TWI518169B - A method for producing β -sialon - Google Patents

A method for producing β -sialon Download PDF

Info

Publication number
TWI518169B
TWI518169B TW100126901A TW100126901A TWI518169B TW I518169 B TWI518169 B TW I518169B TW 100126901 A TW100126901 A TW 100126901A TW 100126901 A TW100126901 A TW 100126901A TW I518169 B TWI518169 B TW I518169B
Authority
TW
Taiwan
Prior art keywords
aluminum oxynitride
type lanthanum
lanthanum aluminum
gas
acid
Prior art date
Application number
TW100126901A
Other languages
Chinese (zh)
Other versions
TW201213508A (en
Inventor
江本秀幸
Original Assignee
電化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電化股份有限公司 filed Critical 電化股份有限公司
Publication of TW201213508A publication Critical patent/TW201213508A/en
Application granted granted Critical
Publication of TWI518169B publication Critical patent/TWI518169B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Description

β型矽鋁氮氧化物之製造方法Method for producing β-type lanthanum aluminum oxynitride

本發明係關於作為可利用在使用藍色發光二極體或紫外線發光二極體的發光裝置的螢光體加以利用的β型矽鋁氮氧化物之製造方法。The present invention relates to a method for producing a β-type lanthanum aluminum oxynitride which can be utilized as a phosphor which can be used in a light-emitting device using a blue light-emitting diode or an ultraviolet light-emitting diode.

將暫時合成的β型矽鋁氮氧化物在真空中或氮分壓較低的惰性氣體環境下,藉由進行加熱處理,且進行酸處理,使β型矽鋁氮氧化物亮度顯著提升(專利文獻1)。The temporarily synthesized β-type lanthanum aluminum oxynitride is heated in a vacuum or an inert gas atmosphere with a low partial pressure of nitrogen, and the brightness of the β-type lanthanum aluminum oxynitride is significantly improved by performing heat treatment and acid treatment (patent Document 1).

[先前技術文獻][Previous Technical Literature] [專利文獻][Patent Literature]

[專利文獻1]國際公開第2008/062781號小冊[Patent Document 1] International Publication No. 2008/062781

本發明之目的在於提供一種具有更高的螢光強度的β型矽鋁氮氧化物之製造方法。It is an object of the present invention to provide a method for producing a beta-type lanthanum aluminum oxynitride having a higher fluorescence intensity.

本發明係提供一種β型矽鋁氮氧化物之製造方法,其係具有以下步驟之β型矽鋁氮氧化物螢光體之製造方法:混合步驟,其係將含有矽、鋁及銪的原料粉末混合;燒成步驟,其係將混合而得的原料在惰性氣體或非氧化性氣體的氣體環境下進行燒成,生成以一般式:Si6-zAlzOzN8-z:Eu(0<z<4.2)所示之β型矽鋁氮氧化物;退火步驟,其係將所生成的β型矽鋁氮氧化物進行退火處理;及酸處理步驟,其係將經退火處理的β型矽鋁氮氧化物浸漬在酸溶液;退火處理係在還原性氣體環境下,氣體環境壓力為1kPa以上10MPa以下,氣體環境溫度1200℃以上1600℃以下,處理時間1小時以上24小時以下進行。The present invention provides a method for producing a β-type lanthanum aluminum oxynitride, which is a method for producing a β-type lanthanum aluminum oxynitride phosphor having a step of mixing a raw material containing cerium, aluminum and lanthanum. Powder mixing; a calcination step of calcining a raw material obtained by mixing in an inert gas or a non-oxidizing gas to form a general formula: Si 6-z Al z O z N 8-z :Eu (β<z<4.2) β-type lanthanum aluminum oxynitride; an annealing step of annealing the generated β-type lanthanum aluminum oxynitride; and an acid treatment step, which is annealed The β-type lanthanum aluminum oxynitride is immersed in an acid solution; the annealing treatment is performed under a reducing gas atmosphere, the gas ambient pressure is 1 kPa or more and 10 MPa or less, the gas ambient temperature is 1200 ° C or more and 1600 ° C or less, and the treatment time is 1 hour or more and 24 hours or less. .

前述還原性氣體環境較佳為氫氣。還原性氣體環境較佳為還原性氣體與惰性氣體的混合氣體,此外,該混合氣體中的氫氣濃度較佳為1體積%以上。The reducing gas atmosphere is preferably hydrogen. The reducing gas atmosphere is preferably a mixed gas of a reducing gas and an inert gas, and the hydrogen concentration in the mixed gas is preferably 1% by volume or more.

