 600 that may be performed when manufacturing an integrated optical device in accordance with other example embodiments. In the exemplary embodiment of FIG. 5, in 502, a first mold is obtained, the first mold being configured to form an elastic suspension fixture and an optical component. At 504, a first injection material is injected into the first mold, and at 506, a second injection material is injected into the first mold. At 508, the first mold is removed to obtain the resilient suspension fixture incorporating the optical component. In the example operation 600 of FIG. 6, in 602, a mold is obtained that is configured to form a resilient suspension mount and to house an optical component. In 604, the optical component is placed in the mold, and at 606, a first injection material is injected into the mold to form a resilient suspension fixture. At 608, the mold is removed to obtain the resilient suspension fixture incorporating the optical component.

聚焦透鏡配置Focus lens configuration

在空間有限之應用中(例如,在一照相機電話中),光學組件之配置顯著影響可達成之整體照相機模組之大小。在此種系統中,模組之厚度(例如,裝置在z方向上之厚度或「z軸高度」)至關重要。為達成一變焦透鏡系統之最小可能光學配置,本申請案中揭露若干種配置。 In applications where space is limited (eg, in a camera phone), the configuration of the optical components significantly affects the size of the achievable overall camera module. In such systems, the thickness of the module (e.g., the thickness of the device in the z-direction or the "z-axis height") is critical. To achieve the smallest possible optical configuration of a zoom lens system, several configurations are disclosed in the present application.

如第7圖所示,一個實施例具有一光徑彎曲元件(例如一棱鏡702或一反射鏡),該光徑彎曲元件用於使入射光線彎曲90度,並使其穿過二可變焦距透鏡704、706及另一棱鏡708,棱鏡708使光徑再次彎曲,以使其到達偵測器(例如,CMOS偵測器710)。在一實例性實施例中,固定/基體透鏡714與棱鏡708整合為一體,且光圈712置於該二可變焦距透鏡704、706之間。此種配置提供最可能短之z軸高度,但視野(field of view;FOV)及f數(f-number)受限。在此種配置中,儘管可達成6毫米之一薄的z軸高度,然而FOV被限制為約30°。 As shown in Fig. 7, one embodiment has a light path bending element (e.g., a prism 702 or a mirror) for bending the incident light by 90 degrees and passing it through the two variable focal lengths. Lenses 704, 706 and another prism 708, which bends the optical path again to reach the detector (e.g., CMOS detector 710). In an exemplary embodiment, the fixed/matrix lens 714 is integrated with the prism 708 and the aperture 712 is disposed between the two variable focal length lenses 704, 706. This configuration provides the most likely short z-axis height, but the field of view (FOV) and f-number are limited. In this configuration, although a thin z-axis height of 6 mm can be achieved, the FOV is limited to about 30°.

為增大FOV,在某些實施例中,可將可變焦距透鏡至少其中之一放置於光學系統之入口處,如第8圖所示。在第8圖之實例性實施例中,棱鏡802被置於該二可變焦距透鏡804、806之間,以使光徑彎曲90度,且另一棱鏡808用於在光到達偵測器(例如,CMOS偵測器810)之前,使該光再次彎曲90度。光圈812位於棱鏡802與可變焦距透鏡806之間。第8圖之實例性配置達成60°至75°之一FOV。z軸高度必須增大至約8毫米。第8圖例示如下一實例性配置:其中偵測器被置於與光學系統入口相同之側上。然而,應理解,偵測器可置於與光學系統入口相反之側上(例如,如第7圖之配置中所示)。將偵測器置於同一側處可使模組之z軸高度最小化,乃因z軸高度 之增大主要係起因於透鏡及偵測器元件之附加高度。因此,將偵測器810置於與入口視窗相同之側上意味著z軸高度之增大量僅為該二元件之厚度。然而,因到達偵測器之光徑相對長,考慮到需要使光徑在到達偵測器之前進行折疊,故此種配置中之光圈及光束直徑仍相對大。一種使到達偵測器之光徑長度縮短之方法可進一步減小z軸高度。 To increase the FOV, in some embodiments, at least one of the variable focus lenses can be placed at the entrance of the optical system, as shown in FIG. In the exemplary embodiment of Fig. 8, prism 802 is placed between the two variable focal length lenses 804, 806 to bend the optical path by 90 degrees, and the other prism 808 is used to reach the detector in the light ( For example, before the CMOS detector 810), the light is bent again by 90 degrees. The aperture 812 is located between the prism 802 and the variable focus lens 806. The exemplary configuration of Figure 8 achieves one of the FOVs of 60° to 75°. The z-axis height must be increased to approximately 8 mm. Figure 8 illustrates an exemplary configuration in which the detector is placed on the same side as the entrance to the optical system. However, it should be understood that the detector can be placed on the side opposite the entrance to the optical system (e.g., as shown in the configuration of Figure 7). Place the detector on the same side to minimize the z-axis height of the module due to the z-axis height The increase is primarily due to the additional height of the lens and detector elements. Therefore, placing the detector 810 on the same side as the entrance window means that the increase in the z-axis height is only the thickness of the two elements. However, since the optical path to the detector is relatively long, the aperture and beam diameter in such a configuration are still relatively large in view of the need to fold the optical path before it reaches the detector. A method of shortening the length of the optical path reaching the detector can further reduce the z-axis height.

為縮短到達偵測器之光徑長度,根據某些實施例,將偵測器垂直直立放置,並因此使其更靠近透鏡,如第9圖所示。在第9圖之實例性配置中,一透鏡狀元件904被置於接收入射光之視窗與第二可變焦距透鏡906之間,透鏡狀元件904包含與一棱鏡元件整合為一體之一第一可變焦距透鏡。因此,無需第二棱鏡元件。光圈912位於一體式可變焦距透鏡與棱鏡904與第二可變焦距透鏡906之間。總光徑長度可自約23毫米減小至約18毫米。光徑長度之減小能達成一更小之光圈直徑以及更小之透鏡元件,且因此亦達成更小之z軸高度。在此種配置中可獲得約6毫米之一z軸高度。作為另一實例,可達成約4毫米至約7毫米之一z軸高度。在可變焦距透鏡不與棱鏡整合為一體之情形中,Z軸高度將必須略增大至約6.5毫米,以容納可變焦距透鏡與棱鏡間之間隙。在此種配置中,可達成介於60°至75°間之一FOV。 端視應用而定,可修改所揭露變焦透鏡之光學規格來達成所需大小及形狀因數。舉例而言,可進一步減小z軸高度來達成特定之實施要求。 To shorten the length of the light path to the detector, in accordance with some embodiments, the detector is placed upright and thus brought closer to the lens, as shown in FIG. In the exemplary configuration of FIG. 9, a lenticular element 904 is disposed between a window that receives incident light and a second variable focus lens 906, and the lenticular element 904 includes one that is integrated with a prism element. A varifocal lens. Therefore, the second prism element is not required. The aperture 912 is located between the integral zoom lens and the prism 904 and the second variable focal length lens 906. The total optical path length can be reduced from about 23 mm to about 18 mm. The reduction in the length of the optical path enables a smaller aperture diameter and smaller lens elements, and thus a smaller z-axis height. A z-axis height of about 6 mm can be obtained in this configuration. As another example, a z-axis height of about 4 mm to about 7 mm can be achieved. In the case where the variable focus lens is not integrated with the prism, the Z-axis height will have to be increased slightly to about 6.5 mm to accommodate the gap between the variable focus lens and the prism. In this configuration, one of the FOVs between 60° and 75° can be achieved. Depending on the application, the optical specifications of the disclosed zoom lens can be modified to achieve the desired size and form factor. For example, the z-axis height can be further reduced to achieve specific implementation requirements.

