TWI517592B - Communication system and sample rate converter thereof - Google Patents

Communication system and sample rate converter thereof Download PDF

Info

Publication number
TWI517592B
TWI517592B TW102130468A TW102130468A TWI517592B TW I517592 B TWI517592 B TW I517592B TW 102130468 A TW102130468 A TW 102130468A TW 102130468 A TW102130468 A TW 102130468A TW I517592 B TWI517592 B TW I517592B
Authority
TW
Taiwan
Prior art keywords
configuration
sampling rate
order
rate converter
rate conversion
Prior art date
Application number
TW102130468A
Other languages
Chinese (zh)
Other versions
TW201448483A (en
Inventor
謝明諭
顏仕傑
胡拉姆 穆罕默德
Original Assignee
晨星半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨星半導體股份有限公司 filed Critical 晨星半導體股份有限公司
Priority to US14/283,301 priority Critical patent/US9035808B2/en
Publication of TW201448483A publication Critical patent/TW201448483A/en
Application granted granted Critical
Publication of TWI517592B publication Critical patent/TWI517592B/en

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Description

通訊系統及其取樣率轉換器 Communication system and its sample rate converter

本發明與取樣率轉換器(sample rate converter,SRC)相關,並且尤其與能適性改變運作組態的取樣率轉換器相關。 The present invention relates to a sample rate converter (SRC) and is particularly relevant to a sample rate converter that is capable of changing the operational configuration.

隨著電子相關技術的進步,各種類型的通訊設備愈來愈普及。現行通訊設備中的傳送器或接收器大多會包含較前端的類比電路和較後端的數位電路;兩種信號型態不同的電路之間設有數位-類比轉換器或是類比-數位轉換器。 With the advancement of electronic related technologies, various types of communication devices are becoming more and more popular. Most of the transmitters or receivers in current communication equipment will contain analog circuits and front-end digital circuits. The two signal types have digital-to-analog converters or analog-to-digital converters.

圖一呈現第三代合作夥伴計劃(3rd Generation Partnership Project,3GPP)通訊裝置中之傳送端電路的簡易功能方塊圖。為了避免數位信號中各脈波的高次諧波對類比電路造成干擾,數位電路120和類比電路160在實體上通常需相隔一段保護距離,用以避免耦合干擾(coupling interference)。此外,為了進一步減少數位脈波中之高次諧波可能對類比電路160造成的負面影響,待傳送信號110在進入數位-類比轉換器140之前,會先通過一取樣率轉換器122。取樣率轉換器122輸出之升頻轉換後信號130的取樣率等於類比電路160之操作取樣率除以一特定整數。易言之,類比電路160之操作取樣率為升頻轉換後信號130之取樣率的整數倍。相似地,3GPP接收器(未繪示)的數位電路中也包含一取樣率轉換器,用以將輸入信號降頻轉換。 Figure 1 shows a simplified functional block diagram of the transmitter circuit in the 3rd Generation Partnership Project (3GPP) communication device. In order to avoid interference of the higher harmonics of each pulse in the digital signal to the analog circuit, the digital circuit 120 and the analog circuit 160 are usually physically separated by a guard distance to avoid coupling interference. In addition, in order to further reduce the negative impact that the higher harmonics of the digital pulse may cause on the analog circuit 160, the signal to be transmitted 110 passes through a sample rate converter 122 before entering the digital-to-analog converter 140. The sample rate of the up-converted signal 130 output by the sample rate converter 122 is equal to the operational sample rate of the analog circuit 160 divided by a particular integer. In other words, the operational sampling rate of the analog circuit 160 is an integer multiple of the sampling rate of the up-converted signal 130. Similarly, a digital bit circuit of a 3GPP receiver (not shown) also includes a sample rate converter for downconverting the input signal.

如本發明所屬技術領域中具有通常知識者所知,取樣率轉換器 的轉換結果之正確性與其階數(order)相關。階數愈高的取樣率轉換包含愈多電路元件/運算程序,耗電量也愈高,但通常能提供較理想的轉換結果。 另一方面,通訊裝置所面對的外在環境通常會隨著時間不斷改變。為了在惡劣(例如存在大量雜訊干擾)的通訊環境下仍能保持正常運作,通訊裝置中的取樣率轉換器大多被設計為具有較高的階數。對於因使用電池而電力有限的行動通訊裝置而言,採用高階取樣率轉換器造成的高耗電量無疑是個不利因素,可能導致其待機時間下降。 Sample rate converter as known to those of ordinary skill in the art to which the present invention pertains The correctness of the conversion result is related to its order. The higher the order rate conversion, the more circuit components/computing programs, the higher the power consumption, but usually provides better conversion results. On the other hand, the external environment faced by communication devices often changes over time. In order to maintain normal operation in a communication environment (such as a large amount of noise interference), the sampling rate converters in communication devices are mostly designed to have a higher order. For mobile communication devices with limited power due to the use of batteries, the high power consumption caused by the high-order sampling rate converter is undoubtedly a disadvantage, which may cause the standby time to drop.

為解決上述問題,本發明提出一種新的取樣率轉換方案。不同於先前技術中採用固定階數之取樣率轉換器的做法,根據本發明之實施例中的通訊系統和取樣率轉換方法會考量一種或多種限制條件,動態調整取樣率轉換器的組態,進而改變取樣率轉換器的耗電量或者是其他表現指標。在不需要追求高品質轉換結果的通訊環境中,取樣率轉換器可被設定為運作於耗電量較低的組態,以節省通訊系統的電力。 To solve the above problems, the present invention proposes a new sampling rate conversion scheme. Unlike the prior art practice of employing a fixed order sample rate converter, the communication system and sample rate conversion method in accordance with an embodiment of the present invention takes into account one or more constraints and dynamically adjusts the configuration of the sample rate converter. In turn, the power consumption of the sample rate converter is changed or other performance indicators. In communication environments where high quality conversion results are not required, the sample rate converter can be set to operate in a lower power configuration to save power in the communication system.

根據本發明之一具體實施例為一種通訊系統,其中包含一可改變組態之取樣率轉換器與一控制器。該取樣率轉換器係用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號。該取樣率轉換器能運作於一第一組態或不同於該第一組態之一第二組態。該控制器係用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者。 In accordance with an embodiment of the present invention, a communication system includes a sample rate converter and a controller that are configurable. The sample rate converter is configured to convert a digital signal having a first sampling rate into a converted signal having a second sampling rate. The sample rate converter can operate in a first configuration or a second configuration different from the first configuration. The controller is configured to dynamically control the sampling rate converter to operate in one of the first configuration and the second configuration according to at least one constraint condition.

根據本發明之另一具體實施例為一種應用於一通訊系統中之一取樣率轉換方法。一取樣率轉換程序能運作於一第一組態或不同於該第一組態之一第二組態。該取樣率轉換方法包含下列步驟:(a)根據至少一限制條件,決定該取樣率轉換程序之一組態切換規則;以及(b)根據該組態切換規則於該第一組態與該第二組態間切換該取樣率轉換程序。 Another embodiment in accordance with the present invention is a sampling rate conversion method for use in a communication system. A sample rate conversion program can operate in a first configuration or a second configuration different from the first configuration. The sampling rate conversion method includes the following steps: (a) determining one of the sampling rate conversion procedures to configure a switching rule according to at least one restriction condition; and (b) switching the rule according to the configuration to the first configuration and the first The sampling rate conversion procedure is switched between the two configurations.

根據本發明之另一具體實施例為一種可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號。該取樣率轉換器包含一取樣率轉換電路與一控制器。該取樣率轉換電路能運作於至少兩種以上不同組態。該控制器係用以根據至少一限制條件,動態控制該取樣率轉換電路運作於該至少兩種以上不同組態的其中一種。 Another embodiment of the present invention is a changeable configuration sample rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate. The sample rate converter includes a sample rate conversion circuit and a controller. The sample rate conversion circuit can operate in at least two different configurations. The controller is configured to dynamically control the sampling rate conversion circuit to operate in one of the at least two different configurations according to at least one constraint condition.

關於本發明的優點與精神可以藉由以下發明詳述及所附圖式得到進一步的瞭解。 The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

110‧‧‧待傳送信號 110‧‧‧ signals to be transmitted

120‧‧‧數位電路 120‧‧‧Digital Circuit

122‧‧‧取樣率轉換器 122‧‧‧Sampling rate converter

130‧‧‧升頻轉換後信號 130‧‧‧Upconverted signal

140‧‧‧數位-類比轉換器 140‧‧‧Digital-to-analog converter

160‧‧‧類比電路 160‧‧‧ analog circuit

200‧‧‧通訊系統 200‧‧‧Communication system

210‧‧‧可改變組態之取樣率轉換器 210‧‧‧Changeable configuration of sample rate converter

215‧‧‧控制器 215‧‧‧ Controller

220‧‧‧數位電路 220‧‧‧Digital Circuit

240‧‧‧數位-類比轉換器 240‧‧‧Digital-to-analog converter

260‧‧‧類比電路 260‧‧‧ analog circuit

210A‧‧‧低階取樣率轉換電路 210A‧‧‧Low-order sampling rate conversion circuit

210B‧‧‧高階取樣率轉換電路 210B‧‧‧High-order sampling rate conversion circuit

210C‧‧‧多工器 210C‧‧‧Multiplexer

210D‧‧‧延遲元件 210D‧‧‧ delay element

212‧‧‧高階取樣率轉換電路 212‧‧‧High-order sampling rate conversion circuit

212A‧‧‧局部電路 212A‧‧‧Local Circuit

212B‧‧‧多工器 212B‧‧‧Multiplexer

212C‧‧‧乘法器 212C‧‧‧ Multiplier

S82~S84‧‧‧流程步驟 S82~S84‧‧‧ Process steps

圖一呈現3GPP通訊裝置中之傳送端電路的簡易功能方塊圖。 FIG. 1 is a block diagram showing the simple function of the transmitting end circuit in the 3GPP communication device.

圖二為根據本發明之一實施例中的通訊系統之功能方塊圖。 2 is a functional block diagram of a communication system in accordance with an embodiment of the present invention.

圖三呈現取樣率轉換器之運作階數與數種限制條件的對應關係範例。 Figure 3 shows an example of the correspondence between the operating order of the sample rate converter and several constraints.

圖四(A)和圖四(B)呈現根據本發明之控制器採用的組態切換方式範例。 Figures 4(A) and 4(B) present examples of configuration switching methods employed by the controller in accordance with the present invention.

圖五(A)和圖五(B)係繪示根據本發明之取樣率轉換器的一種內部電路配置範例。 Figures 5(A) and 5(B) illustrate an example of an internal circuit configuration of a sample rate converter in accordance with the present invention.

圖六(A)係繪示根據本發明之取樣率轉換器的另一種內部電路配置範例;圖六(B)為該取樣率轉換器的一種詳細實施範例;圖六(C)為該取樣率轉換器的一種信號時序範例;圖六(D)標示出用以產生低階轉換結果的局部電路之範圍;圖六(E)呈現一種於低階組態時關閉乘法器的實施範例。 Figure 6 (A) shows another internal circuit configuration example of the sampling rate converter according to the present invention; Figure 6 (B) shows a detailed implementation example of the sampling rate converter; Figure 6 (C) shows the sampling rate. An example of signal timing for a converter; Figure 6(D) shows the extent of the local circuit used to generate the low-order conversion result; Figure 6(E) shows an example of the implementation of turning off the multiplier in the low-order configuration.

圖七呈現根據本發明之另一取樣率轉換電路的詳細實施範例。 Figure 7 presents a detailed implementation example of another sample rate conversion circuit in accordance with the present invention.

圖八為根據本發明之一實施例中的取樣率轉換方法之流程圖。 Figure 8 is a flow chart of a sampling rate conversion method in accordance with an embodiment of the present invention.

根據本發明之一具體實施例為一種通訊系統,其功能方塊圖係繪示於圖二。須說明的是,此處所謂本發明一辭係用以指稱該等實施例所呈現的發明概念,但其涵蓋範疇並未受限於該等實施例本身。此外,本揭露書中的數學表示式係用以說明與本發明之實施例相關的原理和邏輯,除非有特別指明的情況,否則不對本發明之範疇構成限制。 A specific embodiment of the present invention is a communication system, and a functional block diagram thereof is shown in FIG. It should be noted that the phrase "the invention" is used herein to refer to the inventive concepts presented in the embodiments, but the scope of the invention is not limited by the embodiments themselves. In addition, the mathematical expressions in the present disclosure are intended to illustrate the principles and logic associated with the embodiments of the present invention, and the scope of the present invention is not limited unless otherwise specified.

通訊系統200中包含一可改變組態之取樣率轉換器210與一控制器215。於此實施例中,取樣率轉換器210係包含於數位電路220中,用以將具有輸入取樣率FIN之一數位信號轉換為具有另一輸出取樣率FOUT之轉換後信號。該轉換後信號隨後會被依序提供至數位-類比轉換器240和類比電路260,以使類比電路260之操作取樣率為該轉換後信號之取樣率的整數倍,有助於減少數位脈波對類比電路260造成的干擾。 The communication system 200 includes a changeable configuration sample rate converter 210 and a controller 215. In this embodiment, the sample rate converter 210 is included in the digital circuit 220 for converting a digital signal having one of the input sampling rates F IN into a converted signal having another output sampling rate F OUT . The converted signal is then sequentially supplied to the digital-to-analog converter 240 and the analog circuit 260 so that the operational sampling rate of the analog circuit 260 is an integer multiple of the sampling rate of the converted signal, which helps to reduce the digital pulse wave. Interference with analog circuit 260.

取樣率轉換器210能運作於至少兩種不同的組態。舉例而言,取樣率轉換器210可被設計為在兩種不同的組態中具有不同的運作階數。或者,取樣率轉換器210可被設計為在兩種不同的組態中具有相同的運作階數,但具有不同的運算複雜度。一般而言,運作階數較高或者是複雜度較高的取樣率轉換都較耗電。取樣率轉換器210之組態改變方式容後詳述。以下說明主要以取樣率轉換器210於第一組態和第二組態之運作階數不同的情況為例,但本發明的範疇不以此為限。此外,透過以下說明,本發明所屬技術領域中具有通常知識者可理解,本發明的範疇不限於取樣率轉換器210之組態數量為二的情況。 The sample rate converter 210 can operate in at least two different configurations. For example, the sample rate converter 210 can be designed to have different operational orders in two different configurations. Alternatively, the sample rate converter 210 can be designed to have the same operational order in two different configurations, but with different operational complexity. In general, sampling rate conversions with higher operating orders or higher complexity are more power-hungry. The configuration change mode of the sampling rate converter 210 will be described in detail later. The following description mainly takes the case where the sampling rate converter 210 has different operating orders of the first configuration and the second configuration, but the scope of the present invention is not limited thereto. Further, it will be understood by those of ordinary skill in the art to which the present invention pertains, the scope of the present invention is not limited to the case where the number of configurations of the sampling rate converter 210 is two.

於實際應用中,控制器215可被設置於數位電路220內部,亦可如圖二所示獨立於數位電路220之外。控制器215係用以根據至少一限制條件,動態控制取樣率轉換器210運作於第一組態或第二組態。提供至控制器215的限制條件可包含但不限於通訊系統200量測傳送器品質、傳輸通道品質,或接收器品質後產生的相關判斷,例如誤差向量幅度(error vector magnitude,EVM)、鄰近通道洩漏功率比(adjacent channel leakage power ratio,ACLR)、傳送端混附發射量(TX spurious emission at RX band),或是傳送端信號輸出功率。圖三呈現的表格為取樣率轉換器210之運作階數與數種限制條件的對應關係範例。如該表格所示,當所需誤差向量幅度較差、傳送端混附發射量較低或是信號輸出功率較低時,控制器215都可令取樣率轉換器210運作於階數較低的組態。概言之,當通訊環境品質較佳時,取樣率轉換器210便不需要運作在耗電量較高的高階組態。相對地,當通訊環境品質較差時,取樣率轉換器210便可被切換至能提供較佳表現的高階組態。藉此,在不損害通訊系統200整體運作表現的情況下,取樣率轉換器210的平均耗電量可被降低。 In practical applications, the controller 215 can be disposed inside the digital circuit 220, or can be independent of the digital circuit 220 as shown in FIG. The controller 215 is configured to dynamically control the sampling rate converter 210 to operate in the first configuration or the second configuration according to at least one restriction condition. The constraints provided to the controller 215 may include, but are not limited to, the communication system 200 measuring the transmitter quality, the quality of the transmission channel, or the correlation determined by the quality of the receiver, such as error vector magnitude (EVM), adjacent channels. Adjacent channel leakage power Ratio, ACLR), TX spurious emission at RX band, or transmit signal output power. The table presented in FIG. 3 is an example of the correspondence between the operating order of the sampling rate converter 210 and several constraints. As shown in the table, the controller 215 can cause the sample rate converter 210 to operate in a lower order group when the required error vector magnitude is poor, the transmitted end mixed emission amount is low, or the signal output power is low. state. In summary, when the quality of the communication environment is better, the sample rate converter 210 does not need to operate in a high-order configuration with high power consumption. In contrast, when the quality of the communication environment is poor, the sample rate converter 210 can be switched to a higher order configuration that provides better performance. Thereby, the average power consumption of the sampling rate converter 210 can be reduced without impairing the overall operational performance of the communication system 200.

此外,提供至控制器215的限制條件也可以包含來自通訊系統200本身的限制,例如通訊系統200的電力狀態。舉例而言,當控制器215發現通訊系統200的電量低於一門檻值時,可將原本運作於耗電量較高之組態的取樣率轉換器210切換為運作於耗電量較低的組態,以延長通訊系統200的可使用時間。前述各種限制條件的產生方式皆為本發明所屬技術領域中具有通常知識者所知,因此不再贅述。 Moreover, the constraints provided to controller 215 may also include restrictions from communication system 200 itself, such as the power state of communication system 200. For example, when the controller 215 finds that the power of the communication system 200 is lower than a threshold, the sampling rate converter 210 that is originally configured to operate at a higher power consumption can be switched to operate at a lower power consumption. Configuration to extend the usable time of the communication system 200. The manner of generating the foregoing various limitations is known to those of ordinary skill in the art to which the present invention pertains, and therefore will not be described again.

實務上,控制器215可利用一查找表或一邏輯運算電路決定取樣率轉換器210的組態切換規則。以圖三所示之表格為例,控制器215可以一限制條件做為索引值,查找出相對應的運作階數,並根據其查找結果決定應如何切換取樣率轉換器210。須說明的是,該等對應關係中的各種數值大小可由通訊系統200的電路設計者根據實務經驗決定,不以圖三列舉者為限。本發明所屬技術領域中具有通常知識者可理解,該等對應關係和控制器215選擇階數的邏極規則亦可利用包含比較器、邏輯閘等元件的電路來實現,或者是被編寫為非暫態電腦可讀取媒體,儲存至配合控制器215的記憶體中。 In practice, the controller 215 can determine the configuration switching rules of the sample rate converter 210 using a lookup table or a logic operation circuit. Taking the table shown in FIG. 3 as an example, the controller 215 can use a constraint condition as an index value, find a corresponding operation order, and determine how to switch the sample rate converter 210 according to the search result. It should be noted that the various numerical values in the correspondences may be determined by the circuit designer of the communication system 200 based on practical experience, and are not limited to those listed in FIG. It will be understood by those of ordinary skill in the art that the correspondence and the logic rules of the controller 215 to select the order can also be implemented by using a circuit including a comparator, a logic gate, etc., or written as a non- The transient computer can read the media and store it in the memory of the controller 215.

當必須同時考量多個限制條件時,控制器215可分別根據各個限制條件查找出一個相對應的運作階數,再自查找所得的多個運作階數中 選擇一最大者做為最終選定的運作階數。易言之,控制器215可根據第一限制條件為取樣率轉換器210決定一第一階數、根據第二限制條件為取樣率轉換器210決定一第二階數,並根據第一階數與第二階數中之較大者決定取樣率轉換器210的組態切換規則。 When a plurality of restriction conditions must be considered at the same time, the controller 215 can find a corresponding operation order according to each constraint condition, and then find the plurality of operation orders obtained by the self-search. Select the one that is the largest as the final selected operational order. In other words, the controller 215 may determine a first order for the sampling rate converter 210 according to the first constraint condition, determine a second order for the sampling rate converter 210 according to the second limiting condition, and according to the first order number. The configuration switching rule of the sampling rate converter 210 is determined by the larger of the second order.

於根據本發明之實施例中,控制器為取樣率轉換器選擇的運作階數可為一整數,亦可為一非整數。假設處於第一組態中的取樣率轉換器210所對應之運作階數為正整數N,處於第二組態中的取樣率轉換器210所對應之運作階數為另一正整數M。於一實施例中,當控制器215為取樣率轉換器210選擇的運作階數介於第一運作階數N與第二運作階數M之間。以N等於1、M等於2的情況為例,若控制器215為取樣率轉換器210選擇的運作階數為1.5,控制器215可令取樣率轉換器210於第一組態和第二組態間定時交替切換,並且各自佔據50%的工作時間。如圖四(A)所示,控制器215可令取樣率轉換器210於一特定時段T內前50%的時間運作於第一組態,後50%的時間運作於第二組態。控制器215亦可如圖四(B)所示,將取樣率轉換器210運作於第一組態和第二組態的時間各自拆分為兩段T*25%。相似地,若N等於1、M等於3,令取樣率轉換器210於第一組態和第二組態間定時交替切換,並且各自佔據50%的工作時間,可使取樣率轉換器210的運作階數等效於2。 In an embodiment of the invention, the controller selects an operation order for the sample rate converter to be an integer or a non-integer. It is assumed that the operation order corresponding to the sample rate converter 210 in the first configuration is a positive integer N, and the operation order corresponding to the sample rate converter 210 in the second configuration is another positive integer M. In one embodiment, the operational order selected by the controller 215 for the sample rate converter 210 is between the first operational order N and the second operational order M. Taking N equal to 1, M equal to 2 as an example, if the controller 215 selects the operating order of the sampling rate converter 210 to be 1.5, the controller 215 can cause the sampling rate converter 210 to be in the first configuration and the second group. The inter-state timings alternately switch and each occupy 50% of the working time. As shown in FIG. 4(A), the controller 215 can cause the sample rate converter 210 to operate in the first configuration for the first 50% of the time period T and the second configuration for the last 50% of the time. The controller 215 can also split the time when the sampling rate converter 210 operates in the first configuration and the second configuration into two segments T*25% as shown in FIG. 4(B). Similarly, if N is equal to 1, M is equal to 3, the sampling rate converter 210 is alternately switched between the first configuration and the second configuration, and each occupies 50% of the working time, so that the sampling rate converter 210 can be The operating order is equivalent to 2.

於一實施例中,當控制器215選擇於兩種組態間交替切換取樣率轉換器210以實現某一特定運作階數時,控制器215利用一三角-積分調變(Delta-Sigma Modulation)程序或脈衝寬度調變(Pulse Width Modulation)來規劃於第一組態和第二組態間切換取樣率轉換器210的時間分配方式。由上述說明可知,只要能運用多個不同階數的轉換器組態,以實現某一特定運作階數的調變方式即可,本發明的範疇不限於特定的調變方式。藉此,因切換組態而產生的雜訊可被推移至較不會干擾類比電路260的頻段。 In one embodiment, when the controller 215 selects to alternately switch the sample rate converter 210 between the two configurations to achieve a particular operational order, the controller 215 utilizes a delta-sigma modulation (Delta-Sigma Modulation). A program or Pulse Width Modulation is programmed to switch the time allocation manner of the sample rate converter 210 between the first configuration and the second configuration. It can be seen from the above description that the scope of the present invention is not limited to a specific modulation mode as long as a plurality of converter configurations of different orders can be used to realize a modulation mode of a certain operational order. Thereby, the noise generated by switching the configuration can be shifted to a frequency band that does not interfere with the analog circuit 260.

如圖五(A)所示,於一實施例中,取樣率轉換器210包含一低階取樣率轉換電路210A與一高階取樣率轉換電路210B。當取樣率轉換器210運作於低階組態時,低階取樣率轉換電路210A被啟動。當取樣率轉換器210運作於高階組態時,高階取樣率轉換電路210B被啟動。當低階取樣率轉換電路210A被啟動,高階取樣率轉換電路210B可被關閉,以節省電力。相對地,當高階取樣率轉換電路210B被啟動,低階取樣率轉換電路210A可被關閉。 As shown in FIG. 5(A), in an embodiment, the sampling rate converter 210 includes a low-order sampling rate conversion circuit 210A and a high-order sampling rate conversion circuit 210B. When the sample rate converter 210 operates in a low order configuration, the low order sample rate conversion circuit 210A is activated. When the sample rate converter 210 operates in a high order configuration, the high order sample rate conversion circuit 210B is activated. When the low-order sampling rate conversion circuit 210A is activated, the high-order sampling rate conversion circuit 210B can be turned off to save power. In contrast, when the high-order sampling rate conversion circuit 210B is activated, the low-order sampling rate conversion circuit 210A can be turned off.

圖五(B)進一步呈現圖五(A)所示之取樣率轉換器210的一種詳細實施範例。於此範例中,控制器215產生的切換信號tp係用以控制多工器210C,以選擇將提供至取樣率轉換器210的輸出端OUT的是低階取樣率轉換電路210A或高階取樣率轉換電路210B的輸出信號。如本發明所屬技術領域中具有通常知識者所知,相較於低階取樣率轉換電路,高階取樣率轉換電路須要取得較多筆輸入資料始能進行運算,產生其輸出信號。為了達到無縫(seamless)切換的效果,低階取樣率轉換電路210A與輸入端IN之間設有一延遲元件210D。以低階取樣率轉換電路210A之運作階數等於一、高階取樣率轉換電路210B之運作階數等於二,且輸入取樣率FIN為10兆赫的情況為例,延遲元件210D提供的延遲時間大致等於0.1微秒,也就是將電路210A、210B的輸入點數位移乘以輸入取樣率FIN的倒數。在此例中,二階轉頻器與一階轉頻器輸入位移差為1。如此一來,低階取樣率轉換電路210A和高階取樣率轉換電路210B同一時間的輸出信號便可被保持為對應於同一筆輸入信號。此外,為了進一步確保輸出端OUT不會因為切換信號tp的狀態改變而出現短時脈衝(glitch),控制器215可被設計為安排切換信號tp的狀態轉換時間點同步於輸入取樣率FIN或輸出取樣率FOUT之時脈信號的狀態轉換時間點。 Figure 5 (B) further presents a detailed embodiment of the sample rate converter 210 shown in Figure 5 (A). In this example, the switching signal tp generated by the controller 215 is used to control the multiplexer 210C to select the low-order sampling rate conversion circuit 210A or the high-order sampling rate conversion to be supplied to the output terminal OUT of the sampling rate converter 210. The output signal of circuit 210B. As is known to those of ordinary skill in the art, higher order sampling rate conversion circuits require more input data to be manipulated to produce an output signal than a low order sampling rate conversion circuit. In order to achieve the effect of seamless switching, a delay element 210D is provided between the low-order sampling rate conversion circuit 210A and the input terminal IN. Taking the operation order of the low-order sampling rate conversion circuit 210A equal to one, the operation order of the high-order sampling rate conversion circuit 210B is equal to two, and the input sampling rate F IN is 10 MHz as an example, the delay time provided by the delay element 210D is approximately Equal to 0.1 microseconds, that is, the input point number of the circuits 210A, 210B is multiplied by the reciprocal of the input sample rate F IN . In this example, the input displacement difference between the second-order transconverter and the first-order transponder is 1. In this way, the output signals of the low-order sampling rate conversion circuit 210A and the high-order sampling rate conversion circuit 210B at the same time can be maintained to correspond to the same input signal. Furthermore, in order to further ensure that the output terminal OUT does not appear glitch due to the state change of the switching signal tp, the controller 215 can be designed to arrange the state transition time point of the switching signal tp to be synchronized with the input sampling rate F IN or The state transition time point of the clock signal of the sampling rate F OUT is output.

如圖六(A)所示,於另一實施例中,取樣率轉換器210包含一高 階取樣率轉換電路212。當取樣率轉換器210運作於低階組態時,高階取樣率轉換電路212中之一局部電路212A被運用以產生低階轉換結果。理論上,高階取樣率轉換電路的元件(例如乘法器、延遲元件、加法器、減法器…)之數量會高於組成一低階取樣率轉換電路所需要的元件數量。因此,藉由適當地選擇電路元件並運用多工器,高階取樣率轉換電路亦能提供低階轉換結果,也就是等效於在高階取樣率轉換電路中嵌入一低階取樣率轉換電路。當取樣率轉換器210運作於高階組態時,高階取樣率轉換電路212中的多工器則是被控制為輸出高階轉換結果。 As shown in FIG. 6(A), in another embodiment, the sample rate converter 210 includes a high The order sampling rate conversion circuit 212. When the sample rate converter 210 is operating in a low order configuration, one of the high order sample rate conversion circuits 212 is utilized to generate a low order conversion result. In theory, the number of components (eg, multipliers, delay elements, adders, subtractors, ...) of the high-order sample rate conversion circuit will be higher than the number of components required to form a low-order sample rate conversion circuit. Therefore, by appropriately selecting the circuit components and using the multiplexer, the high-order sampling rate conversion circuit can also provide low-order conversion results, that is, equivalent to embedding a low-order sampling rate conversion circuit in the high-order sampling rate conversion circuit. When the sample rate converter 210 operates in a high-order configuration, the multiplexer in the high-order sample rate conversion circuit 212 is controlled to output high-order conversion results.

圖六(B)呈現高階取樣率轉換電路212的一種詳細實施範例,圖六(C)則是此取樣率轉換電路的一種信號時序範例。當切換信號tp為1,輸出端OUT所提供的是一階轉換結果;當切換信號tp為0,輸出端OUT所提供的是二階轉換結果。在圖六(D)中,局部電路212A所包含的電路元件為實線或是具有實線外框,而局部電路212A之外的電路元件被標示為虛線或是具有虛線外框。於一實施例中,當取樣率轉換器210運作於低階組態時,局部電路212A之外的電路元件,亦即產生低階轉換結果時不需要的電路元件,可被局部或全部關閉,以降低耗電量。 FIG. 6(B) shows a detailed implementation example of the high-order sampling rate conversion circuit 212, and FIG. 6(C) shows an example of the signal timing of the sampling rate conversion circuit. When the switching signal tp is 1, the output terminal OUT provides a first-order conversion result; when the switching signal tp is 0, the output terminal OUT provides a second-order conversion result. In FIG. 6(D), the circuit element included in the partial circuit 212A is a solid line or has a solid outer frame, and circuit elements other than the partial circuit 212A are indicated as dashed lines or have a dotted outer frame. In an embodiment, when the sampling rate converter 210 operates in a low-order configuration, circuit components outside the partial circuit 212A, that is, circuit components that are not required when the low-order conversion result is generated, may be partially or completely turned off. To reduce power consumption.

於實際應用中,以組合邏輯元件(combinational logic element)實現的乘法器相當耗電。圖六(E)呈現一種於一階組態時透過多工器212B關閉一乘法器212C以降低耗電量的實施範例。 In practical applications, multipliers implemented with combinational logic elements are quite power intensive. Fig. 6(E) shows an example of an embodiment in which a multiplier 212C is turned off by the multiplexer 212B to reduce power consumption in the first-order configuration.

值得注意的是,圖六(B)中輸入為信號A、輸出為信號B的延遲元件可被視為等效於圖五(B)中的延遲元件210D。因此,圖六(B)呈現的取樣率轉換電路同樣可達到前述無縫切換的效果。此外,將切換信號tp的狀態轉換時間點安排為同步於輸入取樣率FIN或輸出取樣率FOUT之時脈信號的狀態轉換時間點,能夠進一步確保圖六(B)中的輸出端OUT不會因為切換信號tp的狀態改變而出現短時脈衝。 It should be noted that the delay element input as signal A and output as signal B in FIG. 6(B) can be regarded as equivalent to delay element 210D in FIG. 5(B). Therefore, the sampling rate conversion circuit presented in FIG. 6(B) can also achieve the aforementioned seamless switching effect. In addition, the state transition time point of the switching signal tp is arranged to be synchronized to the state transition time point of the clock signal of the input sampling rate F IN or the output sampling rate F OUT , and the output terminal OUT in FIG. 6(B) can be further ensured. A glitch will occur due to a change in the state of the switching signal tp.

圖七呈現根據本發明之另一取樣率轉換電路的詳細實施範例。 提供至取樣率轉換電路700用以控制各多工器的切換信號tp係由控制器(未繪示)根據至少一限制條件而動態調整。當切換信號tp為2,輸出端OUT所提供的是一階轉換結果;當切換信號tp為1,輸出端OUT所提供的是二階轉換結果;當切換信號tp為0,輸出端OUT所提供的是三階轉換結果。相似地,當取樣率轉換電路700運作於低階組態時,與低階組態運作無關的元件(例如以組合邏輯元件實現之乘法器)可被選擇性地關閉,以節省取樣率轉換電路700的整體耗電量。在此例中,三階轉頻器與一階轉頻器輸入位移差為2,二階轉頻器與一階轉頻器輸入位移差為1。如此一來,低階取樣率轉換電路和高階取樣率轉換電路同一時間的輸出信號便可被保持為對應於同一筆輸入信號。由此實施例可看出,根據本發明之實施例所能採用的取樣率轉換電路不以模式數量等於二為限。 Figure 7 presents a detailed implementation example of another sample rate conversion circuit in accordance with the present invention. The switching signal tp supplied to the sampling rate conversion circuit 700 for controlling each multiplexer is dynamically adjusted by a controller (not shown) according to at least one restriction condition. When the switching signal tp is 2, the output terminal OUT provides a first-order conversion result; when the switching signal tp is 1, the output terminal OUT provides a second-order conversion result; when the switching signal tp is 0, the output terminal OUT provides Is the result of the third-order conversion. Similarly, when the sample rate conversion circuit 700 operates in a low-order configuration, components that are independent of the low-order configuration operation (eg, multipliers implemented as combinatorial logic elements) can be selectively turned off to save the sample rate conversion circuit. The overall power consumption of the 700. In this example, the input displacement difference between the third-order frequency converter and the first-order frequency converter is 2, and the input displacement difference between the second-order frequency converter and the first-order frequency converter is 1. In this way, the output signals of the low-order sampling rate conversion circuit and the high-order sampling rate conversion circuit at the same time can be maintained to correspond to the same input signal. As can be seen from this embodiment, the sampling rate conversion circuit that can be employed in accordance with an embodiment of the present invention is not limited to the number of modes being equal to two.

根據本發明之另一具體實施例為一種應用於一通訊系統中之一取樣率轉換方法,其流程圖係繪示於圖八。一取樣率轉換程序能運作於至少兩種以上不同組態。首先,步驟S82為根據至少一限制條件,決定該取樣率轉換程序之一組態切換規則。接著,步驟S84為根據該組態切換規則於該至少兩種以上不同組態間切換該取樣率轉換程序。先前在介紹圖二呈現之通訊系統時描述的各種操作變化(例如限制條件的種類和組態切換規則的產生方式)亦可應用至此取樣率轉換方法,其細節亦不再贅述。 Another embodiment of the present invention is a sampling rate conversion method applied to a communication system, and a flow chart thereof is shown in FIG. A sample rate conversion program can operate in at least two different configurations. First, step S82 is to determine one of the sampling rate conversion programs to configure the switching rule according to at least one restriction condition. Next, step S84 is to switch the sampling rate conversion program between the at least two different configurations according to the configuration switching rule. The various operational changes previously described in the introduction of the communication system presented in Figure 2 (e.g., the type of limiting conditions and the manner in which the configuration switching rules are generated) can also be applied to this sampling rate conversion method, and the details thereof will not be described again.

須說明的是,本發明的範疇不限於通訊系統中的傳送端,亦不限於第三代合作夥伴計劃(3GPP)通訊裝置。舉例而言,可改變組態之取樣率轉換器210與控制器215亦可被設置於通訊系統的接收端,用以根據傳送器品質、傳輸通道品質、接收器品質等限制條件動態調整降頻轉換的電 路組態。此外,本發明的概念亦可應用於其他各種需要取樣率轉換的電子裝置,例如需要內插產生更多畫素以擴張畫面尺寸的影像處理系統,或是需要對多筆畫素資料施以降取樣(decimation)程序以縮減畫面尺寸的影像處理系統。運作階數較高的取樣率轉換組態能夠提供品質較佳的影像處理結果,而運作階數較低的取樣率轉換組態能夠提供較高的影像處理速度與較低的耗電量。 It should be noted that the scope of the present invention is not limited to the transmitting end in the communication system, nor is it limited to the 3rd Generation Partnership Project (3GPP) communication device. For example, the sample rate converter 210 and the controller 215, which can be changed in configuration, can also be disposed at the receiving end of the communication system for dynamically adjusting the frequency reduction according to the constraints of the transmitter quality, the transmission channel quality, and the receiver quality. Converted electricity Road configuration. In addition, the concept of the present invention can also be applied to various other electronic devices that require sampling rate conversion, such as an image processing system that requires interpolation to generate more pixels to expand the size of the image, or a downsampling of multiple pixels of data ( Decimation) Program to reduce the size of the image processing system. A higher sampling rate conversion configuration provides better image processing results, while a lower operating rate sampling rate configuration provides higher image processing speed and lower power consumption.

如上所述,本發明提出一種新的取樣率轉換方案。不同於先前技術中採用固定階數之取樣率轉換器的做法,根據本發明之實施例中的通訊系統和取樣率轉換方法會考量一種或多種限制條件,動態調整取樣率轉換器的組態,進而改變取樣率轉換器的耗電量或者是其他表現指標。在不需要追求高品質轉換結果的通訊環境中,取樣率轉換器可被設定為運作於耗電量較低的組態,以節省通訊系統的電力。 As described above, the present invention proposes a new sampling rate conversion scheme. Unlike the prior art practice of employing a fixed order sample rate converter, the communication system and sample rate conversion method in accordance with an embodiment of the present invention takes into account one or more constraints and dynamically adjusts the configuration of the sample rate converter. In turn, the power consumption of the sample rate converter is changed or other performance indicators. In communication environments where high quality conversion results are not required, the sample rate converter can be set to operate in a lower power configuration to save power in the communication system.

藉由以上較佳具體實施例之詳述,係希望能更加清楚描述本發明之特徵與精神,而並非以上述所揭露的較佳具體實施例來對本發明之範疇加以限制。相反地,其目的是希望能涵蓋各種改變及具相等性的安排於本發明所欲申請之專利範圍的範疇內。 The features and spirit of the present invention will be more apparent from the detailed description of the preferred embodiments. On the contrary, the intention is to cover various modifications and equivalents within the scope of the invention as claimed.

200‧‧‧通訊系統 200‧‧‧Communication system

210‧‧‧可改變組態之取樣率轉換器 210‧‧‧Changeable configuration of sample rate converter

215‧‧‧控制器 215‧‧‧ Controller

220‧‧‧數位電路 220‧‧‧Digital Circuit

240‧‧‧數位-類比轉換器 240‧‧‧Digital-to-analog converter

260‧‧‧類比電路 260‧‧‧ analog circuit

Claims (15)

一種通訊系統,包含:一可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,該取樣率轉換器能運作於一第一組態或不同於該第一組態之一第二組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者;其中該至少一限制條件包含一個或多個下列參數:一誤差向量幅度(error vector magnitude,EVM)、一鄰近通道洩漏功率比(adjacent channel leakage power ratio,ACLR)、一傳送端混附發射量(TX spurious emission at RX band)、一傳送端信號輸出功率、一電力狀態。 A communication system includes: a changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, the sampling rate converter capable of Operating in a first configuration or a second configuration different from the first configuration; and a controller for dynamically controlling the sampling rate converter to operate in the first configuration and according to at least one constraint condition One of the second configurations; wherein the at least one constraint condition comprises one or more of the following parameters: an error vector magnitude (EVM), an adjacent channel leakage power ratio (ACLR) ), a TX spurious emission at RX band, a transmitter signal output power, and a power state. 一種通訊系統,包含:一可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,該取樣率轉換器能運作於一第一組態或不同於該第一組態之一第二組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者;其中該至少一限制條件包含一第一限制條件與一第二限制條件,該控制器根據該第一限制條件為該取樣率轉換器決定一第一階數、根據該第二限制條件為該取樣率轉換器決定一第二階數,並根據該第一階數與該第二階數中之一較大者決定該取樣率轉換器之一組態切換規則。 A communication system includes: a changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, the sampling rate converter capable of Operating in a first configuration or a second configuration different from the first configuration; and a controller for dynamically controlling the sampling rate converter to operate in the first configuration and according to at least one constraint condition One of the second configurations; wherein the at least one constraint condition includes a first constraint condition and a second constraint condition, and the controller determines a first order for the sample rate converter according to the first constraint condition Determining a second order for the sampling rate converter according to the second constraint condition, and determining one of the sampling rate converters to switch according to one of the first order number and the second order number rule. 一種通訊系統,包含:一可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,該取樣率轉換器 能運作於一第一組態或不同於該第一組態之一第二組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者;其中該第一組態對應於一第一運作階數N,該第二組態對應於一第二運作階數M,N和M不同,且各自為一正整數;該控制器依據該至少一條件決定一運作階數,該階數介於該第一運作階數N及該第二運作階數M之間,並依據該運作階數動態控制該取樣率轉換器運作於該第一組態和第二組態中之一者。 A communication system includes: a changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, the sampling rate converter Capable of operating in a first configuration or a second configuration different from the first configuration; and a controller for dynamically controlling the sampling rate converter to operate in the first configuration according to at least one constraint condition And one of the second configurations; wherein the first configuration corresponds to a first operational order N, the second configuration corresponds to a second operational order M, N and M are different, and each is a positive integer; the controller determines an operational order according to the at least one condition, the order is between the first operational order N and the second operational order M, and dynamically controls the operation according to the operational order The sample rate converter operates in one of the first configuration and the second configuration. 一種通訊系統,包含:一可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,該取樣率轉換器能運作於一第一組態或不同於該第一組態之一第二組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者;其中該控制器利用一三角-積分調變(delta-sigma modulation)程序或脈衝寬度調變(pulse width modulation)程序決定該取樣率轉換器之一組態切換規則。 A communication system includes: a changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, the sampling rate converter capable of Operating in a first configuration or a second configuration different from the first configuration; and a controller for dynamically controlling the sampling rate converter to operate in the first configuration and according to at least one constraint condition One of the second configurations; wherein the controller determines a configuration switch of the sample rate converter by using a delta-sigma modulation program or a pulse width modulation program rule. 一種通訊系統,包含:一可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,該取樣率轉換器能運作於一第一組態或不同於該第一組態之一第二組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者;其中該取樣率轉換器包含一低階取樣率轉換電路與一高階取樣率轉換 電路;當該取樣率轉換器運作於該第一組態時,該低階取樣率轉換電路被啟動;當該取樣率轉換器運作於該第二組態時,該高階取樣率轉換電路被啟動。 A communication system includes: a changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, the sampling rate converter capable of Operating in a first configuration or a second configuration different from the first configuration; and a controller for dynamically controlling the sampling rate converter to operate in the first configuration and according to at least one constraint condition One of the second configurations; wherein the sample rate converter includes a low order sampling rate conversion circuit and a high order sampling rate conversion a circuit; when the sample rate converter operates in the first configuration, the low-order sample rate conversion circuit is enabled; when the sample rate converter operates in the second configuration, the high-order sample rate conversion circuit is activated . 如申請專利範圍第5項所述之通訊系統,其中該取樣率轉換器進一步包含一延遲元件,該延遲元件係設置於該取樣率轉換器之一輸入端與該低階取樣率轉換電路之間,該延遲元件提供之一延遲時間長度與該第一取樣率相關,亦相關於該低階取樣率轉換電路與該高階取樣率轉換電路間之一取樣運算點數位移差。 The communication system of claim 5, wherein the sampling rate converter further comprises a delay element disposed between the input end of the sample rate converter and the low order sampling rate conversion circuit. The delay element provides a delay time length associated with the first sampling rate, and is also related to a sampling operation point displacement difference between the low order sampling rate conversion circuit and the high order sampling rate conversion circuit. 如申請專利範圍第6項所述之通訊系統,其中該控制器透過一切換信號控制該取樣率轉換器,一時脈信號係用以提供該第一取樣率和該第二取樣率中之一者,該切換信號之一狀態轉換時間點同步於該時脈信號之一狀態轉換時間點。 The communication system of claim 6, wherein the controller controls the sampling rate converter through a switching signal, wherein a clock signal is used to provide one of the first sampling rate and the second sampling rate. The state transition time point of one of the switching signals is synchronized to a state transition time point of the clock signal. 一種通訊系統,包含:一可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,該取樣率轉換器能運作於一第一組態或不同於該第一組態之一第二組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換器運作於該第一組態和該第二組態中之一者;其中該取樣率轉換器包含一高階取樣率轉換電路;當該取樣率轉換器運作於該第一組態時,該高階取樣率轉換電路中之一局部電路被利用以產生一低階轉換結果;當該取樣率轉換器運作於該第二組態時,該高階取樣率轉換電路被利用以產生一高階轉換結果。 A communication system includes: a changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, the sampling rate converter capable of Operating in a first configuration or a second configuration different from the first configuration; and a controller for dynamically controlling the sampling rate converter to operate in the first configuration and according to at least one constraint condition One of the second configurations; wherein the sampling rate converter comprises a high-order sampling rate conversion circuit; and when the sampling rate converter operates in the first configuration, a partial circuit in the high-order sampling rate conversion circuit It is utilized to generate a low-order conversion result; when the sample rate converter operates in the second configuration, the high-order sample rate conversion circuit is utilized to generate a high-order conversion result. 如申請專利範圍第8項所述之通訊系統,其中該高階取樣率轉換電路包含一延遲元件,該延遲元件係設置於該高階取樣率轉換電路之一輸入端與該局部電路之間,該延遲元件提供之一延遲時間長度與該第一取樣率相 關,亦相關於該第一組態與該第二組態間之一取樣運算點數位移差。 The communication system of claim 8, wherein the high-order sampling rate conversion circuit comprises a delay element disposed between an input end of the high-order sampling rate conversion circuit and the local circuit, the delay The component provides one of the delay time lengths and the first sampling rate Off, also related to the sampling operation point displacement difference between the first configuration and the second configuration. 如申請專利範圍第8項所述之通訊系統,其中當該取樣率轉換器運作於該第一組態時,該高階取樣率轉換電路中、該局部電路外之一乘法器被關閉。 The communication system of claim 8, wherein when the sampling rate converter operates in the first configuration, one of the high-order sampling rate conversion circuits and the one of the partial circuits is turned off. 一種應用於一通訊系統中之一取樣率轉換方法,包含:(a)根據至少一限制條件,決定一取樣率轉換程序之一組態切換規則,其中該取樣率轉換程序能運作於一第一組態或不同於該第一組態之一第二組態;以及(b)根據該組態切換規則於該第一組態與該第二組態間切換該取樣率轉換程序;其中該至少一限制條件包含一個或多個下列參數:一誤差向量幅度、一鄰近通道洩漏功率比、一傳送端混附發射量、一傳送端信號輸出功率、一電力狀態。 A sampling rate conversion method applied to a communication system, comprising: (a) determining, according to at least one constraint condition, a configuration switching rule of a sampling rate conversion program, wherein the sampling rate conversion program can operate at a first Configuring or different from the second configuration of the first configuration; and (b) switching the sampling rate conversion procedure between the first configuration and the second configuration according to the configuration switching rule; wherein the at least A constraint condition includes one or more of the following parameters: an error vector magnitude, an adjacent channel leakage power ratio, a transmitter mixed emission amount, a transmitter signal output power, and a power state. 一種應用於一通訊系統中之一取樣率轉換方法,包含:(a)根據至少一限制條件,決定一取樣率轉換程序之一組態切換規則,其中該取樣率轉換程序能運作於一第一組態或不同於該第一組態之一第二組態;以及(b)根據該組態切換規則於該第一組態與該第二組態間切換該取樣率轉換程序;其中該至少一限制條件包含一第一限制條件與一第二限制條件,步驟(a)包含:根據該第一限制條件為該取樣率轉換程序決定一第一階數;根據該第二限制條件為該取樣率轉換程序決定一第二階數;以及根據該第一階數與該第二階數中之一較大者決定該組態切換規則。 A sampling rate conversion method applied to a communication system, comprising: (a) determining, according to at least one constraint condition, a configuration switching rule of a sampling rate conversion program, wherein the sampling rate conversion program can operate at a first Configuring or different from the second configuration of the first configuration; and (b) switching the sampling rate conversion procedure between the first configuration and the second configuration according to the configuration switching rule; wherein the at least A limiting condition includes a first limiting condition and a second limiting condition, and step (a) includes: determining, according to the first limiting condition, a first order for the sampling rate conversion program; and sampling according to the second limiting condition The rate conversion program determines a second order; and determines the configuration switching rule based on one of the first order and the second order. 一種應用於一通訊系統中之一取樣率轉換方法,包含:(a)根據至少一限制條件,決定一取樣率轉換程序之一組態切換規則,其中該取樣率轉換程序能運作於一第一組態或不同於該第一組態之一第二組態;以及(b)根據該組態切換規則於該第一組態與該第二組態間切換該取樣率轉換程序;其中該第一組態對應於一第一運作階數N,該第二組態對應於一第二運作階數M,N和M不同,且各自為一正整數;該組態切換規則對應之一運作階數介於該第一運作階數N與該第二運作階數M之間,步驟(b)包含:依據該至少一條件決定一運作階數,該階數介於該第一運作階數N及該第二運作階數M之間;以及依據該運作階數動態控制該取樣率轉換程序運作於該第一組態和第二組態中之一者。 A sampling rate conversion method applied to a communication system, comprising: (a) determining, according to at least one constraint condition, a configuration switching rule of a sampling rate conversion program, wherein the sampling rate conversion program can operate at a first Configuring or different from the second configuration of the first configuration; and (b) switching the sampling rate conversion program between the first configuration and the second configuration according to the configuration switching rule; wherein the A configuration corresponds to a first operational order N, the second configuration corresponds to a second operational order M, N and M are different, and each is a positive integer; the configuration switching rule corresponds to one operational order The number is between the first operational order N and the second operational order M, and the step (b) includes: determining an operational order according to the at least one condition, the order being between the first operational order N And between the second operational order M; and dynamically controlling the sampling rate conversion program to operate in one of the first configuration and the second configuration according to the operational order. 如申請專利範圍第13項所述之取樣率轉換方法,其中步驟(b)包含利用一三角-積分調變程序或脈衝寬度調變(pulse width modulation)程序決定該組態切換規則。 The sampling rate conversion method according to claim 13, wherein the step (b) comprises determining the configuration switching rule by using a trigonometric-integral modulation program or a pulse width modulation program. 一種可改變組態之取樣率轉換器,用以將具有一第一取樣率之一數位信號轉換為具有一第二取樣率之一轉換後信號,包含:一取樣率轉換電路,能運作於至少兩種以上不同組態;以及一控制器,用以根據至少一限制條件,動態控制該取樣率轉換電路運作於該至少兩種以上不同組態的其中一種;其中該控制器係以該至少一限制條件做為輸入資料,利用一查找表或一邏輯運算電路決定該取樣率轉換電路之一組態切換規則。 A changeable configuration sampling rate converter for converting a digital signal having a first sampling rate into a converted signal having a second sampling rate, comprising: a sampling rate conversion circuit capable of operating at least Two or more different configurations; and a controller for dynamically controlling the sampling rate conversion circuit to operate in one of the at least two different configurations according to at least one constraint condition; wherein the controller is the at least one The restriction condition is used as input data, and a configuration table switching rule is determined by a lookup table or a logic operation circuit.
TW102130468A 2013-06-05 2013-08-26 Communication system and sample rate converter thereof TWI517592B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/283,301 US9035808B2 (en) 2013-06-05 2014-05-21 Communication system and sample rate converter thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361831150P 2013-06-05 2013-06-05

Publications (2)

Publication Number Publication Date
TW201448483A TW201448483A (en) 2014-12-16
TWI517592B true TWI517592B (en) 2016-01-11

Family

ID=52230418

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102130468A TWI517592B (en) 2013-06-05 2013-08-26 Communication system and sample rate converter thereof

Country Status (2)

Country Link
CN (1) CN104242958B (en)
TW (1) TWI517592B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428629B2 (en) * 1999-03-26 2003-07-22 日本電気株式会社 Mobile phone device and power control method thereof
US7574274B2 (en) * 2004-04-14 2009-08-11 Nvidia Corporation Method and system for synchronizing audio processing modules
JP2007067797A (en) * 2005-08-31 2007-03-15 Renesas Technology Corp Sampling rate converter and semiconductor integrated circuit
CN101379701A (en) * 2006-02-15 2009-03-04 高通股份有限公司 Digital domain sampling rate converter
JP2008010097A (en) * 2006-06-30 2008-01-17 Toshiba Corp Device and method for reproducing recording medium

Also Published As

Publication number Publication date
TW201448483A (en) 2014-12-16
CN104242958B (en) 2017-08-25
CN104242958A (en) 2014-12-24

Similar Documents

Publication Publication Date Title
TWI641232B (en) Low power switching techniques for digital-to-analog converters
CN102386946B (en) Data transmission rapid frequency hopping radio station
JP2018533791A (en) Communicate low and high speed parallel bit stream over high speed serial bus
WO2012033182A1 (en) Transmitter, control method, computer program, and δς modulator
CN110488228B (en) Linear frequency modulation signal generation method and device and storage medium
EP2937999B1 (en) Clock frequency modulation method and clock frequency modulation apparatus
US11665027B2 (en) Fast control interface
US9035808B2 (en) Communication system and sample rate converter thereof
WO2017189497A1 (en) High speed serializer using quadrature clocks
EP3843272A1 (en) Digital-to-analog converter, transmitter, base station and mobile device
WO2003058861A1 (en) Digital-to-phase converter with extended frequency range
TWI517592B (en) Communication system and sample rate converter thereof
CN210428430U (en) SPI communication control circuit and SPI chip
TWI602399B (en) Receiver device applied to mimo system and the control method using the same
US11539384B2 (en) DC detector for a transmit datapath
USRE47782E1 (en) Multi-channel transceiver
TW201427352A (en) Power amplifying apparatus and wireless signal transmitter utilizing the same
CA2279680C (en) Binary waveform shaping apparatus
CN103152111A (en) Software radio test platform based on universal serial bus (USB) interface
CN112291080B (en) Communication simulation control method and system
CN112311398A (en) Method and system for doubling DDS digital signal generation rate
US8089860B2 (en) Data transmission system and method
KR102513739B1 (en) Equalizing system of mipi d-phy high-speed transmitter
CN103401558A (en) Method and device for processing DWA (data-weighted averaging) in digital-to-analogue conversion
JP2011151609A (en) Clock transmission system of spread spectrum system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees