TWI519636B - 高導熱複合焊材 - Google Patents

高導熱複合焊材 Download PDF

Info

Publication number
TWI519636B
TWI519636B TW102145481A TW102145481A TWI519636B TW I519636 B TWI519636 B TW I519636B TW 102145481 A TW102145481 A TW 102145481A TW 102145481 A TW102145481 A TW 102145481A TW I519636 B TWI519636 B TW I519636B
Authority
TW
Taiwan
Prior art keywords
additive
solder
high thermal
conductive composite
composite welding
Prior art date
Application number
TW102145481A
Other languages
English (en)
Other versions
TW201522604A (zh
Inventor
曹龍泉
楊淑晴
Original Assignee
川錫科研有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川錫科研有限公司 filed Critical 川錫科研有限公司
Priority to TW102145481A priority Critical patent/TWI519636B/zh
Publication of TW201522604A publication Critical patent/TW201522604A/zh
Application granted granted Critical
Publication of TWI519636B publication Critical patent/TWI519636B/zh

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

高導熱複合焊材
本發明係關於一種導熱介面材料之焊材,特別關於一種高導熱複合焊材。
為解決發熱電子元件的散熱問題,一般係於發熱電子元件上設置如均熱片或散熱器等散熱元件,藉由該散熱元件之較大的散熱面積,將發熱電子元件所產生的熱量迅速的發散出去。
為使散熱元件能快速地將發熱電子元件產生之熱量散發出去,發熱電子元件與散熱元件之間需具有良好的熱傳遞;一般於發熱電子元件與散熱元件之間塗佈一導熱介面材料(thermal interface material,TIM),以填補散熱元件與發熱電子元件之間的空氣間隙並降低熱阻,以提升散熱效果。
現有的導熱介面材料中,例如導熱膏(銀膏),其具有較低的熱阻而被廣泛地應用。然而,導熱膏包含導熱顆粒及有機聚合物基材,故在長期使用下會發生溢油、容易乾燥裂化,以及容易與電子元件發生分離的現象,因而造成發熱電子元件過熱的問題,造成電子元件失效。另外,為了提高導熱膏之導熱係數,使用以高導熱係數之貴金屬銀或鑽石粉,其 價格昂貴,造成生產成本提高。
另外一種焊錫材料,接合來發熱電子元件與散熱元件之間,所形成一導熱介面材料,然而,該焊錫材料對於陶瓷電路基板或鋁合金之散熱元件等元件,無法直接接合(潤濕性差)。
因此需將該陶瓷表面進行金屬化處理(如電鍍、濺鍍)後,使表面具有一層金屬層,才能夠將該一般焊料接合在該金屬化處理後之陶瓷表面與具有金屬表面的元件之間。另外,陶瓷電路基板之金屬化處理層,會因接合過程造成金屬化處理層消耗至無厚度,又回歸到潤濕性差之表面,進而造成無法接合性而脫落。然而,陶瓷表面金屬化處理步驟將增加散熱元件之整體設置成本。
故,有必要提供一種改良的高導熱複合焊材,以解決習用技術所存在的問題。
本發明之主要目的在於提供一種能夠提升導熱性及增加潤濕性之高導熱複合焊材。
