TWI521785B - Frequency selective surface (fss) structure for improving the quality of wireless communication - Google Patents

Frequency selective surface (fss) structure for improving the quality of wireless communication Download PDF

Info

Publication number
TWI521785B
TWI521785B TW102139314A TW102139314A TWI521785B TW I521785 B TWI521785 B TW I521785B TW 102139314 A TW102139314 A TW 102139314A TW 102139314 A TW102139314 A TW 102139314A TW I521785 B TWI521785 B TW I521785B
Authority
TW
Taiwan
Prior art keywords
slot
length
main
width
slots
Prior art date
Application number
TW102139314A
Other languages
Chinese (zh)
Other versions
TW201517372A (en
Inventor
陳興義
林琮翰
李培堃
Original Assignee
元智大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元智大學 filed Critical 元智大學
Priority to TW102139314A priority Critical patent/TWI521785B/en
Publication of TW201517372A publication Critical patent/TW201517372A/en
Application granted granted Critical
Publication of TWI521785B publication Critical patent/TWI521785B/en

Links

Landscapes

  • Waveguide Aerials (AREA)

Description

用於改善無線通訊品質之頻率選擇平面結構 Frequency selection plane structure for improving wireless communication quality

本發明係關於一種平面結構,尤指一種適用於頻率選擇的平面結構。 The present invention relates to a planar structure, and more particularly to a planar structure suitable for frequency selection.

近年來,由於節約能源等環保意識已深植人心,各種現代化大樓紛紛採用特殊的建材來節省資源損耗,例如節能玻璃。節能玻璃的製造過程是在一般玻璃的外層鍍上一層金屬氧化物,並利用該層金屬氧化物長時間來隔絕能量流進流出建築物,進而達到冬天節省暖氣消耗而夏天節省冷氣消耗之功效。然而,節能玻璃上的金屬氧化物層亦會衰減無線通訊的訊號,造成通訊品質的下降,由於現代的辦公大樓對於無線通訊的需求日益增大,也因此急須新的改善方式,使得節能玻璃的金屬氧化物層既可以達到節能功效,亦可保持良好的無線通訊品質。 In recent years, environmental awareness such as energy conservation has been deeply rooted in people's minds, and various modern buildings have adopted special building materials to save resources, such as energy-saving glass. The energy-saving glass is manufactured by coating a layer of metal oxide on the outer layer of the general glass, and using the layer of metal oxide to insulate the energy flow into and out of the building for a long time, thereby achieving the effect of saving heating consumption in the winter and cooling air consumption in the summer. However, the metal oxide layer on the energy-saving glass will also attenuate the signal of wireless communication, resulting in a decline in communication quality. Due to the increasing demand for wireless communication in modern office buildings, there is an urgent need for new improvements to make energy-saving glass. The metal oxide layer can achieve energy-saving effects and maintain good wireless communication quality.

頻率選擇平面結構(frequency selective surface,FSS)在各領域有多方面的應用,例如應用於天線、微波濾波器、光學濾波器、吸收體、極化器…等。然而並未有人運用於節能玻璃上,更不可能提供保持良好的無線通訊品質 卻又不降低節能的效果。因此需要有一新的頻率選擇平面結構來解決上述的問題。 Frequency selective surface (FSS) has many applications in various fields, such as antennas, microwave filters, optical filters, absorbers, polarizers, and the like. However, no one is used on energy-saving glass, and it is even less likely to provide good wireless communication quality. But it does not reduce the effect of energy saving. Therefore, a new frequency selection plane structure is needed to solve the above problem.

本發明之目的係在提供一種頻率選擇平面結構,用於選擇微波可穿透的頻段,該結構包括:一金屬層;一陣列結構,具有多數個陣列排列之微單元,每一微單元包括一第一主要槽孔,其位於該金屬層上,用於使一第一工作頻段的微波穿透;其中,該第一主要槽孔具有兩個第一主體直線槽孔交會形成一十字形狀之第一主體槽孔以及四個第一末端直線槽孔各自位於該主體槽孔的四個末端,每一第一主體直線槽孔具有一第一主體寬度W1與一第一主體長度L1,每一第一末端直線槽孔具有一第一末端寬度W2與一第一末端長度L2。當一節能玻璃上的金屬氧化層具備該結構時,可使該第一工作頻段保持良好的無線通訊,並維持該節能玻璃的節能效果。 The object of the present invention is to provide a frequency selective planar structure for selecting a microwave permeable frequency band, the structure comprising: a metal layer; an array structure having a plurality of arrays of microcells, each microcell comprising one a first main slot, located on the metal layer, for transmitting microwaves in a first working frequency band; wherein the first main slot has two first main body linear slots intersecting to form a cross shape A main body slot and four first end linear slots are respectively located at four ends of the main body slot, each first main body linear slot has a first body width W1 and a first body length L1, each of the first An end linear slot has a first end width W2 and a first end length L2. When the metal oxide layer on the energy-saving glass has the structure, the first working frequency band can be maintained in good wireless communication, and the energy-saving effect of the energy-saving glass can be maintained.

本發明之另一目的係在提供一種位於一金屬層上的槽孔結構,用於選擇微波可穿透的頻段,包括:一第一主要槽孔,其位於該金屬層上,用於使一第一工作頻段的微波穿透;以及多數個第二主要槽孔,其位於該金屬層上,用於使一第二工作頻段的微波穿透;其中,該第一主要槽孔具有兩個第一主體直線槽孔交會形成一十字形狀之第一主體槽孔以及四個第一末端直線槽孔各自位於該主體槽孔的四個末端,該第一主體直線槽孔具有一第一主體寬度W1與一第一主體長度L1,該第一末端直線槽孔具有一 第一末端寬度W2與一第一末端長度L2;其中,該多數個第二主要槽孔各自具有兩個第二主體直線槽孔交會形成一十字形狀之第二主體槽孔以及四個第二末端直線槽孔分別位於該主體槽孔的多數個末端,該第二主體直線槽孔具有一第二主體寬度W3與一第二主體長度L3,該第二末端直線槽孔具有一第二末端寬度W4與一第二末端長度L4。當複數個該槽孔結構以陣列排列於一節能玻璃的金屬氧化層上時,可使該第一與第二工作頻段保持良好的無線通訊,並維持該節能玻璃的節能效果。 Another object of the present invention is to provide a slot structure on a metal layer for selecting a microwave permeable frequency band, comprising: a first main slot on the metal layer for making a Microwave penetration of the first working frequency band; and a plurality of second main slots located on the metal layer for microwave penetration in a second operating frequency band; wherein the first main slot has two A main body linear slot intersects to form a cross-shaped first main body slot and four first end linear slots are respectively located at four ends of the main body slot, the first main body linear slot has a first body width W1 And a first body length L1, the first end linear slot has a a first end width W2 and a first end length L2; wherein the plurality of second main slots each have two second body linear slots intersecting to form a cross-shaped second body slot and four second ends The linear slots are respectively located at a plurality of ends of the main slot, the second main linear slot has a second body width W3 and a second body length L3, and the second end linear slot has a second end width W4 With a second end length L4. When a plurality of the slot structures are arranged in an array on the metal oxide layer of the energy-saving glass, the first and second working frequency bands can be maintained in good wireless communication, and the energy-saving effect of the energy-saving glass is maintained.

(1)‧‧‧玻璃 (1) ‧‧‧glass

(2)‧‧‧金屬層 (2) ‧‧‧ metal layer

(3)‧‧‧節能玻璃 (3) ‧ ‧ energy-saving glass

(4)‧‧‧槽孔 (4) ‧‧‧ slots

(5)‧‧‧微單元 (5) ‧‧‧microcells

(6)‧‧‧頻率選擇平面結構 (6) ‧‧‧frequency selection plane structure

(20)‧‧‧微單元 (20)‧‧‧microcells

(21)‧‧‧節能玻璃 (21)‧‧‧Energy-saving glass

(211)‧‧‧金屬層 (211)‧‧‧metal layer

(212)‧‧‧玻璃 (212) ‧‧‧glass

(43)‧‧‧第一主要槽孔形狀 (43) ‧‧‧First main slot shape

(431)‧‧‧第一主體槽孔 (431)‧‧‧First body slot

(432)‧‧‧第一末端直線槽孔 (432)‧‧‧First end linear slot

(44)‧‧‧第二主要槽孔形狀 (44)‧‧‧Second main slot shape

(441)‧‧‧第二主體槽孔 (441)‧‧‧Second main slot

(442)‧‧‧第二末端直線槽孔 (442)‧‧‧Second end linear slot

(511、512、521、522、531、532、541、542)‧‧‧反射損耗值 (511, 512, 521, 522, 531, 532, 541, 542) ‧ ‧ reflection loss value

L1、L1’‧‧‧第一主體長度 L1, L1’‧‧‧ first body length

W1、W1’‧‧‧第一主體寬度 W1, W1’‧‧‧ first body width

L2、L2’‧‧‧第一末端長度 L2, L2'‧‧‧ first end length

(23)‧‧‧第一主要槽孔形狀 (23)‧‧‧First main slot shape

(231)‧‧‧第一主體槽孔 (231)‧‧‧First body slot

(232)‧‧‧第一末端直線槽孔 (232)‧‧‧First end linear slot

(31、32、33)‧‧‧反射損耗值 (31, 32, 33) ‧ ‧ reflection loss values

(40)‧‧‧微單元 (40) ‧‧‧microcells

(41)‧‧‧節能玻璃 (41)‧‧‧Energy-saving glass

(411)‧‧‧金屬層 (411)‧‧‧metal layer

(412)‧‧‧玻璃 (412) ‧‧‧glass

W2、W2’‧‧‧第一末端寬度 W2, W2’‧‧‧ first end width

T、T’‧‧‧玻璃厚度 T, T’‧‧‧ glass thickness

t、t’‧‧‧金屬層厚度 t, t’‧‧‧metal layer thickness

P、P’‧‧‧微單元邊長 P, P’‧‧‧ microcell length

L3‧‧‧第二主體長度 L3‧‧‧Second body length

W3‧‧‧第二主體寬度 W3‧‧‧Second body width

L4‧‧‧第二末端長度 L4‧‧‧second end length

W4‧‧‧第二末端寬度 W4‧‧‧second end width

圖1係本發明一較佳實施例之示意圖。 1 is a schematic view of a preferred embodiment of the present invention.

圖2(A)係本發明之一微單元結構與節能玻璃之俯視圖。 Fig. 2(A) is a plan view showing a microcell structure and an energy-saving glass of the present invention.

圖2(B)係本發明之一微單元結構與節能玻璃之側視圖。 Figure 2 (B) is a side view of a microcell structure and energy saving glass of the present invention.

圖3(A)係本發明第一組較佳實施例之反射損耗結果圖。 Fig. 3(A) is a graph showing the results of reflection loss of the first preferred embodiment of the present invention.

圖3(B)係本發明第二組較佳實施例之反射損耗結果圖。 Figure 3 (B) is a graph showing the results of reflection loss of a second preferred embodiment of the present invention.

圖3(C)係一般節能玻璃之反射損耗結果圖。 Figure 3 (C) is a graph showing the results of reflection loss of general energy-saving glass.

圖4(A)係本發明之另一微單元與該節能玻璃的俯視圖。 Figure 4 (A) is a plan view of another microcell of the present invention and the energy saving glass.

圖4(B)係本發明之另一微單元與該節能玻璃的側視 圖。 Figure 4 (B) is a side view of another micro unit of the present invention and the energy-saving glass Figure.

圖5(A)係本發明第三組較佳實施例之反射損耗結果圖。 Figure 5 (A) is a graph showing the results of reflection loss of a third preferred embodiment of the present invention.

圖5(B)係本發明第四組較佳實施例之反射損耗結果圖。 Figure 5 (B) is a graph showing the results of reflection loss of a fourth preferred embodiment of the present invention.

圖5(C)係本發明第五組較佳實施例之反射損耗結果圖。 Figure 5 (C) is a graph showing the results of reflection loss of the fifth preferred embodiment of the present invention.

圖5(D)係本發明第六組較佳實施例之反射損耗結果圖。 Figure 5 (D) is a graph showing the results of reflection loss of a sixth preferred embodiment of the present invention.

圖1是本發明使用於節能玻璃之金屬氧化層上之示意圖,如圖1所示,一玻璃(1)的一表面上被鍍上一層金屬層(2)形成一節能玻璃(3),該金屬層(2)上則具有數個槽孔(slot)(4),該等槽孔(4)形成一微單元(5),數個微單元(5)續以陣列排列形成一頻率選擇平面結構(6)。值得注意的是,本發明不限於使用在節能玻璃(3)的金屬層(2)上,亦不只限於使用在節能玻璃(3)上,本發明之槽孔(4)與其組成亦可適用於印刷電路板等常見被做為微波傳遞結構的基板上,如具有一層金屬氧化層之FR4板等,但為了使本發明的說明更加明瞭,以下敘述皆以節能玻璃(3)與金屬氧化層(2)作為舉例。 1 is a schematic view of the present invention for use on a metal oxide layer of an energy-saving glass. As shown in FIG. 1, a surface of a glass (1) is coated with a metal layer (2) to form an energy-saving glass (3). The metal layer (2) has a plurality of slots (4), and the slots (4) form a microcell (5), and the plurality of microcells (5) are successively arranged in an array to form a frequency selective plane. Structure (6). It should be noted that the present invention is not limited to use on the metal layer (2) of the energy-saving glass (3), and is not limited to use on the energy-saving glass (3). The slot (4) of the present invention and its composition can also be applied to A printed circuit board or the like is commonly used as a substrate for a microwave transfer structure, such as an FR4 plate having a metal oxide layer, etc., but in order to clarify the description of the present invention, the following description refers to an energy-saving glass (3) and a metal oxide layer ( 2) As an example.

圖2(A)及2(B)係本發明一實施例之一微單元(20)之架構圖,該微單元(20)係位於一節能玻璃(21)之金屬層(211)上,其中圖2(A)為該微單元(20)的俯視圖,而圖2(B) 為該節能玻璃(21)的側視圖,節能玻璃(21)係由一金屬層(211)與一玻璃(212)所組成,如圖2(A)所示,該金屬層(211)上具有一第一主要槽孔形狀(23),該第一主要槽孔形狀(23)係由數個不同的副槽孔所構成,該等不同的副槽孔可分為兩種不同的槽孔,其中一種係由兩個第一主體直線槽孔相互正交而形成十字形狀的一第一主體槽孔(231),該二第一主體直線槽孔較佳為相同大小,該第一主體槽孔(231)較佳係位於該微單元(20)的正中央,但其亦可偏離該微單元(20)的正中央而不限於此。另外一種副槽孔係四個第一末端直線槽孔(232),該等第一末端直線槽孔(232)各自連接於該第一主體槽孔(231)的四個末端,較佳地該等四個第一末端直線槽孔(232)皆為相同大小,但不限於此。較佳地該等第一末端直線槽孔(232)的中點處各自與該第一主體槽孔(231)的四個末端垂直連接,但不限於此。另外,該微單元(20)較佳為一正方形形狀,並具有邊長P。為了使說明更詳細,接下來皆將以上述較佳的情況來進一步說明本發明。其中,形成該第一主體槽孔(231)的該等第一主體直線槽孔各自具有一第一主體寬度W1與一第一主體長度L1,該等第一末端直線槽孔(232)各自具有一第一末端寬度W2與一第一末端長度L2,在一般情況下,L1可大於L2,但L2亦可大於L1使得該第一主要槽孔形成一田字型。 2(A) and 2(B) are structural diagrams of a micro-cell (20) according to an embodiment of the present invention, the micro-cell (20) being located on a metal layer (211) of an energy-saving glass (21), wherein Figure 2 (A) is a top view of the micro-cell (20), and Figure 2 (B) For the side view of the energy-saving glass (21), the energy-saving glass (21) is composed of a metal layer (211) and a glass (212), as shown in Fig. 2(A), the metal layer (211) has a first main slot shape (23), the first main slot shape (23) is formed by a plurality of different sub-slots, the different sub-slots can be divided into two different slots, One of the two main body linear slots is orthogonal to each other to form a cross-shaped first main body slot (231), and the two first main body linear slots are preferably the same size, the first main body slot (231) is preferably located in the center of the microcell (20), but it may also be offset from the center of the microcell (20) without limitation. The other auxiliary slot is formed by four first end linear slots (232), and the first end linear slots (232) are respectively connected to the four ends of the first body slot (231), preferably The four first end linear slots (232) are all the same size, but are not limited thereto. Preferably, the midpoints of the first end linear slots (232) are each perpendicularly connected to the four ends of the first body slot (231), but are not limited thereto. Further, the microcell (20) is preferably in a square shape and has a side length P. In order to make the description more detailed, the present invention will be further described in the above preferred case. The first body linear slots forming the first body slot (231) each have a first body width W1 and a first body length L1, and the first end linear slots (232) each have A first end width W2 and a first end length L2, in general, L1 may be greater than L2, but L2 may also be greater than L1 such that the first main slot forms a square shape.

如圖2(B)之該節能玻璃(21)的側視圖可知,該玻璃(212)具有一玻璃厚度T,該金屬層(211)具有一金屬層厚度t,該玻璃(212)為一普通玻璃,其相對介電常數εr較佳 為6.9,但不限於此,其它相對介電常數的玻璃亦適用於本發明,該金屬層(211)較佳為一金屬氧化物鍍膜,該金屬氧化物鍍膜較佳係使用相對介電常數εr為1之氧化銦錫(Indium Tin Oxide,ITO)來構成,但不限於此。較佳地,該玻璃(212)的厚度T為6毫米(mm),該金屬層(211)的厚度t為0.1微米(μm)。 As shown in the side view of the energy-saving glass (21) of FIG. 2(B), the glass (212) has a glass thickness T, and the metal layer (211) has a metal layer thickness t, and the glass (212) is a common The glass has a relative dielectric constant ε r of preferably 6.9, but is not limited thereto. Other glasses having a relative dielectric constant are also suitable for use in the present invention. The metal layer (211) is preferably a metal oxide coating film. The material coating film is preferably formed using Indium Tin Oxide (ITO) having a relative dielectric constant ε r of 1, but is not limited thereto. Preferably, the glass (212) has a thickness T of 6 millimeters (mm) and the metal layer (211) has a thickness t of 0.1 micrometers (μm).

請一併參照圖1、2(A)及2(B),該微單元(20)的各種參數係與其工作頻段有關,即該等參數與本發明欲保持良好品質的無線通訊頻段有關。在較佳的情況下,該等參數可定義如下:該微單元(20)的邊長P以接近其工作頻段之中心頻率在空氣中的1/4波長為原則;該第一主體長度L1與該第一末端長度L2之和L1+L2以小於其工作頻段之中心頻率在空氣中的1/2波長為原則;該第一主體寬度W1除以該第一主體長度L1之值W1/L1或該第一末端寬度W2除以該第一主體長度L1之值W2/L1以接近1/10為原則。 Referring to Figures 1, 2(A) and 2(B) together, the various parameters of the microcell (20) are related to their operating frequency bands, i.e., the parameters are related to the wireless communication frequency band in which the present invention is intended to maintain good quality. In a preferred case, the parameters may be defined as follows: the side length P of the microcell (20) is based on a center wavelength of the operating frequency band of 1/4 wavelength in the air; the first body length L1 and The sum L1+L2 of the first end length L2 is based on a 1/2 wavelength in air less than the center frequency of the operating frequency band; the first body width W1 is divided by the value W1/L1 of the first body length L1 or The first end width W2 is divided by the value W2/L1 of the first body length L1 to be close to 1/10.

於多組較佳實施例中,該工作頻段之中心頻率係為2.45吉赫(GHz),該微單元(20)的邊長P皆係為34毫米(mm),該玻璃(212)厚度為6毫米(mm),該金屬層(211)厚度0.1微米(μm),在第一組較佳實施例裡,該第一主體長度L1係為20毫米(mm),該第一主體寬度W1係為2毫米(mm),該第一末端長度L2係為24毫米(mm),該第一末端寬度W2係為2毫米(mm)。在第二組較佳實施例裡,該第一主體長度L1係為20毫米(mm),該第一主體寬度W1係為2毫米(mm),該第一末端長度L2係可為22毫米(mm)至24毫米(mm),該 第一末端寬度W2係為2毫米(mm)。以上參數值只是舉例,本發明亦可採用其他參數值,只要該等參數值符合前述的定義,例如W1/L1必須接近於1/10等。藉此,當具備數個微單元(20)陣列的頻率選擇結構(6)位於節能玻璃(3)的金屬層(2)時,該結構(6)可以使工作頻段為2.45吉赫(GHz)左右的無線通訊信號通過該結構,並使其他工作頻段的信號無法通過該結構,藉此達到2.45吉赫(GHz)能保持良好的無線通訊品質。 In a plurality of preferred embodiments, the center frequency of the operating band is 2.45 GHz, the side length P of the microcell (20) is 34 millimeters (mm), and the thickness of the glass (212) is 6 mm (mm), the metal layer (211) has a thickness of 0.1 micrometer (μm). In the first preferred embodiment, the first body length L1 is 20 millimeters (mm), and the first body width W1 is It is 2 millimeters (mm), and the first end length L2 is 24 millimeters (mm), and the first end width W2 is 2 millimeters (mm). In a second preferred embodiment, the first body length L1 is 20 millimeters (mm), the first body width W1 is 2 millimeters (mm), and the first end length L2 is 22 millimeters ( Mm) to 24 mm (mm), the The first end width W2 is 2 millimeters (mm). The above parameter values are only examples, and other parameter values may be used in the present invention, as long as the parameter values meet the foregoing definitions, for example, W1/L1 must be close to 1/10 or the like. Thereby, when the frequency selective structure (6) having an array of several microcells (20) is located in the metal layer (2) of the energy-saving glass (3), the structure (6) can make the operating frequency band 2.45 GHz. The left and right wireless communication signals pass through the structure, and the signals of other working frequency bands cannot pass through the structure, thereby achieving a good wireless communication quality of 2.45 GHz.

圖3為上述實施例之反射損耗結果圖,圖3(A)為第一組較佳實施例之結果圖,可知在2.45吉赫(GHz)的反射損耗值(31)接近於-10分貝(dB)。圖3(B)為第二組較佳實施例之結果圖,可知不論是L2=22mm或L2=24mm的情況下,在2.45吉赫(GHz)處的反射損耗值(32)皆接近-10分貝(dB)。圖3(C)為一般節能玻璃(即其金屬層未有任何槽孔結構)的反射損耗值(33),可知其在任何的頻段裡反射損耗皆幾乎為零,表示根本無頻段可供無線信號穿透。藉此可知第一、二組較佳實施例可達成使工作頻率在2.45吉赫(GHz)附近的無線信號保持良好的傳遞品質。 3 is a graph showing the reflection loss results of the above embodiment, and FIG. 3(A) is a graph showing the results of the first preferred embodiment. It can be seen that the reflection loss value (31) at 2.45 GHz is close to -10 dB ( dB). Figure 3 (B) is a result of the second preferred embodiment, showing that the reflection loss value (32) at 2.45 GHz is close to -10 in the case of L2 = 22 mm or L2 = 24 mm. Decibel (dB). Figure 3 (C) shows the reflection loss value (33) of the general energy-saving glass (that is, the metal layer does not have any slot structure). It can be seen that the reflection loss is almost zero in any frequency band, indicating that there is no frequency band available for wireless. Signal penetration. From this, it can be seen that the first and second preferred embodiments can achieve good transmission quality for wireless signals operating at frequencies around 2.45 GHz.

圖4為本發明另一實施例之不同微單元結構圖,該微單元(40)亦係位於一節能玻璃(41)之金屬層(411)上,其中圖4(A)為該微單元(40)與該節能玻璃(41)的俯視圖,而圖4(B)為該節能玻璃(41)的側視圖,節能玻璃(41)係由一金屬層(411)與一玻璃(412)所組成,如圖4(A)所示,該金屬層(411)上具有一第一主要槽孔形狀(43),該第一主要槽孔形狀(43) 係由數個不同的副槽孔所構成,該等不同的副槽孔可分為兩種不同的槽孔,其中一種係由兩個第一主體直線槽孔相互正交而形成十字形狀的一第一主體槽孔(431),該二第一主體直線槽孔較佳為相同大小,該第一主體槽孔(431)較佳係位於該微單元(40)的正中央,但其亦可偏離該微單元(40)的正中央而不限於此。另外一種副槽孔係四個第一末端直線槽孔(432),該等第一末端直線槽孔(432)各自連接於該第一主體槽孔(431)的四個末端,較佳地該等四個第一末端直線槽孔(432)皆為相同大小,但不限於此。較佳地該等第一末端直線槽孔(432)的中點處各自與該第一主體槽孔(431)的四個末端垂直連接,但不限於此。另外,該微單元(40)較佳為一正方形形狀,並具有邊長P’。為了使說明更詳細,接下來皆將以上述較佳的情況來進一步說明本發明。其中,形成該第一主體槽孔(431)的該等第一主體直線槽孔各自具有一第一主體寬度W1’與一第一主體長度L1’,該等第一末端直線槽孔(432)各自具有一第一末端寬度W2’與一第一末端長度L2’。此外,該金屬層(411)更具有四個第二主要槽孔形狀(44),該四個第二主要槽孔形狀(44)較佳係以該第一主要槽孔形狀(43)的該第一主體槽孔(431)為中心,各自位於該第一主要槽孔形狀(43)的右上、右下、左上及左下方,並且該等位置可相互對應。該第二主要槽孔形狀(44)各自具有兩個第二主體直線槽孔交會形成一十字形狀之第二主體槽孔(441)以及四個第二末端直線槽孔(442)分別位於該主體槽孔的多數個末端,該等第二主體直線槽孔具有一第二主 體寬度W3與一第二主體長度L3,該第二末端直線槽孔(442)具有一第二末端寬度W4與一第二末端長度L4。該等第二主要槽孔(44)較佳為相同的大小與形狀,但不限於此。其中,該第一主要槽孔形狀(43)大於該等第二主要槽孔形狀(44),藉此,該第一主要槽孔形狀(43)被用以選擇一較低頻段使作用於該頻段的無線信號通過,該第二主要槽孔形狀(44)被用以選擇一較高頻段,使得作用於該頻段的無限信號通過該結構。由此可知,該本發明可提供雙頻帶的良好無線通訊品質。 4 is a structural diagram of different microcells according to another embodiment of the present invention. The microcell (40) is also located on a metal layer (411) of an energy-saving glass (41), wherein FIG. 4(A) is the microcell ( 40) a top view of the energy-saving glass (41), and FIG. 4 (B) is a side view of the energy-saving glass (41), the energy-saving glass (41) is composed of a metal layer (411) and a glass (412) As shown in FIG. 4(A), the metal layer (411) has a first main slot shape (43), and the first main slot shape (43) The system is composed of a plurality of different auxiliary slots, and the different auxiliary slots can be divided into two different slots, one of which is formed by two first main linear grooves orthogonal to each other to form a cross shape. The first main body slot (431), the two main body linear slots are preferably the same size, and the first main body slot (431) is preferably located in the center of the micro unit (40), but it can also Deviation from the center of the microcell (40) is not limited thereto. The other auxiliary slot is formed by four first end linear slots (432), and the first end linear slots (432) are respectively connected to the four ends of the first main body slot (431), preferably The four first end linear slots (432) are all the same size, but are not limited thereto. Preferably, the midpoints of the first end linear slots (432) are each perpendicularly connected to the four ends of the first body slot (431), but are not limited thereto. Further, the microcell (40) is preferably in a square shape and has a side length P'. In order to make the description more detailed, the present invention will be further described in the above preferred case. The first body linear slots forming the first body slot (431) each have a first body width W1' and a first body length L1', and the first end linear slots (432) Each has a first end width W2' and a first end length L2'. In addition, the metal layer (411) further has four second main slot shapes (44), and the four second main slot shapes (44) are preferably the same as the first main slot shape (43). The first main body slots (431) are centered, respectively located at the upper right, lower right, upper left, and lower left of the first main slot shape (43), and the positions may correspond to each other. The second main slot shapes (44) each have two second body linear slots intersecting to form a cross-shaped second body slot (441) and four second end linear slots (442) are respectively located in the body a plurality of ends of the slots, the second body linear slots having a second main The body width W3 and a second body length L3, the second end linear slot (442) has a second end width W4 and a second end length L4. The second main slots (44) are preferably of the same size and shape, but are not limited thereto. The first main slot shape (43) is larger than the second main slot shapes (44), whereby the first main slot shape (43) is used to select a lower frequency band to act on the The wireless signal of the frequency band passes, and the second main slot shape (44) is used to select a higher frequency band such that an infinite signal acting on the frequency band passes through the structure. It can be seen that the present invention can provide good wireless communication quality in dual frequency bands.

圖4(B)係該節能玻璃(41)的側視圖,與圖2(B)相似,該玻璃(412)亦具有一玻璃厚度T’,該金屬層(411)具有一金屬層厚度t’,該玻璃(412)為一普通玻璃,其相對介電常數εr較佳為6.9,但不限於此,其它相對介電常數的玻璃亦適用於本發明,該金屬層(411)較佳為一金屬氧化物鍍膜,該金屬氧化物鍍膜較佳係使用相對介電常數εr為1之氧化銦錫(Indium Tin Oxide,ITO)來構成,但不限於此。較佳地,該玻璃(412)的厚度T’為6毫米(mm),該金屬層(411)的厚度t’為0.1微米(μm)。 Figure 4 (B) is a side view of the energy-saving glass (41), similar to Figure 2 (B), the glass (412) also has a glass thickness T', the metal layer (411) has a metal layer thickness t' The glass (412) is a common glass, and its relative dielectric constant ε r is preferably 6.9, but is not limited thereto, and other glass having a relative dielectric constant is also suitable for use in the present invention, and the metal layer (411) is preferably In the metal oxide plating film, the metal oxide plating film is preferably formed using Indium Tin Oxide (ITO) having a relative dielectric constant ε r of 1, but is not limited thereto. Preferably, the glass (412) has a thickness T' of 6 millimeters (mm), and the metal layer (411) has a thickness t' of 0.1 micrometer (μm).

請一併參照圖1、4(A)及4(B),該微單元(40)的各種參數係與其工作頻段有關,即該等參數與本發明欲保持良好品質的無線通訊頻段有關。在較佳的情況下,該等參數可定義如下:該微單元(40)的邊長P’以接近其工作頻段之中心頻率在空氣中的1/4波長為原則;該第一主體長度L1’與該第一末端長度L2’之和L1’+L2’以小於該雙 頻帶中較低頻段之中心頻率在空氣中的1/2波長為原則;該第二主體長度L3與該第二末端長度L4之和L3+L4以小於該雙頻帶中較低頻段之中心頻率在空氣中的1/2波長為原則;該第一主體寬度W1除以該第一主體長度L1之值W1/L1或該第一末端寬度W2除以該第一主體長度L1之值W2/L1以接近1/10為原則;該第一主體寬度W3除以該第一主體長度L3之值W3/L3或該第一末端寬度W4除以該第一主體長度L3之值W4/L3以接近1/10為原則。 Referring to Figures 1, 4(A) and 4(B) together, the various parameters of the microcell (40) are related to their operating frequency bands, i.e., the parameters are related to the wireless communication frequency band in which the present invention is intended to maintain good quality. In a preferred case, the parameters may be defined as follows: the side length P' of the microcell (40) is based on a center wavelength of the operating frequency band of 1/4 wavelength in the air; the first body length L1 'The sum of the first end length L2' L1' + L2' is smaller than the double The center frequency of the lower frequency band in the frequency band is a principle of 1/2 wavelength in air; the sum of the second body length L3 and the second end length L4 L3+L4 is smaller than the center frequency of the lower frequency band in the dual frequency band The 1/2 wavelength in the air is a principle; the first body width W1 is divided by the value W1/L1 of the first body length L1 or the first end width W2 divided by the value W2/L1 of the first body length L1 to Nearly 1/10 is the principle; the first body width W3 is divided by the value W3/L3 of the first body length L3 or the first end width W4 is divided by the value W4/L3 of the first body length L3 to be close to 1/ 10 is the principle.

於多組較佳實施例中,該較低工作頻段之中心頻率係為2.45吉赫(GHz),該較高工作頻段之中心頻率為5.8吉赫(GHz),該微單元(40)的邊長P’皆係為34毫米(mm),該玻璃(412)厚度為6毫米(mm),該金屬層(411)厚度0.1微米(μm),在本發明第三組較佳實施例裡該第一主體長度L1’係為20毫米(mm),該第一主體寬度W1’係為2毫米(mm),該第一末端長度L2’係為24毫米(mm),該第一末端寬度W2’係為2毫米(mm),該等第二主體長度L3係為5毫米(mm),該等第二主體寬度W3係為2毫米(mm),該等第二末端長度L4係為4毫米(mm),該等第二末端寬度W4係為1.5毫米(mm)。在本發明第四組較佳實施例裡,該第一主體長度L1’係為20毫米(mm),該第一主體寬度W1’係為2毫米(mm),該第一末端長度L2’係可為22毫米(mm)至24毫米(mm),該第一末端寬度W2’係為2毫米(mm),該等第二主體長度L3係為5毫米(mm),該等第二主體寬度W3係為2毫米(mm),該等第二末端長度L4係為4毫米(mm),該等 第二末端寬度W4係為1.5毫米(mm)。在第五組較佳實施例裡,該第一主體長度L1’係為20毫米(mm),該第一主體寬度W1’係為2毫米(mm),該第一末端長度L2’係可為24毫米(mm),該第一末端寬度W2’係為2毫米(mm),該等第二主體長度L3係為4.2毫米(mm)至5毫米(mm),該等第二主體寬度W3係為2毫米(mm),該等第二末端長度L4係為4毫米(mm),該等第二末端寬度W4係為1.5毫米(mm)。在第六組較佳實施例中,該第一主體長度L1’係為20毫米(mm),該第一主體寬度W1’係為2毫米(mm),該第一末端長度L2’係為24毫米(mm),該第一末端寬度W2’係為2毫米(mm),該等第二主體長度L3係為5毫米(mm),該等第二主體寬度W3係為2毫米(mm),該等第二末端長度L4係為4毫米(mm),該等第二末端寬度W4係為1.5毫米(mm)至1.9毫米(mm)。以上參數值只是舉例,本發明亦可採用其他參數值,只要該等參數值符合前述的定義,例如W1’/L1’必須接近於1/10等。藉此,當具備數個微單元(40)陣列的頻率選擇結構(6)位於節能玻璃(3)的金屬層(2)時,該結構(6)可以使工作頻段為2.45吉赫(GHz)與5.8吉赫(GHz)左右的無線通訊信號通過該結構,並使其他工作頻段的信號無法通過該結構,藉此達到2.45吉赫(GHz)與5.8吉赫(GHz)能保持良好的無線通訊品質。 In a plurality of preferred embodiments, the center frequency of the lower operating band is 2.45 GHz, the center frequency of the higher operating band is 5.8 GHz, and the edge of the microcell (40) The length P' is 34 millimeters (mm), the glass (412) has a thickness of 6 millimeters (mm), and the metal layer (411) has a thickness of 0.1 micrometers (μm). In the third preferred embodiment of the present invention, The first body length L1' is 20 millimeters (mm), the first body width W1' is 2 millimeters (mm), and the first end length L2' is 24 millimeters (mm), the first end width W2 'The system is 2 mm (mm), the second body length L3 is 5 mm (mm), the second body width W3 is 2 mm (mm), and the second end length L4 is 4 mm. (mm), the second end width W4 is 1.5 millimeters (mm). In a fourth preferred embodiment of the present invention, the first body length L1' is 20 millimeters (mm), and the first body width W1' is 2 millimeters (mm). The first end length L2' is It may be 22 millimeters (mm) to 24 millimeters (mm), the first end width W2' is 2 millimeters (mm), and the second body length L3 is 5 millimeters (mm), the second body width W3 is 2 mm (mm), and the second end length L4 is 4 mm (mm), etc. The second end width W4 is 1.5 millimeters (mm). In a fifth preferred embodiment, the first body length L1' is 20 millimeters (mm), and the first body width W1' is 2 millimeters (mm). The first end length L2' can be 24 mm (mm), the first end width W2' is 2 mm (mm), the second body length L3 is 4.2 mm (mm) to 5 mm (mm), the second body width W3 It is 2 millimeters (mm), and the second end length L4 is 4 millimeters (mm), and the second end widths W4 are 1.5 millimeters (mm). In a sixth preferred embodiment, the first body length L1' is 20 millimeters (mm), and the first body width W1' is 2 millimeters (mm), and the first end length L2' is 24 In millimeters (mm), the first end width W2' is 2 millimeters (mm), the second body lengths L3 are 5 millimeters (mm), and the second body widths W3 are 2 millimeters (mm). The second end lengths L4 are 4 millimeters (mm), and the second end widths W4 are 1.5 millimeters (mm) to 1.9 millimeters (mm). The above parameter values are merely examples, and other parameter values may be employed in the present invention as long as the parameter values conform to the aforementioned definitions, for example, W1'/L1' must be close to 1/10 or the like. Thereby, when the frequency selective structure (6) having an array of several microcells (40) is located in the metal layer (2) of the energy-saving glass (3), the structure (6) can make the operating frequency band 2.45 GHz. The wireless communication signal with about 5.8 GHz passes through the structure, and the signals of other working frequency bands cannot pass through the structure, thereby achieving good wireless communication at 2.45 GHz and 5.8 GHz. quality.

圖5為上述實施例之反射損耗結果圖,圖5(A)為第三組較佳實施例之結果圖,可知在2.45吉赫(GHz)的反射損耗值(511)接近於-10分貝(dB),在5.8吉赫(GHz)的反射 損耗值(512)接近於-3分貝(dB)。圖5(B)為第四組較佳實施例之結果圖,可知不論是L2=22毫米(mm)或L2=24毫米(mm)的情況下,在2.45吉赫(GHz)處的反射損耗值(521)皆接近-10分貝(dB),在5.8吉赫(GHz)的反射損耗值(522)皆小於-3分貝(dB)。圖5(C)為第五組較佳實施例之結果圖,可知不論是L3=4.2毫米(mm)或L3=5毫米(mm)的情況下,在2.45吉赫(GHz)處的反射損耗值(531)皆接近-10分貝(dB),在5.8吉赫(GHz)的反射損耗值(532)皆小於-3分貝(dB)。圖5(D)為第六組較佳實施例之結果圖,可知不論是W4=1.5毫米(mm)或1.9毫米(mm)的情況下,在2.45吉赫(GHz)處的反射損耗值(541)皆接近-10分貝(dB),在5.8吉赫(GHz)的反射損耗值值(542)皆小於-3分貝(dB)。與圖3(C)一般節能玻璃(即其金屬層未有任何槽孔結構)的反射損耗結果值(33)相比,可知上述較佳實施例皆可達成使工作頻率在2.45吉赫(GHz)與5.8吉赫(GHz)附近的無線信號保持良好的傳遞品質。 5 is a graph showing the reflection loss results of the above embodiment, and FIG. 5(A) is a graph showing the results of the third preferred embodiment. It can be seen that the reflection loss value (511) at 2.45 GHz is close to -10 dB ( dB), reflection at 5.8 GHz The loss value (512) is close to -3 dB (dB). Figure 5 (B) is a result of the fourth preferred embodiment, showing the reflection loss at 2.45 GHz regardless of L2 = 22 mm (mm) or L2 = 24 mm (mm). The values (521) are both close to -10 decibels (dB), and the reflection loss values (522) at 5.8 GHz are less than -3 decibels (dB). Figure 5 (C) is a result of the fifth preferred embodiment, showing the reflection loss at 2.45 GHz regardless of L3 = 4.2 mm (mm) or L3 = 5 mm (mm). The values (531) are both close to -10 decibels (dB), and the reflection loss values (532) at 5.8 GHz are less than -3 decibels (dB). Figure 5 (D) is a result view of the sixth preferred embodiment, showing the value of the reflection loss at 2.45 GHz (W) in the case of W4 = 1.5 mm (mm) or 1.9 mm (mm) ( 541) are close to -10 decibels (dB), and the value of the reflection loss (542) at 5.8 GHz is less than -3 decibels (dB). Compared with the reflection loss result value (33) of the general energy-saving glass of Fig. 3 (C), that is, the metal layer does not have any slot structure, it can be seen that the above preferred embodiment can achieve an operating frequency of 2.45 GHz (GHz). ) Maintains good transmission quality with wireless signals near 5.8 GHz.

在一較佳實施例上,該等微單元槽孔結構排列成陣列結構之大小為所用的玻璃表面積的35.6%,即該等陣列結構僅需佔玻璃表面積的35.6%即可達到保持良好的無線通訊品質。 In a preferred embodiment, the microcell slot structures are arranged in an array structure having a size of 35.6% of the surface area of the glass used, that is, the array structure only needs to occupy 35.6% of the surface area of the glass to achieve a good wireless. Communication quality.

本發明提供一微單元槽孔結構(5),並由數個該等微單元結構(5)排列成為一陣列結構(6),該陣列結構(6)位於該節能玻璃(3)的表面金屬層(2)上,其中該等微單元結構(5)主要可分為兩種結構型態,第一型態使得工作頻率在2.45吉赫(GHz)的無線訊號可以穿透該節能玻璃(3)而進出 使用該節能玻璃(3)的建築物,而第二型態使得工作頻率在2.45吉赫(GHz)及5.8吉赫(GHz)的無線訊號可以穿透該節能玻璃(3)而進出使用該節能玻璃(3)的建築物,藉此達到保持良好的無線通訊品質。此外該陣列結構(6)只佔用不到一半的節能玻璃表面積(3),藉此不會對其節能功能造成太大的影響。 The present invention provides a microcell slot structure (5) and is arranged by a plurality of such microcell structures (5) to form an array structure (6), the array structure (6) being located on the surface metal of the energy saving glass (3) On layer (2), wherein the microcell structures (5) can be mainly divided into two types of structures, the first type enables wireless signals operating at 2.45 GHz to penetrate the energy-saving glass (3) ) and in and out The building using the energy-saving glass (3), and the second type enables wireless signals operating at 2.45 GHz and 5.8 GHz to penetrate the energy-saving glass (3) for access and use. Glass (3) buildings, thereby achieving good wireless communication quality. In addition, the array structure (6) occupies less than half of the energy-saving glass surface area (3), thereby not having too much impact on its energy-saving function.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。 The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

(40)‧‧‧微單元 (40) ‧‧‧microcells

(41)‧‧‧節能玻璃 (41)‧‧‧Energy-saving glass

(411)‧‧‧金屬層 (411)‧‧‧metal layer

(412)‧‧‧玻璃 (412) ‧‧‧glass

(43)‧‧‧第一主要槽孔形狀 (43) ‧‧‧First main slot shape

(431)‧‧‧第一主體槽孔 (431)‧‧‧First body slot

(432)‧‧‧第一末端直線槽孔 (432)‧‧‧First end linear slot

(44)‧‧‧第二主要槽孔形狀 (44)‧‧‧Second main slot shape

(441)‧‧‧第二主體槽孔 (441)‧‧‧Second main slot

(442)‧‧‧第二末端直線槽孔 (442)‧‧‧Second end linear slot

L1’‧‧‧第一主體長度 L1’‧‧‧first body length

W1’‧‧‧第一主體寬度 W1’‧‧‧ first body width

L2’‧‧‧第一末端長度 L2’‧‧‧first end length

W2’‧‧‧第一末端寬度 W2’‧‧‧first end width

T’‧‧‧玻璃厚度 T’‧‧‧ glass thickness

t’‧‧‧金屬層厚度 T’‧‧‧metal layer thickness

P’‧‧‧微單元邊長 P’‧‧‧microcell side length

L3‧‧‧第二主體長度 L3‧‧‧Second body length

W3‧‧‧第二主體寬度 W3‧‧‧Second body width

L4‧‧‧第二末端長度 L4‧‧‧second end length

W4‧‧‧第二末端寬度 W4‧‧‧second end width

Claims (14)

一種頻率選擇平面結構,用於選擇微波可穿透的頻段,該結構包括:一金屬層;一陣列結構,具有多數個陣列排列之微單元,每一微單元包括:一第一主要槽孔,其位於該金屬層上,用於使一第一工作頻段的微波穿透;多數個第二主要槽孔,其位於該金屬層上,用於使一第二工作頻段的微波穿透;其中,該第一主要槽孔具有兩個第一主體直線槽孔交會形成一十字形狀之第一主體槽孔以及四個第一末端直線槽孔各自位於該主體槽孔的四個末端,該第一主體直線槽孔具有一第一主體寬度W1與一第一主體長度L1,該第一末端直線槽孔具有一第一末端寬度W2與一第一末端長度L2,該第一主要槽孔位於該金屬層的正中央,該等第二主要槽孔以該第一主要槽孔的該第一主體槽孔為中心,各自位於該第一主體槽孔的右上、右下、左上及左下方,且該微單元的長度接近於2.45吉赫(GHz)頻率在空氣中之1/4波長長度。 A frequency selective planar structure for selecting a frequency band through which a microwave can be penetrated, the structure comprising: a metal layer; an array structure having a plurality of arrays of microcells, each microcell comprising: a first major slot, It is located on the metal layer for transmitting microwaves in a first working frequency band; a plurality of second main slots are located on the metal layer for penetrating microwaves in a second operating frequency band; The first main slot has two first main body linear slots intersecting to form a cross-shaped first main body slot and four first end linear slots are respectively located at four ends of the main body slot, the first main body The linear slot has a first body width W1 and a first body length L1. The first end linear slot has a first end width W2 and a first end length L2. The first main slot is located in the metal layer. The center of the first main slot is centered on the first main slot of the first main slot, and is located at the upper right, the lower right, the upper left and the lower left of the first main slot, and the micro is Length of unit At 2.45 gigahertz (GHz) frequency length of 1/4 wavelength in the air. 如申請專利範圍第1項所述之頻率選擇平面結構,其中,該多數個第二主要槽孔各自具有兩個第二主體直線槽孔交會形成一十字形狀之第二主體槽孔以及四個第二末端 直線槽孔分別位於該主體槽孔的多數個末端,該第二主體直線槽孔具有一第二主體寬度W3與一第二主體長度L3,該第二末端直線槽孔具有一第二末端寬度W4與一第二末端長度L4。 The frequency selective planar structure according to claim 1, wherein the plurality of second main slots each have two second body linear slot holes intersecting to form a cross-shaped second body slot and four Two ends The linear slots are respectively located at a plurality of ends of the main slot, the second main linear slot has a second body width W3 and a second body length L3, and the second end linear slot has a second end width W4 With a second end length L4. 如申請專利範圍第2項所述之頻率選擇平面結構,其中,該第一工作頻段低於該第二工作頻段。 The frequency selection plane structure as described in claim 2, wherein the first working frequency band is lower than the second working frequency band. 如申請專利範圍第2項所述之頻率選擇平面結構,其中,該四個第二主要槽孔的位置係以該第一主體槽孔各自相對應。 The frequency selective planar structure of claim 2, wherein the positions of the four second main slots are respectively corresponding to the first main body slots. 如申請專利範圍第1項所述之頻率選擇平面結構,其中,該第一主體長度L1與該第一末端長度L2之和小於2.45吉赫(GHz)頻率在空氣中之半波長長度。 The frequency selective planar structure of claim 1, wherein the sum of the first body length L1 and the first end length L2 is less than a half wavelength length in the air at a frequency of 2.45 GHz. 如申請專利範圍第5項所述之頻率選擇平面結構,其中,該第二主體長度L3與該第二末端長度L4之和小於5.8吉赫(GHz)頻率在空氣中之半波長長度。 The frequency selective planar structure of claim 5, wherein the sum of the second body length L3 and the second end length L4 is less than a half wavelength length in the air at a frequency of 5.8 GHz. 如申請專利範圍第6項所述之頻率選擇平面結構,其中,該第二主體長度L3與該第二末端長度L4之和小於5.8吉赫(GHz)頻率在空氣中之半波長長度。 The frequency selective planar structure of claim 6, wherein the sum of the second body length L3 and the second end length L4 is less than a half wavelength length in the air at a frequency of 5.8 GHz. 如申請專利範圍第7項所述之頻率選擇平面結構,其中,該第二主體長度L3與該第二末端長度L4之和小於5.8吉赫(GHz)頻率在空氣中之半波長長度。 The frequency selective planar structure of claim 7, wherein the sum of the second body length L3 and the second end length L4 is less than a half wavelength length in the air at a frequency of 5.8 GHz. 如申請專利範圍第8項所述之頻率選擇平面結構,其中,該第一主體寬度W1或該第一末端寬度W2除以該第一主體長度L1之值接近於1/10。 The frequency selective planar structure of claim 8, wherein the first body width W1 or the first end width W2 divided by the first body length L1 is close to 1/10. 如申請專利範圍第9項所述之頻率選擇平面結構,其中,該第二主體寬度W3或該第二末端寬度W4除以該第二主體長度L1之值接近於1/10。 The frequency selective planar structure according to claim 9, wherein the second body width W3 or the second end width W4 divided by the second body length L1 is close to 1/10. 如申請專利範圍第1項所述之頻率選擇平面結構,其中,該金屬層係置於一玻璃上。 The frequency selective planar structure of claim 1, wherein the metal layer is placed on a glass. 如申請專利範圍第1項所述之頻率選擇平面結構,其中,該金屬層的厚度係為0.1微米(μm)。 The frequency selective planar structure of claim 1, wherein the metal layer has a thickness of 0.1 micrometer (μm). 種位於一金屬層上的槽孔結構,用於選擇微波可穿透的頻段,包括:一第一主要槽孔,其位於該金屬層上,用於使一第一工作頻段的微波穿透;以及多數個第二主要槽孔,其位於該金屬層上,用於使一第二工作頻段的微波穿透;其中,該第一主要槽孔具有兩個第一主體直線槽孔交會形成一十字形狀之第一主體槽孔以及四個第一末端直線槽孔各自位於該主體槽孔的四個末端,該第一主體直線槽孔具有一第一主體寬度W1與一第一主體長度L1,該第一末端直線槽孔具有一第一末端寬度W2與一第一末端長度L2;其中,該多數個第二主要槽孔各自具有兩個第二主體直線槽孔交會形成一十字形狀之第二主體槽孔以及四個第二末端直線槽孔分別位於該主體槽孔的多數個末端,該第二主體直線槽孔具有一第二主體寬度W3與一第二主體長度L3,該第二末端直線槽孔具有一第二末端寬度W4與一第二末端長度L4,該第一主要槽孔位於該金屬層的正中央,四個第 二主要槽孔以該第一主要槽孔的該第一主體槽孔為中心,各自位於該第一主體槽孔的右上、右下、左上及左下方,且該微單元的長度接近於2.45吉赫(GHz)頻率在空氣中之1/4波長長度。 a slot structure on a metal layer for selecting a frequency band through which the microwave can be penetrated, comprising: a first main slot on the metal layer for allowing microwave penetration in a first working frequency band; And a plurality of second main slots on the metal layer for penetrating microwaves in a second working frequency band; wherein the first main slot has two first body straight slots to form a cross The first main body slot and the four first end linear slots are respectively located at four ends of the main body slot, and the first main body linear slot has a first body width W1 and a first body length L1. The first end linear slot has a first end width W2 and a first end length L2; wherein the plurality of second main slots each have two second body linear slots intersecting to form a cross-shaped second body The slot and the four second end linear slots are respectively located at a plurality of ends of the main slot, the second main linear slot has a second body width W3 and a second body length L3, the second end linear slot Hole has one Two tip width W4 and a length L4 of the second end, the first main slot situated at the center of the metal layer, the first four The two main slots are centered on the first main body slot of the first main slot, respectively located at the upper right, lower right, upper left and lower left of the first main body slot, and the length of the micro unit is close to 2.45 吉The Hertz (GHz) frequency is 1/4 wavelength in air. 如申請專利範圍第13項所述之槽孔結構,該第一主體長度L1係為20毫米(mm),該第一主體寬度W1係為2毫米(mm),該第一末端長度L2係為22毫米(mm)至24毫米(mm),該第一末端寬度W2係為2毫米(mm),該等第二主體長度L3係為5毫米(mm),該等第二主體寬度W3係為2毫米(mm),該等第二末端長度L4係為4毫米(mm),該等第二末端寬度W4係為1.5毫米(mm)。 The slot structure according to claim 13, wherein the first body length L1 is 20 millimeters (mm), and the first body width W1 is 2 millimeters (mm), and the first end length L2 is 22 mm (mm) to 24 mm (mm), the first end width W2 is 2 mm (mm), the second body length L3 is 5 mm (mm), and the second body width W3 is 2 mm (mm), the second end length L4 is 4 mm (mm), and the second end width W4 is 1.5 mm (mm).
TW102139314A 2013-10-30 2013-10-30 Frequency selective surface (fss) structure for improving the quality of wireless communication TWI521785B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102139314A TWI521785B (en) 2013-10-30 2013-10-30 Frequency selective surface (fss) structure for improving the quality of wireless communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102139314A TWI521785B (en) 2013-10-30 2013-10-30 Frequency selective surface (fss) structure for improving the quality of wireless communication

Publications (2)

Publication Number Publication Date
TW201517372A TW201517372A (en) 2015-05-01
TWI521785B true TWI521785B (en) 2016-02-11

Family

ID=53720514

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102139314A TWI521785B (en) 2013-10-30 2013-10-30 Frequency selective surface (fss) structure for improving the quality of wireless communication

Country Status (1)

Country Link
TW (1) TWI521785B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755740A (en) * 2017-11-01 2019-05-14 航天特种材料及工艺技术研究所 A kind of band resistance type FSS structure, FSS screen and cover wall structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565557A (en) * 2018-04-20 2018-09-21 西安天和防务技术股份有限公司 A kind of frequency-selective surfaces and ultra-thin frequency select antenna house
CN110137690A (en) * 2019-05-13 2019-08-16 电子科技大学 A kind of Terahertz frequency range broadband Meta Materials wave absorbing device
CN110854543B (en) * 2019-11-15 2021-03-30 电子科技大学 Dual-frequency broadband wide-angle circularly polarized grid based on miniaturized unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755740A (en) * 2017-11-01 2019-05-14 航天特种材料及工艺技术研究所 A kind of band resistance type FSS structure, FSS screen and cover wall structure
CN109755740B (en) * 2017-11-01 2021-06-22 航天特种材料及工艺技术研究所 Band stop type FSS structure, FSS screen and cover wall structure

Also Published As

Publication number Publication date
TW201517372A (en) 2015-05-01

Similar Documents

Publication Publication Date Title
TWI521785B (en) Frequency selective surface (fss) structure for improving the quality of wireless communication
CN106450795B (en) A kind of insensitive single layer Meta Materials absorbent structure of double frequency polarization
US9208913B2 (en) Wave-absorbing metamaterial
CN107706538B (en) A kind of dissipative type wide-band and wave-absorbing FSS structure and preparation method
CN110034407B (en) Wave-transparent/stealth integrated metamaterial structure
CN207038717U (en) Frequency-selective surfaces antenna house
CN107317108B (en) Radar radome absorber based on helical structure
CN105655721A (en) Double-waveband composite broadband wave absorbing material based on frequency selective surface
CN104733817A (en) Stacked cascaded two cavity substrate integrated waveguide dual mode bandpass filter
CN102811595B (en) Broadband wave-absorbing material
CN102905508B (en) A kind of mixing absorbing material
JP4547849B2 (en) How to change the characteristics of radio wave absorber
CN105846018B (en) The bandpass filter of non-radiative Medium Wave Guide is integrated based on substrate
CN110112576A (en) A kind of double frequency multilayer electromagnetic bandgap structure
CN204167446U (en) The integrated waveguide dual mode filter of line of rabbet joint disturbance
CN102723540A (en) Dual passband frequency selective surface and dual passband radome prepared from same
CN109301410B (en) SIW (substrate integrated waveguide) sawtooth-shaped cross-coupling band-pass filter
CN105703042B (en) S type minimizes the broadband transparent structure that frequency-selective surfaces are constituted
WO2021016016A1 (en) Millimeter wave (mmw) reflective structure and mmw transmission structure
CN204577589U (en) Radome and there is its antenna system
CN101518964A (en) Polarization independent high performance adjustable compound microwave absorption material
KR101050026B1 (en) Radio shield and its manufacturing method
CN103151579A (en) Broadband sub-millimeter wave frequency selection surface based on fractal structure
CN1937307A (en) High performance frequency selective surface based on integrated waveguide multi-cavity cascade
CN109301492A (en) Broadband frequency-selective surfaces

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees