TWI518070B - Separating styrene from c6-c8 aromatic hydrocarbons - Google Patents

Separating styrene from c6-c8 aromatic hydrocarbons Download PDF

Info

Publication number
TWI518070B
TWI518070B TW101146047A TW101146047A TWI518070B TW I518070 B TWI518070 B TW I518070B TW 101146047 A TW101146047 A TW 101146047A TW 101146047 A TW101146047 A TW 101146047A TW I518070 B TWI518070 B TW I518070B
Authority
TW
Taiwan
Prior art keywords
styrene
stream
methanol
ether
hydrocarbon
Prior art date
Application number
TW101146047A
Other languages
Chinese (zh)
Other versions
TW201422580A (en
Inventor
吳匡堯
亞當T 李
莊子棠
沈宏俊
林棕斌
Original Assignee
Amt國際公司
台灣中油股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amt國際公司, 台灣中油股份有限公司 filed Critical Amt國際公司
Priority to TW101146047A priority Critical patent/TWI518070B/en
Publication of TW201422580A publication Critical patent/TW201422580A/en
Application granted granted Critical
Publication of TWI518070B publication Critical patent/TWI518070B/en

Links

Description

自C6-C8芳族烴分離苯乙烯 Separation of styrene from C6-C8 aromatic hydrocarbons

本發明係關於一種在精煉烴時降低通常稱為BTX之C6-C8芳族烴摻合物之苯乙烯含量的方法,該方法係藉由在對醚化具有選擇性之催化劑存在下與諸如甲醇或乙醇之C1-C3低碳數烷基醇反應以形成相應苯乙烯醚來轉化BTX混合物中之苯乙烯,隨後自BTX分離該苯乙烯醚以形成實質上不含苯乙烯之BTX。可使所得苯乙烯醚分解以回收苯乙烯。或者,可將苯乙烯醚作為增氧劑摻合入汽油中以改良燃燒特性。 The present invention relates to a process for reducing the styrene content of a C6-C8 aromatic hydrocarbon blend, commonly referred to as BTX, in the refining of hydrocarbons by the use of a catalyst such as methanol in the presence of a catalyst selective for etherification. The C1-C3 lower alkyl alcohol of ethanol is reacted to form the corresponding styrene ether to convert the styrene in the BTX mixture, followed by separation of the styrene ether from BTX to form BTX substantially free of styrene. The resulting styrene ether can be decomposed to recover styrene. Alternatively, styrene ether can be blended into the gasoline as an oxygenating agent to improve combustion characteristics.

精煉液體烴及分餾會提供一系列烴產物流。進一步精煉諸如烴饋料、來自蒸汽裂化器之未加氫處理之熱解汽油、FCC石油腦或未加氫處理之焦化石油腦的物流以提供主要包含苯、甲苯、乙苯、苯乙烯、硫化合物及二甲苯混合物之C6-C8芳族物之混合物,通常稱為BTX。舉例而言,Timken等人在1997年頒予之美國專利5,685,972中描述一種自FCC石油腦生產BTX之方法。 Refining liquid hydrocarbons and fractionation provides a range of hydrocarbon product streams. Further refining a stream such as a hydrocarbon feed, a non-hydrotreated pyrolysis gasoline from a steam cracker, a FCC petroleum brain or a non-hydrotreated coking petroleum brain to provide a predominantly comprising benzene, toluene, ethylbenzene, styrene, sulfur A mixture of a compound and a mixture of xylenes of a C6-C8 aromatic, commonly referred to as BTX. A method for producing BTX from the FCC petroleum brain is described in U.S. Patent No. 5,685,972, issued to A.S. Pat.

BTX為一種有價值之用於製造石油化學品及聚合物之原料,且亦用作內燃引擎之燃料。然而,其苯乙烯內含物傾向於聚合且形成較高分子量化合物,該等較高分子量化合物會妨礙將BTX加工成化學原料,或會引起膠狀殘餘物形成而妨礙將BTX饋送以進行燃燒。因此,當欲 將BTX用作石油化學原料或內燃引擎之液體燃料時,不希望BTX中存在苯乙烯。藉由氫化將苯乙烯轉化成乙苯來降低BTX中之苯乙烯含量。Timken等人在US 5,685,972中描述在將FCC石油腦轉化成BTX與高辛烷值汽油兩者中之「加氫精製」階段。 BTX is a valuable raw material for the manufacture of petrochemicals and polymers and is also used as a fuel for internal combustion engines. However, its styrene content tends to polymerize and form higher molecular weight compounds that can interfere with the processing of BTX into chemical feedstocks, or can cause gelatinous residue formation to hinder the feeding of BTX for combustion. Therefore, when you want When BTX is used as a petrochemical feedstock or a liquid fuel for an internal combustion engine, it is undesirable to have styrene present in the BTX. The styrene content in BTX is reduced by the conversion of styrene to ethylbenzene by hydrogenation. The "hydrotreating" stage in converting FCC petroleum brain into both BTX and high octane gasoline is described in U.S. Patent 5,685,972.

然而,乙苯及苯乙烯在其作為燃料燃燒時之價值較低。已移除苯乙烯之BTX的價值高於含有苯乙烯之BTX。此外,當相較於苯乙烯轉化成乙苯以用作燃料時,苯乙烯自身在其回收用於製造聚合物或石油化學品時之價值高得多。迄今為止,例如美國專利3,953,300、4,031,153及5,849,982中揭露之方法皆不能有效地自諸如熱解汽油及FCC汽油之BTX餾分中移除並回收苯乙烯,該等BTX餾分含有大量硫化合物。此係因為在加氫處理時苯乙烯與氫氣之反應性大於噻吩硫,而加氫處理為工業上將純化之苯乙烯流去硫之唯一方式。 However, ethylbenzene and styrene are of lower value when burned as a fuel. The value of BTX with styrene removed is higher than that of BTX containing styrene. Furthermore, when compared to the conversion of styrene to ethylbenzene for use as a fuel, styrene itself is much more valuable in its recovery for the manufacture of polymers or petrochemicals. The methods disclosed in, for example, U.S. Patent Nos. 3,953,300, 4,031,153, and 5,849,982 are not effective in removing and recovering styrene from BTX fractions such as pyrolysis gasoline and FCC gasoline, which contain a large amount of sulfur compounds. This is because the reactivity of styrene with hydrogen is greater than that of thiophene sulfur during hydrotreating, and hydrotreating is the only way in which the purified styrene stream is desulfurized.

需要的是一種相較於現今BTX精煉及分離方法更高效地自BTX餾分中移除苯乙烯,且將彼苯乙烯轉化成有價值之聚合物及石油化學產品的方法。 What is needed is a method for removing styrene from BTX fractions more efficiently than today's BTX refining and separation processes, and converting styrene into valuable polymers and petrochemicals.

根據本發明之一個方面,提供一種降低來自液體烴精煉之物流之C6-C8芳族烴(BTX)摻合物之苯乙烯含量的方法。來自精煉廠之典型含BTX饋料含有約33%苯乙烯及67%二甲苯。 According to one aspect of the invention, a method of reducing the styrene content of a C6-C8 aromatic hydrocarbon (BTX) blend from a liquid hydrocarbon refining stream is provided. A typical BTX-containing feed from a refinery contains about 33% styrene and 67% xylene.