為達上述之目的,本發明提供一種高導熱複合焊材,其包含至少一種直接焊料、至少一種導熱顆粒添加物及至少一種活性焊料添加物,該直接焊料的重量百分比為70%至99%,且該直接焊料為錫(Sn)基材料、銦(In)基材料、鉍(Bi)基材料、鋅(Zn)基材料、鋁(Al)基材料或鎂(Mg)基材料,該導熱顆粒添加物的重量百分比為25%至0.5%,且該導熱顆粒添加物為陶瓷材料或碳原子聚合材料,該活性焊料添加物其重量百分比為6%至0.2%,且該活性焊料添加物為鈦(Ti)、鉻(Cr)、釩(V)、鋯(Zr)、鉿(Hf)、鎂(Mg)、 鋰(Li)、稀土金屬(Rare earth,RE)或此等之組合。
在本發明之一實施例中,該直接焊料的重量百分比可例如為75%、80%、85%、90%或95%;該導熱顆粒添加物的重量百分比可例如為20%、15%、10%、5%或1%;該活性焊料添加物其重量百分比可例如為4%、3%、2%或1%,但並不限於此。
在本發明之一實施例中,該錫基材料含有鋅(Zn)、鉍(Bi)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等微量元素,其他為錫元素,該微量元素佔該錫基材料之總重小於或等於0.2~15%,例如為Sn3.5Ag、SnlAg0.5Cu、Sn9Zn或Sn0.7Cu0.2Ge,但不限於此。
在本發明之一實施例中,該鋅(Zn)基材料含有錫(Sn)、鉍(Bi)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)鐵(Fe)、矽(Si)或磷(P)等微量元素,該微量金屬佔該鋅基材料之總重小於或等於0.2~15%,例如為Zn3.5Ag、Zn2.7Bi、或Zn1.8Sb,但不限於此。
在本發明之一實施例中,該銦(In)基材料含有錫(Sn)、鋅(Zn)、鉍(Bi)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)鐵(Fe)、矽(Si)或磷(P)等少量元素,該微量金屬佔該銦基材料之總重小於或等於0.1~25%,例如為In3.5Ag、In2Cu或In3Bi,但不限於此。
在本發明之一實施例中,該鉍(Bi)基材料含有錫(Sn)、鋅(Zn)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等少量元素,該微量金屬佔該鉍(Bi)基材料之總重小於或等於0.5~15%,例如為Bi4.7Ag、Bi3Sn或Bi2.7Sn,但不限於此。
在本發明之一實施例中,該鋁基材料含有錫(Sn)、鋅(Zn)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等微量元素,該微量金屬佔該鋁基材料之總重小於或等於0.5~8%,例如為Al3.5Ag、Al3In或Al5Zn,但不限於此。
在本發明之一實施例中,該鎂基材料含有錫(Sn)、鋅(Zn)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等微量元素,該微量金屬佔該鎂基材料之總重小於或等於0.5~10%,例如為Mg10Sn、Mg5In或Mg8Sn1Bi,但不限於此。
在本發明之一實施例中,該導熱顆粒添加物的粒徑介於5奈米至50微米,例如為10nm、100mm、200nm、500nm、1um、5um或25um,但不限於此。
在本發明之一實施例中,該陶瓷材料為氧化鋁、氮化鋁、碳化矽、氮化硼或此等之組合。
在本發明之一實施例中,該碳原子聚合材料為鑽石、類鑽碳(DLC)、定向石墨(HOPG)、石墨、奈米碳管、石墨烯或或此等之組合。
在本發明之一實施例中,該活性焊料添加物可選自包含重量百分比為4%以下之鈦、釩、鎂、鋯、鉿或此等之組合,以及該活性焊料添加物的其餘重量百分比為稀土族元素,該稀土族元件選自鈧、釔、鑭系元素或此等之組合。
在本發明之一實施例中,該導熱顆粒添加物及該活性焊料添加物係可選擇利用熔煉攪拌法、超音波輔助熔煉攪拌法、滾軋混煉法、磁性攪拌法或粉末擠出成型法均勻的混摻在該直接焊料(主要焊接基材)內。
在本發明之一實施例中,該導熱顆粒添加物混摻在該直接焊料(主要焊接基材)內並保持顆粒固態狀。
如上所述,該直接焊料(錫基、鋅基、銦基、鉍基及鋁基材料)皆用以做為高導熱複合焊材之主要焊接基材;藉由該導熱顆粒添加物可提升該直接焊料之導熱性及機械強度,同時還可透過該活性焊料添加物提升該直接焊料之潤濕性,藉以強化與陶瓷基板的接合強度,以及與添加物的接合強度。
100‧‧‧高導熱複合焊材
101‧‧‧過渡介面層
102‧‧‧過渡介面層
11‧‧‧陶瓷基板
12‧‧‧陶瓷基板
第1圖:本發明一實施例之高導熱複合焊材的使用狀態剖視示意圖。
為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。本發明所提到的百分比(%)若無特別說明皆指為重量百分比(wt%)。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。
請參照第1圖所示,本發明一實施例之高導熱複合焊材100,該高導熱複合焊材100係塗覆在兩陶瓷基板11、12之間,或一陶瓷基板及一散熱板(如鋁合金、石墨或複合鋁基板)之間(未繪示),或晶片(如矽晶片、LED晶片、鑽石晶片)與散熱基板,其主要應用焊接結合各種電子產品之電子元件。例如,應用在矽晶片、發光二極體(LED)、雷射器或需以導熱介面材料(TIM)封裝技術等領域中,做為端子、接點或散熱片焊接用之低熔點焊料。另外,本發明之高導熱複合焊材100亦可能應用於做為被動元件之 電極預焊料(pre-solder);或應用於做為電子元件之表面黏著技術(surfacemount technology,SMT)的焊料等,以便將電子元件焊接結合於電路板(例如主機板或手機板)上。惟,上述僅是列舉說明本發明之高導熱複合焊材100的可能應用領域,但並非用以限制本發明,本發明將於下文詳細說明該高導熱複合焊材100之具體組成及比例。
在本發明一實施例中,該高導熱複合焊材100主要包含至少一種直接焊料、至少一種導熱顆粒添加物及至少一種活性焊料添加物,其中該導熱顆粒添加物及該活性焊料添加物係可選擇利用熔煉攪拌法、超音波輔助熔煉攪拌法、滾軋混煉法、磁性攪拌法或粉末擠出成型法均勻的混摻在該直接焊料(主要焊接基材)內。該直接焊料(錫基、銦基、鉍基、鋅基鋁基材料及鎂基材料)皆用以做為高導熱複合焊材之主要焊接基材;藉由該導熱顆粒添加物可提升該直接焊料之導熱性及機械強度,同時還可透過該活性焊料添加物提升該直接焊料之潤濕性,藉以強化與陶瓷基板的接合強度,以及與該導熱顆粒添加物的接合性及混入性。
更詳細來說,在本發明一實施例中,該直接焊料的重量百分比為70%至99%,例如為75%、80%、85%、90%或95%。該直接焊料為錫(Sn)基材料、銦(In)基材料、鉍(Bi)基材料、鋅(Zn)基材料、鋁(Al)基材料、鎂(Mg)基材料,或其混合兩種以上所形成之共晶合金基材料,其中當該直接焊料為錫基材料時,該錫基材料有鋅(Zn)、鉍(Bi)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等微量元素,其他為錫元素,該金屬佔該錫基材料之總重小於或等於0.2~12%,例如為Sn3.5Ag、Sn1Ag0.5Cu、Sn9Zn或Sn0.7Cu0.2Ge;當該直 接焊料為鋅基材料時,該鋅(Zn)基材料含有錫(Sn)、鉍(Bi)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)鐵(Fe)、矽(Si)或磷(P)等微量元素,該微量金屬佔該鋅基材料之總重小於或等於0.2~15%,例如為Zn3.5Ag、Zn2.7Bi、或Zn1.8Sb;當該直接焊料為銦基材料時,該銦(In)基材料含有錫(Sn)、鋅(Zn)、鉍(Bi)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)鐵(Fe)、矽(Si)或磷(P)等少量元素,該微量金屬佔該銦基材料之總重為0.1~25%,例如為In3.5Ag、In2Cu或In3Bi;當該直接焊料為鉍(Bi)基材料時,鉍(Bi)基材料含有錫(Sn)、鋅(Zn)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等少量元素,該微量金屬佔該鉍(Bi)基材料之總重小於或等於0.5~15%,例如為Bi4.7Ag、Bi3Sn或Bi2.7Sn。
當該直接焊料為鋁基材料時,該鋁基材料具有錫(Sn)、鋅(Zn)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等少量元素,該微量金屬佔該鋁基材料之總重小於或等於0.5~8%,例如為Al3.5Ag、Al3In或Al5Zn;當該直接焊料為鎂基材料時,該鎂基材料具有錫(Sn)、鋅(Zn)、銦(In)、銻(Sb)、銀(Ag)、銅(Cu)、鎵(Ga)、鍺(Ge)、鉻(Cr)、鎳(Ni)、鐵(Fe)、矽(Si)或磷(P)等少量元素,該微量金屬佔該鎂基材料之總重小於或等於0.5~10%,例如為Mg10Sn、Mg5In或Mg8Sn1Bi。
再者,在本發明一實施例中,該導熱顆粒添加物的重量百分比為25%至0.5%,例如為20%、15%、10%、5%或1%;且該導熱顆粒添加物的粒徑介於5奈米至50微米,例如為10nm、100nm、200nm、500nm、 1um、5um或25um。該導熱顆粒添加物為陶瓷材料或碳原子聚合材料,其中該陶瓷材料為氧化鋁、氮化鋁、碳化矽、氮化硼或其兩種以上組合物,該碳原子聚合材料為鑽石、類鑽碳(DLC)、定向石墨(HOPG)、石墨、奈米碳管、石墨烯或或其兩種以上組合物。
另外,本發明提及的「碳原子聚合材料」指的是基本上僅由碳原子單純聚合而成的碳基材料,但其中仍可能包含極微量(如小於0.1%)的其他摻質元素。該導熱顆粒添加物及該活性焊料添加物係可選擇利用熔煉攪拌法、超音波輔助熔煉攪拌法、滾軋混煉法、磁性攪拌法或粉末擠出成型法均勻的混摻在該含有活性焊料添加物之直接焊料(主要焊接基材)內,但不論使用上述何種方法,該導熱顆粒添加物在混摻後,於該直接焊料內皆維持固態,並不熔融於該直接焊料中。
在本發明一實施例中,該活性焊料添加物的重量百分比為6%至0.2%,例如為6%、4%、3%、2%、%或0.2%;且該活性焊料添加物可以為、鈦(Ti)、鉻(Cr)、釩(V)、鋯(Zr)、鉿(Hf)、鎂(Mg)、鋰(Li)或稀土金屬(Rare earth,RE)。該活性焊料添加物係可選擇利用熔煉攪拌法、超音波輔助熔煉攪拌法、滾軋混煉法、磁性攪拌法或粉末擠出成型法均勻的混摻在該直接焊料(主要焊接基材)內,其中若使用磁性攪拌法,則該活性焊料添加物在混摻後將熔融混於該直接焊料內;若使用滾軋混煉法或粉末擠出成型法,則該活性焊料添加物將於該直接焊料內形成一種機械冶金之一特殊活性焊料。
在本發明一實施例中,本發明可選擇利用滾軋混煉法製備該高導熱複合焊材100,其中首先準備至少一種導熱顆粒添加物及至少一種 活性焊料添加物,並將兩者藉由適當方式(例如藉由助焊劑)塗佈在由至少一種直接焊料製成之片體上,且將所有的片體堆疊成一高導熱複合焊材疊層。接著,利用二滾輪滾軋該高導熱複合焊材疊層,使其延展增加長度及減少厚度。在完成第一次滾軋後,將該高導熱複合焊材疊層進行至少一次的對折堆疊。隨後,利用該二滾輪進行第二次滾軋,再次使其延展增加長度及減少厚度。以相同原理,連續進行數次滾軋及對折之製程,直到該高導熱複合焊材片體的厚度減小至一預定值。如此,經過此滾輪滾軋所造成機械冶金,將高導熱複合焊材疊層成為一均勻之高導熱複合焊材,即可獲得一高導熱複合焊材100,並使該導熱顆粒添加物及活性焊料添加物實質均勻的散佈在數百層或數千層的該直接焊料之片體之間。在完成滾軋混煉法之上述步驟後,該高導熱複合焊材100即可直接使用於各種焊接用途,並可選擇製成膏狀、粒狀、棒狀或條片狀;或者,亦可選擇進一步以回焊(reflow)或重熔(remelting)的步驟加以處理,以重熔成為本發明之高導熱複合焊材100,此時該高導熱複合焊材100的基材已無層狀構造,且該導熱顆粒添加物可實質均勻的散佈在該直接焊料的基材內,而活性焊料添加物則已混熔於基材內。在本製程中,本發明之各成份之組成比例必需控制介於本發明上文提及之組成比例範圍。
在本發明另一實施例中,本發明可選擇利用超音波輔助熔煉法製備該高導熱複合焊材100,其中首先準備至少一種直接焊料、至少一種導熱顆粒添加物及至少一種活性焊料添加物。將該直接焊料、導熱顆粒添加物及活性焊料添加物倒入該坩堝容器內。隨後加熱該坩堝容器,以熔化該直接焊料及活性焊料添加物,同時利用該超音波輔助攪拌器之超音波 磁振動之高能波,使導熱顆粒添加物均勻混入含有活性添加物之焊料,倒出熔融金屬液使其冷卻固化成一高導熱複合焊材100,如此該導熱顆粒添加物即可實質均勻的散佈在該直接焊料之基材內,及活性焊料添加物則已混熔於基材內。再者,也可將該熔融高導熱複合焊材100,直接噴霧造粒形成一粉末狀、球狀或片狀之一種高導熱複合焊材100。
在本發明中,該導熱顆粒添加物及活性焊料添加物,可在一開始就加入該容器內,或選擇在該直接焊料熔化後再緩慢加入其中。再者,該直接焊料可直接選自合金粉末(如錫銀合金粉末等),或亦可選自其個別金屬粉末按比例混合之複合粉末(如錫及銀之粉末等)。在攪拌一預定時間後,倒出熔融金屬液使其冷卻固化成一高導熱複合焊材100,如此該導熱顆粒添加物即可實質均勻的散佈在該直接焊料之基材內,及活性焊料添加物則已混熔於基材內。在本製程中,各成份之組成比例同樣必需控制介於本發明上文提及之組成比例範圍。
在本發明另一實施例中,本發明可選擇利用粉末擠出成型法製備該高導熱複合焊材100,其大致包含下列步驟:首先,準備至少一種直接焊料之基材粉末、至少一種導熱顆粒添加物粉末及至少一種活性焊料添加物粉末;隨後,利用熱擠出成型機對該些混合粉末原料加熱至該直接焊料熔點附近之上下約50℃的溫度條件下,均勻攪拌混合該些粉末原料,並進行擠出成型,以製得一高導熱複合焊材100,其中該活性焊料添加物粉末熔化進入一該熔融之直接焊料中,而該導熱顆粒添加物粉末皆實質均勻的散佈在該熱擠壓後之含有活性添加物之直接焊料基材之間。在本製程中,各成份之組成比例同樣必需控制介於本發明上文提及之組成比例範圍。
唯,除了滾軋混煉法、磁性攪拌法或粉末擠出成型法外,本發明之高導熱複合焊材100亦可利用任何已知的其他焊材製造方法加以製作。
請參照下表1及表2所示,其揭示本發明數種實施例之高導熱複合焊材100的成份、組成比例、機械強度、熔點、導熱係數及潤濕角。一般傳統焊錫之導熱係數約50-55W/(m.k)且對陶瓷基板的潤濕性是不良(約150~165度)。
如上所述,該高導熱複合焊材100利用高溫加熱塗覆在該陶瓷基板11、12之間,並於兩者表面分別形成過渡介面層101、102(見第1圖),其中該高導熱複合焊材100,不僅可藉由該活性焊料添加物,例如鈦(Ti)、 鉻(Cr)、釩(V)、鋯(Zr)、鉿(Hf)、鎂(Mg)、鋰(Li)或稀土金屬(Rare earth,RE)等,提升與陶瓷基板、鋁基板的接合性,同時還可將該高導熱顆粒添加物容易混入該高導熱複合焊材100,例如氧化鋁、氮化鋁、碳化矽、氮化硼、鑽石、類鑽碳(DLC)、石墨、定向石墨(HOPG)、石墨烯或奈米碳管等,使其提升導熱性及機械強度。另外,還可透過該活性焊料添加物,例如鈦(Ti)、鉻(Cr)、釩(V)、鋯(Zr)、鉿(Hf)、鎂(Mg)、鋰(Li)或稀土金屬(Rare earth,RE)等,可增加潤濕性,提升高導熱顆粒添加物之混入其該高導熱複合焊材100潤濕性,而且在塗覆的過程中,該導熱顆粒添加物還可研磨該陶瓷基板11之表面的鈍化層(未繪示),藉以強化該高導熱複合焊材100與該陶瓷基板11的接合強度。
雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100‧‧‧高導熱複合焊材
101‧‧‧過渡介面層
102‧‧‧過渡介面層
11‧‧‧陶瓷基板
12‧‧‧陶瓷基板

Claims (9)

  1. 一種高導熱複合焊材,其包含:至少一種直接焊料,其重量百分比為70%至99%,該直接焊料為鋁基材料或鎂基材料;至少一種導熱顆粒添加物,其重量百分比為25%至0.5%,該導熱顆粒添加物為陶瓷材料或碳原子聚合材料;及至少一種活性焊料添加物,其重量百分比為6%至0.2%,該活性焊料添加物為鈦、鉻、釩、鋯、鉿、鎂、鋰、稀土金屬或其組合。
  2. 如申請專利範圍第1項所述之高導熱複合焊材,其中該鋁基材料含有錫、鋅、銦、銻、銀、銅、鎵、鍺、鉻、鎳、鐵、矽及磷之中的一種或一種以上。
  3. 如申請專利範圍第1項所述之高導熱複合焊材,其中該鎂基材料含有錫、鋅、銦、銻、銀、銅、鎵、鍺、鉻、鎳、鐵、矽及磷之中的一種或一種以上。
  4. 如申請專利範圍第1項所述之高導熱複合焊材,其中該導熱顆粒添加物的粒徑介於5奈米至50微米。
  5. 如申請專利範圍第1項所述之高導熱複合焊材,其中該陶瓷材料為氧化鋁、氮化鋁、碳化矽、氮化硼或其組合。
  6. 如申請專利範圍第1項所述之高導熱複合焊材,其中該碳原子聚合材料為鑽石、類鑽碳、定向石墨、石墨、奈米碳管、石墨烯或其組合。
  7. 如申請專利範圍第1項所述之高導熱複合焊材,其中該活性 焊料添加物選自包含重量百分比為4%以下之鈦、釩、鎂、鋯、鉿或其組合,以及該活性焊料添加物的其餘重量百分比為稀土族元素,該稀土族元件選自鈧、釔、鑭系元素或其組合。
  8. 如申請專利範圍第1項所述之高導熱複合焊材,其中該導熱顆粒添加物及該活性焊料添加物係利用熔煉攪拌法、超音波輔助熔煉攪拌法、滾軋混煉法、磁性攪拌法或粉末擠出成型法均勻的混摻在該直接焊料內。
  9. 如申請專利範圍第8項所述之高導熱複合焊材,其中該導熱顆粒添加物混摻在該直接焊料內並保持顆粒固態狀。
TW102145481A 2013-12-10 2013-12-10 高導熱複合焊材 TWI519636B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102145481A TWI519636B (zh) 2013-12-10 2013-12-10 高導熱複合焊材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102145481A TWI519636B (zh) 2013-12-10 2013-12-10 高導熱複合焊材

Publications (2)

Publication Number Publication Date
TW201522604A TW201522604A (zh) 2015-06-16
TWI519636B true TWI519636B (zh) 2016-02-01

Family

ID=53935436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102145481A TWI519636B (zh) 2013-12-10 2013-12-10 高導熱複合焊材

Country Status (1)

Country Link
TW (1) TWI519636B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI602499B (zh) * 2016-08-08 2017-10-11 鈺冠科技股份有限公司 使用奈米材料的複合式導熱片及其製作方法
JP2020026546A (ja) * 2018-08-10 2020-02-20 三菱マテリアル株式会社 円筒型スパッタリングターゲット、In系はんだ材、及び、円筒型スパッタリングターゲットの製造方法
TWI777043B (zh) * 2019-03-06 2022-09-11 裕晨科技股份有限公司 液態金屬在發熱面或導熱面的塗抹方法
CN112317991A (zh) * 2020-11-19 2021-02-05 冷水江市汇鑫电子陶瓷有限公司 一种玻璃基复合焊料、制备方法及其应用
CN117817183B (zh) * 2024-03-06 2024-07-02 上海锡喜材料科技有限公司 一种ic功率器件无铅无药芯软焊丝的配方、制备方法

Also Published As

Publication number Publication date
TW201522604A (zh) 2015-06-16

Similar Documents

Publication Publication Date Title
KR102335066B1 (ko) 반도체 다이 어태치 분야를 위한 금속 로딩량이 많은 소결 페이스트
TWI519636B (zh) 高導熱複合焊材
CN105659377B (zh) 接合体的制造方法及功率模块用基板的制造方法
KR101722893B1 (ko) Cu/세라믹스 접합체, Cu/세라믹스 접합체의 제조 방법, 및 파워 모듈용 기판
US20200001406A1 (en) Micro/nano particle reinforced composite solder and preparation method therefor
TWI344196B (en) Melting temperature adjustable metal thermal interface materials and use thereof
Bashir et al. Reduction of electromigration damage in SAC305 solder joints by adding Ni nanoparticles through flux doping
JP6287682B2 (ja) 接合体及びパワーモジュール用基板
Ho et al. Microstructural variation and high-speed impact responses of Sn–3.0 Ag–0.5 Cu/ENEPIG solder joints with ultra-thin Ni–P deposit
WO2015029810A1 (ja) 接合体及びパワーモジュール用基板
JP2007281412A (ja) パワー半導体モジュール
Sharma et al. Epoxy polymer solder pastes for micro-electronic packaging applications
CN111372717A (zh) 用于电子封装的组装的具有热稳定微结构的冶金组合物
JP5915233B2 (ja) はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板及びそれらの製造方法
TWI711141B (zh) 半導體裝置
JP6569511B2 (ja) 接合体、冷却器付きパワーモジュール用基板、冷却器付きパワーモジュール用基板の製造方法
Jing et al. Interfacial reaction and shear strength of SnAgCu/Ni/Bi 2 Te 3-based TE materials during aging
TWI740332B (zh) 塗覆松香降低銦鉍合金與基板表面張力方法及該方法製造之複合材
CN108364914A (zh) 半导体封装用压片
Peng et al. Influence of minor Ag nano-particles additions on the microstructure of Sn30Bi0. 5Cu solder reacted with a Cu substrate
Fouzder et al. Microstructure and kinetic analysis of the properties and behavior of nickel (Ni) nano-particle doped tin–zinc–bismuth (Sn–8Zn–3Bi) solders on immersion silver (Ag)-plated copper (Cu) substrates
Shen et al. Microstructural evolutions of the Ag nano-particle reinforced SnBiCu-xAg/Cu solder joints during liquid aging
Han et al. Shear strength, fracture mechanism and plastic performance of Cu/Sn5Sb–xCuNiAg/Cu solder joints during thermal aging
Muhammad et al. Low temperature and low pressure bonding of plateless Cu–Cu substrates by Ag-based transient liquid phase sintering
Lang et al. Soldering of non-wettable Al electrode using Au-based solder