較佳為前述酸處理步驟的酸溶液為至少含有氫氟酸與硝酸的混酸。Preferably, the acid solution of the acid treatment step is a mixed acid containing at least hydrofluoric acid and nitric acid.

燒成較佳為在1850℃以上的溫度的氣體環境下進行。The firing is preferably carried out in a gas atmosphere at a temperature of 1850 ° C or higher.

本發明係利用β型矽鋁氮氧化物之製造方法而得藉由控制在退火步驟中的氣體環境種類、其壓力及溫度、以及處理時間,而具有更高的螢光強度的β型矽鋁氮氧化物。The present invention utilizes a method for producing β-type lanthanum aluminum oxynitride to obtain β-type yttrium aluminum having higher fluorescence intensity by controlling the kind of gas environment in the annealing step, its pressure and temperature, and the treatment time. Nitrogen oxides.

本發明係一種β型矽鋁氮氧化物之製造方法,其係具有以下步驟:混合步驟,其係將含有矽、鋁及銪的原料粉末混合;燒成步驟,其係將混合而得的原料在惰性氣體或非氧化性氣體的氣體環境下進行燒成,生成以一般式:Si6-zAlzOzN8-z:Eu(0<z<4.2)所示之β型矽鋁氮氧化物;及退火步驟,其係將所燒成的β型矽鋁氮氧化物進行退火處理,退火處理係在1kPa以上的減壓氣體環境至10MPa的加壓氣體環境的還原性氣體環境下,氣體環境溫度1200℃以上1600℃以下,處理時間1小時以上24小時以下進行。The present invention relates to a method for producing a β-type lanthanum aluminum oxynitride, which has the following steps: a mixing step of mixing raw material powders containing cerium, aluminum and cerium; and a firing step, which is a raw material obtained by mixing The firing is carried out in a gas atmosphere of an inert gas or a non-oxidizing gas to form a β-type lanthanum-aluminum nitrogen represented by a general formula: Si 6-z Al z O z N 8-z :Eu (0<z<4.2). An oxide; and an annealing step of annealing the sintered β-type lanthanum aluminum oxynitride, and the annealing treatment is performed under a reducing gas atmosphere of a pressurized gas atmosphere of 1 kPa or more to a pressurized gas atmosphere of 10 MPa. The gas ambient temperature is 1200 ° C or higher and 1600 ° C or lower, and the treatment time is 1 hour or longer and 24 hours or shorter.

若燒成步驟中的氣體環境的溫度較低為1800℃以下時,會有不易供予充分螢光強度的情形。因此,燒成時的氣體環境的溫度較佳為1850℃以上。When the temperature of the gas atmosphere in the firing step is lower than 1800 ° C, sufficient fluorescence intensity may not be easily supplied. Therefore, the temperature of the gas atmosphere at the time of firing is preferably 1850 ° C or higher.

之所以將退火步驟中的氣體環境形成為還原性氣體環境,是因為還原性氣體會對β型矽鋁氮氧化物的電氣中性未被局部保持的結晶缺陷發生作用,而使結晶性提升之故。由於結晶性提升,β型矽鋁氮氧化物的螢光強度會提升。The reason why the gas atmosphere in the annealing step is formed into a reducing gas environment is because the reducing gas acts on the crystal defects in which the electrical neutrality of the β-type lanthanum oxynitride is not locally maintained, and the crystallinity is improved. Therefore. As the crystallinity increases, the fluorescence intensity of the β-type lanthanum aluminum oxynitride increases.

還原性氣體係包含氨氣、烴氣、一氧化碳氣體、氫氣的任何單體或混合體,其中亦以分子尺寸較小的氫氣較為有效於提升結晶性,故較為理想。The reducing gas system contains any monomer or mixture of ammonia gas, hydrocarbon gas, carbon monoxide gas, and hydrogen gas, and hydrogen gas having a smaller molecular size is more effective for improving crystallinity, which is preferable.

還原性氣體亦可與惰性氣體混合。惰性氣體係指元素週期表第18族元素的稀有氣體或氮,以稀有氣體而言,列舉有氬或氦。還原性氣體環境為混合氣體,若其中的還原性氣體為氫時,混合氣體中的還原性氣體的濃度若太低時,會不易提升結晶性,因此以1體積%以上為佳。The reducing gas can also be mixed with an inert gas. The inert gas system refers to a rare gas or nitrogen of the element of Group 18 of the periodic table, and in the case of a rare gas, argon or helium is listed. When the reducing gas atmosphere is a mixed gas and the reducing gas in the mixed gas is hydrogen, if the concentration of the reducing gas in the mixed gas is too low, the crystallinity is hard to be improved. Therefore, it is preferably 1% by volume or more.

在退火步驟中的特性提升效果係在減壓至加壓之範圍寬廣的氣體環境壓力下予以發揮,惟低於1kPa的壓力因氣體環境所造成的還原效果較小,特性不太會提升,並且由於促進β型矽鋁氮氧化物分解,故較不理想。此外,藉由將氣體環境進行加壓,可擴展用以呈現退火效果所需的其他條件(低溫下,時間短縮),但是即使氣體環境壓力太高,亦使退火效果達到極限,並且必須要有特殊且昂貴的退火裝置,因此若考慮到量產性,較佳的氣體環境壓力為10MPa以下,更佳為未達1MPa。The characteristic improvement effect in the annealing step is exerted under a wide range of gas ambient pressures under reduced pressure to pressurization, but the pressure lower than 1 kPa is less effective due to the gas environment, and the characteristics are less likely to be improved, and It is less desirable because it promotes the decomposition of β-type lanthanum aluminum oxynitride. In addition, by pressurizing the gas environment, other conditions required for the annealing effect can be expanded (low temperature, time shortening), but even if the gas ambient pressure is too high, the annealing effect is reached, and it is necessary to have A special and expensive annealing device, therefore, in consideration of mass productivity, a preferred gas ambient pressure is 10 MPa or less, more preferably less than 1 MPa.

在退火步驟中的氣體環境溫度若太低,結晶性提升效果會變低,若太高,則β型矽鋁氮氧化物會分解,因此為1200℃以上1600℃以下。If the gas ambient temperature in the annealing step is too low, the crystallinity improving effect is lowered. If the temperature is too high, the β-type lanthanum aluminum oxynitride decomposes, so it is 1200 ° C or more and 1600 ° C or less.

退火步驟中的處理時間若太短,結晶性提升效果較低,若太長,則退火效果會達到極限,因此為1小時以上24小時以下,較佳為2小時以上10小時以下。If the treatment time in the annealing step is too short, the effect of improving the crystallinity is low. If the treatment time is too long, the annealing effect is reached. Therefore, it is 1 hour or more and 24 hours or less, preferably 2 hours or more and 10 hours or less.

在前述退火步驟後,進行將β型矽鋁氮氧化物浸漬在酸溶液的酸處理步驟,藉此更加提升螢光體的特性。After the annealing step described above, an acid treatment step of immersing the β-type lanthanum aluminum oxynitride in the acid solution is performed, thereby further improving the characteristics of the phosphor.

酸處理步驟較佳為具有:在酸溶液浸漬β型矽鋁氮氧化物,以過濾器等將β型矽鋁氮氧化物與酸分離,將經分離的β型矽鋁氮氧化物進行水洗的步驟。藉由酸處理,可去除在進行退火步驟時所產生的β型矽鋁氮氧化物結晶的分解物,藉此使螢光特性提升。以酸處理所使用的酸而言,係列舉氫氟酸、硫酸、磷酸、鹽酸、或硝酸的單體或混合體,較佳為含有適於去除分解物的氫氟酸與硝酸的混酸。酸處理時的酸溶液的溫度亦可為室溫,但是為了提高酸處理的效果,較佳為進行加熱而形成為50℃以上90℃以下。Preferably, the acid treatment step comprises: impregnating the β-type lanthanum aluminum oxynitride in the acid solution, separating the β-type lanthanum aluminum oxynitride from the acid by a filter or the like, and washing the separated β-type lanthanum aluminum oxynitride by water. step. By the acid treatment, the decomposition product of the β-type lanthanum aluminum oxynitride crystal which is generated during the annealing step can be removed, thereby improving the fluorescence characteristics. The acid to be used for the acid treatment is preferably a monomer or a mixture of hydrofluoric acid, sulfuric acid, phosphoric acid, hydrochloric acid, or nitric acid, and preferably contains a mixed acid of hydrofluoric acid and nitric acid suitable for removing the decomposition product. The temperature of the acid solution during the acid treatment may be room temperature. However, in order to enhance the effect of the acid treatment, it is preferably heated to 50° C. or higher and 90° C. or lower.

燒成步驟後的β型矽鋁氮氧化物為塊狀,因此較佳為將其進行裂解、粉碎及視情形將分級操作加以組合,而形成為預定尺寸的粉末。為了將β型矽鋁氮氧化物作為白色LED用螢光體而適當使用,較佳為將平均粒徑形成為6~30μm。調整β型矽鋁氮氧化物的平均粒徑的步驟可在本發明之燒成步驟後、退火步驟後、酸處理步驟後的任何時點進行。Since the ?-type lanthanum aluminum oxynitride after the firing step is in the form of a block, it is preferred to carry out cracking, pulverization, and, if necessary, a classification operation to form a powder having a predetermined size. In order to suitably use the ?-type lanthanum aluminum oxynitride as the white LED phosphor, it is preferred to form the average particle diameter to 6 to 30 μm. The step of adjusting the average particle diameter of the ?-type lanthanum aluminum oxynitride may be carried out at any time after the firing step of the present invention, after the annealing step, and after the acid treatment step.

[實施例][Examples]

一面與比較例作對比一面詳加說明本發明之實施例。An embodiment of the present invention will be described in detail with reference to a comparative example.

在本實施例中,係進行:混合步驟,其係將含有矽、鋁及銪的原料粉末混合;燒成步驟,其係將混合而得的原料在惰性氣體或非氧化性氣體的氣體環境下進行燒成,生成以一般式:Si6-zAlzOzN8-z:Eu(0<z<4.2)所示之β型矽鋁氮氧化物;及退火步驟,其係將所燒成的β型矽鋁氮氧化物進行退火處理。In this embodiment, a mixing step is performed in which a raw material powder containing cerium, aluminum, and cerium is mixed; and a firing step is performed in a gas atmosphere in which an inert gas or a non-oxidizing gas is mixed. Performing calcination to form a β-type lanthanum aluminum oxynitride represented by a general formula: Si 6-z Al z O z N 8-z :Eu (0<z<4.2); and an annealing step, which is to be fired The formed β-type lanthanum aluminum oxynitride is annealed.

<混合步驟><mixing step>

混合步驟係混揉作為原料粉末的α型氮化矽(宇部興產股份有限公司製SN-E10級,氧含量1.0質量%)、氮化鋁粉末(Tokuyama股份有限公司製F級,氧含量0.8質量%)、氧化鋁粉末(大明化學股份有限公司製TM-DAR級)、氧化銪粉末(信越化學工業股份有限公司製RU級)的步驟。混揉時的摻合比係在β型矽鋁氮氧化物的一般式:Si6-zAlzOzN8-z中,除了氧化銪以外,設計成z=0.24,氧化銪係形成為原料全體的0.8質量%。In the mixing step, α-type tantalum nitride (manufactured by Ube Industries Co., Ltd., SN-E10 grade, oxygen content: 1.0% by mass) and aluminum nitride powder (Foku grade made by Tokuyama Co., Ltd., oxygen content 0.8) were mixed. Mass %), a step of alumina powder (TM-DAR grade manufactured by Daming Chemical Co., Ltd.), and yttrium oxide powder (RU grade manufactured by Shin-Etsu Chemical Co., Ltd.). The blending ratio at the time of mixing is in the general formula of β-type lanthanum oxynitride: Si 6-z Al z O z N 8-z , except for yttrium oxide, which is designed to be z=0.24, and the yttrium oxide system is formed as 0.8% by mass of the entire raw material.

在混合步驟中,使用氮化矽製的罐子及承杯,藉由以乙醇為溶媒的濕式球磨機,將該等原料粉末混合。混合後,去除溶媒之後再進行乾燥,之後,藉由全部通過篩孔150μm的篩而去除凝聚物而得原料。In the mixing step, the raw material powders were mixed by a wet ball mill using ethanol as a solvent using a can and a cup made of tantalum nitride. After mixing, the solvent was removed and dried, and then the aggregate was removed by passing through a sieve having a mesh opening of 150 μm to obtain a raw material.

<燒成步驟><Burning step>

在燒成步驟中,係將所得的原料填充在附蓋的圓筒型氮化硼製容器(電氣化學工業股份有限公司製N-1級),以碳加熱器的電氣爐在0.85MPa的加壓氮氣體環境中,置放在2000℃、14小時的環境下而生成β型矽鋁氮氧化物。In the firing step, the obtained raw material is filled in a cylindrical cylindrical boron nitride container (N-1 grade manufactured by Electric Chemical Industry Co., Ltd.), and the electric furnace of the carbon heater is added at 0.85 MPa. In a nitrogen gas atmosphere, β-type lanthanum aluminum oxynitride was formed by placing it in an environment of 2000 ° C for 14 hours.

所生成的β型矽鋁氮氧化物係稀薄凝聚的塊狀。因此,將所生成的β型矽鋁氮氧化物輕度裂解後,藉由超音速噴射粉碎機(日本空壓工業公司(Nippon Pneumatic Mfg. Co)製,PJM-80SP)進行裂解而形成為粉末狀。The produced β-type lanthanum aluminum oxynitride is a thin aggregated block. Therefore, the generated β-type lanthanum aluminum oxynitride was slightly cracked, and then formed into a powder by pyrolysis by a supersonic jet mill (manufactured by Nippon Pneumatic Mfg. Co., PJM-80SP). shape.

<退火步驟>< annealing step>

退火步驟係將β型矽鋁氮氧化物填充在圓筒型氮化硼製容器,鎢加熱器的爐內全部以金屬(爐內構件由鎢及鉬的高熔點金屬所構成)製的電氣爐來進行。將β型矽鋁氮氧化物安置在電氣爐後,將電氣爐內進行真空排氣至5Pa以下,在真空狀態下以20℃/分鐘升溫至1000℃後,在電氣爐內導入氫氣,將電氣爐內形成為0.15MPa。另外將氫氣導入在電氣爐內,在將氣體環境壓力保持為一定的情況下直接以5℃/分鐘升溫至1500℃,以1500℃保持4小時,之後,將電氣爐內冷卻至室溫。In the annealing step, β-type lanthanum aluminum oxynitride is filled in a cylindrical boron nitride container, and an electric furnace made of a metal (the furnace inner member is composed of a high melting point metal of tungsten and molybdenum) is used in the furnace of the tungsten heater. Come on. After the β-type lanthanum aluminum oxynitride is placed in the electric furnace, the electric furnace is evacuated to 5 Pa or less, and the temperature is raised to 1000 ° C at 20 ° C/min under vacuum, and then hydrogen gas is introduced into the electric furnace to electrically The inside of the furnace was formed to be 0.15 MPa. Further, hydrogen gas was introduced into the electric furnace, and when the gas ambient pressure was kept constant, the temperature was directly raised to 1500 ° C at 5 ° C / min, and maintained at 1500 ° C for 4 hours, after which the inside of the electric furnace was cooled to room temperature.

<酸處理步驟><acid treatment step>

酸處理係對經退火的β型矽鋁氮氧化物,以氫氟酸與硝酸的混酸的酸溶液來進行。酸溶液的溫度係設定為70℃。使該酸處理後的β型矽鋁氮氧化物沈澱,去除上清液及微粉,另外添加蒸餾水,進行攪拌及靜置,反覆進行將上清液與微粉去除的傾析(decantation)至溶液成為中性為止,將最終所得的沈澱物過濾、乾燥,而得實施例1的β型矽鋁氮氧化物。The acid treatment is carried out on an annealed β-type lanthanum aluminum oxynitride in an acid solution of a mixed acid of hydrofluoric acid and nitric acid. The temperature of the acid solution was set to 70 °C. The acid-treated β-type lanthanum aluminum oxynitride is precipitated, the supernatant liquid and the fine powder are removed, distilled water is added, stirred and allowed to stand, and decantation of the supernatant and the fine powder is repeatedly performed until the solution becomes The β-type lanthanum aluminum oxynitride of Example 1 was obtained by filtration and drying of the finally obtained precipitate.

對所得的β型矽鋁氮氧化物,進行使用Cu的Kα線的粉末X線繞射(XRD)測定的結果,結晶相為β型矽鋁氮氧化物單相。藉由雷射繞射散射法的粒度分布測定裝置所求出的平均粒徑為13.5μm。The obtained β-type lanthanum aluminum oxynitride was subjected to powder X-ray diffraction (XRD) measurement using a Kα line of Cu, and the crystal phase was a β-type lanthanum aluminum oxynitride single phase. The average particle diameter determined by the particle size distribution measuring apparatus by the laser diffraction scattering method was 13.5 μm.

實施例1的β型矽鋁氮氧化物的螢光特性係藉由使用日立先端科技公司製分光螢光光度計(F7000),來測定藍色光激發(波長455nm)中的螢光光譜來進行。將所得的螢光光譜顯示於第1圖。The fluorescence characteristics of the β-type lanthanum aluminum oxynitride of Example 1 were measured by measuring the fluorescence spectrum in blue light excitation (wavelength 455 nm) by using a spectrofluorometer (F7000) manufactured by Hitachi Advanced Technology Co., Ltd. The obtained fluorescence spectrum is shown in Fig. 1.

將各條件、螢光強度中的峰值作為螢光峰值強度且顯示於表1。The peak value in each condition and the fluorescence intensity was taken as the fluorescence peak intensity and is shown in Table 1.

可知前述退火步驟的氣體環境較佳為在含有還原性氣體的還原性氣體環境下,氣體環境壓力1kPa以上、氣體環境溫度1200℃以上1600℃以下、處理時間1小時以上24小時以下,前述還原性氣體環境為氫氣。It is preferable that the gas atmosphere in the annealing step is preferably a gas atmosphere pressure of 1 kPa or more, a gas atmosphere temperature of 1200 ° C or more and 1600 ° C or less, and a treatment time of 1 hour or more and 24 hours or less in a reducing gas atmosphere containing a reducing gas. The gaseous environment is hydrogen.

(比較例1)(Comparative Example 1)

在比較例1中,除了將退火處理的氣體環境形成為氬氣以外,係藉由與實施例1完全相同的方法來製造β型矽鋁氮氧化物。XRD測定結果,結晶相為β型矽鋁氮氧化物單相,藉由上述粒度分布測定裝置所求出的平均粒徑為13.8μm。In Comparative Example 1, a β-type lanthanum aluminum oxynitride was produced by the same method as in Example 1 except that the annealing gas atmosphere was formed into argon gas. As a result of XRD measurement, the crystal phase was a β-type lanthanum aluminum oxynitride single phase, and the average particle diameter determined by the above-described particle size distribution measuring apparatus was 13.8 μm.

關於所得的β型矽鋁氮氧化物,將以與實施例1相同的方法所測定出的螢光光譜顯示於第1圖。螢光光譜係依測定裝置或條件而改變,因此以與實施例1相同的條件,由實施例1中的測定未隔開時間來進行測定。如第1圖所示,藉由將燒成後的退火處理的氣體環境形成為還原性氫氣而使螢光強度提升。The fluorescence spectrum measured by the same method as that of Example 1 about the obtained β-type lanthanum aluminum oxynitride is shown in Fig. 1 . Since the fluorescence spectrum was changed depending on the measurement apparatus or the conditions, the measurement was carried out under the same conditions as in Example 1 except that the measurement in Example 1 was not separated. As shown in Fig. 1, the fluorescence intensity is improved by forming a gas atmosphere in the annealing treatment after firing into reducing hydrogen gas.

(比較例2及3)(Comparative Examples 2 and 3)

在比較例2中,除了將在退火步驟中的氣體環境壓力形成為低於1kPa的0.5kPa以外,係與實施例1同樣地製造β型矽鋁氮氧化物。比較例3係除了將在退火步驟中的溫度形成為大於1600℃的1650℃以外,係與實施例1同樣地製造β型矽鋁氮氧化物。任一者均在退火步驟中進行β型矽鋁氮氧化物的部分分解,而使螢光特性大幅降低。In Comparative Example 2, β-type lanthanum aluminum oxynitride was produced in the same manner as in Example 1 except that the gas ambient pressure in the annealing step was set to 0.5 kPa of less than 1 kPa. In Comparative Example 3, a β-type lanthanum aluminum oxynitride was produced in the same manner as in Example 1 except that the temperature in the annealing step was changed to 1,650 ° C which was more than 1600 ° C. Either of them partially decomposes the ?-type lanthanum aluminum oxynitride in the annealing step, and the fluorescence characteristics are largely lowered.

(實施例2至5)(Examples 2 to 5)

在實施例2至5中,除了表1所示內容之外,以與實施例1完全相同的條件製造β型矽鋁氮氧化物。In Examples 2 to 5, β-type lanthanum aluminum oxynitride was produced under the same conditions as in Example 1 except for the contents shown in Table 1.

在實施例2至5中的螢光峰值強度係均高於比較例1。The peak intensity of the fluorescence in Examples 2 to 5 was higher than that of Comparative Example 1.

雖在表中未記載,但是若將實施例1的還原性氣體置換成氨氣、烴氣、一氧化碳氣體的各個,結果可製造具有與實施例1大致相同的螢光光譜的β型矽鋁氮氧化物。Although not described in the table, when the reducing gas of the first embodiment is replaced with each of ammonia gas, hydrocarbon gas, and carbon monoxide gas, β-type lanthanum aluminum nitride having a fluorescence spectrum substantially the same as that of the first embodiment can be produced. Oxide.

[產業上可利用性][Industrial availability]

藉由本發明所得的β型矽鋁氮氧化物係以紫外至藍色光之範圍寬廣的波長被激發,呈現高亮度的綠色發光,因此可身為作為藍色或紫外光光源的白色LED的螢光體來適當使用。The β-type lanthanum aluminum oxynitride obtained by the present invention is excited by a wide wavelength range of ultraviolet to blue light, exhibiting high-luminance green light, and thus can be used as a fluorescent light of a white LED as a blue or ultraviolet light source. Appropriate use.

第1圖係顯示實施例1及比較例1之藉由波長455nm之外部激發光所得之螢光光譜圖。Fig. 1 is a view showing a fluorescence spectrum obtained by external excitation light of a wavelength of 455 nm in Example 1 and Comparative Example 1.

Claims (5)

一種β型矽鋁氮氧化物之製造方法,其係具有以下步驟之β型矽鋁氮氧化物螢光體之製造方法:混合步驟,其係將含有矽、鋁及銪的原料粉末混合;燒成步驟,其係將混合而得的原料在惰性氣體(inert gas)或非氧化性氣體的氣體環境下進行燒成,生成以一般式:Si6-zAlzOzN8-z:Eu(0<z<4.2)所示之β型矽鋁氮氧化物;退火步驟,其係將所生成的β型矽鋁氮氧化物進行退火處理;及酸處理步驟,其係將經退火處理的β型矽鋁氮氧化物浸漬在酸溶液;退火處理係在選自氫氣或氫氣及氬氣之混合氣體之任一者的還原性氣體環境下,氣體環境壓力為1kPa以上10MPa以下,氣體環境溫度1200℃以上1600℃以下,處理時間1小時以上24小時以下進行。 A method for producing a β-type lanthanum aluminum oxynitride, which is a method for producing a β-type lanthanum aluminum oxynitride phosphor having a step of mixing a raw material powder containing cerium, aluminum and lanthanum; In the step of firing the raw material obtained by mixing in an inert gas or a non-oxidizing gas to form a general formula: Si 6-z Al z O z N 8-z :Eu (β<z<4.2) β-type lanthanum aluminum oxynitride; an annealing step of annealing the generated β-type lanthanum aluminum oxynitride; and an acid treatment step, which is annealed The β-type lanthanum aluminum oxynitride is immersed in the acid solution; the annealing treatment is performed under a reducing gas atmosphere selected from the group consisting of hydrogen or a mixed gas of hydrogen and argon, and the gas ambient pressure is 1 kPa or more and 10 MPa or less, and the gas ambient temperature is 1200 ° C or more and 1600 ° C or less, and the treatment time is 1 hour or more and 24 hours or less. 如申請專利範圍第1項之β型矽鋁氮氧化物之製造方法,其中前述還原性氣體環境係氫氣與氬氣的混合氣體,混合氣體中的氫氣濃度為1體積%以上。 The method for producing a β-type lanthanum aluminum oxynitride according to the first aspect of the invention, wherein the reducing gas atmosphere is a mixed gas of hydrogen and argon, and the concentration of hydrogen in the mixed gas is 1% by volume or more. 如申請專利範圍第1項之β型矽鋁氮氧化物之製造方法,其中前述酸處理步驟的酸溶液係至少含有氫氟酸與硝酸的混酸。 The method for producing a β-type lanthanum aluminum oxynitride according to the first aspect of the invention, wherein the acid solution of the acid treatment step contains at least a mixed acid of hydrofluoric acid and nitric acid. 如申請專利範圍第2項之β型矽鋁氮氧化物之製造方法,其中前述酸處理步驟的酸溶液係至少含有氫氟酸 與硝酸的混酸。 The method for producing a β-type lanthanum aluminum oxynitride according to claim 2, wherein the acid solution of the acid treatment step contains at least hydrofluoric acid Mixed acid with nitric acid. 如申請專利範圍第1至4項中任一項之β型矽鋁氮氧化物之製造方法,其中燒成係在1850℃以上的溫度的氣體環境下進行。The method for producing a β-type lanthanum aluminum oxynitride according to any one of claims 1 to 4, wherein the firing is carried out in a gas atmosphere at a temperature of 1850 ° C or higher.
TW100126901A 2010-09-27 2011-07-29 A method for producing β -sialon TWI518169B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215759 2010-09-27

Publications (2)

Publication Number Publication Date
TW201213508A TW201213508A (en) 2012-04-01
TWI518169B true TWI518169B (en) 2016-01-21

Family

ID=45892440

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100126901A TWI518169B (en) 2010-09-27 2011-07-29 A method for producing β -sialon

Country Status (7)

Country Link
US (1) US20130300014A1 (en)
EP (1) EP2623580B1 (en)
JP (1) JP5730319B2 (en)
KR (1) KR101725857B1 (en)
CN (1) CN103168086B (en)
TW (1) TWI518169B (en)
WO (1) WO2012042957A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833035B (en) * 2019-08-20 2024-02-21 日商電化股份有限公司 β-SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102353443B1 (en) * 2014-12-22 2022-01-21 삼성전자주식회사 Oxynitride-based phosphor and white light emitting device including the same
JP6160763B2 (en) * 2015-12-15 2017-07-12 日亜化学工業株式会社 Method for producing β-sialon phosphor
US11427758B2 (en) 2015-12-15 2022-08-30 Nichia Corporation Method for producing β-sialon fluorescent material
US10385267B2 (en) * 2015-12-15 2019-08-20 Nichia Corporation Method for producing β-sialon fluorescent material
JP2021054899A (en) 2019-09-27 2021-04-08 日亜化学工業株式会社 METHOD OF PRODUCING β-SIALON FLUORESCENT MATERIAL
JP7507018B2 (en) 2020-07-03 2024-06-27 デンカ株式会社 Method for manufacturing β-type sialon phosphor, method for manufacturing wavelength conversion member, and method for manufacturing light emitting device
KR20230043844A (en) * 2020-07-30 2023-03-31 덴카 주식회사 Phosphor particles, composites, wavelength conversion members and projectors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3921545B2 (en) * 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 Phosphor and production method thereof
WO2007066733A1 (en) * 2005-12-08 2007-06-14 National Institute For Materials Science Phosphor, process for producing the same, and luminescent device
JP4890162B2 (en) 2006-09-07 2012-03-07 本田技研工業株式会社 Cooling structure for electrical equipment in vehicles
US8404152B2 (en) * 2006-11-20 2013-03-26 Denki Kagaku Kogyo Kabushiki Kaisha Fluorescent substance and production method thereof, and light emitting device
JP5316414B2 (en) * 2007-10-10 2013-10-16 宇部興産株式会社 Method for producing β-sialon phosphor particles
JP5832713B2 (en) * 2008-04-14 2015-12-16 日亜化学工業株式会社 Phosphor, light emitting device using the same, and method for producing phosphor
JP5368557B2 (en) * 2009-06-09 2013-12-18 電気化学工業株式会社 β-type sialon phosphor, its use and production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI833035B (en) * 2019-08-20 2024-02-21 日商電化股份有限公司 β-SIALON PHOSPHOR AND LIGHT-EMITTING DEVICE

Also Published As

Publication number Publication date
TW201213508A (en) 2012-04-01
EP2623580A8 (en) 2013-09-25
JPWO2012042957A1 (en) 2014-02-06
KR20130088152A (en) 2013-08-07
EP2623580A1 (en) 2013-08-07
EP2623580A4 (en) 2014-10-01
CN103168086A (en) 2013-06-19
WO2012042957A1 (en) 2012-04-05
EP2623580B1 (en) 2017-08-23
JP5730319B2 (en) 2015-06-10
US20130300014A1 (en) 2013-11-14
CN103168086B (en) 2014-10-22
KR101725857B1 (en) 2017-04-11

Similar Documents

Publication Publication Date Title
TWI518169B (en) A method for producing β -sialon
TWI438261B (en) Method for producing β-sialon, β-sialon and utilizing product thereof
JP6572373B1 (en) Method for producing β-sialon phosphor
KR20170124614A (en) SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
KR102059385B1 (en) Method for producing phosphor
WO2018092696A1 (en) Red-emitting phosphor, light-emitting member, and light-emitting device
JP6987054B2 (en) Fluorescent material and light emitting device
TW201217496A (en) β type SiAlON and light emitting device
TWI485230B (en) Method for manufacturing β-sialon fluorescent body
CN106978166B (en) Red phosphor and light-emitting device
TWI454556B (en) Method for preparing eu solid solution β type sialon
TWI447209B (en) A production method for β-type silicon-aluminum nitrogen oxides
JP7507018B2 (en) Method for manufacturing β-type sialon phosphor, method for manufacturing wavelength conversion member, and method for manufacturing light emitting device
WO2018003605A1 (en) Process for producing red fluorescent substance
JP2013237713A (en) β TYPE SIALON, LIGHT-EMITTING DEVICE, AND METHOD OF MANUFACTURING β TYPE SIALON
JP7282757B2 (en) Red phosphor and light-emitting device
JP2018150487A (en) Production method of phosphor, phosphor, light-emitting element and light-emitting device