第10圖例示根據一實例性實施例之一微型透鏡配置之光線圖。第10圖之配置提供第9圖所示透鏡系統之一特定實例,其中可變焦距透鏡1004及1006皆為阿瓦雷茲透鏡。此外,第10圖中之各種光學組件被定位成獲得所期望之變焦能力。具體而言,第一對阿瓦雷茲透鏡1004被定位成 自微型透鏡系統之入口接收入射光,並將該光引導至一體式棱鏡。儘管第10圖之實例性圖示顯示一一體式阿瓦雷茲透鏡-棱鏡,然而應理解,在某些實施例中,第一阿瓦雷茲透鏡與棱鏡可為分開之組件。返回參照第10圖,進入一體式棱鏡之光在自該棱鏡出射之前彎曲90度。接著該光由第二阿瓦雷茲透鏡1006接收,且隨後穿過固定/基體透鏡組1014,之後到達偵測器1010。在第10圖之實例性圖示中,藉由使第一阿瓦雷茲透鏡1004之該二元件垂直於光軸沿相反方向移動(例如,一個透鏡元件自頁面移出,而另一透鏡元件移入頁面),將產生一負屈光力。此外,在第10圖之實例性圖示中,藉由使阿瓦雷茲透鏡1006之該二元件垂直於光軸沿相反方向移動,將達成一正屈光力。透鏡元件之移動可利用耦合至該等透鏡元件之一或多個致動器達成。第10圖之實例性配置能製造具有一小高度之一微型透鏡系統,此使此種配置尤其適合實施於形狀因數薄的裝置(例如一行動電話或平板電腦)中。 Figure 10 illustrates a ray diagram of a microlens configuration in accordance with an exemplary embodiment. The configuration of Fig. 10 provides a specific example of the lens system shown in Fig. 9, wherein the variable focal length lenses 1004 and 1006 are both Avalez lenses. In addition, the various optical components of Figure 10 are positioned to achieve the desired zoom capability. Specifically, the first pair of Avalez lenses 1004 are positioned to The incident light is received from the entrance of the microlens system and directed to the integrated prism. Although the exemplary illustration of Fig. 10 shows an integrated Avarez lens-prism, it should be understood that in certain embodiments, the first Avalez lens and prism may be separate components. Referring back to Figure 10, the light entering the integrated prism is bent 90 degrees before exiting the prism. The light is then received by the second Avarez lens 1006 and then passed through the fixed/matrix lens set 1014 before reaching the detector 1010. In the exemplary illustration of FIG. 10, the two elements of the first Avarez lens 1004 are moved in opposite directions perpendicular to the optical axis (eg, one lens element is removed from the page and the other lens element is moved in) Page) will produce a negative refractive power. Moreover, in the exemplary illustration of FIG. 10, a positive refractive power is achieved by moving the two elements of the Avarez lens 1006 in the opposite direction perpendicular to the optical axis. Movement of the lens elements can be accomplished with one or more actuators coupled to the lens elements. The exemplary configuration of Fig. 10 enables the fabrication of a microlens system having a small height which makes this configuration particularly suitable for implementation in devices having a thin form factor, such as a mobile phone or tablet.

第11圖例示根據另一實例性實施例之一微型透鏡配置之光線圖。第11圖之配置提供第9圖所示透鏡系統之又一特定實例,其中可變焦距透鏡1104及1106皆為阿瓦雷茲透鏡。此外,第11圖中之各種光學組件被定位成獲得期望之變焦能力。具體而言,第一對阿瓦雷茲透鏡1104被定位成自微型透鏡系統之入口接收入射光,並將該光引導至一體式棱鏡。進入該一體式棱鏡之光在自該棱鏡出射之前彎曲90度。接著該光由第二阿瓦雷茲透鏡1106接收,且隨後穿過固定/基體透鏡組1114,之後到達偵測器1110。 在第11圖之實例性圖示中,藉由使第一阿瓦雷茲透鏡1104之該二元件垂直於光軸沿相反方向移動(例如,一個透鏡元件自頁面移出,而另一透鏡元 件移入頁面),將產生一正屈光力。此外,在第11圖之實例性圖示中,藉由使第二阿瓦雷茲透鏡1106之該二元件垂直於光軸沿相反方向移動,將達成一負屈光力。透鏡元件之移動可利用耦合至該等透鏡元件之一或多個致動器達成。如第11圖中阿瓦雷茲透鏡元件上之圓圈X及圓圈點標記所示,各透鏡元件之移動與第10圖所示者相反。藉由改變該二對阿瓦雷茲透鏡之屈光力,光學系統之焦距發生改變。在第10圖之實例性圖示中,透鏡系統起到具有長焦距之望遠鏡之作用。 Figure 11 illustrates a ray diagram of a microlens configuration in accordance with another exemplary embodiment. The configuration of Fig. 11 provides yet another specific example of the lens system shown in Fig. 9, wherein the variable focal length lenses 1104 and 1106 are both Avalez lenses. In addition, the various optical components of Figure 11 are positioned to achieve the desired zoom capability. In particular, the first pair of Avarez lenses 1104 are positioned to receive incident light from the entrance of the microlens system and direct the light to the integrated prism. Light entering the integral prism is bent 90 degrees before exiting the prism. This light is then received by the second Avarez lens 1106 and then passed through the fixed/matrix lens set 1114 before reaching the detector 1110. In the exemplary illustration of Figure 11, the two elements of the first Avarez lens 1104 are moved in opposite directions perpendicular to the optical axis (eg, one lens element is removed from the page and the other lens element is removed) The piece moves into the page) and will produce a positive power. Furthermore, in the exemplary illustration of Fig. 11, a negative refractive power is achieved by moving the two elements of the second Avarez lens 1106 in the opposite direction perpendicular to the optical axis. Movement of the lens elements can be accomplished with one or more actuators coupled to the lens elements. As shown by the circle X and the circled dot mark on the Avalez lens element in Fig. 11, the movement of each lens element is opposite to that shown in Fig. 10. By changing the refractive power of the two pairs of Avarez lenses, the focal length of the optical system changes. In the exemplary illustration of Figure 10, the lens system functions as a telescope with a long focal length.

第12圖例示根據一實例性實施例包含二可變焦距透鏡之一透鏡配置。第一可變焦距透鏡1202與第二可變焦距透鏡1204其中每一者包含二透鏡元件(第12圖例示第一透鏡1202之元件1及元件2、以及第二透鏡1204之元件3及元件4)。每一元件皆被視為一薄板,其中每一個板具有大致垂直於光軸之二表面。一個表面係為平面表面,而另一表面係為由一函數(例如,一多項式)表徵之一多項式曲面。在第12圖中,非平面表面被指定為阿瓦雷茲表面。對於透鏡1202與1204其中每一者,藉由將該二板放置成彼此相距一小距離、以及使多項式曲面面向彼此,將產生一屈光力。藉由使該二元件垂直於光軸沿相反方向同步移動,可改變屈光力。 Figure 12 illustrates one lens configuration including two variable focus lenses in accordance with an exemplary embodiment. Each of the first variable focal length lens 1202 and the second variable focal length lens 1204 includes two lens elements (the first embodiment illustrates the first lens 1202 and the element 2 and the second lens 1204, the component 3 and the component 4 ). Each element is considered to be a thin plate, each of which has two surfaces that are substantially perpendicular to the optical axis. One surface is a planar surface and the other surface is a polynomial surface characterized by a function (eg, a polynomial). In Fig. 12, the non-planar surface is designated as the Avarez surface. For each of the lenses 1202 and 1204, a refractive power will be produced by placing the two plates at a small distance from each other and with the polynomial curved surfaces facing each other. The refractive power can be changed by causing the two elements to move synchronously in the opposite direction perpendicular to the optical axis.

第13圖例示根據另一實例性實施例包含二可變焦距透鏡之一透鏡配置。第13圖之實例性配置包含與第12圖所示者相似之一第一可變焦距透鏡1302及一第二可變焦距透鏡1304。然而,第13圖中之元件1、元件2、元件3、及元件4皆包含一自由表面而非平面表面,該等自由表面之形狀被設定成校正光學系統之像差(aberration)。 Fig. 13 illustrates a lens configuration including two variable focal length lenses according to another exemplary embodiment. The exemplary configuration of FIG. 13 includes a first variable focal length lens 1302 and a second variable focus lens 1304 similar to those shown in FIG. However, the element 1, the element 2, the element 3, and the element 4 in Fig. 13 each include a free surface instead of a planar surface whose shape is set to correct the aberration of the optical system.

在每一所揭露之實施例中,除其他類型之外,可變焦距透鏡 可係為:液晶、液體透鏡、或阿瓦雷茲透鏡。如阿瓦雷茲透鏡一般,可變焦距透鏡亦可由多個透鏡元件構成。對於每一實施例,配置習知透鏡來達成具有小z軸高度之模組係不可行的,乃因沿光軸移動之習知透鏡將使Z軸高度顯著增大。此外,為達成大的FOV,必須將至少一個可變焦距透鏡置於光學模組之入口處。 In each disclosed embodiment, a variable focus lens, among other types It can be: liquid crystal, liquid lens, or Avarez lens. As with Avarez lenses, a varifocal lens can also be constructed from a plurality of lens elements. For each embodiment, it is not feasible to configure a conventional lens to achieve a module having a small z-axis height, as conventional lenses that move along the optical axis will significantly increase the Z-axis height. In addition, in order to achieve a large FOV, at least one variable focus lens must be placed at the entrance of the optical module.