在一個具體實例中,將含有包括苯乙烯之BTX之烴饋料流饋入催化轉化器中,在該催化轉化器中,在對醚化具有選擇性之催化劑存在下,大部分苯乙烯內含物在對醚化具有選擇性之酸性催化劑存在下與較 佳為甲醇或乙醇之C1-C3低碳數烷基醇反應形成相應苯乙烯醚。藉由蒸餾自物流中分離所得苯乙烯醚以形成含有包括苯乙烯含量極大降低,但保留大部分硫化合物之BTX之烴的一種餾分,及含有苯乙烯醚之另一物流。將含有殘餘未反應苯乙烯之烴流氫化以形成產物流,且自產物流分離實質上不含苯乙烯之C6-C8芳族烴。接著可使苯乙烯醚分解以回收苯乙烯及C1-C3低碳數烷基醇。或者,可將苯乙烯醚作為增氧劑摻合入汽油中以改良燃燒特性。 In one embodiment, a hydrocarbon feed stream comprising BTX comprising styrene is fed to a catalytic converter in which most of the styrene is contained in the presence of a catalyst selective for etherification. In the presence of an acidic catalyst selective for etherification The C1-C3 lower alkyl alcohol which is preferably methanol or ethanol reacts to form the corresponding styrene ether. The resulting styrene ether is separated from the stream by distillation to form a fraction comprising a hydrocarbon comprising BTX having a greatly reduced styrene content but retaining a majority of the sulfur compound, and another stream comprising a styrene ether. The hydrocarbon stream containing residual unreacted styrene is hydrogenated to form a product stream, and the C6-C8 aromatic hydrocarbon substantially free of styrene is separated from the product stream. The styrene ether can then be decomposed to recover styrene and a C1-C3 lower alkyl alcohol. Alternatively, styrene ether can be blended into the gasoline as an oxygenating agent to improve combustion characteristics.

應注意,儘管甲醇或乙醇較佳,但亦可使用C3醇。然而,其較為昂貴。 It should be noted that although methanol or ethanol is preferred, a C3 alcohol can also be used. However, it is more expensive.

在本發明之另一具體實例中,選擇性醚化催化劑為基於磺酸之聚合陽離子交換樹脂。在本發明之另一具體實例中,酸性催化劑為基於交聯苯乙烯二乙烯基苯共聚物之磺酸大網狀聚合樹脂,諸如由Rohm & Haas以TM Amberlyst 15WET、35WET及70出售者。熟知此等物質對醚化反應具有選擇性。舉例而言,Amberlyst 15WET用於生產MTEB及ETBE,因此其可靠性為熟知的。應注意,15WET、35WET及70名稱係針對在不同反應溫度下適用之變體。舉例而言,Amberlyst 15WET對於在高達120℃下進行之醚化反應是理想的,Amberlyst 35WET對於在高達150℃下進行之醚化反應是理想的而Amberlyst 70對於在溫度範圍上限下進行之醚化反應是理想的。此等物質之性質之詳情可於線上可獲得之Rohm & Haas目錄中AMBERLYST聚合催化劑下獲得。Nation® SAC-13為可使用之另一聚合酸性磺酸催化劑。然而,其活性低於Amberlyst系列之活性。 In another embodiment of the invention, the selective etherification catalyst is a sulfonic acid based polymeric cation exchange resin. In another embodiment of the invention, the acidic catalyst is a sulfonic acid macroreticular polymeric resin based on a crosslinked styrene divinylbenzene copolymer, such as sold by Rohm & Haas as TM Amberlyst 15WET, 35WET and 70. These materials are well known to be selective for etherification reactions. For example, Amberlyst 15WET is used to produce MTEB and ETBE, so its reliability is well known. It should be noted that the 15WET, 35WET and 70 names are for variants that are suitable for use at different reaction temperatures. For example, Amberlyst 15WET is ideal for etherification reactions up to 120 °C, Amberlyst 35WET is ideal for etherification reactions up to 150 °C and Amberlyst 70 is etherified for upper temperature range The reaction is ideal. Details of the nature of these materials are available under the AMBERLYST polymerization catalyst in the Rohm & Haas catalog available online. Nation® SAC-13 is another polymeric acidic sulfonic acid catalyst that can be used. However, its activity is lower than that of the Amberlyst series.

在本發明之另一具體實例中,在80℃至150℃之溫度範圍內 進行醚化反應。在80℃至120℃之溫度範圍內,Amberlyst 15WET穩定。吾人發現100℃因對苯乙烯醚之選擇性較高而為最佳的。 In another embodiment of the invention, in the temperature range of 80 ° C to 150 ° C The etherification reaction is carried out. Amberlyst 15WET is stable in the temperature range of 80 ° C to 120 ° C. We have found that 100 ° C is optimal for its high selectivity to styrene ether.

在本發明之另一具體實例中,使用莫耳過量之醇。較佳,當醇為甲醇(MeOH)時,MeOH:苯乙烯之莫耳比為5:1。 In another embodiment of the invention, a molar excess of alcohol is used. Preferably, when the alcohol is methanol (MeOH), the molar ratio of MeOH:styrene is 5:1.

亦預期可使用諸如硫酸化沸石之無機酸性催化劑來催化醚化,但其活性較低。 It is also contemplated that an inorganic acidic catalyst such as a sulfated zeolite can be used to catalyze etherification, but its activity is low.

如將根據隨後之【實施方式】所顯而易見,產物流之組成視對進行製程之反應器系統之設計的選擇而定。 As will be apparent from the subsequent [embodiments], the composition of the product stream will depend on the choice of design of the reactor system in which the process is to be performed.

10‧‧‧裝置 10‧‧‧ device

12‧‧‧第一級氫化反應器 12‧‧‧First Stage Hydrogenation Reactor

14‧‧‧第一蒸餾塔 14‧‧‧First distillation tower

16‧‧‧第二蒸餾塔 16‧‧‧Second Distillation Tower

18‧‧‧第二級氫化反應器 18‧‧‧Second stage hydrogenation reactor

20‧‧‧液-液萃取區段 20‧‧‧Liquid-liquid extraction section

22‧‧‧烴饋料 22‧‧‧hydrocarbon feedstock

24‧‧‧饋料管線 24‧‧‧feed line

26‧‧‧氫氣 26‧‧‧ Hydrogen

28‧‧‧氫氣饋料管線 28‧‧‧ Hydrogen feed line

30‧‧‧輕餾分 30‧‧‧Light fractions

34‧‧‧產物流 34‧‧‧Product stream

36‧‧‧液體底部餾分 36‧‧‧Liquid bottom fraction

38‧‧‧重餾分 38‧‧‧Heavy fraction

42‧‧‧輕餾分 42‧‧‧Light fraction

44‧‧‧產物流 44‧‧‧Product stream

46‧‧‧輕萃餘物 46‧‧‧Light extraction

50‧‧‧產物 50‧‧‧ products

100‧‧‧裝置 100‧‧‧ device

102‧‧‧第一蒸餾塔 102‧‧‧First Distillation Tower

104‧‧‧第二蒸餾塔 104‧‧‧Second distillation tower

106‧‧‧醚化反應器 106‧‧‧etherification reactor

108‧‧‧第三蒸餾塔 108‧‧‧ Third distillation tower

110‧‧‧第一級氫化反應器 110‧‧‧First stage hydrogenation reactor

112‧‧‧第二級氫化反應器 112‧‧‧Second stage hydrogenation reactor

114‧‧‧BTX萃取區段 114‧‧‧BTX extraction section

120‧‧‧餾出物 120‧‧‧ distillate

124‧‧‧底部餾分 124‧‧‧ bottom fraction

126‧‧‧底部餾分 126‧‧‧ bottom fraction

130‧‧‧餾出物 130‧‧‧ distillate

132‧‧‧中間餾分 132‧‧‧ middle distillate

134‧‧‧C1-C3低碳數烷基醇 134‧‧‧C1-C3 low carbon alkyl alcohol

138‧‧‧平衡混合物 138‧‧‧Equilibrium mixture

140‧‧‧底部物 140‧‧‧Bottom

144‧‧‧餾出物 144‧‧‧ distillate

145‧‧‧餾出物 145‧‧‧ distillate

146‧‧‧產物流 146‧‧‧Product stream

148‧‧‧產物流 148‧‧‧Product stream

150‧‧‧萃餘物 150‧‧‧

154‧‧‧產物 154‧‧‧ products

200‧‧‧裝置 200‧‧‧ device

214‧‧‧產物流 214‧‧‧Product stream

216‧‧‧第四蒸餾塔 216‧‧‧ fourth distillation tower

218‧‧‧底部餾分 218‧‧‧ bottom fraction

222‧‧‧餾出物 222‧‧‧ distillate

300‧‧‧裝置 300‧‧‧ device

302‧‧‧預反應器 302‧‧‧Prereactor

304‧‧‧催化蒸餾塔 304‧‧‧ catalytic distillation tower

306‧‧‧C1-C3低碳數烷基醇 306‧‧‧C1-C3 low carbon alkyl alcohol

308‧‧‧物流 308‧‧‧ Logistics

310‧‧‧不含苯乙烯之BTX產物流 310‧‧‧BTX product stream without styrene

312‧‧‧液體苯乙烯醚流 312‧‧‧Liquid styrene ether stream

320‧‧‧冷凝器 320‧‧‧Condenser

322‧‧‧再沸器 322‧‧‧ reboiler

400‧‧‧裝置 400‧‧‧ device

402‧‧‧第一反應器 402‧‧‧First reactor

404‧‧‧第二反應器 404‧‧‧Second reactor

406‧‧‧液體饋料 406‧‧‧ liquid feed

408‧‧‧甲醇 408‧‧‧Methanol

410‧‧‧流出物 410‧‧‧ effluent

412‧‧‧流出物 412‧‧‧ effluent

PFR1‧‧‧塞流反應器1 PFR1‧‧‧ plug flow reactor 1

PFR2‧‧‧塞流反應器2 PFR2‧‧‧ plug flow reactor 2

為了更加完全理解本發明及其其他目標及優勢,結合隨附圖式一起參閱以下描述。 For a fuller understanding of the present invention and other objects and advantages,

圖1係標記為先前技術且為用於生產BTX之方法的示意性流程圖。 Figure 1 is a schematic flow diagram labeled as prior art and a method for producing BTX.

圖2為用於藉由將苯乙烯轉化成苯乙烯醚來降低BTX中之苯乙烯含量之方法之第一具體實例的示意性流程圖。 2 is a schematic flow diagram of a first embodiment of a method for reducing styrene content in BTX by converting styrene to styrene ether.

圖3為用於藉由將苯乙烯轉化成苯乙烯醚來降低BTX中之苯乙烯含量之方法之第二具體實例的示意性流程圖。 3 is a schematic flow diagram of a second embodiment of a method for reducing styrene content in BTX by converting styrene to styrene ether.

圖4為用於藉由在具有預反應器及催化蒸餾塔之裝置中將苯乙烯轉化成苯乙烯醚來降低BTX中之苯乙烯含量之方法之第三具體實例的示意性流程圖。 4 is a schematic flow diagram of a third embodiment of a method for reducing styrene content in BTX by converting styrene to styrene ether in a device having a pre-reactor and a catalytic distillation column.

圖5為用於模型化甲醇苯乙烯醚合成之2級塞流反應器之示意圖。 Figure 5 is a schematic representation of a two stage plug flow reactor for modeling methanol styrene ether synthesis.

圖6A為圖示反應混合物之組成概況隨沿圖5中所圖示之第一反應器 之距離而變的圖表,第一反應器係用於使甲醇與苯乙烯在對二甲苯中反應。 Figure 6A is a schematic representation of the composition of the reaction mixture along with the first reactor illustrated in Figure 5 A graph of the distance, the first reactor is used to react methanol with styrene in p-xylene.

圖6B為圖示反應混合物之組成概況隨沿圖5中圖示之第二反應器之距離而變的圖表,第二反應器係用於使另外之甲醇與苯乙烯在對二甲苯中反應。 Figure 6B is a graph showing the compositional profile of the reaction mixture as a function of the distance along the second reactor illustrated in Figure 5, the second reactor being used to react additional methanol with styrene in p-xylene.

圖7A為圖示組成概況隨沿如圖4中所圖示之預反應器之距離而變的圖表,該預反應器係用於使甲醇與苯乙烯在對二甲苯中反應以形成饋入催化蒸餾塔中之物流。 Figure 7A is a graph showing the composition profile as a function of the distance along the prereactor as illustrated in Figure 4 for reacting methanol with styrene in p-xylene to form a feed catalysis. The stream in the distillation column.

圖7B為圖示組成概況隨圖4中所圖示之催化蒸餾塔之高度而變的圖表。 Fig. 7B is a graph showing the composition profile as a function of the height of the catalytic distillation column illustrated in Fig. 4.

圖8為圖示在使用根據本發明之各種催化劑的情況下苯乙烯向苯乙烯醚之轉化率的圖表。 Figure 8 is a graph illustrating the conversion of styrene to styrene ether using various catalysts according to the present invention.

以下描述包含經由實驗室實驗及使用ASPEN PLUS®軟體進行模擬所獲得之資料。 The following description contains information obtained through laboratory experiments and simulations using ASPEN PLUS® software.

圖1係標記為先前技術且示意性圖示一種用於自烴饋料22生產苯乙烯含量降低之BTX 50的典型方法。烴饋料22可為含有輕芳族物之具有較高苯乙烯含量之任何精煉廠物流,諸如未加氫處理之熱解汽油、FCC石油腦或焦化石油腦。 1 is a prior art and schematically illustrates a typical method for producing a BTX 50 having a reduced styrene content from a hydrocarbon feed 22. The hydrocarbon feed 22 can be any refinery stream containing a light aromatic having a higher styrene content, such as unhydrotreated pyrolysis gasoline, FCC petroleum brain or coker brain.

用於該方法之裝置10具有一系列反應器及塔,包括:第一級氫化反應器12、第一蒸餾塔14、第二蒸餾塔16、第二級氫化反應器18及液-液萃取區段20。 The apparatus 10 for use in the process has a series of reactors and columns comprising: a first stage hydrogenation reactor 12, a first distillation column 14, a second distillation column 16, a second stage hydrogenation reactor 18, and a liquid-liquid extraction zone. Paragraph 20.

將包括苯乙烯之烴饋料22經由饋料管線24饋入第一級反應 器12中,在該第一級反應器中,烴饋料22在第一級催化劑上與經由氫氣饋料管線28饋入之氫氣26反應。催化劑為承載於礬土上之習知Pd或Ni,以使烴饋料22中之二烯轉化成單烯烴。將來自此反應器之產物流34饋入第一蒸餾塔14中,在該第一蒸餾塔中,將其分離成主要包含C5烴之輕餾分30及液體底部餾分36。將液體底部餾分36饋入第二蒸餾塔16中,在該第二蒸餾塔中,將其分離成包含C9及高於C9之烴的重餾分38,及包含BTX、乙苯及苯乙烯之輕餾分42。將輕餾分42饋入第二級氫化反應器18中,在該第二級氫化反應器中,其在第二級催化劑上與氫氣26反應。催化劑為習知雙層催化劑,包括NiMo上層及CoMo下層,以將烯烴轉化成石蠟且將硫化合物轉化成硫化氫。由此形成之硫化氫在第二級氫化反應器18下游自混合物移除。將來自第二級氫化反應器18之產物流44饋入液-液萃取區段20中,在該液-液萃取區段中,將其分離成輕萃餘物46及包含BTX及較少量乙苯之產物50。此為目前在大多數油精煉廠採用之方法。將苯乙烯氫化(H2消耗會增加成本)成乙苯(價值較低)。隨後列出本發明之優勢。 Feeding the hydrocarbon feed 22 comprising styrene to the first stage reaction via feed line 24 In the first stage reactor, the hydrocarbon feed 22 is reacted on the first stage catalyst with hydrogen 26 fed via a hydrogen feed line 28. The catalyst is conventional Pd or Ni supported on alumina to convert the diene in the hydrocarbon feed 22 to a monoolefin. The product stream 34 from this reactor is fed to a first distillation column 14 where it is separated into a light fraction 30 comprising primarily C5 hydrocarbons and a liquid bottoms fraction 36. The liquid bottom fraction 36 is fed to a second distillation column 16 where it is separated into a heavy fraction 38 comprising C9 and higher hydrocarbons than C9, and a light comprising BTX, ethylbenzene and styrene. Fraction 42. The light fraction 42 is fed to a second stage hydrogenation reactor 18 where it is reacted with hydrogen 26 on a second stage catalyst. The catalyst is a conventional two-layer catalyst comprising a NiMo upper layer and a CoMo lower layer to convert the olefin to paraffin and to convert the sulfur compound to hydrogen sulfide. The hydrogen sulfide thus formed is removed from the mixture downstream of the second stage hydrogenation reactor 18. The product stream 44 from the second stage hydrogenation reactor 18 is fed to a liquid-liquid extraction section 20 where it is separated into light strips of residue 46 and contains BTX and less The product of ethylbenzene 50. This is the method currently used in most oil refineries. Hydrogenation of styrene (H2 consumption adds cost) to ethylbenzene (lower value). The advantages of the invention are then listed.

參照圖2至圖7B,現將描述本發明之三個具體實例,且將顯示本發明優於圖1中所圖示之先前技術方法的效能及優勢。 Referring to Figures 2 through 7B, three specific examples of the present invention will now be described, and the performance and advantages of the present invention over the prior art method illustrated in Figure 1 will be shown.

圖2圖示本發明之方法之第一具體實例。用於該方法之裝置100包括第一蒸餾塔102、第二蒸餾塔104、醚化反應器106、第三蒸餾塔108、第一級氫化反應器110、第二級氫化反應器112及BTX萃取區段114。將含有苯乙烯之烴饋料22饋入第一塔102中,在該第一塔中,將其藉由蒸餾分離成主要包含C5烴之餾出物120,及富含C6-C8芳族烴且含有苯乙烯之底部餾分124。將底部餾分124饋入塔104中,在該塔中,將其蒸餾成底部餾 分126、中間餾分132及餾出物130。餾出物130富含C6及C7芳族烴。中間餾分132富含二甲苯、苯乙烯及乙苯,即C8芳族烴。底部餾分126主要包含C9+烴。 Figure 2 illustrates a first specific example of the method of the present invention. Apparatus 100 for use in the process includes a first distillation column 102, a second distillation column 104, an etherification reactor 106, a third distillation column 108, a first stage hydrogenation reactor 110, a second stage hydrogenation reactor 112, and a BTX extraction. Section 114. The styrene-containing hydrocarbon feed 22 is fed to a first column 102 where it is separated by distillation into a distillate 120 comprising predominantly C5 hydrocarbons and a C6-C8 enriched hydrocarbon It also contains bottom fraction 124 of styrene. The bottoms fraction 124 is fed to a column 104 where it is distilled to bottoms. Fraction 126, middle distillate 132 and distillate 130. Distillate 130 is rich in C6 and C7 aromatic hydrocarbons. The middle fraction 132 is rich in xylene, styrene and ethylbenzene, ie C8 aromatic hydrocarbons. The bottom fraction 126 primarily comprises C9+ hydrocarbons.

將中間餾分132、C1-C3低碳數烷基醇134饋入醚化反應器106中,在該醚化反應器中,其在對醚化具有選擇性之酸性催化劑(未示)上反應,形成富含相應苯乙烯醚之平衡混合物138(反應式1),其中C1-C3低碳數烷基醇134較佳為甲醇。或者,可使用乙醇。已以實驗方式發現當反應1在約100℃下進行時,選擇性醚化催化劑較佳為酸性樹脂,諸如Amberlyst 15TM樹脂。當使用Amberlyst 15WET或35WET時,用含有約33%苯乙烯及67%二甲苯之BTX饋料進行之測試顯示活性差異極小。 The middle distillate 132, C1-C3 lower alkyl alcohol 134 is fed to an etherification reactor 106 where it is reacted on an acidic catalyst (not shown) which is selective for etherification, An equilibrium mixture 138 (Reaction Formula 1) enriched in the corresponding styrene ether is formed, wherein the C1-C3 lower alkyl alcohol 134 is preferably methanol. Alternatively, ethanol can be used. It has been experimentally found that when the reaction 1 is carried out at about 100 ° C, the selective etherification catalyst is preferably an acidic resin such as Amberlyst 15 TM resin. When using Amberlyst 15WET or 35WET, tests with BTX feeds containing about 33% styrene and 67% xylene showed very little difference in activity.

C6H5CH=CH2+CH3OH ←→ C6H5CH(CH3)OCH3 (1) C 6 H 5 CH=CH 2 +CH 3 OH ←→ C 6 H 5 CH(CH 3 )OCH 3 (1)

如圖8中所示,亦可使用如上所述之其他類似酸性樹脂催化劑。詳言之,圖8圖示在使用10 g各種催化劑的情況下,在100℃之溫度下,在MeOH:苯乙烯之莫耳饋料比為5:1的情況下,在1000 rpm之攪拌器速度下苯乙烯向苯乙烯醚之轉化率。 As shown in Fig. 8, other similar acidic resin catalysts as described above can also be used. In detail, Figure 8 illustrates a stirrer at 1000 rpm with a MeOH:styrene feed ratio of 5:1 at a temperature of 100 ° C using 10 g of various catalysts. The conversion of styrene to styrene ether at speed.

將液體平衡混合物138饋入第三蒸餾塔108中,在該第三蒸餾塔中,將其分餾成富含苯乙烯醚之底部物140、含有殘餘未反應苯乙烯及實質上所有硫化合物之富含二甲苯之餾出物144,及主要含有未反應甲醇之餾出物145。將餾出物145再循環至醚化反應器106中。 The liquid equilibrium mixture 138 is fed to a third distillation column 108 where it is fractionated into a styrene ether-rich bottoms 140, containing residual unreacted styrene and substantially all of the sulfur compounds. The xylene-containing distillate 144 and the distillate 145 containing mainly unreacted methanol. Distillate 145 is recycled to etherification reactor 106.

將來自第二蒸餾塔104之餾出物130與來自第三蒸餾塔108之餾出物144及氫氣26一起共饋入第一級氫化反應器110中,在該第一級 氫化反應器中,其在第一級催化劑(與以上在【0018】中所述相同之第一級催化劑)上反應。將來自第一級氫化反應器110之產物流146及氫氣26饋入第二級氫化反應器112中,在該第二級氫化反應器中,其在第二級催化劑(與以上在【0018】中所述相同之第二級催化劑)上反應以使烯烴飽和且將硫化合物去硫。第一級氫化反應器110及第二級氫化反應器112在適於方法之各階段中使用之不同反應及催化劑的不同條件下操作,如將為熟習該項技術者所熟悉。例如參見Axens之公告。將來自第二級氫化反應器112之已移除硫之產物流148饋入BTX萃取區段114中,在該BTX萃取區段中,將其分離成萃餘物150及富含BTX且基本上不含苯乙烯或苯乙烯醚之產物154。 The distillate 130 from the second distillation column 104 is co-fed into the first stage hydrogenation reactor 110 together with the distillate 144 from the third distillation column 108 and hydrogen 26 at the first stage. In the hydrogenation reactor, it is reacted on a first stage catalyst (the same first stage catalyst as described above in [0018]). The product stream 146 from the first stage hydrogenation reactor 110 and the hydrogen 26 are fed to a second stage hydrogenation reactor 112 where it is in the second stage catalyst (and above [0018] The same second stage catalyst described above is reacted to saturate the olefin and desulfurize the sulfur compound. The first stage hydrogenation reactor 110 and the second stage hydrogenation reactor 112 operate under different conditions suitable for the various reactions and catalysts used in the various stages of the process, as will be familiar to those skilled in the art. See, for example, the announcement of Axens. The removed sulfur product stream 148 from the second stage hydrogenation reactor 112 is fed to a BTX extraction section 114 where it is separated into raffinate 150 and BTX-rich and substantially Product 154 free of styrene or styrene ether.

當C1-C3低碳數烷基醇134為甲醇且甲醇與苯乙烯之比率為1:1時,吾人在圖2中所圖示之單一醚化反應器106中獲得78.2%轉化率。視情況,在裝置100之改裝形式中,可將來自醚化反應器106之產物流138饋入至少一個另外之串聯安置之醚化反應器(未示)中,在該至少一個另外之串聯安置之醚化反應器中,其與另外之甲醇反應。使用一系列兩個醚化反應器之轉化率為94%。此改裝形式之詳情在實施例中給出。 When the C1-C3 lower alkyl alcohol 134 is methanol and the methanol to styrene ratio is 1:1, we obtain 78.2% conversion in the single etherification reactor 106 illustrated in Figure 2. Optionally, in a modified form of apparatus 100, product stream 138 from etherification reactor 106 can be fed to at least one additional cascaded etherification reactor (not shown) where the at least one additional series is placed. In the etherification reactor, it is reacted with additional methanol. The conversion using a series of two etherification reactors was 94%. Details of this modification are given in the examples.

一個顧慮在於甲醇可能會在醚化催化劑上轉化成二甲醚(反應式2)。以實驗方式測定不存在可偵測之由該種反應產生之產物(藉由GC測定),如由實施例中之表中所列之產物所示。結果指示催化劑對形成苯乙烯醚的選擇性大於對形成二甲醚的選擇性。 One concern is that methanol may be converted to dimethyl ether on the etherification catalyst (Scheme 2). The absence of detectable products resulting from such reaction (as determined by GC) was determined experimentally as indicated by the products listed in the tables in the Examples. The results indicate that the selectivity of the catalyst for the formation of styrene ether is greater than for the formation of dimethyl ether.

2 CH3OH ←→ (CH3)2O+H2O (2) 2 CH 3 OH ←→ (CH 3 ) 2 O+H 2 O (2)

圖3為本發明之方法之第二具體實例的示意圖。用於方法之第二具體實例之裝置200含有見於裝置100中之許多元件且使用相同元件符號鑒別此等元件。方法之第二具體實例中之差異為將來自第一蒸餾塔102之含有C5烴之餾出物222與來自第二蒸餾塔104之含有C6及C7烴之餾出物130及來自第三蒸餾塔108之餾出物144一起共饋入第一級氫化反應器110中,在該第一級氫化反應器中,將烯烴藉由在第一級催化劑(與【0018】中相同之第一級催化劑)上與氫氣26反應而氫化。此外,將來自第一級氫化反應器110之產物流214饋入第四蒸餾塔216中,在該第四蒸餾塔中,將其分離成餾出物120及底部餾分218。餾出物120主要包含C5烴。將底部餾分218饋入第二級氫化反應器112中,在該第二級氫化反應器中,如使用裝置100之方法之第一具體實例中,將烯烴及硫化合物氫化,形成實質上不含硫之產物流148。 Figure 3 is a schematic illustration of a second embodiment of the method of the present invention. Apparatus 200 for a second embodiment of the method contains many of the elements found in apparatus 100 and uses the same element symbols to identify such elements. The difference in the second embodiment of the process is that the C5 hydrocarbon-containing distillate 222 from the first distillation column 102 and the C6 and C7 hydrocarbon-containing distillate 130 from the second distillation column 104 are from the third distillation column. The distillate 144 of 108 is co-fed together into a first stage hydrogenation reactor 110 in which the olefin is passed through a first stage catalyst (the same as the first stage catalyst in [0018]) It is hydrogenated by reacting with hydrogen gas 26. In addition, product stream 214 from first stage hydrogenation reactor 110 is fed to a fourth distillation column 216 where it is separated into distillate 120 and bottoms fraction 218. Distillate 120 primarily comprises C5 hydrocarbons. The bottoms fraction 218 is fed to a second stage hydrogenation reactor 112 where the olefins and sulfur compounds are hydrogenated to form substantially free, in a first embodiment of the process using apparatus 100. Sulfur product stream 148.

應瞭解,可併入具有其他氫化反應器及蒸餾塔之額外階段以進一步精煉以上具體實例之BTX產物。 It will be appreciated that additional stages with other hydrogenation reactors and distillation columns can be incorporated to further refine the BTX products of the above specific examples.

圖4為本發明方法之第三具體實例的示意圖。用於方法之第三具體實例之裝置300包括預反應器302及催化蒸餾塔304。首先使烴饋料22在預反應器302中在如上所述之優先酸性醚化催化劑上與選自甲醇及乙醇之C1-C3低碳數烷基醇306反應,形成富含相應苯乙烯醚、殘餘未反應苯乙烯、殘餘未反應C1-C3低碳數烷基醇及C6-C8芳族烴之物流308。將物流308及另外之甲醇或乙醇306饋入催化蒸餾塔304中以與殘餘未反應苯乙烯反應來回收實質上不含苯乙烯之BTX產物流310及液體苯乙烯醚流312。催化蒸餾塔304包括在頂部之冷凝器320及在底部之再沸器322。應注意, 此具體實例僅適用於為實質上純BTX之烴饋料,因為未提供自饋料移除低碳數及高碳數烴。對於本發明之此具體實例,低碳數C5及高碳數C9+烴首先藉由蒸餾加以分離且傳送至精煉廠之別處。此描述於圖1中。因此,在此具體實例中,吾人僅處理C6-C8芳族物流之餾分。 Figure 4 is a schematic illustration of a third embodiment of the method of the present invention. Apparatus 300 for use in a third embodiment of the method includes a pre-reactor 302 and a catalytic distillation column 304. First, the hydrocarbon feed 22 is first reacted in a pre-reactor 302 with a C1-C3 lower alkyl alcohol 306 selected from the group consisting of methanol and ethanol on a preferred acidic etherification catalyst as described above to form a corresponding styrene-rich, A stream 308 of residual unreacted styrene, residual unreacted C1-C3 lower alkyl alcohol, and C6-C8 aromatic hydrocarbon. Stream 308 and additional methanol or ethanol 306 are fed to catalytic distillation column 304 to react with residual unreacted styrene to recover substantially styrene free BTX product stream 310 and liquid styrene ether stream 312. Catalytic distillation column 304 includes a condenser 320 at the top and a reboiler 322 at the bottom. It should be noted that This particular example is only applicable to hydrocarbon feeds that are substantially pure BTX because no low carbon number and high carbon number hydrocarbons are removed from the feed. For this particular embodiment of the invention, the low carbon number C5 and high carbon number C9+ hydrocarbons are first separated by distillation and passed elsewhere to the refinery. This is described in Figure 1. Therefore, in this particular example, we only process fractions of the C6-C8 aromatic stream.

已基於以下實施例中說明之實驗室實驗之結果表徵使用ASPEN PLUS®進行模型化之方法,且已鑒別其優勢。 The method of modeling with ASPEN PLUS® has been characterized based on the results of the laboratory experiments described in the examples below, and its advantages have been identified.

當相較於先前技術方法時,操作本發明之方法的優勢(尤其對於來自熱解汽油之BTX芳族物而言)為: The advantages of operating the method of the invention (especially for BTX aromatics from pyrolysis gasoline) when compared to prior art methods are:

●BTX產物幾乎不含由苯乙烯氫化所產生之乙苯。在先前技術方法中,通常將含有高量乙苯之C8芳族物分離或傳送至汽油池,且因此具有低價值。若殘留於C8芳族物中之乙苯之量過高,則會增加下游處理(例如純化混合二甲苯)之成本。 • The BTX product contains almost no ethylbenzene produced by the hydrogenation of styrene. In the prior art methods, typically contain high amounts of ethylbenzene of C 8 aromatics separated or sent to the gasoline pool, and thus have a low value. If the amount of remaining aromatic C 8 of ethylbenzene was the excessively high, increasing the cost of downstream processing (e.g. purification xylol) of.

●在氫化反應器中處理物流之前移除大部分苯乙烯會縮減須經由彼等反應器處理之體積,且因此彼等反應器處理所需物質之能力得以提高。此極有意義,因為氫化反應器通常為石油腦裂化器或汽油裂化器製程中之能力瓶頸。 • Removal of most of the styrene prior to processing the stream in the hydrogenation reactor reduces the volume that must be treated through the reactors, and thus the ability of the reactors to treat the desired materials is enhanced. This is extremely significant because hydrogenation reactors are often the bottleneck in the process of petroleum brain crackers or gasoline crackers.

●此外,低量殘餘苯乙烯會延長催化劑在氫化反應器中之操作壽命。 • In addition, low levels of residual styrene will extend the operating life of the catalyst in the hydrogenation reactor.

●無需消耗氫氣來將苯乙烯轉化成乙苯,且因此總製程之氫氣消耗降低。 • There is no need to consume hydrogen to convert styrene to ethylbenzene, and thus the hydrogen consumption of the overall process is reduced.

●苯乙烯醚可作為增氧劑摻合入汽油中以改良燃燒特性或其可再分 解成苯乙烯及甲醇(反應式1之逆反應)。 ● Styrene ether can be blended into gasoline as an oxygenating agent to improve combustion characteristics or it can be subdivided It is decomposed into styrene and methanol (reverse reaction of Reaction Scheme 1).

實施例Example

實施例1. 甲醇與苯乙烯在單一醚化反應器中於對二甲苯中反應。 Example 1. Methanol and styrene were reacted in p-xylene in a single etherification reactor.

使用Aspen Plus(第7.1版)之RPlug反應器模型對塞流反應器(PFR)進行模型化以使苯乙烯與甲醇反應(反應式1),形成甲醇苯乙烯醚(亦即1-甲氧基乙苯,在下表中稱為MSE)。在二甲苯溶劑中反應之實驗室速率資料顯示經驗關係為與苯乙烯濃度成正比而與甲醇濃度成反比。該模型包括考慮甲醇吸附效應以解釋低甲醇濃度下之速率增強,同時亦解釋高甲醇濃度下由甲醇引起之抑制作用。該反應模型亦藉由納入取自文獻(Verevkin等人,J.Chem.Eng.Data,46,984-990,2001)之平衡常數(Keqm)而考慮到逆反應。 The plug flow reactor (PFR) was modeled using the Aspen Plus (version 7.1) RPlug reactor model to react styrene with methanol (Reaction 1) to form methanol styrene ether (ie 1-methoxyl) Ethylbenzene is referred to as MSE in the table below. The laboratory rate data for the reaction in xylene solvent showed an empirical relationship that is proportional to the concentration of styrene and inversely proportional to the concentration of methanol. The model includes consideration of the methanol adsorption effect to account for the rate increase at low methanol concentrations, while also explaining the inhibition by methanol at high methanol concentrations. The reaction model also takes into account the inverse reaction by incorporating the equilibrium constant (K eqm ) taken from the literature (Verevkin et al, J. Chem. Eng. Data, 46 , 984-990, 2001).

使用NRTL-RK性質方法進行汽液平衡計算。 The vapor-liquid equilibrium calculation was performed using the NRTL-RK property method.

評估涉及MSE之二元對以及苯乙烯-甲醇之二元相互作用參數。 The binary pair parameters involving MSE and the binary interaction parameters of styrene-methanol were evaluated.

將反應器設計成塞流反應器PFR。其尺寸係針對於二甲苯中含有0.35質量分數之苯乙烯之饋料混合物中的1 mol/h苯乙烯流速。圖5為用於甲醇苯乙烯醚合成之2級塞流反應器裝置400之示意圖。表1顯示第一反應器402(標記為PFR1)及第二反應器404(標記為PFR2)之操作參數。塔經設計以在4 atm之壓力及100℃之溫度下操作。將於二甲苯中包含苯乙烯之液體饋料406與等同於苯乙烯之化學計量的化學計量之甲醇408混合,隨後饋入第一反應器402中。將來自第一反應器402之流出物410與另外之相同量之甲醇408混合,隨後饋入第二反應器404中。來自第二反應器404之流出物412主要為相應苯乙烯醚。因此,用於該製程之甲醇與苯乙烯之 總饋料比為2:1。圖6圖示沿第一反應器402之長度之液體組成概況。可看到,在離反應器入口0.6 m處獲得平衡組成。表2為第一反應器402(標記為PFR1)及第二反應器404(標記為PFR2)之物流概述。第一反應器402中之苯乙烯轉化率為78.2%且來自第一反應器402之殘餘苯乙烯在第二反應器404中之轉化率為73.5%,形成相應甲醇-苯乙烯醚408之總苯乙烯轉化率為94.2%。因此,在一個反應器且甲醇與苯乙烯之比率為1的情況下,存在78.2%轉化率。藉由向第二反應器之饋料中再添加1當量之甲醇,苯乙烯之總轉化率為94%。 The reactor was designed as a plug flow reactor PFR. The size is for a 1 mol/h styrene flow rate in a feed mixture containing 0.35 mass fraction of styrene in xylene. Figure 5 is a schematic representation of a two stage plug flow reactor unit 400 for methanol styrene ether synthesis. Table 1 shows the operating parameters of the first reactor 402 (labeled PFR1) and the second reactor 404 (labeled PFR2). The tower is designed to operate at a pressure of 4 atm and a temperature of 100 °C. Liquid feed 406 containing styrene in xylene is mixed with stoichiometric stoichiometric methanol 408 equivalent to styrene and subsequently fed to first reactor 402. The effluent 410 from the first reactor 402 is mixed with another identical amount of methanol 408 and subsequently fed to the second reactor 404. The effluent 412 from the second reactor 404 is primarily the corresponding styrene ether. Therefore, the methanol and styrene used in the process The total feed ratio is 2:1. FIG. 6 illustrates a liquid composition profile along the length of the first reactor 402. It can be seen that a balanced composition is obtained 0.6 m from the inlet of the reactor. Table 2 is a summary of the logistics of the first reactor 402 (labeled PFR1) and the second reactor 404 (labeled PFR2). The styrene conversion in the first reactor 402 was 78.2% and the conversion of residual styrene from the first reactor 402 in the second reactor 404 was 73.5%, forming the total benzene of the corresponding methanol-styrene ether 408. The ethylene conversion was 94.2%. Thus, in one reactor with a methanol to styrene ratio of 1, there is 78.2% conversion. By adding 1 equivalent of methanol to the feed to the second reactor, the total conversion of styrene was 94%.

鑒於Amerlyst 15WET在100℃之反應溫度下之穩定性、最佳活性及選擇性,其為模型計算中使用之催化劑。視所選催化劑而定,可使用其他反應溫度。 In view of the stability, optimum activity and selectivity of Amerlyst 15WET at a reaction temperature of 100 ° C, it is the catalyst used in the model calculation. Other reaction temperatures can be used depending on the catalyst selected.

實施例2. 乙醇與苯乙烯在一系列兩個反應器中於對二甲苯中反應。 Example 2. Ethanol and styrene were reacted in p-xylene in a series of two reactors.

在一組類似量測及模型化中,吾人顯示乙醇與甲醇之反應速率相似,且使用任一醇皆形成呈相似比例之相似產物之名單。 In a similar set of measurements and models, we have shown that the reaction rates of ethanol and methanol are similar, and that a list of similar products in similar proportions is formed using either alcohol.

實施例3. 甲醇與苯乙烯在一系列預反應器及催化蒸餾塔中於對二甲苯中反應。 Example 3. Methanol and styrene were reacted in p-xylene in a series of pre-reactors and catalytic distillation columns.

參照圖4,裝置300之一替代性組態提供上述方法之第三具 體實例。該方法涉及在催化蒸餾(CD)塔304上游之預反應器(PFR1)302。預反應器302為操作條件與表1中之PFR1相同之塞流反應器(相當於實施例1中所述及圖5中所圖示之第一反應器402),且催化蒸餾塔304在預反應器302之下游。催化蒸餾塔304與全冷凝器320及再沸器322一起操作。如所模型化之CD塔304具有15級且在1 atm之壓力下操作。反應區溫度在104℃與133℃之間。將烴饋料22與等同於烴饋料22之苯乙烯含量之化學計量的甲醇306混合且饋入預反應器302中。在CD塔304之第2級上方饋入來自預反應器302之流出物。在第3級下方饋入另外之甲醇306,以與來自預反應器302之流出物中之殘餘苯乙烯反應且藉此達成高苯乙烯總轉化率(99%)。表3給出預反應器302及催化蒸餾塔304之操作參數。用於如所模型化之製程之甲醇:苯乙烯的總饋料比為6:1。表4為預反應器302及催化蒸餾塔304之物流概述,且表5顯示催化蒸餾塔304之各級概況。 Referring to Figure 4, an alternative configuration of apparatus 300 provides a third of the above methods. Body instance. The method involves a pre-reactor (PFR1) 302 upstream of a catalytic distillation (CD) column 304. The prereactor 302 is a plug flow reactor having the same operating conditions as PFR1 in Table 1 (corresponding to the first reactor 402 described in Example 1 and illustrated in Figure 5), and the catalytic distillation column 304 is in advance. Downstream of reactor 302. Catalytic distillation column 304 operates with full condenser 320 and reboiler 322. The modeled CD tower 304 has 15 stages and operates at a pressure of 1 atm. The reaction zone temperature is between 104 ° C and 133 ° C. The hydrocarbon feed 22 is mixed with a stoichiometric amount of methanol 306 equivalent to the styrene content of the hydrocarbon feed 22 and fed to the prereactor 302. The effluent from the prereactor 302 is fed over the second stage of the CD column 304. Additional methanol 306 is fed below stage 3 to react with residual styrene from the effluent from prereactor 302 and thereby achieve a high total styrene conversion (99%). Table 3 gives the operating parameters of the pre-reactor 302 and the catalytic distillation column 304. The total feed ratio for methanol:styrene used in the modeled process was 6:1. Table 4 is an overview of the logistics of pre-reactor 302 and catalytic distillation column 304, and Table 5 shows an overview of the various stages of catalytic distillation column 304.

1.其中醚化催化劑為酸性陽離子交換樹脂催化劑。 1. wherein the etherification catalyst is an acidic cation exchange resin catalyst.

22‧‧‧烴饋料 22‧‧‧hydrocarbon feedstock

26‧‧‧氫氣 26‧‧‧ Hydrogen

100‧‧‧裝置 100‧‧‧ device

102‧‧‧第一蒸餾塔 102‧‧‧First Distillation Tower

104‧‧‧第二蒸餾塔 104‧‧‧Second distillation tower

106‧‧‧醚化反應器 106‧‧‧etherification reactor

108‧‧‧第三蒸餾塔 108‧‧‧ Third distillation tower

110‧‧‧第一級氫化反應器 110‧‧‧First stage hydrogenation reactor

112‧‧‧第二級氫化反應器 112‧‧‧Second stage hydrogenation reactor

114‧‧‧BTX萃取區段 114‧‧‧BTX extraction section

120‧‧‧餾出物 120‧‧‧ distillate

124‧‧‧底部餾分 124‧‧‧ bottom fraction

126‧‧‧底部餾分 126‧‧‧ bottom fraction

130‧‧‧餾出物 130‧‧‧ distillate

132‧‧‧中間餾分 132‧‧‧ middle distillate

134‧‧‧C1-C3低碳數烷基醇 134‧‧‧C1-C3 low carbon alkyl alcohol

138‧‧‧平衡混合物 138‧‧‧Equilibrium mixture

140‧‧‧底部物 140‧‧‧Bottom

144‧‧‧餾出物 144‧‧‧ distillate

145‧‧‧餾出物 145‧‧‧ distillate

146‧‧‧產物流 146‧‧‧Product stream

148‧‧‧產物流 148‧‧‧Product stream

150‧‧‧萃餘物 150‧‧‧

154‧‧‧產物 154‧‧‧ products

Claims (19)

一種用於製造實質上不含苯乙烯之C6-C8芳族烴之方法,其包括(a)提供含有包括苯乙烯之C6-C8芳族烴之烴饋料,(b)使該烴饋料中之該大部分苯乙烯與C1-C3低碳數烷基醇在對醚化具有選擇性之酸性催化劑存在下反應以形成相應苯乙烯醚;(c)藉由蒸餾分離該饋料中之該苯乙烯醚與該等烴,(d)氫化該烴饋料中之殘餘苯乙烯以形成產物流,及(e)自該產物流分離實質上不含苯乙烯之C6-C8芳族烴。 A method for producing a C6-C8 aromatic hydrocarbon substantially free of styrene, comprising (a) providing a hydrocarbon feed comprising a C6-C8 aromatic hydrocarbon comprising styrene, and (b) providing the hydrocarbon feedstock The majority of the styrene is reacted with a C1-C3 lower alkyl alcohol in the presence of an acidic catalyst selective for etherification to form the corresponding styrene ether; (c) separating the feed by distillation A styrene ether and the hydrocarbons, (d) hydrogenating residual styrene in the hydrocarbon feed to form a product stream, and (e) separating a C6-C8 aromatic hydrocarbon substantially free of styrene from the product stream. 如申請專利範圍第1項之方法,其包括在步驟(b)之前之初步步驟:蒸餾該烴饋料以獲得富含C6-C8芳族烴之物流;及蒸餾富含C6-C8芳族烴之該物流以獲得富含C6及C7芳族烴之第一物流、主要含有C9及高於C9之烴的第二底部物流及富含二甲苯、乙苯且含有苯乙烯之第三物流,其中該第三物流係根據步驟(b)進行處理。 The method of claim 1, comprising the preliminary step prior to step (b): distilling the hydrocarbon feed to obtain a C6-C8 aromatic hydrocarbon-rich stream; and distilling the C6-C8 aromatic hydrocarbon-rich The stream is obtained to obtain a first stream rich in C6 and C7 aromatic hydrocarbons, a second bottom stream mainly containing C9 and higher than C9, and a third stream rich in xylene and ethylbenzene and containing styrene, wherein The third stream is processed according to step (b). 如申請專利範圍第2項之方法,其中在步驟(c)中,藉由蒸餾分離含有苯乙烯醚之該饋料以回收富含該苯乙烯醚之液體流及富含烴且含有殘餘未反應苯乙烯之揮發物流。 The method of claim 2, wherein in step (c), the feed containing styrene ether is separated by distillation to recover a liquid stream rich in the styrene ether and rich in hydrocarbons and containing residual unreacted Volatile stream of styrene. 如申請專利範圍第3項之方法,其中在步驟(d)中,將富含烴且含有殘餘未反應苯乙烯之該揮發物流與富含C6及C7烴之該第一物流組合,且將該等組合物流在連續反應器中氫化以將烯烴、硫化合物及殘餘未轉化苯乙烯氫化,形成烴產物流,且在步驟(e)中,藉由液-液萃取自該烴產物流分離該等實質上不含苯乙烯之C6-C8芳族烴。 The method of claim 3, wherein in step (d), the volatile stream rich in hydrocarbons and containing residual unreacted styrene is combined with the first stream rich in C6 and C7 hydrocarbons, and The combined stream is hydrogenated in a continuous reactor to hydrogenate the olefin, sulfur compound and residual unconverted styrene to form a hydrocarbon product stream, and in step (e), the liquid product stream is separated from the hydrocarbon product stream by liquid-liquid extraction. A C6-C8 aromatic hydrocarbon substantially free of styrene. 如申請專利範圍第4項之方法,其包括在步驟(c)之前重複步驟(b) 以形成額外苯乙烯醚。 The method of claim 4, which comprises repeating step (b) before step (c) To form additional styrene ether. 如申請專利範圍第5項之方法,其中使該含有苯乙烯之烴饋料在一系列連續醚化反應器中在酸性醚化催化劑上與選自甲醇及乙醇之醇反應以形成該相應苯乙烯醚,將另外之醇饋入來自一個醚化反應器之反應混合物流出物中,之後饋入該一系列反應器中之下一醚化反應器中,藉此存在超過該烴饋料之苯乙烯含量的總體過量之甲醇。 The method of claim 5, wherein the styrene-containing hydrocarbon feed is reacted with an alcohol selected from the group consisting of methanol and ethanol on an acid etherification catalyst in a series of continuous etherification reactors to form the corresponding styrene. An ether, which is fed to the reaction mixture effluent from an etherification reactor, and then fed to the lower etherification reactor in the series of reactors, whereby styrene is present in excess of the hydrocarbon feed. The total amount of methanol in excess. 如申請專利範圍第1項之方法,其中在步驟(b)中使用相較於苯乙烯莫耳過量之該C1-C3低碳數烷基醇。 The method of claim 1, wherein the C1-C3 lower alkyl alcohol is used in step (b) in excess of the styrene molar excess. 如申請專利範圍第7項之方法,其中該C1-C3低碳數烷基醇為甲醇或乙醇。 The method of claim 7, wherein the C1-C3 lower carbon alkyl alcohol is methanol or ethanol. 如申請專利範圍第8項之方法,其中該醚化反應係在80℃至150℃之溫度下進行。 The method of claim 8, wherein the etherification reaction is carried out at a temperature of from 80 °C to 150 °C. 如申請專利範圍第9項之方法,其中該醚化反應係在100℃之溫度下進行。 The method of claim 9, wherein the etherification reaction is carried out at a temperature of 100 °C. 如申請專利範圍第10項之方法,其中該醇為甲醇且甲醇:苯乙烯之莫耳比為5:1。 The method of claim 10, wherein the alcohol is methanol and the molar ratio of methanol:styrene is 5:1. 如申請專利範圍第8項之方法,其中該酸性催化劑為酸性陽離子交換樹脂催化劑。 The method of claim 8, wherein the acidic catalyst is an acidic cation exchange resin catalyst. 如申請專利範圍第1項之方法,其中該烴饋料為實質上純C6-C8芳族烴,其中首先使該烴饋料在預反應器中在對醚化具有選擇性之酸性催化劑上與選自甲醇及乙醇之C1-C3低碳數烷基醇反應以形成富含該相應苯乙烯醚、殘餘未反應苯乙烯、殘餘未反應C1-C3低碳數烷基醇及 C6-C8芳族烴之產物流,且將該產物流及另外之C1-C3低碳數烷基醇饋入催化蒸餾塔中,自該催化蒸餾塔回收實質上不含苯乙烯之C6-C8芳族烴及液體苯乙烯醚。 The method of claim 1, wherein the hydrocarbon feed is a substantially pure C6-C8 aromatic hydrocarbon, wherein the hydrocarbon feed is first passed over a prereactor on an acidic catalyst selective for etherification. a C1-C3 lower alkyl alcohol selected from the group consisting of methanol and ethanol to react to form the corresponding styrene ether, residual unreacted styrene, residual unreacted C1-C3 lower carbon alkyl alcohol, and a product stream of a C6-C8 aromatic hydrocarbon, and feeding the product stream and another C1-C3 lower alkyl alcohol to a catalytic distillation column, recovering C6-C8 substantially free of styrene from the catalytic distillation column Aromatic hydrocarbons and liquid styrene ethers. 如申請專利範圍第13項之方法,其中該C1-C3低碳數烷基醇為甲醇或乙醇。 The method of claim 13, wherein the C1-C3 lower alkyl alcohol is methanol or ethanol. 如申請專利範圍第14項之方法,其中該醚化反應係在80℃至150℃之溫度下進行。 The method of claim 14, wherein the etherification reaction is carried out at a temperature of from 80 °C to 150 °C. 如申請專利範圍第15項之方法,其中該醇為甲醇且甲醇:苯乙烯之莫耳比為5:1。 The method of claim 15, wherein the alcohol is methanol and the molar ratio of methanol:styrene is 5:1. 如申請專利範圍第16項之方法,其中該酸性催化劑為酸性陽離子交換樹脂催化劑。 The method of claim 16, wherein the acidic catalyst is an acidic cation exchange resin catalyst. 如申請專利範圍第1項之方法,其另外包括步驟(f)使該產物流中之該苯乙烯醚分解以回收苯乙烯及醇。 The method of claim 1, further comprising the step (f) of decomposing the styrene ether in the product stream to recover styrene and alcohol. 如申請專利範圍第1項之方法,其中回收該苯乙烯醚以與汽油摻合來改良燃燒特性。 The method of claim 1, wherein the styrene ether is recovered for blending with gasoline to improve combustion characteristics.
TW101146047A 2012-12-07 2012-12-07 Separating styrene from c6-c8 aromatic hydrocarbons TWI518070B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101146047A TWI518070B (en) 2012-12-07 2012-12-07 Separating styrene from c6-c8 aromatic hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101146047A TWI518070B (en) 2012-12-07 2012-12-07 Separating styrene from c6-c8 aromatic hydrocarbons

Publications (2)

Publication Number Publication Date
TW201422580A TW201422580A (en) 2014-06-16
TWI518070B true TWI518070B (en) 2016-01-21

Family

ID=51393797

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101146047A TWI518070B (en) 2012-12-07 2012-12-07 Separating styrene from c6-c8 aromatic hydrocarbons

Country Status (1)

Country Link
TW (1) TWI518070B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464480B1 (en) * 2020-06-16 2022-11-07 주식회사 엘지화학 Method for preparing aromatic hydrocarbon

Also Published As

Publication number Publication date
TW201422580A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
JP5432198B2 (en) Hydrocarbon reforming method
JP6470760B2 (en) Method and apparatus for converting crude oil to petrochemical products with improved ethylene and BTX yields
JP6368360B2 (en) Process for producing aromatic compounds and light olefins from hydrocarbon raw materials
CN109593556A (en) For the method and facility by converting crude oil at the petrochemical industry product with improved productivity of propylene
US20150166435A1 (en) Methods and apparatuses for processing hydrocarbons
US9434894B2 (en) Process for converting FCC naphtha into aromatics
WO2015000849A1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene yield
CN105473690B (en) For by converting crude oil into the method and facility of the petrochemical industry product with improved carbon efficiencies
WO2020214273A1 (en) Process for fluidized catalytic cracking of disulfide oil to produce ethylene used for metathesis to produce propylene
US10113123B2 (en) Process and system for extraction of a feedstock
US8766028B2 (en) Separating styrene from C6-C8 aromatic hydrocarbons
RU2592286C2 (en) Method for production of olefins and gasoline with low benzene content
TWI518070B (en) Separating styrene from c6-c8 aromatic hydrocarbons
JP2011231322A5 (en)
US9067846B2 (en) Process for producing styrene-, methylstyrene- and ethylbenzene-free C6-C9 aromatic hydrocarbon blends
JP2003520888A5 (en)
WO2016011521A1 (en) Process for producing styrene-, methylstyrene- and ethylbenzene-free c6-c9 aromatic hydrocarbon blends
US10689586B2 (en) Methods and systems for producing olefins and aromatics from coker naphtha
CN102604672B (en) Method for producing low-sulfur gasoline
WO2014094105A1 (en) Separating styrene from c6 - c8 aromatic hydrocarbons
JP4446229B2 (en) Method for increasing added value of hydrocarbon feedstock and reducing vapor pressure of the feedstock
RU2792881C2 (en) Optimization of the integrated production of high-quality chemical products and combustible materials from heavy hydrocarbons
CN101597024B (en) Method for producing hydrogen with refinery dry gas
WO2010083642A1 (en) System and process for producing high quality gasoline by recombination and subsequent hydrogenation of catalytic hydrocarbons
TW201604273A (en) Process for producing styrene-, methylstyrene- and ethylbenzene-free C6-C9 aromatic hydrocarbon blends

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees