TWI517509B - Multi - beam semiconductor laser device - Google Patents

Multi - beam semiconductor laser device Download PDF

Info

Publication number
TWI517509B
TWI517509B TW102119410A TW102119410A TWI517509B TW I517509 B TWI517509 B TW I517509B TW 102119410 A TW102119410 A TW 102119410A TW 102119410 A TW102119410 A TW 102119410A TW I517509 B TWI517509 B TW I517509B
Authority
TW
Taiwan
Prior art keywords
layer
solder
laser device
semiconductor laser
wafer
Prior art date
Application number
TW102119410A
Other languages
Chinese (zh)
Other versions
TW201411974A (en
Inventor
Yasuhisa Semba
Koichi Kozu
Syuichi Usuda
Susumu Sorimachi
Hideki Hara
Original Assignee
Ushio Opto Semiconductors Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Opto Semiconductors Inc filed Critical Ushio Opto Semiconductors Inc
Publication of TW201411974A publication Critical patent/TW201411974A/en
Application granted granted Critical
Publication of TWI517509B publication Critical patent/TWI517509B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0268Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Head (AREA)

Description

多波束半導體雷射裝置 Multi-beam semiconductor laser device

本發明係有關多波束半導體雷射裝置,尤其是有關利用接點朝下(junction-down)將形成多個雷射二極體的半導體晶片安裝在支撐基板上的半導體雷射裝置。 The present invention relates to a multi-beam semiconductor laser device, and more particularly to a semiconductor laser device for mounting a semiconductor wafer on which a plurality of laser diodes are formed on a support substrate by junction-down.

作為光通信系統的光源、資訊處理設備的光源使用的雷射二極體(Laser Diode;LD)在半導體晶片內設置條紋狀的活性層,將夾住該活性層的上下的半導體層的一方作為第1導電型(n型)半導體層,將另一方作為第2導電型(p型)半導體層,從而形成pn接合。另外,為了形成用於雷射振盪的共振器(光波導),採用了採用隆起結構等多種結構。 A laser diode (LD) used as a light source of an optical communication system and a light source of an information processing device is provided with a stripe-shaped active layer in a semiconductor wafer, and one of the upper and lower semiconductor layers sandwiching the active layer is used as a laser diode (LD). The first conductivity type (n-type) semiconductor layer and the other one are used as the second conductivity type (p-type) semiconductor layer to form a pn junction. Further, in order to form a resonator (optical waveguide) for laser oscillation, various structures such as a ridge structure are employed.

形成前述般雷射二極體的半導體晶片係透過焊料及Au鍍層連接在配置在包裝件內的被稱為基座的由熱傳導性良好的材料(例如AlN、SiC、CuW等)構成的支撐基板上。另外,為了將在雷射二極體發光時產生的熱有效地散發到外部,普遍使用在使成為熱產生源的pn接合接近基座的狀態下固定的接點朝下方式(例如專利文獻 1)。 The semiconductor wafer forming the above-described laser diode is connected to a support substrate made of a material having good thermal conductivity (for example, AlN, SiC, CuW, etc.) called a susceptor which is disposed in a package through solder and an Au plating layer. on. In addition, in order to efficiently radiate heat generated when the laser diode emits light to the outside, a contact-down manner in which the pn junction serving as a heat generating source is fixed close to the susceptor is generally used (for example, patent document) 1).

[先前技術文獻] [Previous Technical Literature] [專利文獻] [Patent Literature]

專利文獻1日本特開2011-108932號公報 Patent Document 1 Japanese Patent Laid-Open Publication No. 2011-108932

採用接點朝下方式的半導體雷射裝置透過熔融接合形成在位於發光部的上部的隆起部上的Au鍍層、及形成在基座電極上的具有導電性的焊料的方式,進行散熱及通電。 The semiconductor laser device having the contact-down type is formed by heat-dissipating and energizing the Au plating layer formed on the ridge portion of the upper portion of the light-emitting portion and the conductive solder formed on the susceptor electrode by fusion bonding.

在多波束半導體雷射裝置的場合,在半導體晶片內設有多個發光部,各個的隆起部形成分別被電性絕緣的電極。並且,在基座側形成具有與該多個電極對應的短邊狀的平面圖案的多個焊料,並接合在基座上的方式是普遍的。 In the case of a multi-beam semiconductor laser device, a plurality of light-emitting portions are provided in a semiconductor wafer, and each of the raised portions forms an electrode that is electrically insulated. Further, it is common to form a plurality of solders having a short-side planar pattern corresponding to the plurality of electrodes on the susceptor side and to be bonded to the susceptor.

但是,在採用前述方式的場合,利用波束間是狹窄間隙(例如30μm~50μm)、作為半導體晶片側的電極的一部分的Au鍍層的寬度比基座側的焊料圖案的寬度寬,在熔融接合時,焊錫局部地集中,產生焊錫球。由此,由於在半導體晶片的多個電極間產生焊料彼此的短路,無法進行利用波束單獨的驅動,有可能引起組裝成品率下降。 However, in the case of the above-described method, the width of the Au plating layer which is a part of the electrode on the semiconductor wafer side is narrower than the width of the solder pattern on the base side by the narrow gap (for example, 30 μm to 50 μm) between the beams, and is fusion-bonded at the time of fusion bonding. The solder is partially concentrated to produce a solder ball. As a result, a short circuit between the solders is generated between the plurality of electrodes of the semiconductor wafer, and driving by the beam alone cannot be performed, which may cause a decrease in assembly yield.

另外,多波束半導體雷射裝置要求在波束間的特性差要小。但是,多波束半導體雷射裝置在組裝半導體晶片與基座時,由於由半導體晶片側的Au電極材料及半導體材料、基座側的焊料及基座材料的熱膨脹係數不同引起的反應而產生的應力遍及隆起部,因此存在產生偏光角特性不良的問題。 In addition, multi-beam semiconductor laser devices require a small difference in characteristics between beams. However, when the semiconductor wafer and the susceptor are assembled, the multi-beam semiconductor laser device generates stress due to a reaction caused by a difference in thermal expansion coefficients between the Au electrode material on the semiconductor wafer side and the semiconductor material, the solder on the pedestal side, and the susceptor material. Since it is spread over the ridge, there is a problem that the polarization angle characteristics are poor.

偏光角特性為從發光部照射的光的偏波的角度的特性,該偏波在沿半導體晶片的主面的面內振動者為佳。偏波面相對於半導體晶片的主面傾斜地旋轉的光照射導致偏光角特性惡化。並且,在使用了偏光角特性惡化了的半導體晶片的場合,在使透鏡等光學零件透過時,產生光量減少之類的問題。在多波束半導體雷射裝置的場合,在波束間,當偏光角不同時成為波束間差,尤其成為問題。 The polarization angle characteristic is a characteristic of an angle of a polarization of light irradiated from the light-emitting portion, and the polarized wave is preferably vibrated in the plane along the principal surface of the semiconductor wafer. The irradiation of light in which the polarization surface is rotated obliquely with respect to the main surface of the semiconductor wafer causes deterioration in polarization characteristics. Further, when a semiconductor wafer having deteriorated polarization angle characteristics is used, when an optical component such as a lens is transmitted, a problem such as a reduction in the amount of light is generated. In the case of a multi-beam semiconductor laser device, it is a problem that the beam-to-beam difference is different between beams when the polarization angles are different.

本發明的目的在於抑制多波束半導體雷射裝置的波束間的焊料彼此的短路不良。 It is an object of the present invention to suppress short-circuit defects between solders between beams of a multi-beam semiconductor laser device.

本發明的另一目的在於縮小多波束半導體雷射裝置的波束間的偏光角旋轉、偏光角的波束間相對差。 Another object of the present invention is to reduce the polarization between the beams of the multi-beam semiconductor laser device and the relative difference between the beams of the polarization angle.

本發明的前述及其他目的與新穎的特徵,從本說明書的記述及附圖得以明確。 The above and other objects and novel features of the present invention will become apparent from the description and appended claims.

在本案所揭露的發明中,如果簡單地說明較具代表性的方式之概要,為如下所述。 In the invention disclosed in the present application, a brief description of a more representative manner is as follows.

一種多波束半導體雷射裝置,係具備:具備3個以上波束的半導體晶片、及安裝前述半導體晶片的支撐基板;其特徵為:前述半導體晶片具有:第1導電型被覆層,係形成在半導體基板的主面上;活性層,係形成在前述第1導電型被覆層的上部;第2導電型被覆層,係形成在前述活性層的上部;3個以上的隆起部,係分別包括前述第2導電型被覆層與形成在前述第2導電型被覆層上部的第2導電型觸點層;一對凹槽,係形成在各個前述隆起部的兩側之前述第2導電型被覆層上;表面電極,係與各個前述隆起部電性連接,以覆蓋各個前述隆起部的上部與形成在其兩側的前述一對凹槽的上部的方式連續地形成;第1導電層,係形成在前述表面電極的上部;第2導電層,係形成在前述第1導電層的上部,面積比前述第1導電層小;以及背面電極,係形成在前述半導體基板的背面;在前述支撐基板的晶片安裝面形成與前述隆起部的數量相同的第1電極;在前述第1電極的各個的表面形成焊料;前述半導體基板係藉由熔融接合前述第2導電層與 前述焊料,安裝在前述支撐基板的前述晶片安裝面上;前述第2導電層在形成在前述隆起部的兩側的前述一對凹槽的至少一方的上部與前述焊料接觸;沿前述隆起部的排列方向的前述第2導電層的寬度,比前述焊料的寬度窄。 A multi-beam semiconductor laser device includes: a semiconductor wafer including three or more beams; and a support substrate on which the semiconductor wafer is mounted; wherein the semiconductor wafer has a first conductive type cladding layer formed on a semiconductor substrate The active layer is formed on the upper portion of the first conductive type coating layer; the second conductive type coating layer is formed on the upper portion of the active layer; and three or more raised portions each include the second portion a conductive coating layer and a second conductive type contact layer formed on the upper portion of the second conductive type coating layer; and a pair of grooves formed on the second conductive type coating layer on both sides of each of the raised portions; The electrode is electrically connected to each of the ridges so as to cover an upper portion of each of the ridges and an upper portion of the pair of grooves formed on both sides thereof; the first conductive layer is formed on the surface An upper portion of the electrode; the second conductive layer is formed on an upper portion of the first conductive layer, and has a smaller area than the first conductive layer; and the back surface electrode is formed on the semiconductor substrate a back surface; a first electrode having the same number as the raised portion on the wafer mounting surface of the support substrate; a solder formed on a surface of each of the first electrodes; and the semiconductor substrate is fused to the second conductive layer The solder is mounted on the wafer mounting surface of the support substrate; the second conductive layer is in contact with the solder on at least one of the pair of grooves formed on both sides of the raised portion; and along the raised portion The width of the second conductive layer in the array direction is narrower than the width of the solder.

本發明的效果如下。 The effects of the present invention are as follows.

在本申請公開的發明中,如下簡單說明由代表性的方式所得到的效果。 In the invention disclosed in the present application, the effects obtained by the representative methods will be briefly described as follows.

能夠抑制多波束半導體雷射裝置的波束間的焊料彼此的短路不良。 It is possible to suppress short-circuit defects between the solders between the beams of the multi-beam semiconductor laser device.

能夠縮小多波束半導體雷射裝置的波束間的偏光角旋轉、偏光角的波束間相對差。 It is possible to reduce the polarization between the beams of the multi-beam semiconductor laser device and the relative difference between the beams of the polarization angle.

10‧‧‧基座 10‧‧‧ Pedestal

11‧‧‧雷射晶片 11‧‧‧Laser Wafer

12‧‧‧GaAs基板 12‧‧‧GaAs substrate

13‧‧‧背面電極 13‧‧‧Back electrode

14‧‧‧鈍化膜 14‧‧‧passivation film

15‧‧‧表面電極 15‧‧‧ surface electrode

16‧‧‧第1Au鍍層 16‧‧‧1Au plating

17‧‧‧第2Au鍍層 17‧‧‧2Au plating

18‧‧‧焊料 18‧‧‧ solder

20‧‧‧隆起部 20‧‧‧ Uplift

21‧‧‧凹槽 21‧‧‧ Groove

22‧‧‧n型包覆層 22‧‧‧n type cladding

23‧‧‧活性層 23‧‧‧Active layer

24‧‧‧p型第1包覆層 24‧‧‧p type first cladding

25‧‧‧p型第2包覆層 25‧‧‧p type second cladding

26‧‧‧p型觸點層 26‧‧‧p type contact layer

27‧‧‧基座電極 27‧‧‧Base electrode

28‧‧‧絕緣層 28‧‧‧Insulation

29‧‧‧識別標記 29‧‧‧identification mark

30‧‧‧柄 30‧‧‧ handle

31‧‧‧蓋 31‧‧‧ Cover

32‧‧‧凸緣部 32‧‧‧Flange

33‧‧‧玻璃板 33‧‧‧ glass plate

34‧‧‧圓孔 34‧‧‧ round hole

35‧‧‧散熱片 35‧‧‧ Heat sink

36‧‧‧Au金屬絲 36‧‧‧Au wire

37‧‧‧Au金屬絲 37‧‧‧Au wire

38‧‧‧Au金屬絲 38‧‧‧Au wire

39a‧‧‧導線 39a‧‧‧Wire

39b‧‧‧導線 39b‧‧‧Wire

39c‧‧‧導線 39c‧‧‧Wire

39d‧‧‧導線 39d‧‧‧Wire

39e‧‧‧導線 39e‧‧‧Wire

39f‧‧‧導線 39f‧‧‧Wire

40‧‧‧光電二極體晶片 40‧‧‧Photodiode wafer

圖1是表示本發明的實施方式的多波束半導體雷射裝置的整體結構的主要部分剖切立體圖。 1 is a partially cutaway perspective view showing an overall configuration of a multi-beam semiconductor laser device according to an embodiment of the present invention.

圖2是本發明的實施方式的多波束半導體雷射裝置的主要部分剖視圖。 2 is a cross-sectional view showing the main parts of a multibeam semiconductor laser device according to an embodiment of the present invention.

圖3(a)是表示雷射晶片的主面的俯視圖,(b)是表示雷射晶片的背面的俯視圖。 Fig. 3(a) is a plan view showing a principal surface of the laser wafer, and Fig. 3(b) is a plan view showing a back surface of the laser wafer.

圖4是表示本發明的多波束半導體雷射裝置的另一例子的主要部分剖視圖。 Fig. 4 is a cross-sectional view showing the main part of another example of the multibeam semiconductor laser device of the present invention.

圖5是表示本發明的多波束半導體雷射裝置的又一例子的主要部分剖視圖。 Fig. 5 is a cross-sectional view showing the main part of still another example of the multibeam semiconductor laser device of the present invention.

下面,根據圖面詳細地說明本發明的實施方式。另外,在用於說明實施方式的全部圖中,對具有相同的功能的零件標註相同的符號,並省略其重複的說明。另外,在實施方式中,除了特別必要時,同一或相同的部分原則上不重複說明。另外,在說明實施方式的圖面中,為了使結構容易明白,會有俯視圖也標註剖面線的情況,也會有剖視圖也省略剖面線的情況。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. In the drawings, the same reference numerals will be given to the parts having the same functions, and the overlapping description will be omitted. In addition, in the embodiment, the same or the same portions are not repeatedly described in principle unless otherwise necessary. Further, in the drawings for explaining the embodiment, in order to make the structure easy to understand, a hatching may be also indicated in a plan view, and a cross-sectional view may be omitted.

(實施型態) (implementation type)

本實施方式適用於具有凸狀的隆起部的4波束半導體雷射裝置,圖1是表示該4波束半導體雷射裝置的整體結構的主要部分剖切立體圖。 The present embodiment is applied to a 4-beam semiconductor laser device having a convex ridge portion, and FIG. 1 is a cross-sectional perspective view showing a main portion of the overall structure of the 4-beam semiconductor laser device.

本實施方式的4波束半導體雷射裝置具有例如直徑5.6mm左右、厚度1.0mm左右之利用Fe合金所構成的圓盤狀的柄30、具備覆蓋該柄30的上表面的蓋31的CAN包裝件(封閉容器)結構。 The four-beam semiconductor laser device of the present embodiment has, for example, a disk-shaped shank 30 made of a Fe alloy having a diameter of about 5.6 mm and a thickness of about 1.0 mm, and a CAN package having a cover 31 covering the upper surface of the shank 30. (closed container) structure.

設在前述蓋31的底部的外周的凸緣部32固定在柄30的上表面。另外,在蓋31的上表面的中央部分設有接合了使雷射光束透過的玻璃板33的圓孔34。 The flange portion 32 provided on the outer periphery of the bottom of the cover 31 is fixed to the upper surface of the shank 30. Further, a circular hole 34 into which a glass plate 33 for transmitting a laser beam is transmitted is provided at a central portion of the upper surface of the lid 31.

在由蓋31覆蓋的柄30的上表面的中央部附近安裝 有利用如Cu般的熱傳導性良好的金屬所構成的散熱片35。該散熱片35透過焊料(未圖示)接合在柄30的上表面,在其一面透過焊錫(未圖示)固定基座(支撐基板)10。 Installed near the central portion of the upper surface of the shank 30 covered by the cover 31 There is a heat sink 35 made of a metal having good thermal conductivity such as Cu. The heat sink 35 is joined to the upper surface of the shank 30 by solder (not shown), and the susceptor (support substrate) 10 is fixed to the surface by solder (not shown).

基座10由AlN、SiC、CuW等陶瓷構成,在其一面利用接點朝下方式安裝形成了4個雷射二極體的雷射晶片(半導體晶片)11。基座10兼做用於將在雷射二極體發光時產生的熱量散熱到雷射晶片11的外部的散熱板、及用於支撐雷射晶片11的基板。雷射晶片11之後述的背面電極13透過Au金屬絲37電連接在散熱片35上。 The susceptor 10 is made of a ceramic such as AlN, SiC or CuW, and a laser wafer (semiconductor wafer) 11 in which four laser diodes are formed is mounted on one surface thereof by a contact point. The susceptor 10 also serves as a heat dissipation plate for dissipating heat generated when the laser diode emits light to the outside of the laser wafer 11, and a substrate for supporting the laser wafer 11. The back surface electrode 13 which will be described later on the laser wafer 11 is electrically connected to the heat sink 35 through the Au wire 37.

安裝在基座10上的雷射晶片11從其兩端面(在圖1中上端面及下端面)射出雷射光束。因此,支撐雷射晶片11的基座10以其晶片安裝面朝向與柄30的上表面垂直的方向的方式固定在散熱片35上。從雷射晶片11的上端面出射的雷射光束(前方光)通過蓋31的圓孔34出射到外部。另外,從雷射晶片11的下端面出射的雷射光束(後方光)由安裝在柄30的上表面的中央部附近的光電二極體晶片40受光,並轉換為電流。 The laser wafer 11 mounted on the susceptor 10 emits a laser beam from its both end faces (the upper end face and the lower end face in Fig. 1). Therefore, the susceptor 10 supporting the laser wafer 11 is fixed to the heat sink 35 with its wafer mounting surface facing in a direction perpendicular to the upper surface of the shank 30. The laser beam (front light) emitted from the upper end surface of the laser wafer 11 is emitted to the outside through the circular hole 34 of the cover 31. Further, the laser beam (rear light) emitted from the lower end surface of the laser wafer 11 is received by the photodiode wafer 40 mounted near the central portion of the upper surface of the shank 30, and is converted into a current.

在前述柄30的下表面安裝有六根導線39a、39b、39c、39d、39e、39f。這六根導線39a~39f中的、4根導線39a、39b、39e、39f分別透過Au金屬絲36電連接在基座10的基座電極27(後述)上。另外,剩下的兩根導線39c、39d中的導線39c固定在柄30的下表面,與柄30電性連接為等電位狀態。另外,導線39d透過 Au金屬絲38電性連接在光電二極體晶片40上。 Six wires 39a, 39b, 39c, 39d, 39e, 39f are attached to the lower surface of the handle 30. Among the six wires 39a to 39f, four wires 39a, 39b, 39e, and 39f are electrically connected to the base electrode 27 (described later) of the susceptor 10 through the Au wire 36, respectively. Further, the wire 39c of the remaining two wires 39c, 39d is fixed to the lower surface of the shank 30, and is electrically connected to the shank 30 in an equipotential state. In addition, the wire 39d is transmitted through The Au wire 38 is electrically connected to the photodiode wafer 40.

圖2是本實施方式的4波束半導體雷射裝置的主要部分剖視圖,圖3(a)是表示雷射晶片11的主面的俯視圖,圖3(b)是表示雷射晶片11的背面的俯視圖。 Fig. 2 is a cross-sectional view showing a principal part of a four-beam semiconductor laser device according to the present embodiment, wherein Fig. 3(a) is a plan view showing a principal surface of the laser wafer 11, and Fig. 3(b) is a plan view showing a back surface of the laser wafer 11. .

如圖2所示,在GaAs基板12的主面上層疊有多個半導體層。半導體層由例如利用有機金屬氣相成長(MOCVD)法堆積的n型包覆層22、活性層23、p型第1包覆層24、p型第2包覆層25及p型觸點層26構成。這些半導體層中的n型包覆層22由AlGaInP構成。活性層23由交替地層疊了由AlGaInP構成的隔壁層與由GaInP層構成的井層的多重量子井(Multi Quantum Well:MQW)結構構成。p型第1包覆層24及p型第2包覆層25分別由AlGaInP構成,p型觸點層26由GaAs構成。 As shown in FIG. 2, a plurality of semiconductor layers are laminated on the main surface of the GaAs substrate 12. The semiconductor layer is made of, for example, an n-type cladding layer 22 deposited by an organic metal vapor phase epitaxy (MOCVD) method, an active layer 23, a p-type first cladding layer 24, a p-type second cladding layer 25, and a p-type contact layer. 26 composition. The n-type cladding layer 22 of these semiconductor layers is composed of AlGaInP. The active layer 23 is composed of a multi-quantum well (MQW) structure in which a barrier layer composed of AlGaInP and a well layer composed of a GaInP layer are alternately laminated. Each of the p-type first cladding layer 24 and the p-type second cladding layer 25 is made of AlGaInP, and the p-type contact layer 26 is made of GaAs.

前述p型第2包覆層25具有凸狀的截面形狀,形成互相平行地延伸的4個隆起部(突起類型)20。該4個隆起部20分別與一個雷射二極體對應。圖2表示4個隆起部20中的兩個隆起部20。 The p-type second cladding layer 25 has a convex cross-sectional shape, and forms four ridges (protrusion types) 20 that extend in parallel with each other. The four ridges 20 correspond to one laser diode, respectively. FIG. 2 shows two ridges 20 of the four ridges 20.

另外,在構成前述隆起部20的各個p型第2包覆層25的上部形成p型觸點層26。即,隆起部20為p型第2包覆層25與p型觸點層26的雙層結構。 Further, a p-type contact layer 26 is formed on the upper portion of each of the p-type second cladding layers 25 constituting the raised portion 20. That is, the raised portion 20 has a two-layer structure of the p-type second cladding layer 25 and the p-type contact layer 26.

前述4個隆起部20中的每一個的兩側的p型第2包覆層25為凹槽21,在凹槽21的兩側部及底部形成由氧化矽構成的鈍化膜14。 The p-type second cladding layer 25 on both sides of each of the four ridge portions 20 is a groove 21, and a passivation film 14 made of ruthenium oxide is formed on both side portions and the bottom portion of the groove 21.

在前述p型觸點層26的上表面及鈍化膜14的上表面形成歐姆連接在觸點層26上的p型表面電極15。另外,在表面電極15的上表面形成散熱用的第1Au鍍層(第1導電層)16,在第1Au鍍層16的上表面的一部分形成面積比第1Au鍍層16小的第2Au鍍層(第2導電層)17。另一方面,在GaAs基板12的背面形成n型背面電極13。各個表面電極15及背面電極13係例如以在Ti膜上依次層疊了Pt膜及Au膜的多層金屬膜的方式來構成。 A p-type surface electrode 15 ohmically connected to the contact layer 26 is formed on the upper surface of the p-type contact layer 26 and the upper surface of the passivation film 14. In addition, a first Au plating layer (first conductive layer) 16 for heat dissipation is formed on the upper surface of the surface electrode 15, and a second Au plating layer (second conductive layer) having a smaller area than the first Au plating layer 16 is formed on a part of the upper surface of the first Au plating layer 16 Layer) 17. On the other hand, an n-type rear surface electrode 13 is formed on the back surface of the GaAs substrate 12. Each of the surface electrode 15 and the back surface electrode 13 is configured by, for example, a multilayer metal film in which a Pt film and an Au film are sequentially laminated on a Ti film.

如上那樣構成的雷射晶片11當向表面電極15與背面電極13注入規定的電流時,在4個隆起部20的各個的下部的活性層23(發光部)中,例如具有650nm的振盪波長的紅色雷射光束振盪。這些紅色雷射光束從與隆起部20的延伸方向正交的雷射晶片11的兩端面出射,前方光通過前述圖1所示的蓋31的圓孔34射出到CAN包裝件的外部。 When the laser wafer 11 configured as described above injects a predetermined current into the front surface electrode 15 and the back surface electrode 13, the active layer 23 (light emitting portion) in the lower portion of each of the four raised portions 20 has, for example, an oscillation wavelength of 650 nm. The red laser beam oscillates. These red laser beams are emitted from both end faces of the laser wafer 11 orthogonal to the extending direction of the ridge portion 20, and the front light is emitted to the outside of the CAN package through the circular hole 34 of the cover 31 shown in Fig. 1 described above.

另一方面,在基座10的晶片安裝面上形成由例如在Ti膜上依次層疊了Pt膜及Au膜的多層金屬膜構成的4個基座電極(第1電極)27。這些基座電極27配置為在將雷射晶片11安裝在基座10上時與雷射晶片11的隆起部20相對。 On the other hand, four susceptor electrodes (first electrodes) 27 made of, for example, a multilayer metal film in which a Pt film and an Au film are sequentially laminated on a Ti film are formed on the wafer mounting surface of the susceptor 10. These pedestal electrodes 27 are disposed to face the ridge portion 20 of the laser wafer 11 when the laser wafer 11 is mounted on the susceptor 10.

另外,在4個基座電極27中的每一個的表面形成例如利用Au-Sn合金所構成的焊料18。另外,為了防止基座電極27彼此的短路,在這些基座電極27與基座10之 間形成由氧化矽等構成的絕緣層28。 Further, a solder 18 made of, for example, an Au-Sn alloy is formed on the surface of each of the four base electrodes 27. In addition, in order to prevent short circuits of the pedestal electrodes 27, the susceptor electrodes 27 and the susceptor 10 are An insulating layer 28 composed of ruthenium oxide or the like is formed therebetween.

在如上那樣構成的本實施方式的4波束半導體雷射裝置的場合,雷射晶片11的表面電極15與基座10的基座電極27透過熔融接合焊料18與第2Au鍍層17來電性連接。另外,在利用接點朝下方式將雷射晶片11安裝在基座10上時,利用圖3(b)所示的雷射晶片11的背面的識別標記29與未圖示的設在雷射晶片11的表面的相同的識別標記進行兩者的對準。 In the case of the four-beam semiconductor laser device of the present embodiment configured as described above, the surface electrode 15 of the laser wafer 11 and the susceptor electrode 27 of the susceptor 10 are electrically connected to the second Au plating layer 17 via the fusion bonding solder 18. Further, when the laser wafer 11 is mounted on the susceptor 10 by the contact point downward, the identification mark 29 on the back surface of the laser wafer 11 shown in FIG. 3(b) and the laser (not shown) are provided on the laser. The same identification marks on the surface of the wafer 11 are aligned.

在現有的普通的多波束半導體雷射裝置中,為形成在表面電極15的上表面的Au鍍層的寬度比形成在基座電極27的表面的焊料的寬度寬的結構。因此,在焊料與Au鍍層的熔融接合時,由於焊料局部地集中而產生焊錫球,因此在雷射二極體間產生焊錫短路。 In the conventional conventional multi-beam semiconductor laser device, the width of the Au plating layer formed on the upper surface of the surface electrode 15 is wider than the width of the solder formed on the surface of the susceptor electrode 27. Therefore, when the solder is melt-bonded to the Au plating layer, the solder balls are locally concentrated by the solder, and a solder short circuit occurs between the laser diodes.

相對於此,在本實施方式的4波束半導體雷射裝置中,如圖2所示,形成在表面電極15的上表面的第2Au鍍層17的寬度比形成在基座電極27的表面的焊料18的寬度窄的結構。 On the other hand, in the four-beam semiconductor laser device of the present embodiment, as shown in FIG. 2, the width of the second Au plating layer 17 formed on the upper surface of the surface electrode 15 is larger than the solder 18 formed on the surface of the susceptor electrode 27. The width of the structure is narrow.

由此,在熔融接合時產生的多餘的焊錫被推出到雷射晶片11的外側,利用焊料18的寬度寬,被整體地吸收,因此難以產生焊錫球。因此,能夠有效地抑制在雷射二極體間的焊錫短路。另外,為了可靠地抑制在雷射二極體間的焊錫短路,使第2Au鍍層17的寬度相對於焊料18的寬度的比(第2Au鍍層17的寬度/焊料18的寬度)為0.7以下者為佳。 Thereby, the excess solder generated at the time of fusion bonding is pushed out to the outside of the laser wafer 11, and the width of the solder 18 is wide and is absorbed as a whole, so that it is difficult to generate a solder ball. Therefore, it is possible to effectively suppress the solder short circuit between the laser diodes. Further, in order to reliably suppress the solder short circuit between the laser diodes, the ratio of the width of the second Au plating layer 17 to the width of the solder 18 (the width of the second Au plating layer 17 or the width of the solder 18) is 0.7 or less. good.

另外,在第2Au鍍層17的寬度相對於焊料18的寬度的比過小的場合,即第2Au鍍層17的寬度的比過小的場合,有可能導致雷射晶片11與基座10間的連接強度(剪切強度)下降、散熱性下降。因此,第2Au鍍層17的寬度相對於焊料18的寬度的比為0.5以上者為佳。 Further, when the ratio of the width of the second Au plating layer 17 to the width of the solder 18 is too small, that is, when the ratio of the width of the second Au plating layer 17 is too small, the connection strength between the laser wafer 11 and the susceptor 10 may be caused ( The shear strength is lowered and the heat dissipation is lowered. Therefore, it is preferable that the ratio of the width of the second Au plating layer 17 to the width of the solder 18 is 0.5 or more.

另外,本實施方式的4波束半導體雷射裝置如圖2所示,形成在表面電極15的上表面的第2Au鍍層17在形成在隆起部20的兩側的p型第2包覆層25上的一對凹槽21的一方的上部與焊料18接觸。換言之,隆起部20與焊料18在平面上不重合,為在隆起部20與基座10之間具有間隙的結構。 Further, as shown in FIG. 2, the four-beam semiconductor laser device of the present embodiment has the second Au plating layer 17 formed on the upper surface of the surface electrode 15 on the p-type second cladding layer 25 formed on both sides of the ridge portion 20. One of the upper portions of the pair of grooves 21 is in contact with the solder 18. In other words, the ridge portion 20 and the solder 18 do not overlap on the plane, and have a structure in which a gap is formed between the ridge portion 20 and the susceptor 10.

由此,由於在雷射晶片11與基座10的組裝時產生的應力難以波及到隆起部20,因此能減小成為現有問題的由組裝時的應力產生的偏光角旋轉、偏光角的波束間相對差。 Therefore, it is difficult for the stress generated during the assembly of the laser wafer 11 and the susceptor 10 to reach the ridge portion 20, so that it is possible to reduce the polarization angle rotation and the polarization angle between the beams due to the stress at the time of assembly. Relatively poor.

另外,在如本實施方式的4波束半導體雷射裝置那樣形成在雷射晶片11的雷射二極體的數量是偶數個的場合,利用以相對於多個雷射二極體的中心為線對稱的方式配置第2Au鍍層17與焊料18的接合位置,能進一步減小偏光角旋轉、偏光角的波束間相對差。即,在本實施方式的4波束半導體雷射裝置的場合,在4個雷射二極體的中心的右側,例如如圖2所示,在位於各隆起部20的右側的凹槽21的上部,使第2Au鍍層17與焊料18接觸,在4個雷射二極體的中心的左側,例如如圖4 所示,在位於各隆起部20的左側的凹槽21的上部,使第2Au鍍層17與焊料18接觸。 Further, when the number of the laser diodes formed in the laser wafer 11 is an even number as in the four-beam semiconductor laser device of the present embodiment, it is used as a line with respect to the center of the plurality of laser diodes. By arranging the joint position of the second Au plating layer 17 and the solder 18 in a symmetrical manner, the relative difference between the beam rotation angle and the polarization angle of the polarization angle can be further reduced. In other words, in the case of the four-beam semiconductor laser device of the present embodiment, on the right side of the center of the four laser diodes, for example, as shown in FIG. 2, the upper portion of the groove 21 located on the right side of each of the ridges 20 is provided. The second Au plating layer 17 is brought into contact with the solder 18 on the left side of the center of the four laser diodes, for example, as shown in FIG. As shown in the upper portion of the recess 21 on the left side of each of the raised portions 20, the second Au plating layer 17 is brought into contact with the solder 18.

以上,根據實施方式具體地說明瞭由本發明者進行的發明,但本發明不限定於前述實施方式,當然能在不脫離其主旨的範圍內進行多種改變。 The invention made by the inventors of the present invention has been specifically described above, but the present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit and scope of the invention.

例如,當在相鄰的雷射二極體(隆起部20)的空間中具有空餘的場合,如圖5所示,在形成在隆起部20的兩側的凹槽21的各個的上部,可以使第2Au鍍層17與焊料18接觸。 For example, when there is vacancy in the space of the adjacent laser diodes (the ridges 20), as shown in FIG. 5, in the upper portions of the grooves 21 formed on both sides of the ridges 20, The second Au plating layer 17 is brought into contact with the solder 18.

另外,在前述實施方式中,應用於4波束半導體雷射裝置,但當然能夠應用於2波束半導體雷射裝置或8波束半導體雷射裝置等多波束半導體雷射裝置。 Further, in the foregoing embodiment, the present invention is applied to a 4-beam semiconductor laser device, but can of course be applied to a multi-beam semiconductor laser device such as a 2-beam semiconductor laser device or an 8-beam semiconductor laser device.

本發明能夠應用於採用接點朝下方式的多波束半導體雷射裝置。 The present invention can be applied to a multi-beam semiconductor laser device employing a contact-down approach.

10‧‧‧基座 10‧‧‧ Pedestal

11‧‧‧雷射晶片 11‧‧‧Laser Wafer

12‧‧‧GaAs基板 12‧‧‧GaAs substrate

13‧‧‧背面電極 13‧‧‧Back electrode

14‧‧‧鈍化膜 14‧‧‧passivation film

15‧‧‧表面電極 15‧‧‧ surface electrode

16‧‧‧第1Au鍍層 16‧‧‧1Au plating

17‧‧‧第2Au鍍層 17‧‧‧2Au plating

18‧‧‧焊料 18‧‧‧ solder

20‧‧‧隆起部 20‧‧‧ Uplift

21‧‧‧凹槽 21‧‧‧ Groove

22‧‧‧n型包覆層 22‧‧‧n type cladding

23‧‧‧活性層 23‧‧‧Active layer

24‧‧‧p型第1包覆層 24‧‧‧p type first cladding

25‧‧‧p型第2包覆層 25‧‧‧p type second cladding

26‧‧‧p型觸點層 26‧‧‧p type contact layer

27‧‧‧基座電極 27‧‧‧Base electrode

28‧‧‧絕緣層 28‧‧‧Insulation

Claims (7)

一種多波束半導體雷射裝置,係具備:具備3個以上波束的半導體晶片、及安裝前述半導體晶片的支撐基板;其特徵為:前述半導體晶片具有:第1導電型被覆層,係形成在半導體基板的主面上;活性層,係形成在前述第1導電型被覆層的上部;第2導電型被覆層,係形成在前述活性層的上部;3個以上的隆起部,係分別包括前述第2導電型被覆層與形成在前述第2導電型被覆層上部的第2導電型觸點層;一對凹槽,係形成在各個前述隆起部的兩側之前述第2導電型被覆層上;表面電極,係與各個前述隆起部電性連接,以覆蓋各個前述隆起部的上部與形成在其兩側的前述一對凹槽的上部的方式連續地形成;第1導電層,係形成在前述表面電極的上部;第2導電層,係形成在前述第1導電層的上部,面積比前述第1導電層小;以及背面電極,係形成在前述半導體基板的背面;在前述支撐基板的晶片安裝面形成與前述隆起部的數量相同的第1電極;在各個前述第1電極的表面形成焊料; 前述半導體基板係藉由熔融接合前述第2導電層與前述焊料,安裝在前述支撐基板的前述晶片安裝面上;前述第2導電層在形成在前述隆起部的兩側的前述一對凹槽的至少一方的上部與前述焊料接觸;沿前述隆起部的排列方向的前述第2導電層的寬度,比前述焊料的寬度窄。 A multi-beam semiconductor laser device includes: a semiconductor wafer including three or more beams; and a support substrate on which the semiconductor wafer is mounted; wherein the semiconductor wafer has a first conductive type cladding layer formed on a semiconductor substrate The active layer is formed on the upper portion of the first conductive type coating layer; the second conductive type coating layer is formed on the upper portion of the active layer; and three or more raised portions each include the second portion a conductive coating layer and a second conductive type contact layer formed on the upper portion of the second conductive type coating layer; and a pair of grooves formed on the second conductive type coating layer on both sides of each of the raised portions; The electrode is electrically connected to each of the ridges so as to cover an upper portion of each of the ridges and an upper portion of the pair of grooves formed on both sides thereof; the first conductive layer is formed on the surface An upper portion of the electrode; the second conductive layer is formed on an upper portion of the first conductive layer, and has a smaller area than the first conductive layer; and the back surface electrode is formed on the semiconductor substrate a back surface; a first electrode having the same number as the raised portion on the wafer mounting surface of the support substrate; and a solder formed on a surface of each of the first electrodes; The semiconductor substrate is mounted on the wafer mounting surface of the support substrate by fusion bonding the second conductive layer and the solder, and the second conductive layer is formed on the pair of grooves formed on both sides of the raised portion. At least one of the upper portions is in contact with the solder; and the width of the second conductive layer along the direction in which the raised portions are arranged is narrower than the width of the solder. 如請求項1之多波束半導體雷射裝置,其中,相對於前述焊料的寬度之前述第2導電層的寬度的比,為0.7以下。 The multibeam semiconductor laser device of claim 1, wherein a ratio of a width of the second conductive layer to a width of the solder is 0.7 or less. 如請求項1之多波束半導體雷射裝置,其中,相對於前述焊料的寬度之前述第2導電層的寬度的比,為0.5以上。 The multibeam semiconductor laser device of claim 1, wherein a ratio of a width of the second conductive layer to a width of the solder is 0.5 or more. 如請求項1之多波束半導體雷射裝置,其中,前述波束的數目是偶數個,前述第2導電層在形成在前述隆起部的兩側的前述一對凹槽的一方的上部與前述焊料接觸。 The multi-beam semiconductor laser device of claim 1, wherein the number of the beams is an even number, and the second conductive layer is in contact with the solder on an upper portion of the pair of grooves formed on both sides of the raised portion . 如請求項1之多波束半導體雷射裝置,其中,前述波束的數目是偶數個,前述隆起部及前述第2導電層相對於偶數個前述波束的中心配置成線對稱。 The multiple beam semiconductor laser device of claim 1, wherein the number of the beams is an even number, and the raised portion and the second conductive layer are arranged in line symmetry with respect to a center of the even number of the beams. 如請求項1之多波束半導體雷射裝置,其中,前述第1及第2導電層是利用Au來構成,前述焊料是利用Au-Sn合金來構成。 The multibeam semiconductor laser device according to claim 1, wherein the first and second conductive layers are made of Au, and the solder is formed of an Au-Sn alloy. 如請求項1之多波束半導體雷射裝置,其中,在前述半導體晶片的表面與背面形成在將前述半導 體晶片安裝在前述支撐基板上時用於對準的識別標記。 The multi-beam semiconductor laser device of claim 1, wherein the semiconductor wafer is formed on the front surface and the back surface of the semiconductor wafer An identification mark for alignment when the body wafer is mounted on the aforementioned support substrate.
TW102119410A 2012-07-17 2013-05-31 Multi - beam semiconductor laser device TWI517509B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012158245A JP6125166B2 (en) 2012-07-17 2012-07-17 Multi-beam semiconductor laser device

Publications (2)

Publication Number Publication Date
TW201411974A TW201411974A (en) 2014-03-16
TWI517509B true TWI517509B (en) 2016-01-11

Family

ID=49968903

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102119410A TWI517509B (en) 2012-07-17 2013-05-31 Multi - beam semiconductor laser device

Country Status (4)

Country Link
JP (1) JP6125166B2 (en)
KR (1) KR101517277B1 (en)
CN (1) CN103545708B (en)
TW (1) TWI517509B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6173994B2 (en) * 2014-10-16 2017-08-02 ウシオオプトセミコンダクター株式会社 Optical semiconductor device
JP6900798B2 (en) * 2017-06-16 2021-07-07 ウシオ電機株式会社 Multi-beam type semiconductor laser element and multi-beam type semiconductor laser device
JP7045204B2 (en) * 2018-01-26 2022-03-31 ローム株式会社 Semiconductor laser device
JP7480711B2 (en) 2019-02-05 2024-05-10 ソニーグループ株式会社 Light emitting element assembly, multi-beam laser chip assembly, optical molding device, and member assembly and manufacturing method thereof
JPWO2022264972A1 (en) * 2021-06-15 2022-12-22

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780981B2 (en) * 1988-06-27 1998-07-30 三菱電機株式会社 Multipoint emission type semiconductor laser and method of manufacturing the same
JPH11346027A (en) * 1998-06-01 1999-12-14 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JP3505478B2 (en) * 2000-06-28 2004-03-08 三洋電機株式会社 Nitride-based semiconductor laser device and method of manufacturing nitride-based semiconductor laser device
JP2003163402A (en) * 2001-11-26 2003-06-06 Denso Corp Semiconductor laser element and sub-mount for loading semiconductor laser element
JP4583058B2 (en) * 2003-03-31 2010-11-17 三洋電機株式会社 Semiconductor laser element
JP4342495B2 (en) * 2005-09-27 2009-10-14 三洋電機株式会社 Semiconductor laser device
KR100754407B1 (en) 2006-06-08 2007-08-31 삼성전자주식회사 Submount and multi-beam laser diode module having the same
JP4964659B2 (en) * 2007-04-27 2012-07-04 株式会社リコー Semiconductor laser device, mounting method of semiconductor laser device, and printer
JP4845132B2 (en) * 2007-05-25 2011-12-28 日本オプネクスト株式会社 Semiconductor laser device, manufacturing method thereof, and manufacturing method of optical semiconductor device
JP4925118B2 (en) * 2007-06-12 2012-04-25 シャープ株式会社 Manufacturing method of semiconductor laser device
JP5259166B2 (en) * 2007-12-06 2013-08-07 日本オクラロ株式会社 Semiconductor laser device
US7792173B2 (en) * 2007-12-06 2010-09-07 Opnext Japan, Inc. Semiconductor laser device
JP5380135B2 (en) * 2009-04-03 2014-01-08 日本オクラロ株式会社 Multi-beam semiconductor laser device
JP2011023628A (en) 2009-07-17 2011-02-03 Mitsubishi Electric Corp Semiconductor laser device
JP5465514B2 (en) * 2009-11-19 2014-04-09 日本オクラロ株式会社 Optical semiconductor device
JP5437109B2 (en) * 2010-02-25 2014-03-12 日本オクラロ株式会社 Semiconductor laser device

Also Published As

Publication number Publication date
TW201411974A (en) 2014-03-16
CN103545708B (en) 2017-06-13
KR101517277B1 (en) 2015-05-04
JP2014022481A (en) 2014-02-03
CN103545708A (en) 2014-01-29
JP6125166B2 (en) 2017-05-10
KR20140010876A (en) 2014-01-27

Similar Documents

Publication Publication Date Title
US7792173B2 (en) Semiconductor laser device
TWI517509B (en) Multi - beam semiconductor laser device
US7653114B2 (en) Semiconductor laser diode and the manufacturing method thereof
US9966730B2 (en) Surface-emitting laser apparatus and manufacturing method thereof
JP2011119521A (en) Semiconductor laser chip, semiconductor laser device, and method of manufacturing semiconductor laser chip
JPWO2013150715A1 (en) Semiconductor laser device and manufacturing method thereof
US9780523B2 (en) Semiconductor laser device
JP2010040752A (en) Semiconductor laser device, and method of manufacturing the same
JP5214844B2 (en) Optical semiconductor device
JP5959484B2 (en) Semiconductor laser device and semiconductor laser device
JP2011014632A (en) Laser diode
JP4697488B2 (en) Multi-beam semiconductor laser
JP5280119B2 (en) Semiconductor laser device
JP4984986B2 (en) Laser apparatus and manufacturing method thereof
JP5410195B2 (en) Multi-beam semiconductor laser device
JP2012054474A (en) Semiconductor laser device
JP6334772B2 (en) Multi-beam semiconductor laser device
JP6173994B2 (en) Optical semiconductor device
JP5779214B2 (en) Multi-beam semiconductor laser device
JP6037484B2 (en) Manufacturing method of semiconductor laser device
JP6900798B2 (en) Multi-beam type semiconductor laser element and multi-beam type semiconductor laser device
US20230114599A1 (en) Semiconductor laser element, semiconductor laser device, and method for manufacturing semiconductor laser element
WO2021200582A1 (en) Method for producing quantum cascade laser element
JP4522333B2 (en) Manufacturing method of semiconductor laser device
JP2006024665A (en) Array type semiconductor laser device