透鏡有效區域Lens effective area

所揭露實施例包含能進一步減小光學模組之z軸高度之進一步改良。在利用阿瓦雷茲透鏡之某些實施例中,使阿瓦雷茲透鏡垂直於光徑(而非沿光徑)移動,以執行微調。再者,阿瓦雷茲透鏡垂直於光軸之移位對光學模組之效能具有顯著影響。具體而言,透鏡之一較大移位可導致屈光力產生一較大變化。然而,假設在透鏡之一給定位置處僅利用透鏡區域之一部分(即,透鏡之一「實際有效區域」),則透鏡之一較大移位亦會導致需要一較大之圓形透鏡直徑來覆蓋該有效區域。可藉助第14圖進一步例示此種情景,其中小圓圈表示一可變焦距透鏡在二不同透鏡位置(即,該二透鏡位置垂直於光軸相對於彼此偏移)處之二實際有效區域。儘管第14圖中之圖示為便於例示而顯示相同大小之有效區域,然而實際有效區域之大小可不同。在第14圖之實例性圖示中,光軸係指向頁面內及頁面外。 第14圖中之大圓圈表示當透鏡沿x方向及/或y方向移動時,為包圍任一單個透鏡之有效區域而需要之圓形區域。矩形區域表示足以達成透鏡操作之較小之單個透鏡輪廓。矩形區域之長度通常表示移動方向。 The disclosed embodiments include a further improvement that further reduces the z-axis height of the optical module. In some embodiments utilizing an Avarez lens, the Avarez lens is moved perpendicular to the optical path (rather than along the optical path) to perform fine tuning. Furthermore, the displacement of the Avarez lens perpendicular to the optical axis has a significant impact on the performance of the optical module. In particular, a large displacement of one of the lenses can result in a large change in refractive power. However, assuming that only one portion of the lens area (i.e., one of the lenses "actual effective area") is utilized at a given position of the lens, a larger displacement of one of the lenses would also result in the need for a larger circular lens diameter. To cover the active area. Such a scenario can be further illustrated by means of Figure 14, wherein the small circles represent the two actual effective areas of a variable focus lens at two different lens positions (i.e., the two lens positions are offset relative to each other with respect to the optical axis). Although the illustration in Fig. 14 shows an effective area of the same size for convenience of illustration, the actual effective area may vary in size. In the exemplary illustration of Figure 14, the optical axis is pointing within and outside the page. The large circle in Fig. 14 indicates the circular area required to surround the effective area of any single lens when the lens is moved in the x direction and/or the y direction. The rectangular area represents a smaller single lens profile that is sufficient to achieve lens operation. The length of the rectangular area usually indicates the direction of movement.

在某些實施例中,使用僅覆蓋透鏡之實質有效區域之一矩形或橢圓形透鏡,而非使用圓形透鏡。第14圖中之矩形方框顯示此種矩形格 式之透鏡。以此種方式,可在不影響光學模組總體尺寸之條件下增大致動範圍。可在組裝及製造期間改善旋轉對準。 In some embodiments, a rectangular or elliptical lens that covers only one of the substantially effective areas of the lens is used instead of a circular lens. The rectangular box in Figure 14 shows such a rectangular grid Lens. In this way, the actuation range can be increased without affecting the overall size of the optical module. Rotating alignment can be improved during assembly and manufacturing.

自由棱鏡Free prism

根據某些實施例,可藉由組合棱鏡與可變焦距透鏡元件來進一步減小光學系統之尺寸。此在使用阿瓦雷茲透鏡時尤其重要。利用此種技術,可將棱鏡之其中一個側模製成具有一自由表面(如第15圖所示),藉此能夠移除可變焦距透鏡表面間之間隙。 According to certain embodiments, the size of the optical system can be further reduced by combining the prism with the variable focus lens element. This is especially important when using Avalez lenses. With this technique, one of the sides of the prism can be molded to have a free surface (as shown in Fig. 15), whereby the gap between the surfaces of the variable focal length lens can be removed.

一體式平台One-piece platform

在使透鏡垂直於光軸移動時,致動機構必須小、緊湊、且易於對準及製造。將透鏡元件與一結構平台整合為一體係為一種達成此等要求之方式。第16圖顯示根據一實例性實施例之一一體式平台。如第16圖所示,該一體式平台包含一框架及一臂元件,該框架用作一結構引導件(structural guide),且該臂元件連接至一致動器元件(例如一線圈或磁鐵)。 透鏡元件可直接以準確之定向被模製或製造於框架上。一彈簧撓曲元件可與或可不與一體式平台合併於一起。在一個實施例中,在一個步驟中模製平台框架及臂,並在之後模製透鏡元件。在另一實施例中,該框架可由一引線框架金屬結構製成。引線框架可藉由金屬衝壓、雷射切割、碾磨、蝕刻、或模製而形成。可藉由一注射成型製程將臂元件模製於引線框架結構上,其中在將結構之其餘部分完成之後將透鏡元件模製至引線框架上。 When moving the lens perpendicular to the optical axis, the actuation mechanism must be small, compact, and easy to align and manufacture. Integrating a lens element with a structural platform into a system is one way to achieve such a requirement. Figure 16 shows an integrated platform in accordance with an exemplary embodiment. As shown in Fig. 16, the unitary platform includes a frame and an arm member that serves as a structural guide and that is coupled to an actuator member (e.g., a coil or magnet). The lens elements can be molded or fabricated directly onto the frame in an accurate orientation. A spring flexing element may or may not be combined with the unitary platform. In one embodiment, the platform frame and arms are molded in one step and the lens elements are molded thereafter. In another embodiment, the frame can be made from a lead frame metal structure. The lead frame can be formed by metal stamping, laser cutting, milling, etching, or molding. The arm member can be molded onto the leadframe structure by an injection molding process in which the lens component is molded onto the leadframe after the remainder of the structure is completed.

為使所模製之透鏡精確地對準,可將對齊結構併入至平台上。除對透鏡執行插入成型之外,可在一單獨步驟中將具有一預成型透鏡元件之一晶圓級光學組件結合至平台。所有此等製程皆旨在使製造製程自 動化、使整體結構保持緊湊、以及確保各結構與各透鏡元件之間精確對準。 To precisely align the molded lens, the alignment structure can be incorporated onto the platform. In addition to performing insert molding on the lens, a wafer level optical assembly having one of the preformed lens elements can be bonded to the platform in a separate step. All of these processes are designed to make the manufacturing process The kinetics keep the overall structure compact and ensure precise alignment between the various structures and the individual lens elements.

在致動一體式透鏡平台時,可需要或可不需要併入一彈簧撓曲元件。一彈簧撓曲件主要用於提供一恢復力至平台。若致動機構僅能提供單向力,則需要彈簧撓曲件,如具有一單向驅動之一音圈致動器(voice-coil actuator)之情形一般。具有一雙向驅動之一音圈致動器可無需一撓曲恢復元件。在無彈簧撓曲元件之情況下,致動範圍可輕易地增大。 藉由在系統上添加一位置感測器,可透過一閉環控制來確定透鏡平台之位置。 When the integrated lens platform is actuated, it may or may not be necessary to incorporate a spring flexing element. A spring flexure is primarily used to provide a restoring force to the platform. If the actuating mechanism can only provide a one-way force, a spring flexure is required, as is the case with a one-way drive one voice-coil actuator. A voice coil actuator having a two-way drive eliminates the need for a flexure recovery element. In the absence of a spring deflection element, the actuation range can be easily increased. By adding a position sensor to the system, the position of the lens stage can be determined by a closed loop control.

在某些實施例中,當二或更多個透鏡被設計成沿相同方向移位相同距離時,致動要求得到簡化。如此一來,使用一個致動器便會使二或更多個透鏡移動,而非為每一透鏡元件設置一各別致動器。可設計一機械結構將多個透鏡連結於一起。接著由一致動器致動該結構。 In some embodiments, the actuation requirements are simplified when two or more lenses are designed to be displaced the same distance in the same direction. As such, the use of one actuator causes two or more lenses to move rather than providing a separate actuator for each lens element. A mechanical structure can be designed to join the plurality of lenses together. The structure is then actuated by an actuator.

變焦與聚焦去耦操作Zoom and focus decoupling

聚焦及變焦係為光學系統必須能夠執行之二操作。無論使用何種配置,當第二可變焦距透鏡保持恆定於一特定屈光力時,第一可變焦距透鏡元件皆可用於聚焦目的。考慮到更多複雜電子器件之成本以及因必須對光學系統執行光學最佳化而存在更多限制,此種方式之操作可非常簡潔。 Focusing and zooming are two operations that an optical system must be able to perform. Regardless of the configuration used, the first variable focus lens element can be used for focusing purposes when the second variable focus lens remains constant at a particular refractive power. Considering the cost of more complex electronic devices and the limitations of having to optically optimize the optical system, this approach can be very simple.

為簡化系統之操作,在某些實施例中,將變焦與聚焦操作去耦。變焦係藉由微調該二可變焦距透鏡而達成。聚焦可藉由使基體透鏡系統沿光軸移動而達成。此會簡化影像最佳化製程及控制。在此種實施例中,一致動器組將可變焦距透鏡作為一組進行致動。聚焦可藉由使基體透鏡組 沿光軸移動而達成,抑或透過基體透鏡組中之一或多個可微調透鏡元件達成。適宜之元件係為可改變屈光力之光學透鏡,例如液體透鏡、液晶、基於微機電系統(micro-electromechanical system;MEMS)之透鏡、阿瓦雷茲透鏡、及壓電透鏡(piezo-based lens)。 To simplify the operation of the system, in some embodiments, the zoom is decoupled from the focus operation. The zoom is achieved by fine tuning the two variable focus lenses. Focusing can be achieved by moving the base lens system along the optical axis. This simplifies image optimization and control. In such an embodiment, the set of actuators actuates the variable focus lens as a group. Focusing on the base lens group Achieved by moving along the optical axis, or by one or more trimmable lens elements in the base lens group. Suitable components are optical lenses that can change refractive power, such as liquid lenses, liquid crystals, micro-electromechanical systems (MEMS) based lenses, Avalez lenses, and piezo-based lenses.

第17圖例示在根據一實例性實施例製造一微型透鏡系統時可執行之一組操作1700。在1702中,製作一結構平台,該結構平台包含一框架及一臂。在1704中,在製作該結構平台之後,且作為與製作該結構平台獨立之一步驟,在該結構平台之該框架上模製複數個光學元件。該等光學組件包含:一第一可變焦距透鏡、一第一棱鏡、及一第一基體透鏡。在一個實例性實施例中,製作該結構平台包含:將該臂模製於該結構平台之該框架上。在另一實例性實施例中,上述方法更包含連接一或多個致動器至該結構平台之該臂。該一或多個致動器耦合至該等光學元件其中之一或多者,以使該一或多個光學元件進行移動。在又一實例性實施例中,上述方法更包含:結合一晶圓級光學組件至該結構平台,該晶圓級光學組件具有一預成型透鏡元件。 Figure 17 illustrates a set of operations 1700 that may be performed when fabricating a microlens system in accordance with an exemplary embodiment. In 1702, a structural platform is constructed that includes a frame and an arm. In 1704, after fabricating the structural platform, and as part of the step of fabricating the structural platform, a plurality of optical components are molded over the frame of the structural platform. The optical components include: a first variable focus lens, a first prism, and a first base lens. In an exemplary embodiment, fabricating the structural platform includes molding the arm onto the frame of the structural platform. In another exemplary embodiment, the above method further includes connecting one or more actuators to the arm of the structural platform. The one or more actuators are coupled to one or more of the optical elements to move the one or more optical elements. In still another exemplary embodiment, the method further includes bonding a wafer level optical component to the structural platform, the wafer level optical component having a preformed lens component.

應理解,為便於理解基本概念,本申請案中所述之操作係以一特定順序呈現。然而亦應理解,此等操作可以一不同順序執行,且此外,可利用更多或更少之步驟來執行各種所揭露之操作。 It should be understood that the operations described in this application are presented in a particular order in order to facilitate understanding of the basic concepts. However, it should also be understood that such operations can be performed in a different order and, in addition, more or fewer steps can be utilized to perform the various disclosed operations.

出於例示及說明之目的,上文已提供對各實施例之上述說明。上述說明並非旨在詳盡地闡述本發明或將本發明之實施例限制於所揭露之精確形式,而是可根據上述教示內容或可根據各種實施例之實踐而作出潤飾及改變。選擇及闡述本文所述各實施例係為了闡釋各種實施例之原 理及本質及其可行性應用,以使熟習此項技術者能夠以各種實施例形式利用本發明並作出適於所設想特定用途之各種潤飾。本文所述實施例之各特徵可在各方法、設備、模組、系統、及製品之所有可能組合中進行組合。 The foregoing description of various embodiments has been presented by way of illustration and description. The above description is not intended to be exhaustive or to limit the embodiments of the invention. The invention may be modified and modified in light of the above teachings. The embodiments described herein are selected and described to illustrate the various embodiments. The nature and nature of the application and the application of the present invention are to enable the skilled artisan to utilize the invention in various embodiments and to make various modifications to the particular use contemplated. The various features of the embodiments described herein can be combined in all possible combinations of methods, devices, modules, systems, and articles.

a~d‧‧‧操作 a~d‧‧‧ operation

Claims (65)

一種微型變焦透鏡系統,包含:一第一棱鏡,被定位成經由該第一棱鏡之一第一面而自該微型變焦透鏡系統之一入口接收入射光,並在使該光自該第一棱鏡之一第二面出射之前,使所接收之該光彎曲約90度;至少一第一可變焦距透鏡(varifocal lens),被定位成接收自該第一棱鏡之該第二面出射之該光;至少一個基體透鏡(base lens),被定位成在該光穿過該第一可變焦距透鏡之後接收該光;一偵測器,被定位成在該光穿過該基體透鏡之後接收該光;以及一第一致動器,被設置成使該第一可變焦距透鏡沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡之該光之傳播軸線。 A miniature zoom lens system comprising: a first prism positioned to receive incident light from an entrance of one of the micro zoom lens systems via a first side of the first prism and to cause the light to be from the first prism Before receiving the second side, the received light is bent by about 90 degrees; at least one first varifocal lens is positioned to receive the light emitted from the second side of the first prism At least one base lens positioned to receive the light after the light passes through the first variable focus lens; a detector positioned to receive the light after the light passes through the base lens And a first actuator configured to move the first variable focus lens in at least one direction that is perpendicular to a propagation axis of the light passing through the first variable focus lens. 如請求項1所述之系統,其中該第一棱鏡之至少一個面具有一自由表面。 The system of claim 1, wherein at least one of the masks of the first prism has a free surface. 如請求項1所述之系統,其中該第一可變焦距透鏡係為如下其中之一:一液晶透鏡、一液體透鏡、或一阿瓦雷茲透鏡(Alvarez-like lens)。 The system of claim 1, wherein the first variable focus lens is one of: a liquid crystal lens, a liquid lens, or an Alvarez-like lens. 如請求項1所述之系統,其中該偵測器包含一互補金屬氧化物半導體(complementary metal-oxide semiconductor;CMOS)。 The system of claim 1, wherein the detector comprises a complementary metal-oxide semiconductor (CMOS). 如請求項1所述之系統,其中該第一致動器包含一線圈或一磁鐵其中之一。 The system of claim 1 wherein the first actuator comprises one of a coil or a magnet. 如請求項1所述之系統,更包含一結構平台,以使如下其中之一被直接模製於該結構平台上、被製作於該結構平台上、或與該結構平台整合為一體:該第一棱鏡、一第二棱鏡、該第一可變焦距透鏡、或一第二可變焦距透鏡。 The system of claim 1, further comprising a structural platform such that one of the following is directly molded on the structural platform, fabricated on the structural platform, or integrated with the structural platform: a prism, a second prism, the first variable focal length lens, or a second variable focus lens. 如請求項6所述之系統,其中該結構平台包含一彈簧撓曲元件(spring flexure element)。 The system of claim 6 wherein the structural platform comprises a spring flexure element. 如請求項6所述之系統,其中該結構平台包含一框架及一臂。 The system of claim 6, wherein the structural platform comprises a frame and an arm. 如請求項8所述之系統,其中:該結構平台的該框架包含一引線框架金屬結構,該引線框架金屬結構係為如下其中之一或多者:一金屬衝壓結構、一雷射切割結構、一碾磨結構(milled structure)、一蝕刻結構、或一模製結構;該臂係被模製於該引線框架金屬結構上;以及該第一棱鏡、該第二棱鏡、該第一可變焦距透鏡、或該第二可變焦距透鏡的其中之一或多者被模製於該引線框架金屬結構上。 The system of claim 8, wherein: the frame of the structural platform comprises a lead frame metal structure, the lead frame metal structure being one or more of the following: a metal stamping structure, a laser cutting structure, a milled structure, an etched structure, or a molded structure; the arm is molded on the lead frame metal structure; and the first prism, the second prism, the first variable focal length One or more of the lens, or the second variable focus lens, is molded over the leadframe metal structure. 如請求項6所述之系統,其中具有一預成型透鏡元件之一晶圓級光學組件被結合至該結構平台。 The system of claim 6 wherein a wafer level optical component having a preformed lens element is bonded to the structural platform. 如請求項1所述之系統,其中該第一致動器係為具有一雙向驅動(bidirectional drive)之一音圈(voice-coil)致動器。 The system of claim 1, wherein the first actuator is a voice-coil actuator having a bidirectional drive. 如請求項1所述之系統,包含一第二致動器,該第二致 動器係被設置成使該微型變焦透鏡系統中除該第一可變焦距透鏡之外之一光學組件移動。 The system of claim 1, comprising a second actuator, the second The actuator is configured to move one of the optical components of the micro zoom lens system other than the first variable focus lens. 如請求項12所述之系統,其中該第二致動器及該第一致動器係被設置成使除該第一可變焦距透鏡外之該光學組件及該第一可變焦距透鏡二者沿同一方向移位相同之距離。 The system of claim 12, wherein the second actuator and the first actuator are configured to cause the optical component and the first variable focal length lens in addition to the first variable focal length lens Shift the same distance in the same direction. 如請求項13所述之系統,其中除該第一可變焦距透鏡之外之該光學組件係為如下其中之一:一第二可變焦距透鏡、該至少一個基體透鏡、該第一棱鏡、或一第二棱鏡。 The system of claim 13, wherein the optical component other than the first variable focus lens is one of: a second variable focal length lens, the at least one base lens, the first prism, Or a second prism. 如請求項1所述之系統,其中該第一可變焦距透鏡具有一矩形或一橢圓形橫截面,該矩形或橢圓形橫截面包圍僅該第一可變焦距透鏡之一實質有效區域(active area)。 The system of claim 1, wherein the first variable focus lens has a rectangular or elliptical cross section that encompasses only one of the first variable focal length lens effective regions (active Area). 如請求項1所述之系統,更包含一第二可變焦距透鏡,該第二可變焦距透鏡被定位成在自該第一可變焦距透鏡出射之該光到達該至少一個基體透鏡之前接收該光。 The system of claim 1, further comprising a second variable focus lens positioned to receive before the light emerging from the first variable focus lens reaches the at least one base lens The light. 如請求項16所述之系統,其中該第二可變焦距透鏡具有一矩形或一橢圓形橫截面,該矩形或橢圓形橫截面包圍僅該第二可變焦距透鏡之一實質有效區域。 The system of claim 16, wherein the second variable focus lens has a rectangular or elliptical cross section that encompasses only one of the second variable focus lenses. 如請求項16所述之系統,其中該第一可變焦距透鏡與該第二可變焦距透鏡皆可相對於彼此移動,以為該微型變焦透鏡系統提供光學變焦能力。 The system of claim 16 wherein the first variable focus lens and the second variable focus lens are moveable relative to each other to provide optical zoom capability to the miniature zoom lens system. 如請求項1所述之系統,其中該至少一個基體透鏡被設置成沿該基體透鏡之光軸移動,以僅藉由該基體透鏡之移動而為該微型變焦透鏡系統提供光學聚焦能力。 The system of claim 1 wherein the at least one base lens is arranged to move along an optical axis of the base lens to provide optical focusing capability to the miniature zoom lens system solely by movement of the base lens. 如請求項1或16所述之系統,其中該第一可變焦距透鏡、該第二可變焦距透鏡、或該至少一個基體透鏡的其中之一或多者係為:一液體透鏡、一液晶透鏡、一基於微機電系統(micro-electromechanical system;MEMS)之透鏡、一阿瓦雷茲透鏡、一壓電透鏡(piezo-based lens)、或其一組合。 The system of claim 1 or 16, wherein one or more of the first variable focal length lens, the second variable focus lens, or the at least one base lens are: a liquid lens, a liquid crystal A lens, a micro-electromechanical system (MEMS) based lens, an Avarez lens, a piezo-based lens, or a combination thereof. 如請求項7所述之系統,其中該彈簧撓曲元件係為一簡支樑撓曲件(simple beam flexure)或一級聯支樑撓曲件(cascaded beam flexure)其中之一。 The system of claim 7, wherein the spring flexing element is one of a simple beam flexure or a cascaded beam flexure. 一種微型變焦透鏡系統,包含:一第一棱鏡,被定位成經由該第一棱鏡之一第一面而自該微型變焦透鏡系統之一入口接收入射光,並在使該光自該第一棱鏡之一第二面出射之前,使所接收之該光彎曲約90度;一第一可變焦距透鏡,被定位成接收自該第一棱鏡之該第二面出射之該光;一第二可變焦距透鏡,被定位成接收自第一可變焦距透鏡出射之該光;至少一個基體透鏡,被定位成在該光穿過該第二可變焦距透鏡之後接收該光;一第二棱鏡,被定位成經由該第二棱鏡之一第一面而接收自該至少一個基體透鏡出射之該光,並在使該光自該第二棱鏡之一第二面出射之前,使該第二棱鏡所接收之該光彎曲約90度;一偵測器,被定位成在該光自該第二棱鏡出射之後接收該光;以及 至少一個致動器,被設置成使該第一可變焦距透鏡與該第二可變焦距透鏡其中之一或二者沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡或該第二可變焦距透鏡之該光之傳播軸線。 A miniature zoom lens system comprising: a first prism positioned to receive incident light from an entrance of one of the micro zoom lens systems via a first side of the first prism and to cause the light to be from the first prism Before the second side exits, the received light is bent by about 90 degrees; a first variable focal length lens is positioned to receive the light emitted from the second side of the first prism; a second a varifocal lens positioned to receive the light emerging from the first variable focus lens; at least one base lens positioned to receive the light after the light passes through the second variable focus lens; a second prism, Positioned to receive the light exiting the at least one base lens via a first side of the second prism, and to cause the second prism to be emitted from the second side of the second prism Receiving the light is bent by about 90 degrees; a detector positioned to receive the light after the light exits the second prism; At least one actuator configured to move one or both of the first variable focus lens and the second variable focus lens in at least one direction perpendicular to the first variable The propagation axis of the light of the focal length lens or the second variable focus lens. 一種微型變焦透鏡系統,包含:一第一可變焦距透鏡,被定位成自該微型變焦透鏡系統之一入口接收入射光;一第一棱鏡,被定位成經由該第一棱鏡之一第一面而接收自該第一可變焦距透鏡出射之該光,並在使該光自該第一棱鏡之一第二面出射之前,使該第一棱鏡所接收之該光彎曲約90度;一第二可變焦距透鏡,被定位成接收自第一棱鏡出射之該光;至少一個基體透鏡,被定位成在該光穿過該第二可變焦距透鏡之後接收該光;一第二棱鏡,被定位成經由該第二棱鏡之一第一面而接收自該至少一個基體透鏡出射之該光,並在使該光自該第二棱鏡之一第二面出射之前,使該第二棱鏡所接收之該光彎曲約90度;一偵測器,被定位成在該光自該第二棱鏡出射之後接收該光;以及至少一個致動器,被設置成使該第一可變焦距透鏡與該第二可變焦距透鏡的其中之一或二者沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡或該第二可變焦距透鏡之該光之傳播軸線。 A miniature zoom lens system comprising: a first variable focus lens positioned to receive incident light from an entrance of the miniature zoom lens system; a first prism positioned to pass through a first side of the first prism And receiving the light emitted from the first variable focus lens, and bending the light received by the first prism by about 90 degrees before causing the light to exit from the second surface of the first prism; a second variable focus lens positioned to receive the light emitted from the first prism; at least one base lens positioned to receive the light after the light passes through the second variable focus lens; a second prism Positioning the light emitted from the at least one base lens via a first side of the second prism and receiving the second prism before exiting the second side of the second prism The light is bent by about 90 degrees; a detector positioned to receive the light after the light exits the second prism; and at least one actuator configured to cause the first variable focus lens to One of the second variable focal length lenses One or both move in at least one direction that is perpendicular to a propagation axis of the light passing through the first variable focus lens or the second variable focus lens. 如請求項22或23所述之系統,其中該第二棱鏡被定向 成使該偵測器與該微型變焦透鏡系統之該入口置於該微型變焦透鏡系統之同一側上。 The system of claim 22 or 23, wherein the second prism is oriented The detector is placed on the same side of the micro zoom lens system as the inlet of the miniature zoom lens system. 如請求項22或23所述之系統,其中該第二棱鏡被定向成使該偵測器置於該微型變焦透鏡系統之一側上,該側係與該微型變焦透鏡系統之該入口相對。 The system of claim 22 or 23, wherein the second prism is oriented such that the detector is placed on one side of the miniature zoom lens system, the side being opposite the entrance of the miniature zoom lens system. 一種微型變焦透鏡系統,包含:一第一可變焦距透鏡,被定位成自該微型變焦透鏡系統之一入口接收入射光;一第一棱鏡,被定位成經由該第一棱鏡之一第一面而接收自該第一可變焦距透鏡出射之該光,並在使該光自該第一棱鏡之一第二面出射之前,使該第一棱鏡所接收之該光彎曲約90度;一第二可變焦距透鏡,被定位成接收自該第一棱鏡出射之該光;至少一個基體透鏡,被定位成在該光穿過該第二可變焦距透鏡之後接收該光;一偵測器,沿該至少一個基體透鏡之一光軸定位,以在該光自該至少一個基體透鏡出射之後接收該光;以及至少一個致動器,被設置成使該第一可變焦距透鏡與該第二可變焦距透鏡其中之一或二者沿至少一方向移動,該至少一方向垂直於穿過該第一可變焦距透鏡或該第二可變焦距透鏡之該光之傳播軸線。 A miniature zoom lens system comprising: a first variable focus lens positioned to receive incident light from an entrance of the miniature zoom lens system; a first prism positioned to pass through a first side of the first prism And receiving the light emitted from the first variable focus lens, and bending the light received by the first prism by about 90 degrees before causing the light to exit from the second surface of the first prism; a second variable focus lens positioned to receive the light emitted from the first prism; at least one base lens positioned to receive the light after the light passes through the second variable focus lens; a detector Positioning along an optical axis of one of the at least one base lens to receive the light after exiting the at least one base lens; and at least one actuator configured to cause the first variable focus lens and the second One or both of the variable focus lenses move in at least one direction that is perpendicular to a propagation axis of the light passing through the first variable focus lens or the second variable focus lens. 如請求項23至26中任一項所述之系統,其中該第一可變焦距透鏡與該第一棱鏡被形成為一一體式結構(integrated structure),藉此縮短穿過該微型變焦透鏡 系統而傳播之光之光程長度。 The system of any one of claims 23 to 26, wherein the first variable focal length lens and the first prism are formed as an integrated structure, thereby shortening through the miniature zoom lens The length of the optical path of the light that propagates through the system. 如請求項26所述之系統,其中該第一可變焦距透鏡之一或多個光學元件被定位成將該第一可變焦距透鏡設置成具有一負屈光力(optical power)之一透鏡,且該第二可變焦距透鏡之一或多個光學元件被定位成將該第二可變焦距透鏡設置成具有一正屈光力之一透鏡。 The system of claim 26, wherein the one or more optical elements of the first variable focus lens are positioned to position the first variable focus lens to have a lens having a negative optical power, and One or more optical elements of the second variable focus lens are positioned to position the second variable focus lens to have a lens having a positive refractive power. 如請求項26所述之系統,其中該第一可變焦距透鏡之一或多個光學元件被定位成將該第一可變焦距透鏡設置成具有一正屈光力之一透鏡,且該第二可變焦距透鏡之一或多個光學元件被定位成將該第二可變焦距透鏡設置成具有一負屈光力之一透鏡。 The system of claim 26, wherein the one or more optical elements of the first variable focus lens are positioned to position the first variable focus lens to have one lens having a positive refractive power, and the second One or more optical elements of the varifocal lens are positioned to position the second variable focus lens to have a lens having a negative refractive power. 如請求項26所述之系統,其中該第一可變焦距透鏡之一或多個光學元件係可移動,以使該第一可變焦距透鏡之一屈光力因應於該第一可變焦距透鏡之該一或多個光學元件之移動而改變。 The system of claim 26, wherein the one or more optical elements of the first variable focus lens are movable such that one of the first variable focus lenses has a refractive power corresponding to the first variable focus lens The movement of the one or more optical elements changes. 如請求項26或28所述之系統,其中該第二可變焦距透鏡之一或多個光學元件係可移動,以使該第二可變焦距透鏡之一屈光力因應於該第二可變焦距透鏡之該一或多個光學元件之移動而改變。 The system of claim 26 or 28, wherein one or more of the optical components of the second variable focus lens are movable to cause one of the second variable focal length lenses to have a refractive power corresponding to the second variable focal length The movement of the one or more optical elements of the lens changes. 一種阿瓦雷茲透鏡配置,包含:一第一光學元件及一第二光學元件,各該光學元件包含二表面,該二表面實質上垂直於該阿瓦雷茲透鏡配置之一光軸,各該光學元件之一第一表面係為一平面,且各該光學元件之一第二表面係為由一多項式表徵之一表面,該第一光學元件被定 位於距該第二光學元件一特定距離處,俾使該第一光學元件之該第二表面面向該第二光學元件之該第二表面,該第一光學元件與該第二光學元件其中每一者皆被設置成實質上垂直於該光軸移動。 An Avarez lens configuration comprising: a first optical component and a second optical component, each optical component comprising two surfaces, the two surfaces being substantially perpendicular to an optical axis of the Avarez lens configuration, each a first surface of the optical element is a plane, and a second surface of each of the optical elements is a surface characterized by a polynomial, the first optical element is determined Located at a specific distance from the second optical element such that the second surface of the first optical element faces the second surface of the second optical element, the first optical element and the second optical element All are arranged to move substantially perpendicular to the optical axis. 一種阿瓦雷茲透鏡配置,包含:一第一光學元件及一第二光學元件,各該光學元件包含二表面,該二表面實質上垂直於該阿瓦雷茲透鏡配置之一光軸,各該光學元件之一第一表面係為一自由表面,且各該光學元件之一第二表面係為由一多項式表徵之一表面,該第一光學元件被定位於距該第二光學元件一特定距離處,俾使該第一光學元件之該第二表面面向該第二光學元件之該第二表面,該第一光學元件與該第二光學元件其中每一者皆被設置成實質上垂直於該光軸移動。 An Avarez lens configuration comprising: a first optical component and a second optical component, each optical component comprising two surfaces, the two surfaces being substantially perpendicular to an optical axis of the Avarez lens configuration, each One of the first surfaces of the optical element is a free surface, and one of the second surfaces of each of the optical elements is a surface characterized by a polynomial, the first optical element being positioned at a specific one from the second optical element a second surface of the first optical element facing the second surface of the second optical element, the first optical element and the second optical element being disposed substantially perpendicular to the second optical element The optical axis moves. 如請求項32或33所述之阿瓦雷茲透鏡配置,其中該第一光學元件被設置成沿該第二光學元件之該移動之相反方向與該第二光學元件同步地移動。 The Avarez lens configuration of claim 32 or 33, wherein the first optical element is arranged to move in synchronism with the second optical element in the opposite direction of the movement of the second optical element. 如請求項32、33或34所述之阿瓦雷茲透鏡配置,其中該第一光學元件與該第二光學元件被設置成垂直於該光軸沿相反之方向移動相同之量。 The Avarez lens configuration of claim 32, 33 or 34, wherein the first optical element and the second optical element are arranged to move the same amount in opposite directions perpendicular to the optical axis. 如前述請求項中任一項所述之光學系統,具有至少6毫米(mm)之一z軸高度。 An optical system according to any of the preceding claims, having a z-axis height of at least 6 millimeters (mm). 如前述請求項中任一項所述之光學系統,具有介於60度至75度間之一視野(field of view)。 The optical system of any of the preceding claims, having a field of view between 60 degrees and 75 degrees. 一種用於製造一微型透鏡系統之方法,包含: 製作一結構平台,該結構平台包含一框架及一臂;以及在製作該結構平台之後,且作為與製作該結構平台獨立之一步驟,在該結構平台之該框架上模製複數個光學元件,該等光學元件包含:一第一可變焦距透鏡、一第一棱鏡、及一第一基體透鏡。 A method for fabricating a microlens system comprising: Forming a structural platform comprising a frame and an arm; and after fabricating the structural platform, and as a step separate from fabricating the structural platform, molding a plurality of optical components on the frame of the structural platform, The optical components include: a first variable focus lens, a first prism, and a first base lens. 如請求項38所述之方法,其中製作該結構平台包含:將該臂模製於該結構平台之該框架上。 The method of claim 38, wherein fabricating the structural platform comprises molding the arm onto the frame of the structural platform. 如請求項38所述之方法,更包含:連接一或多個致動器至該結構平台之該臂,該一或多個致動器耦合至該等光學元件其中之一或多者,以使該一或多個光學元件進行移動。 The method of claim 38, further comprising: connecting one or more actuators to the arm of the structural platform, the one or more actuators being coupled to one or more of the optical elements to The one or more optical elements are moved. 如請求項38所述之方法,更包含:結合一晶圓級光學組件至該結構平台,該晶圓級光學組件具有一預成型透鏡元件。 The method of claim 38, further comprising: bonding a wafer level optical component to the structural platform, the wafer level optical component having a preformed lens component. 一種一體式光學裝置,包含:一彈性懸置固定件,係利用一第一製程製作而成;以及一光學元件,該光學元件被整合(integrated)至該彈性懸置固定件中,該光學元件係利用一第二製程製作而成。 An integrated optical device comprising: an elastic suspension fixture made by a first process; and an optical component integrated into the elastic suspension fixture, the optical component It is made by a second process. 如請求項42所述之一體式光學裝置,其中該第一製程包含如下製程其中之一:一注射成型製程;一模內裝飾(in-mold decoration)製程;一熱衝壓製程;一金屬衝壓製程; 一微加工製程,用以製作一基於晶片之模具(chip-based mold);或一插入成型製程。 The one-piece optical device of claim 42, wherein the first process comprises one of the following processes: an injection molding process; an in-mold decoration process; a hot stamping process; and a metal stamping process. ; A micromachining process for making a chip-based mold or an insert molding process. 如請求項42所述之一體式光學裝置,其中該第二製程包含如下製程其中之一:一注射成型製程;一由一模具進行鑄造之製程(casting from a molde process);一模內裝飾製程;一熱衝壓製程;一金屬衝壓製程;一微加工製程,用以製作一基於晶片之模具;或一插入成型製程。 The one-piece optical device of claim 42, wherein the second process comprises one of the following processes: an injection molding process; a casting from a molde process; and an in-mold decoration process a hot stamping process; a metal stamping process; a micromachining process for making a wafer-based mold; or an insert molding process. 如請求項42所述之一體式光學裝置,更包含如下其中之一或多者:一框架;一或多個對齊結構;一致動器,用以使該光學元件移位;一或多個附加光學元件;一或多個附加彈性元件;或一或多個剛性元件。 The one-piece optical device of claim 42, further comprising one or more of: a frame; one or more alignment structures; an actuator for displacing the optical component; one or more additional Optical element; one or more additional elastic elements; or one or more rigid elements. 如請求項42所述之一體式光學裝置,其中該彈性固定件被設置成使該光學元件沿一或多個方向移動。 One of the bulk optical devices of claim 42, wherein the resilient fastener is configured to move the optical component in one or more directions. 如請求項46所述之一體式光學裝置,其中該彈性固定件 被設置成使該光學元件以三維方式移動。 The one-piece optical device of claim 46, wherein the elastic fixing member It is arranged to move the optical element in three dimensions. 如請求項42所述之一體式光學裝置,更包含一致動器,該致動器用以使該彈性固定件移位,藉此使該光學元件移位。 A bulk optical device as claimed in claim 42 further comprising an actuator for displacing the resilient member, thereby displacing the optical member. 如請求項1所述之方法,其中該光學元件包含如下表面至少其中之一:一球面,一非球面,或一自由表面。 The method of claim 1, wherein the optical element comprises at least one of a surface: a spherical surface, an aspheric surface, or a free surface. 一種用於加工一一體式光學裝置之方法,包含:獲得一第一模具,該第一模具之結構被配置成形成一彈性懸置固定件;注射一第一注射材料至該第一模具中;將一第二模具放置成接觸該第一模具及該第一模具內之該第一注射材料,該第二模具之結構被配置成形成一光學元件;注射一第二注射材料至該第二模具中;移除該第二模具;以及移除該第一模具,以獲得該彈性懸置固定件,該光學元件被整合至該彈性懸置固定件。 A method for processing an integrated optical device, comprising: obtaining a first mold, the first mold being configured to form an elastic suspension fixture; injecting a first injection material into the first mold Placing a second mold to contact the first mold and the first injection material in the first mold, the second mold being configured to form an optical element; injecting a second injection material to the second In the mold; removing the second mold; and removing the first mold to obtain the elastic suspension fixture, the optical element being integrated into the elastic suspension fixture. 如請求項50所述之方法,其中該第一注射材料包含一第一聚合物,該第一聚合物適於形成該彈性懸置固定件,且該第二注射材料包含一第二聚合物,該第二聚合物適於形成該光學元件。 The method of claim 50, wherein the first injection material comprises a first polymer, the first polymer is adapted to form the elastic suspension fixture, and the second injection material comprises a second polymer, The second polymer is adapted to form the optical element. 如請求項50所述之方法,更包含:更利用一精密機械加 工工具來精製該一體式光學裝置之一結構。 The method of claim 50, further comprising: utilizing a precision mechanical addition Tools to refine one of the structures of the integrated optical device. 如請求項50所述之方法,更包含在移除該第一模具之前:將一第三模具放置成接觸該第一模具及該第一注射材料,該第三模具之結構被配置成形成一附加元件;以及注射一第三注射材料至該第三模具中。 The method of claim 50, further comprising: before removing the first mold: placing a third mold to contact the first mold and the first injection material, the structure of the third mold being configured to form a An additional component; and injecting a third injection material into the third mold. 如請求項53所述之方法,其中該附加元件係為如下其中之一:一附加光學元件;一附加彈性固定件;或一剛性固定件。 The method of claim 53, wherein the additional component is one of: an additional optical component; an additional resilient fastener; or a rigid fastener. 如請求項53所述之方法,其中該附加元件係為一對齊固定件。 The method of claim 53, wherein the additional component is an alignment fixture. 如請求項50所述之方法,其中該一體式光學裝置中之該彈性懸置固定件及該光學元件係按照介於1微米至5微米間之一公差而被定位。 The method of claim 50, wherein the resilient suspension fixture and the optical component of the unitary optical device are positioned with a tolerance of between 1 micrometer and 5 micrometers. 如請求項53所述之方法,其中該第三注射材料係為與該第一注射材料與該第二注射材料其中之一相同之材料。 The method of claim 53, wherein the third injection material is the same material as one of the first injection material and the second injection material. 如請求項50所述之方法,其中該第一模具之結構被進一步配置成包含用於放置一致動機構之一溝槽。 The method of claim 50, wherein the structure of the first mold is further configured to include a groove for placing an actuator. 如請求項50所述之方法,更包含整合一金屬框架至該彈性懸置固定件中。 The method of claim 50, further comprising integrating a metal frame into the resilient suspension fixture. 如請求項59所述之方法,其中該金屬框架係利用一金屬衝壓技術而形成。 The method of claim 59, wherein the metal frame is formed using a metal stamping technique. 一種變焦透鏡,包含如請求項42所述之一體式光學裝置。 A zoom lens comprising a bulk optical device as claimed in claim 42. 一種手持式電子器件,包含如請求項42所述之一體式光學裝置。 A handheld electronic device comprising one of the bulk optical devices as claimed in claim 42. 一種用於加工一一體式光學裝置之方法,包含:獲得一第一模具,該第一模具之結構被配置成形成一彈性懸置固定件及一光學元件;注射一第一注射材料至該第一模具中;注射一第二注射材料至該第一模具中;以及移除該第一模具,以獲得整合有該光學元件之該彈性懸置固定件。 A method for processing an integrated optical device, comprising: obtaining a first mold, the first mold being configured to form an elastic suspension fixture and an optical component; injecting a first injection material to the In the first mold; injecting a second injection material into the first mold; and removing the first mold to obtain the elastic suspension fixture incorporating the optical element. 一種用於加工一一體式光學裝置之方法,包含:獲得一模具,該模具之結構被配置成形成一彈性懸置固定件以及容置一光學元件;將該光學元件放置於該模具中;注射一第一注射材料至該模具中,以形成一彈性懸置固定件;以及移除該模具,以獲得整合有該光學元件之該彈性懸置固定件。 A method for processing an integrated optical device, comprising: obtaining a mold configured to form a resilient suspension fixture and accommodating an optical component; placing the optical component in the mold; A first injection material is injected into the mold to form a resilient suspension fixture; and the mold is removed to obtain the elastic suspension fixture incorporating the optical component. 如請求項64所述之方法,其中在將該光學元件放置於該模具中之前,將該光學元件由一模具鑄造而成。 The method of claim 64, wherein the optical component is cast from a mold prior to placing the optical component in the mold.
TW102140658A 2012-11-08 2013-11-08 Zoom lens, optical device, method for manufacturing the same, and handheld electronic device comprising the same TWI525802B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261724221P 2012-11-08 2012-11-08
US201361874333P 2013-09-05 2013-09-05

Publications (2)

Publication Number Publication Date
TW201426986A TW201426986A (en) 2014-07-01
TWI525802B true TWI525802B (en) 2016-03-11

Family

ID=50685265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102140658A TWI525802B (en) 2012-11-08 2013-11-08 Zoom lens, optical device, method for manufacturing the same, and handheld electronic device comprising the same

Country Status (4)

Country Link
EP (1) EP2917783A4 (en)
CN (1) CN105122129A (en)
TW (1) TWI525802B (en)
WO (1) WO2014072818A2 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083489A1 (en) 2012-11-28 2014-06-05 Corephotonics Ltd. High-resolution thin multi-aperture imaging systems
CN109040553B (en) 2013-06-13 2021-04-13 核心光电有限公司 Double-aperture zooming digital camera
CN105359006B (en) 2013-07-04 2018-06-22 核心光电有限公司 Small-sized focal length lens external member
CN109120823B (en) 2013-08-01 2020-07-14 核心光电有限公司 Thin multi-aperture imaging system with auto-focus and method of use thereof
WO2016024161A2 (en) * 2014-07-11 2016-02-18 Dynaoptics Pte Ltd Hybrid continuous zoom lens system and method
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
CN107110739B (en) 2014-08-15 2019-08-30 齐戈股份有限公司 The optical evaluation of lens and lens die
TWI596325B (en) * 2014-08-19 2017-08-21 賽格股份有限公司 Method or system for dertermining information about an object or a transparent optical element and method of forming an optical assembly
CN107209404B (en) 2015-01-03 2021-01-15 核心光电有限公司 Miniature telephoto lens module and camera using the same
EP3492958B1 (en) 2015-04-02 2022-03-30 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
CN111175926B (en) * 2015-04-16 2021-08-20 核心光电有限公司 Auto-focus and optical image stabilization in compact folded cameras
CN112672022B (en) 2015-08-13 2022-08-02 核心光电有限公司 Dual aperture zoom camera with video support and switching/non-switching dynamic control
US10021280B2 (en) 2015-08-18 2018-07-10 Apple Inc. Camera module electrical architecture
KR102225727B1 (en) 2015-09-06 2021-03-10 코어포토닉스 리미티드 Auto focus and optical image stabilization with roll compensation in a compact folded camera
WO2017072583A1 (en) * 2015-10-20 2017-05-04 Dynaoptics Ltd, A Public Limited Company Low distortion lens using double plane symmetric element
WO2017072579A1 (en) * 2015-10-20 2017-05-04 Dynaoptics Ltd, A Public Limited Company Dual-focal length lens design
US10578948B2 (en) 2015-12-29 2020-03-03 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
JP6626731B2 (en) * 2016-02-17 2019-12-25 アルプスアルパイン株式会社 Lens drive
CN116661090A (en) 2016-05-10 2023-08-29 台湾东电化股份有限公司 Lens system
EP3518520B1 (en) 2016-05-30 2020-08-26 Corephotonics Ltd. Rotational ball-guided voice coil motor
EP3381181B1 (en) 2016-06-19 2022-04-06 Corephotonics Ltd. Frame synchronization in a dual-aperture camera system
WO2018007951A1 (en) 2016-07-07 2018-01-11 Corephotonics Ltd. Dual-camera system with improved video smooth transition by image blending
EP4224233A1 (en) 2016-07-07 2023-08-09 Corephotonics Ltd. Linear ball guided voice coil motor for folded optic
DE102016219055A1 (en) * 2016-09-30 2018-04-05 Carl Zeiss Microscopy Gmbh Actuator for adjusting an element to be moved, uses and method for adjustment
CN113805405B (en) 2017-01-12 2023-05-23 核心光电有限公司 Compact folding camera and method of assembling the same
KR102046473B1 (en) * 2017-03-08 2019-11-19 삼성전기주식회사 Mirror Module for OIS and Camera module including the same
CN114137790A (en) 2017-03-15 2022-03-04 核心光电有限公司 System with panoramic scanning range, mobile electronic device and method thereof
US10904512B2 (en) 2017-09-06 2021-01-26 Corephotonics Ltd. Combined stereoscopic and phase detection depth mapping in a dual aperture camera
KR102435025B1 (en) * 2017-09-25 2022-08-23 삼성전자주식회사 A camera module comprising a plurality of actuators having different directions of magnetic fields
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
CN107941154B (en) * 2017-10-20 2020-01-21 杭州电子科技大学 Displacement measurement system and measurement method
CN110140076B (en) 2017-11-23 2021-05-21 核心光电有限公司 Compact folding camera structure
CN108008372B (en) * 2017-12-12 2021-10-22 北京航天计量测试技术研究所 Focusing type laser ranging receiving optical system
CN114609746A (en) 2018-02-05 2022-06-10 核心光电有限公司 Folding camera device
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
EP4109174A1 (en) 2018-04-23 2022-12-28 Corephotonics Ltd. An optical-path folding-element with an extended two degree of freedom rotation range
CN110398872A (en) * 2018-04-25 2019-11-01 华为技术有限公司 A kind of lens module and camera
KR102289149B1 (en) 2018-08-04 2021-08-12 코어포토닉스 리미티드 Switchable continuous display information system above the camera
WO2020039302A1 (en) 2018-08-22 2020-02-27 Corephotonics Ltd. Two-state zoom folded camera
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
WO2020183312A1 (en) 2019-03-09 2020-09-17 Corephotonics Ltd. System and method for dynamic stereoscopic calibration
US11294137B2 (en) 2019-06-27 2022-04-05 Facebook Technologies, Llc Kinematic couplings for optical elements
KR102365748B1 (en) 2019-07-31 2022-02-23 코어포토닉스 리미티드 System and method for creating background blur in camera panning or motion
US11215782B2 (en) * 2019-09-13 2022-01-04 Facebook Technologies, Llc Flexures for optical components
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
CN114641983A (en) 2019-12-09 2022-06-17 核心光电有限公司 System and method for obtaining intelligent panoramic image
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
EP4052176A4 (en) 2020-02-22 2023-01-04 Corephotonics Ltd. Split screen feature for macro photography
CN117372250A (en) 2020-05-17 2024-01-09 核心光电有限公司 Image stitching of full field of view reference images
KR20240001277A (en) 2020-05-30 2024-01-03 코어포토닉스 리미티드 Systems and methods for obtaining a super macro image
CN114730064A (en) 2020-07-15 2022-07-08 核心光电有限公司 Viewpoint aberration correction for scanning folded cameras
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
KR102640229B1 (en) 2020-07-31 2024-02-22 코어포토닉스 리미티드 Hall sensor-magnet structure for large stroke linear position detection
CN116679420A (en) 2020-08-12 2023-09-01 核心光电有限公司 Method for optical anti-shake
CN114167569B (en) * 2020-08-21 2023-08-22 华为技术有限公司 Optical lens, camera module and electronic equipment
KR20220048525A (en) 2020-10-12 2022-04-20 삼성전기주식회사 Camera Module
TW202422200A (en) 2021-03-11 2024-06-01 以色列商核心光電有限公司 Systems for pop-out camera
CN113311642B (en) * 2021-05-31 2022-11-18 新思考电机有限公司 Lens driving device, imaging device, and electronic apparatus
KR102638173B1 (en) 2021-06-08 2024-02-19 코어포토닉스 리미티드 System and camera for tilting the focal plane of super-macro images
US11982799B2 (en) * 2021-07-01 2024-05-14 Raytheon Canada Limited Compact zoom relay system and method with varifocal freeform lens
CN114839763B (en) * 2022-02-15 2023-03-21 北京理工大学 Alvarez lens zooming scanning device based on dielectric elastomer drive
CN115166930B (en) * 2022-07-27 2023-12-22 维沃移动通信有限公司 Camera module and electronic equipment
CN116203776B (en) * 2023-05-05 2023-09-12 荣耀终端有限公司 Prism assembly, zoom lens, camera module and terminal equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195068A (en) * 2005-01-12 2006-07-27 Fujinon Corp Variable power optical system with vibration-proof function and imaging apparatus with variable power optical system mounted therein
US7227682B2 (en) * 2005-04-08 2007-06-05 Panavision International, L.P. Wide-range, wide-angle compound zoom with simplified zooming structure
KR20080006137A (en) * 2006-07-11 2008-01-16 엘지전자 주식회사 Optical device with slim depth
JP2008197134A (en) * 2007-02-08 2008-08-28 Nikon Corp Camera
KR100986386B1 (en) * 2008-09-10 2010-10-08 엘지이노텍 주식회사 Method of fabricating lens and apparatus for fabricating lens
US8427761B2 (en) * 2009-03-10 2013-04-23 Konica Minolta Opto, Inc. Image pickup optical system, image pickup optical device, and digital equipment
KR101121033B1 (en) * 2010-03-30 2012-03-16 파워옵틱스 주식회사 Compact Zoom Lens

Also Published As

Publication number Publication date
TW201426986A (en) 2014-07-01
CN105122129A (en) 2015-12-02
WO2014072818A3 (en) 2014-07-24
WO2014072818A2 (en) 2014-05-15
EP2917783A2 (en) 2015-09-16
EP2917783A4 (en) 2016-07-13

Similar Documents

Publication Publication Date Title
TWI525802B (en) Zoom lens, optical device, method for manufacturing the same, and handheld electronic device comprising the same
US20150316748A1 (en) Miniature optical zoom lens
CN113167986B (en) Multi-aperture camera with at least one two-state zoom camera
US10082652B2 (en) Miniaturized optical zoom lens system
US8670055B2 (en) Image pickup lens, camera module using the same, image pickup lens manufacturing method and camera module manufacturing method
CN114615402A (en) Dual camera
TWI578019B (en) Low-profile hybrid lens systems and methods for manufacturing the same
US10306121B2 (en) Method of manufacturing camera module and camera module
WO2007111100A1 (en) Camera module
CN213423566U (en) Optical system
WO2021213216A1 (en) Periscopic camera module, multi-camera module and method for assembling camera module
JP2008028838A (en) Camera module and manufacturing method thereof
US7605989B1 (en) Compact auto-focus image taking lens system with a micromirror array lens and a lens-surfaced prism
CN213457506U (en) Optical system
KR20230058111A (en) Camera module, shooting module and terminal
WO2022037320A1 (en) Periscopic photographing module
KR101038792B1 (en) Camera Module
Jeong et al. Low-profile optic design for mobile camera using dual freeform reflective lenses
CN118465958A (en) Optical element driving mechanism

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees