TWI517402B - Semiconductor device and methods for forming the same - Google Patents

Semiconductor device and methods for forming the same Download PDF

Info

Publication number
TWI517402B
TWI517402B TW102131198A TW102131198A TWI517402B TW I517402 B TWI517402 B TW I517402B TW 102131198 A TW102131198 A TW 102131198A TW 102131198 A TW102131198 A TW 102131198A TW I517402 B TWI517402 B TW I517402B
Authority
TW
Taiwan
Prior art keywords
trench gate
semiconductor device
gate structure
region
substrate
Prior art date
Application number
TW102131198A
Other languages
Chinese (zh)
Other versions
TW201508920A (en
Inventor
張睿鈞
張雄世
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW102131198A priority Critical patent/TWI517402B/en
Publication of TW201508920A publication Critical patent/TW201508920A/en
Application granted granted Critical
Publication of TWI517402B publication Critical patent/TWI517402B/en

Links

Description

半導體裝置及其製造方法 Semiconductor device and method of manufacturing same

本發明係有關於一種半導體裝置,特別為有關於一種具有溝槽式閘極(trench gate)之半導體裝置及其製造方法。 The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a trench gate and a method of fabricating the same.

高壓元件技術應用於高電壓與高功率的積體電路,傳統的功率電晶體為了達到高耐壓及高電流,驅動電流的流動由平面方向發展為垂直方向。目前發展出具有溝槽式閘極的金屬氧化物半導體場效電晶體(metal oxide semiconductor field effect transistor,MOSFET),能夠有效地降低導通電阻,且具有較大電流處理能力。 The high-voltage component technology is applied to a high-voltage and high-power integrated circuit. In order to achieve high withstand voltage and high current, the flow of the drive current develops from a planar direction to a vertical direction. At present, a metal oxide semiconductor field effect transistor (MOSFET) having a trench gate is developed, which can effectively reduce the on-resistance and has a large current handling capability.

第1圖係繪示出具有溝槽式閘極的金屬氧化物半導體場效電晶體的平面示意圖。該金屬氧化物半導體場效電晶體包括:基板500、位於基板500內的汲極摻雜區510、溝槽式閘極結構520及源極摻雜區530。源極摻雜區530位於溝槽式閘極結構520的兩側,且源極摻雜區530位於溝槽式閘極結構520的兩側。源極摻雜區530及溝槽式閘極結構520具有相同長度,而溝槽式閘極結構520的深度大於源極摻雜區530的深度。從上視方向來看,源極摻雜區530及溝槽式閘極結構520的長度的延伸方向皆平行於汲極摻雜區510的長度的延伸方向。該金屬氧 化物半導體場效電晶體的驅動電流從汲極摻雜區510朝向源極摻雜區530及溝槽式閘極結構520的方向流動,且沿著溝槽式閘極結構520的側壁向上流向源極摻雜區530,因此從上視方向來看,該金屬氧化物半導體場效電晶體的閘極通道寬度w為溝槽式閘極結構520的長度。 Figure 1 is a schematic plan view showing a metal oxide semiconductor field effect transistor having a trench gate. The metal oxide semiconductor field effect transistor includes a substrate 500, a gate doping region 510 located in the substrate 500, a trench gate structure 520, and a source doping region 530. The source doping regions 530 are located on both sides of the trench gate structure 520, and the source doping regions 530 are located on both sides of the trench gate structure 520. The source doped region 530 and the trench gate structure 520 have the same length, and the trench gate structure 520 has a depth greater than the depth of the source doped region 530. The direction in which the lengths of the source doping region 530 and the trench gate structure 520 extend is parallel to the extending direction of the length of the drain doping region 510. The metal oxygen The driving current of the semiconductor field effect transistor flows from the drain doping region 510 toward the source doping region 530 and the trench gate structure 520, and flows upward along the sidewall of the trench gate structure 520 to the source. The pole doped region 530 is such that the gate channel width w of the MOSFET is the length of the trench gate structure 520 as viewed from above.

在固定的閘極通道長度下,驅動電流的大小與上述閘極通道寬度成正比。然而,若閘極通道寬度增加,則會增加溝槽式閘極結構520的長度,進而增加半導體裝置的尺寸。 At a fixed gate channel length, the magnitude of the drive current is proportional to the width of the gate channel described above. However, if the gate channel width is increased, the length of the trench gate structure 520 is increased, thereby increasing the size of the semiconductor device.

因此,有必要尋求一種新穎的具有溝槽式閘極之半導體裝置及其製造方法,其能夠解決或改善上述的問題。 Therefore, it is necessary to find a novel semiconductor device having a trench gate and a method of fabricating the same that can solve or ameliorate the above problems.

本發明實施例係提供一種半導體裝置,包括一基板,其具有一主動區及位於主動區內的一場板區。至少一溝槽式閘極結構位於基板內,其中場板區位於溝槽式閘極結構的一第一側。至少一源極摻雜區位於溝槽式閘極結構的一第二側的基板內,其中第二側相對於第一側,且源極摻雜區鄰接於溝槽式閘極結構的一側壁。一汲極摻雜區位於主動區的基板內,其中場板區位於汲極摻雜區與至少一溝槽式閘極結構之間,且從一上視方向來看,溝槽式閘極結構的長度的延伸方向垂直於汲極摻雜區的長度的延伸方向。 Embodiments of the present invention provide a semiconductor device including a substrate having an active region and a field region located in the active region. At least one trench gate structure is located within the substrate, wherein the field plate region is on a first side of the trench gate structure. At least one source doping region is located in a substrate on a second side of the trench gate structure, wherein the second side is opposite to the first side, and the source doping region is adjacent to a sidewall of the trench gate structure . A drain doped region is located in the substrate of the active region, wherein the field plate region is between the drain doped region and the at least one trench gate structure, and the trench gate structure is viewed from a top view direction The length of the extension direction is perpendicular to the direction in which the length of the drain doped region extends.

本發明實施例係提供一種半導體裝置的製造方法,包括提供一基板,其具有一主動區及位於主動區內的一場板區。在基板內形成至少一溝槽式閘極結構,其中場板區位於溝槽式閘極結構的一第一側。在溝槽式閘極結構的一第二側的 基板內形成至少一源極摻雜區,其中第二側相對於第一側,且源極摻雜區鄰接於溝槽式閘極結構的一側壁。在主動區的基板內形成一汲極摻雜區,其中場板區位於汲極摻雜區與溝槽式閘極結構之間,且從一上視方向來看,溝槽式閘極結構的長度的延伸方向垂直於該汲極摻雜區的長度的延伸方向。 Embodiments of the present invention provide a method of fabricating a semiconductor device, including providing a substrate having an active region and a field region located within the active region. At least one trench gate structure is formed in the substrate, wherein the field plate region is located on a first side of the trench gate structure. On a second side of the trench gate structure At least one source doped region is formed in the substrate, wherein the second side is opposite to the first side, and the source doped region is adjacent to a sidewall of the trench gate structure. Forming a drain doped region in the substrate of the active region, wherein the field plate region is between the drain doped region and the trench gate structure, and the trench gate structure is viewed from a top view direction The direction in which the length extends is perpendicular to the direction in which the length of the drain doped region extends.

10‧‧‧主動區 10‧‧‧active area

20‧‧‧場板區 20‧‧‧Field area

50‧‧‧箭號 50‧‧‧Arrow

100、500‧‧‧基板 100, 500‧‧‧ substrate

200、520‧‧‧溝槽式閘極結構 200, 520‧‧‧ trench gate structure

210‧‧‧溝槽 210‧‧‧ trench

220‧‧‧介電層 220‧‧‧ dielectric layer

230‧‧‧閘極電極層 230‧‧‧ gate electrode layer

240‧‧‧場氧化層 240‧‧ ‧ field oxide layer

250‧‧‧場板電極 250‧‧ ‧ field plate electrode

300、530‧‧‧源極摻雜區 300, 530‧‧‧ source doped area

310‧‧‧摻雜區 310‧‧‧Doped area

350‧‧‧井區 350‧‧‧ Well Area

400、510‧‧‧汲極摻雜區 400, 510‧‧‧汲polar doped area

W、w‧‧‧閘極通道寬度 W, w‧‧‧ gate channel width

第1圖係繪示出具有溝槽式閘極的金屬氧化物半導體場效電晶體的平面示意圖。 Figure 1 is a schematic plan view showing a metal oxide semiconductor field effect transistor having a trench gate.

第2A、3A及4A圖係繪示出根據本發明實施例之半導體裝置的製造方法的平面示意圖。 2A, 3A, and 4A are schematic plan views showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention.

第2B圖係繪示出沿著第2A圖中的剖線2B-2B’的剖面示意圖。 Fig. 2B is a schematic cross-sectional view taken along line 2B-2B' in Fig. 2A.

第3B圖係繪示出沿著第3A圖中的剖線3B-3B’的剖面示意圖。 Fig. 3B is a schematic cross-sectional view taken along line 3B-3B' in Fig. 3A.

第4B圖係繪示出沿著第4A圖中的剖線4B-4B’的剖面示意圖。 Fig. 4B is a schematic cross-sectional view taken along line 4B-4B' in Fig. 4A.

第5A圖係繪示出根據本發明另一實施例之半導體裝置的平面示意圖。 Fig. 5A is a plan view showing a semiconductor device in accordance with another embodiment of the present invention.

第5B圖係繪示出沿著第5A圖中的剖線5B-5B’的剖面示意圖。 Fig. 5B is a schematic cross-sectional view taken along line 5B-5B' in Fig. 5A.

以下說明本發明實施例之半導體裝置及其製造方法的製作與使用。然而,可輕易了解本發明實施例提供許多合 適的發明概念而可實施於廣泛的各種特定背景。所揭示的特定實施例僅僅用於說明以特定方法製作及使用本發明,並非用以侷限本發明的範圍。再者,在本發明實施例之圖式及說明內容中係使用相同的標號來表示相同或相似的部件。 Hereinafter, the fabrication and use of the semiconductor device and the method of manufacturing the same according to embodiments of the present invention will be described. However, it can be easily understood that the embodiments of the present invention provide many combinations. Appropriate inventive concepts can be implemented in a wide variety of specific contexts. The specific embodiments disclosed are merely illustrative of the invention, and are not intended to limit the scope of the invention. In the drawings and the description of the embodiments of the present invention, the same reference numerals are used to refer to the same or similar parts.

以下配合第4A及4B圖說明本發明實施例之具有溝槽式閘極之半導體裝置,其中第4A圖係繪示出根據本發明實施例之具有溝槽式閘極之半導體裝置的平面示意圖,且第4B圖係繪示出沿著第4A圖中的剖線4B-4B’的剖面示意圖。 Hereinafter, a semiconductor device having a trench gate according to an embodiment of the present invention will be described with reference to FIGS. 4A and 4B, wherein FIG. 4A is a plan view showing a semiconductor device having a trench gate according to an embodiment of the present invention. And Fig. 4B is a schematic cross-sectional view taken along line 4B-4B' in Fig. 4A.

在本實施例中,具有溝槽式閘極之半導體裝置包括:一基板100、至少一溝槽式閘極結構200、至少一源極摻雜區300、一汲極摻雜區400以及一井區350。基板100具有一主動區10及位於主動區10內的一場板(field plate)區20。在本實施例中,基板100為單晶矽基底。在其他實施例中,基板100可為絕緣層上覆矽(silicon on insulator,SOI)基底、磊晶矽基底、矽鍺基底、化合物半導體基底或其他適當之半導體基板。在本實施例中,基板100的導電類型為n型,但並不限定於此。在其他實施例中,基板100的導電類型也可為p型,且可根據設計需要選擇其導電類型。 In this embodiment, a semiconductor device having a trench gate includes: a substrate 100, at least one trench gate structure 200, at least one source doped region 300, a drain doped region 400, and a well District 350. The substrate 100 has an active region 10 and a field plate region 20 located within the active region 10. In the present embodiment, the substrate 100 is a single crystal germanium substrate. In other embodiments, the substrate 100 can be a silicon on insulator (SOI) substrate, an epitaxial germanium substrate, a germanium substrate, a compound semiconductor substrate, or other suitable semiconductor substrate. In the present embodiment, the conductivity type of the substrate 100 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the substrate 100 may also be p-type, and its conductivity type may be selected according to design requirements.

溝槽式閘極結構200位於主動區10的基板100內。場板區20及井區350分別位於溝槽式閘極結構200的相對的第一側及第二側,且一部分的溝槽式閘極結構200位於井區350內。在本實施例中,井區350的導電類型為p型,但並不限定於此。在其他實施例中,井區350的導電類型也可為n型,且可根據設計需要選擇其導電類型。 The trench gate structure 200 is located within the substrate 100 of the active region 10. Field plate region 20 and well region 350 are respectively located on opposite first and second sides of trench gate structure 200, and a portion of trench gate structure 200 is located within well region 350. In the present embodiment, the conductivity type of the well region 350 is p-type, but is not limited thereto. In other embodiments, the conductivity type of well region 350 can also be n-type, and its conductivity type can be selected according to design needs.

溝槽式閘極結構200包括一介電層220及一閘極電極層230。介電層220順應性地位於基板100內的一溝槽210內,且閘極電極層230位於介電層220上,並填滿溝槽210,如第4B圖所示。介電層220係作為閘極介電層且可包括氧化物、氮化物、氮氧化物、其組合或其他合適的閘極介電材料。閘極電極層230可包括矽、多晶矽(polysilicon)或其他導電材料。在本實施例中,溝槽式閘極結構200為一長條狀柱體,且長條狀柱體的底面具有矩形之外型,如第4A圖所示。在其他實施例中,溝槽式閘極結構200的長條狀柱體的底面可具有橢圓形、圓角矩形或多邊形之外型(未繪示)。 The trench gate structure 200 includes a dielectric layer 220 and a gate electrode layer 230. The dielectric layer 220 is compliantly disposed within a trench 210 in the substrate 100, and the gate electrode layer 230 is disposed on the dielectric layer 220 and fills the trench 210 as shown in FIG. 4B. Dielectric layer 220 acts as a gate dielectric layer and may include oxides, nitrides, oxynitrides, combinations thereof, or other suitable gate dielectric materials. The gate electrode layer 230 may comprise germanium, polysilicon or other conductive material. In the present embodiment, the trench gate structure 200 is an elongated column, and the bottom surface of the elongated column has a rectangular shape, as shown in FIG. 4A. In other embodiments, the bottom surface of the elongated column of the trench gate structure 200 may have an elliptical shape, a rounded rectangular shape, or a polygonal outer shape (not shown).

源極摻雜區300位於溝槽式閘極結構200的第二側的基板100內,且鄰接於溝槽式閘極結構200的一側壁。在本實施例中,源極摻雜區300的導電類型為n型,但並不限定於此。在其他實施例中,源極摻雜區300的導電類型也可為p型,且可根據設計需要選擇其導電類型,舉例來說,源極摻雜區300可包括p型摻雜物(例如,硼或氟化硼)或n型摻雜物(例如,磷或砷)。 The source doping region 300 is located in the substrate 100 on the second side of the trench gate structure 200 and is adjacent to a sidewall of the trench gate structure 200. In the present embodiment, the conductivity type of the source doping region 300 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the source doping region 300 may also be p-type, and its conductivity type may be selected according to design requirements. For example, the source doping region 300 may include a p-type dopant (for example, , boron or boron fluoride) or n-type dopants (eg, phosphorus or arsenic).

在本實施例中,源極摻雜區300的深度大於溝槽式閘極結構200的深度,如第4B圖所示。在其他實施例中,源極摻雜區300的深度可等於溝槽式閘極結構200的深度。在本實施例中,從上視方向來看,源極摻雜區300鄰接於溝槽式閘極結構200的側邊的長度與溝槽式閘極結構200的寬度相同,如第4A圖所示。在其他實施例中,源極摻雜區300鄰接於溝槽式閘極結構200的側邊的長度可大於溝槽式閘極結構200的寬度(未繪 示)。 In the present embodiment, the depth of the source doping region 300 is greater than the depth of the trench gate structure 200, as shown in FIG. 4B. In other embodiments, the depth of the source doped region 300 can be equal to the depth of the trench gate structure 200. In the present embodiment, the length of the source doped region 300 adjacent to the side of the trench gate structure 200 is the same as the width of the trench gate structure 200, as viewed from the top view, as shown in FIG. 4A. Show. In other embodiments, the length of the source doped region 300 adjacent to the side of the trench gate structure 200 may be greater than the width of the trench gate structure 200 (not depicted) Show).

在本實施例中,具有溝槽式閘極之半導體裝置可包括複數溝槽式閘極結構200及對應地鄰接於溝槽式閘極結構200的複數源極摻雜區300,且溝槽式閘極結構200彼此間隔排列,源極摻雜區300亦彼此間隔排列。舉例來說,具有溝槽式閘極之半導體裝置包括彼此間隔排列的兩個溝槽式閘極結構200及彼此間隔排列且對應於溝槽式閘極結構200的兩個源極摻雜區300,如第4A圖所示。溝槽式閘極結構200彼此可具有相同的外型,且源極摻雜區300彼此可具有相同的外型。在另一實施例中,兩個溝槽式閘極結構200彼此可具有不同的外型,且兩個源極摻雜區300彼此可具有相同或不同的外型(未繪示)。在其他實施例中,兩個以上的溝槽式閘極結構200中可具有相同或不同的外型的溝槽式閘極結構200,且相鄰的溝槽式閘極結構200之間可具有相同或不同的間距。兩個以上的源極摻雜區300中可具有相同或不同的外型的源極摻雜區300,且相鄰的源極摻雜區300之間可具有相同或不同的間距。可以理解的是,第4A及4B圖中溝槽式閘極結構200及對應的源極摻雜區300的數量及外型僅作為範例說明,並不限定於此,溝槽式閘極結構200及對應的源極摻雜區300的實際數量及外型取決於設計需求。 In this embodiment, the semiconductor device having the trench gate may include a plurality of trench gate structures 200 and a plurality of source doped regions 300 correspondingly adjacent to the trench gate structures 200, and the trenches The gate structures 200 are spaced apart from each other, and the source doping regions 300 are also spaced apart from each other. For example, a semiconductor device having a trench gate includes two trench gate structures 200 spaced apart from each other and two source doped regions 300 spaced apart from each other and corresponding to the trench gate structure 200 As shown in Figure 4A. The trench gate structures 200 may have the same shape as each other, and the source doping regions 300 may have the same shape as each other. In another embodiment, the two trench gate structures 200 may have different shapes from each other, and the two source doping regions 300 may have the same or different shapes (not shown) from each other. In other embodiments, two or more trench gate structures 200 may have the same or different outer shape of the trench gate structure 200, and adjacent trench gate structures 200 may have Same or different spacing. The source doping regions 300 may have the same or different outer shape in the two or more source doping regions 300, and the adjacent source doping regions 300 may have the same or different spacing therebetween. It can be understood that the number and shape of the trench gate structure 200 and the corresponding source doping region 300 in FIGS. 4A and 4B are merely illustrative and not limited thereto, and the trench gate structure 200 and The actual number and shape of the corresponding source doped regions 300 depends on the design requirements.

汲極摻雜區400位於主動區10的基板100內,每一溝槽式閘極結構200與汲極摻雜區400之間具有相同的間距。汲極摻雜區400位於溝槽式閘極結構200的第一側,且場板區20位於汲極摻雜區400與溝槽式閘極結構200之間,如第4A及4B圖 所示。在本實施例中,汲極摻雜區400的導電類型為p型,但並不限定於此。在其他實施例中,汲極摻雜區400的導電類型也可為n型,且可根據設計需要選擇其導電類型,例如,汲極摻雜區400可包括p型摻雜物(例如,硼或氟化硼)或n型摻雜物(例如,磷或砷)。 The gate doped region 400 is located within the substrate 100 of the active region 10, and each trench gate structure 200 has the same spacing from the gate doped region 400. The drain doped region 400 is on the first side of the trench gate structure 200, and the field plate region 20 is between the drain doped region 400 and the trench gate structure 200, as shown in Figures 4A and 4B. Shown. In the present embodiment, the conductivity type of the drain doping region 400 is p-type, but is not limited thereto. In other embodiments, the conductivity type of the drain doping region 400 may also be n-type, and the conductivity type may be selected according to design requirements. For example, the gate doping region 400 may include a p-type dopant (eg, boron). Or boron fluoride) or an n-type dopant (for example, phosphorus or arsenic).

在本實施例中,從上視方向來看,溝槽式閘極結構200的長度的延伸方向(即,X方向)大體上垂直於汲極摻雜區400的長度的延伸方向(即,Y方向),如第4A圖所示。 In the present embodiment, the extending direction of the length of the trench gate structure 200 (i.e., the X direction) is substantially perpendicular to the extending direction of the length of the gate doping region 400 (i.e., Y) as viewed from the top direction. Direction) as shown in Figure 4A.

在本實施例中,具有溝槽式閘極之半導體裝置更包括一場氧化層240(例如,矽局部氧化(local oxidation of silicon,LOCOS)結構)以及一場板電極250。場氧化層240位於場板區20內的基板100內,且突出於基板100上,場板電極250位於場氧化層240上,且延伸至基板100上,如第4A及4B圖所示。 In the present embodiment, the semiconductor device having the trench gate further includes a field oxide layer 240 (eg, a local oxidation of silicon (LOCOS) structure) and a field plate electrode 250. The field oxide layer 240 is located in the substrate 100 in the field plate region 20 and protrudes from the substrate 100. The field plate electrode 250 is disposed on the field oxide layer 240 and extends onto the substrate 100 as shown in FIGS. 4A and 4B.

具有溝槽式閘極之半導體裝置的驅動電流從汲極摻雜區400通過場氧化層240下方,且沿著溝槽式閘極結構200垂直於汲極摻雜區400的長度的延伸方向(即,Y方向)的兩相對側壁,水平地流向對應的源極摻雜區300,如第4A圖的箭號50所示。根據本發明實施例,具有溝槽式閘極之半導體裝置的閘極通道寬度W相等於單一溝槽式閘極結構200中的閘極電極層230的深度。而由於驅動電流沿著溝槽式閘極結構200的兩相對側壁流向源極摻雜區300,因此總閘極通道寬度為閘極電極層230的深度的兩倍或複數溝槽式閘極結構200中的閘極電極層230的深度的兩倍之總和。 The drive current of the semiconductor device having the trench gate passes from the drain doping region 400 through the field oxide layer 240 and along the extending direction of the trench gate structure 200 perpendicular to the length of the gate doped region 400 ( That is, the two opposite side walls of the Y direction flow horizontally to the corresponding source doping region 300 as indicated by arrow 50 of FIG. 4A. In accordance with an embodiment of the invention, the gate channel width W of a semiconductor device having a trench gate is equal to the depth of the gate electrode layer 230 in the single trench gate structure 200. Since the driving current flows to the source doping region 300 along the opposite sidewalls of the trench gate structure 200, the total gate channel width is twice the depth of the gate electrode layer 230 or the plurality of trench gate structures The sum of the two times the depth of the gate electrode layer 230 in 200.

第1圖中的具有溝槽式閘極的金屬氧化物半導體場效電晶體僅具有一個溝槽式閘極結構500,且溝槽式閘極結構500的長度的延伸方向平行於汲極摻雜區510的長度的延伸方向。此具有溝槽式閘極的金屬氧化物半導體場效電晶體的閘極通道寬度w為溝槽式閘極結構500的長度,若為了增加驅動電流而增加閘極通道寬度w,則會等比例地增加半導體裝置的面積。 The metal oxide semiconductor field effect transistor having a trench gate in FIG. 1 has only one trench gate structure 500, and the length of the trench gate structure 500 extends parallel to the gate doping. The direction in which the length of the region 510 extends. The gate width w of the MOSFET having a trench gate is the length of the trench gate structure 500. If the gate width w is increased in order to increase the driving current, the ratio is equal. The area of the semiconductor device is increased.

相較於第1圖中的具有溝槽式閘極的金屬氧化物半導體場效電晶體,本發明實施例之半導體裝置具有單一溝槽式閘極結構200或複數彼此間隔的溝槽式閘極結構200,溝槽式閘極結構200的長度的延伸方向係大體上垂直於汲極摻雜區400的長度的延伸方向,使閘極通道寬度W為溝槽式閘極結構200中的閘極電極層230的深度,因此能夠透過調整溝槽式閘極結構200及源極摻雜區300的深度,控制所需的閘極通道寬度W。 The semiconductor device of the embodiment of the present invention has a single trench gate structure 200 or a plurality of trench gates spaced apart from each other, compared to the metal oxide semiconductor field effect transistor having a trench gate in FIG. The structure 200, the length of the trench gate structure 200 extends in a direction substantially perpendicular to the length of the drain doping region 400, such that the gate channel width W is the gate in the trench gate structure 200. The depth of the electrode layer 230 can thus control the required gate channel width W by adjusting the depth of the trench gate structure 200 and the source doping region 300.

由此可知,相較於長度的延伸方向平行於汲極摻雜區的溝槽式閘極結構,在固定的裝置面積下,將溝槽式閘極結構配置為其長度的延伸方向大體上垂直於汲極摻雜區的長度的延伸方向,使總閘極通道寬度為溝槽式閘極結構中的閘極電極層的深度的兩倍時,增加溝槽式閘極結構及源極摻雜區的深度,能夠增加半導體裝置的總閘極通道寬度。另外,由於半導體裝置內能夠形成彼此間隔排列的複數溝槽式閘極結構,使得總閘極通道寬度增加為複數溝槽式閘極結構中的閘極電極層的深度的兩倍之總和,因此可再進一步提高驅動電流及改善 導通電阻,並有效增加裝置面積的使用效率。 It can be seen that the trench gate structure is arranged such that its length extends substantially perpendicular to the trench gate structure of the gate doped region compared to the extension direction of the length. When the length of the drain doping region is extended so that the total gate channel width is twice the depth of the gate electrode layer in the trench gate structure, the trench gate structure and source doping are increased. The depth of the region can increase the total gate channel width of the semiconductor device. In addition, since a plurality of trench gate structures spaced apart from each other can be formed in the semiconductor device, the total gate channel width is increased to be twice the depth of the gate electrode layer in the plurality of trench gate structures, Can further improve the drive current and improve Turn on the resistance and effectively increase the efficiency of the device area.

根據本發明實施例,當溝槽式閘極結構的長度的延伸方向大體上垂直於汲極摻雜區的長度的延伸方向,而使半導體裝置的閘極通道寬度為溝槽式閘極結構中的閘極電極層的深度時,能夠透過增加極少部分的裝置面積,大幅提高溝槽式閘極結構的總閘極通道寬度,進而提升驅動電流及改善導通電阻。換句話說,根據本發明實施例之溝槽式閘極結構,能夠在相同的所需驅動電流下,縮小閘極結構的尺寸且增加裝置面積的使用效率,進而縮小半導體裝置的尺寸。 According to an embodiment of the present invention, when the extending direction of the length of the trench gate structure is substantially perpendicular to the extending direction of the length of the drain doping region, the gate channel width of the semiconductor device is in the trench gate structure. When the depth of the gate electrode layer is increased, the total gate area of the trench gate structure can be greatly increased by increasing the device area of a small portion, thereby increasing the driving current and improving the on-resistance. In other words, the trench gate structure according to the embodiment of the present invention can reduce the size of the gate structure and increase the use efficiency of the device area under the same required driving current, thereby reducing the size of the semiconductor device.

第5A圖係繪示出本發明另一實施例之具有溝槽式閘極之半導體裝置的平面示意圖,且第5B圖係繪示出沿著第5A圖中的剖線5B-5B’的剖面示意圖。第5A及5B圖中的半導體裝置之驅動電流路徑及總閘極通道寬度相同於第4A及4B圖中的半導體裝置,且第5A及5B圖中的半導體裝置的結構類似於第4A及4B圖中的半導體裝置。差異在於第5A及5B圖中的半導體裝置的結構更包括一摻雜區310,位於溝槽式閘極結構200的第一側的基板100內。摻雜區310與源極摻雜區300具有相同的導電類型,且與源極摻雜區300分別鄰接於溝槽式閘極結構200的相對兩側壁。 5A is a plan view showing a semiconductor device having a trench gate according to another embodiment of the present invention, and FIG. 5B is a cross-sectional view taken along line 5B-5B' of FIG. 5A. schematic diagram. The driving current path and the total gate channel width of the semiconductor device in FIGS. 5A and 5B are the same as those in the semiconductor devices in FIGS. 4A and 4B, and the semiconductor devices in FIGS. 5A and 5B are similar in structure to FIGS. 4A and 4B. Semiconductor device. The difference is that the structure of the semiconductor device in FIGS. 5A and 5B further includes a doped region 310 located in the substrate 100 on the first side of the trench gate structure 200. The doped region 310 has the same conductivity type as the source doped region 300, and is adjacent to the opposite sidewalls of the trench gate structure 200, respectively.

在本實施例中,位於溝槽式閘極結構200的相對兩側的源極摻雜區300及摻雜區310的深度皆大於溝槽式閘極結構200的深度,如第5B圖所示。在其他實施例中,源極摻雜區300及摻雜區310的深度可等於溝槽式閘極結構200的深度。 In this embodiment, the depths of the source doping region 300 and the doping region 310 on opposite sides of the trench gate structure 200 are greater than the depth of the trench gate structure 200, as shown in FIG. 5B. . In other embodiments, the depth of the source doped region 300 and the doped region 310 may be equal to the depth of the trench gate structure 200.

在本實施例中,具有溝槽式閘極之半導體裝置可 包括複數溝槽式閘極結構200及對應地鄰接於溝槽式閘極結構200的相對兩側壁的複數源極摻雜區300及複數摻雜區310,且溝槽式閘極結構200彼此間隔排列,位於溝槽式閘極結構200的相對兩側的源極摻雜區300及摻雜區310亦彼此間隔排列。舉例來說,具有溝槽式閘極之半導體裝置包括彼此間隔排列的兩個溝槽式閘極結構200及彼此間隔排列且對應於兩個溝槽式閘極結構200的相對兩側壁的兩個源極摻雜區300及兩個摻雜區310,如第5A圖所示。 In this embodiment, the semiconductor device having the trench gate can be A plurality of trench gate structures 200 and a plurality of source doped regions 300 and a plurality of doped regions 310 correspondingly adjacent to opposite sidewalls of the trench gate structure 200, and the trench gate structures 200 are spaced apart from each other Arranged, the source doped regions 300 and the doped regions 310 on opposite sides of the trench gate structure 200 are also spaced apart from each other. For example, a semiconductor device having a trench gate includes two trench gate structures 200 spaced apart from each other and two spaced apart from each other and corresponding to opposite sidewalls of the two trench gate structures 200 The source doping region 300 and the two doping regions 310 are as shown in FIG. 5A.

根據本發明一實施例,由於溝槽式閘極結構的相對兩側分別具有源極摻雜區300及與源極摻雜區300具有相同導電類型的摻雜區310,電流先經過摻雜區310並沿著閘極結構200之側壁流至源極摻雜區300,因此能夠進一步降低電流路徑上的電阻,進而提升半導體裝置的驅動電流。 According to an embodiment of the present invention, since the opposite sides of the trench gate structure respectively have a source doping region 300 and a doping region 310 having the same conductivity type as the source doping region 300, the current first passes through the doping region. 310 flows along the sidewalls of the gate structure 200 to the source doping region 300, thereby further reducing the resistance in the current path, thereby increasing the driving current of the semiconductor device.

以下配合第2A、3A及4A圖及第2B、3B及4B圖說明本發明實施例之具有溝槽式閘極之半導體裝置的製造方法,其中第2A、3A及4A圖係繪示出根據本發明實施例之具有溝槽式閘極之半導體裝置的製造方法的平面示意圖,且其中第2B圖係繪示出沿著第2A圖中的剖線2B-2B’的剖面示意圖,第3B圖係繪示出沿著第3A圖中的剖線3B-3B’的剖面示意圖,且第4B圖係繪示出沿著第4A圖中的剖線4B-4B’的剖面示意圖。 Hereinafter, a method of manufacturing a semiconductor device having a trench gate according to an embodiment of the present invention will be described with reference to FIGS. 2A, 3A and 4A and FIGS. 2B, 3B and 4B, wherein FIGS. 2A, 3A and 4A are diagrams according to the present invention. A schematic plan view of a method of fabricating a semiconductor device having a trench gate according to an embodiment of the invention, and wherein FIG. 2B is a cross-sectional view taken along line 2B-2B' of FIG. 2A, and FIG. 3B is a A schematic cross-sectional view along section line 3B-3B' in Fig. 3A is depicted, and Fig. 4B is a cross-sectional view taken along line 4B-4B' in Fig. 4A.

請參照第2A及2B圖,提供一基板100,其具有一主動區10及位於主動區10內的一場板區20。在本實施例中,基板100為單晶矽基底。在其他實施例中,基板100可為絕緣層上覆矽(silicon on insulator,SOI)基底、磊晶矽基底、矽鍺基底、 化合物半導體基底或其他適當之半導體基板。在本實施例中,基板100的導電類型為n型,但並不限定於此。在其他實施例中,基板100的導電類型也可為p型,且可根據設計需要選擇其導電類型。 Referring to FIGS. 2A and 2B, a substrate 100 is provided having an active region 10 and a field plate region 20 located in the active region 10. In the present embodiment, the substrate 100 is a single crystal germanium substrate. In other embodiments, the substrate 100 may be a silicon on insulator (SOI) substrate, an epitaxial germanium substrate, a germanium substrate, A compound semiconductor substrate or other suitable semiconductor substrate. In the present embodiment, the conductivity type of the substrate 100 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the substrate 100 may also be p-type, and its conductivity type may be selected according to design requirements.

可透過摻雜製程(例如,離子佈植製程),在基板100內形成井區350。在本實施例中,井區350的導電類型為p型,但並不限定於此。在其他實施例中,井區350的導電類型也可為n型,且可根據設計需要選擇其導電類型。 The well region 350 can be formed in the substrate 100 through a doping process (eg, an ion implantation process). In the present embodiment, the conductivity type of the well region 350 is p-type, but is not limited thereto. In other embodiments, the conductivity type of well region 350 can also be n-type, and its conductivity type can be selected according to design needs.

接著,可透過沉積製程及微影蝕刻製程,在基板100上形成圖案化的一硬式罩幕層(未繪示),例如氮化矽層,以暴露出場板區20的基板100。接著,進行氧化成長製程,以在場板區20的基板100內形成場氧化層240(例如,矽局部氧化結構),且突出於基板100上。 Then, a patterned hard mask layer (not shown), such as a tantalum nitride layer, is formed on the substrate 100 through the deposition process and the lithography process to expose the substrate 100 of the field plate region 20. Next, an oxidative growth process is performed to form a field oxide layer 240 (eg, a tantalum partial oxidation structure) in the substrate 100 of the field plate region 20, and protrudes from the substrate 100.

接著,在去除硬式罩幕層之後,可透過沉積製程及微影蝕刻製程,在基板100上形成另一圖案化的硬式罩幕層(未繪示),以暴露出一部分的基板100。接著,進行蝕刻製程(例如,乾蝕刻製程、濕蝕刻製程、電漿蝕刻製程、反應性離子蝕刻製程或其他適當的蝕刻製程),在基板100內形成至少一溝槽210,使得一部分的溝槽210位於井區350內,且場板區20及井區350分別位於溝槽210的相對的第一側及第二側。舉例來說,在基板100內形成兩個溝槽210,如第2A圖所示。 Then, after the hard mask layer is removed, another patterned hard mask layer (not shown) is formed on the substrate 100 through the deposition process and the lithography process to expose a portion of the substrate 100. Then, an etching process (for example, a dry etching process, a wet etching process, a plasma etching process, a reactive ion etching process, or other suitable etching process) is performed to form at least one trench 210 in the substrate 100 so that a part of the trench 210 is located within well zone 350, and field plate zone 20 and well zone 350 are located on opposite first and second sides of trench 210, respectively. For example, two trenches 210 are formed in the substrate 100 as shown in FIG. 2A.

接著,請參照第3A及3B圖,在去除用以形成溝槽210的硬式罩幕層(未繪示)之後,可透過摻雜製程(例如,離子佈植製程),在溝槽210的第二側的基板100內形成對應溝槽210 且彼此間隔排列的複數源極摻雜區300。在本實施例中,源極摻雜區300的導電類型為n型,但並不限定於此。在其他實施例中,源極摻雜區300的導電類型也可為p型,且可根據設計需要選擇其導電類型,舉例來說,透過p型摻雜物(例如,硼或氟化硼)、n型摻雜物(例如,磷或砷)及/或其組合進行摻雜製程。 Next, referring to FIGS. 3A and 3B, after removing the hard mask layer (not shown) for forming the trench 210, the doping process (for example, ion implantation process) can be performed, and the trench 210 is Corresponding trenches 210 are formed in the substrate 100 on the two sides. And a plurality of source doped regions 300 spaced apart from each other. In the present embodiment, the conductivity type of the source doping region 300 is n-type, but is not limited thereto. In other embodiments, the conductivity type of the source doping region 300 may also be p-type, and the conductivity type may be selected according to design requirements, for example, through a p-type dopant (eg, boron or boron fluoride). The doping process is performed with an n-type dopant (eg, phosphorus or arsenic) and/or a combination thereof.

在本實施例中,兩個源極摻雜區300彼此可具有相同的外型,如第3A圖所示。在另一實施例中,兩個源極摻雜區300彼此可具有不同的外型(未繪示)。在其他實施例中,兩個以上的源極摻雜區300中可具有相同或不同的外型的源極摻雜區300,且相鄰的源極摻雜區300之間可具有相同或不同的間距。可以理解的是,第3A圖中源極摻雜區300的數量及外型僅作為範例說明,並不限定於此,源極摻雜區300的實際數量及外型取決於設計需求。 In the present embodiment, the two source doping regions 300 may have the same shape as each other, as shown in FIG. 3A. In another embodiment, the two source doping regions 300 may have different shapes (not shown) from each other. In other embodiments, the source doping regions 300 may have the same or different external shapes in the two or more source doping regions 300, and the adjacent source doping regions 300 may have the same or different Pitch. It can be understood that the number and shape of the source doping regions 300 in FIG. 3A are merely illustrative and not limited thereto, and the actual number and shape of the source doping regions 300 depend on design requirements.

在另一實施例中,可透過摻雜製程,在溝槽210的相對兩側的基板100內形成分別鄰接於溝槽210的相對兩側壁的源極摻雜區300及與源極摻雜區300具有相同導電類型的摻雜區310,如第5A及5B圖所示。 In another embodiment, the source doped region 300 and the source doped region respectively adjacent to opposite sidewalls of the trench 210 may be formed in the substrate 100 on opposite sides of the trench 210 through a doping process. 300 doped regions 310 of the same conductivity type, as shown in Figures 5A and 5B.

請參照第4A及4B圖,可透過沉積製程(例如,原子層沉積(atomic layer deposition,ALD)製程、化學氣相沉積(chemical vapor deposition,CVD)製程、物理氣相沉積(physical vapor deposition,PVD)製程、熱氧化製程或其他適合的製程),將介電材料順應性地沉積於每一溝槽210內,以對應形成一介電層220,作為閘極介電層。介電層220可包括氧化物、氮化物、氮氧化物、其組合或其他合適的閘極介電材料。 Please refer to the 4A and 4B drawings, which can be subjected to a deposition process (for example, an atomic layer deposition (ALD) process, a chemical vapor deposition (CVD) process, or a physical vapor deposition (PVD). A process, a thermal oxidation process, or other suitable process), a dielectric material is conformally deposited in each of the trenches 210 to form a dielectric layer 220 as a gate dielectric layer. Dielectric layer 220 can include an oxide, a nitride, an oxynitride, combinations thereof, or other suitable gate dielectric materials.

接著,可透過沉積製程(例如,物理氣相沉積製程、化學氣相沉積製程、原子層沉積製程、濺鍍製程或塗佈製程),在每一介電層220上沉積一導電材料,並填滿對應的溝槽210,以形成閘極電極層230,進而在基板100內形成彼此間隔排列的兩個溝槽式閘極結構200,如第4A圖所示。場板區20及井區350分別位於溝槽式閘極結構200的相對的第一側及第二側,源極摻雜區300位於溝槽式閘極結構200的第二側的基板100內,且一個源極摻雜區300對應地鄰接於一個溝槽式閘極結構200的一側壁。 Then, a conductive material is deposited on each dielectric layer 220 through a deposition process (eg, a physical vapor deposition process, a chemical vapor deposition process, an atomic layer deposition process, a sputtering process, or a coating process), and is filled The corresponding trenches 210 are formed to form the gate electrode layer 230, thereby forming two trench gate structures 200 spaced apart from each other in the substrate 100, as shown in FIG. 4A. The field plate region 20 and the well region 350 are respectively located on opposite first sides and second sides of the trench gate structure 200, and the source doping region 300 is located in the substrate 100 on the second side of the trench gate structure 200. And a source doped region 300 correspondingly adjacent to a sidewall of a trench gate structure 200.

閘極電極層230可包括矽、多晶矽或其他導電材料。另外,也可透過沉積製程,在場氧化層240上形成一場板電極250,且延伸至基板100上。 Gate electrode layer 230 can include germanium, polysilicon or other conductive materials. Alternatively, a field plate electrode 250 may be formed on the field oxide layer 240 through the deposition process and extended onto the substrate 100.

在本實施例中,兩個溝槽式閘極結構200皆為長條狀柱體,且長條狀柱體的底面具有矩形之外型,如第4A圖所示。在另一實施例中,兩個溝槽式閘極結構200彼此可具有不同的外型(未繪示)。在其他實施例中,溝槽式閘極結構200的長條狀柱體的底面可具有橢圓形、圓角矩形或多邊形之外型(未繪示)。兩個以上的溝槽式閘極結構200中可具有相同或不同的外型的溝槽式閘極結構200,且相鄰的溝槽式閘極結構200之間可具有相同或不同的間距。可以理解的是,第4A圖中溝槽式閘極結構200的數量及外型僅作為範例說明,並不限定於此,溝槽式閘極結構200的實際數量及外型取決於設計需求。 In the present embodiment, the two trench gate structures 200 are all elongated pillars, and the bottom surface of the elongated pillars has a rectangular shape, as shown in FIG. 4A. In another embodiment, the two trench gate structures 200 can have different shapes (not shown) from each other. In other embodiments, the bottom surface of the elongated column of the trench gate structure 200 may have an elliptical shape, a rounded rectangular shape, or a polygonal outer shape (not shown). The two or more trench gate structures 200 may have the same or different outer shape of the trench gate structure 200, and the adjacent trench gate structures 200 may have the same or different spacing between them. It can be understood that the number and shape of the trench gate structure 200 in FIG. 4A are merely illustrative and not limited thereto, and the actual number and shape of the trench gate structure 200 depend on design requirements.

在本實施例中,源極摻雜區300的深度大於溝槽式閘極結構200的深度,如第4B圖所示。在其他實施例中,源極 摻雜區300的深度可等於溝槽式閘極結構200的深度。在本實施例中,從上視方向來看,源極摻雜區300鄰接於溝槽式閘極結構200的側邊的長度與溝槽式閘極結構200的寬度相同,如第4A圖所示。在其他實施例中,源極摻雜區300鄰接於溝槽式閘極結構200的側邊的長度可大於溝槽式閘極結構200的寬度(未繪示)。 In the present embodiment, the depth of the source doping region 300 is greater than the depth of the trench gate structure 200, as shown in FIG. 4B. In other embodiments, the source The depth of the doped region 300 can be equal to the depth of the trench gate structure 200. In the present embodiment, the length of the source doped region 300 adjacent to the side of the trench gate structure 200 is the same as the width of the trench gate structure 200, as viewed from the top view, as shown in FIG. 4A. Show. In other embodiments, the length of the source doped region 300 adjacent to the side of the trench gate structure 200 may be greater than the width of the trench gate structure 200 (not shown).

接著,可透過摻雜製程(例如,離子佈植製程),在主動區10的基板100內形成一汲極摻雜區400。場板區20位於汲極摻雜區400與溝槽式閘極結構200之間,且每一溝槽式閘極結構200與汲極摻雜區400之間具有相同的間距。在本實施例中,汲極摻雜區400的導電類型為p型,但並不限定於此。在其他實施例中,汲極摻雜區400的導電類型也可為n型,且可根據設計需要選擇其導電類型,例如,透過p型摻雜物(例如,硼或氟化硼)、n型摻雜物(例如,磷或砷)及/或其組合進行摻雜製程。 Next, a gate doped region 400 is formed in the substrate 100 of the active region 10 through a doping process (eg, an ion implantation process). The field plate region 20 is between the drain doped region 400 and the trench gate structure 200, and each trench gate structure 200 has the same spacing from the gate doped region 400. In the present embodiment, the conductivity type of the drain doping region 400 is p-type, but is not limited thereto. In other embodiments, the conductivity type of the drain doping region 400 may also be n-type, and the conductivity type may be selected according to design requirements, for example, through a p-type dopant (eg, boron or boron fluoride), n A dopant (eg, phosphorus or arsenic) and/or combinations thereof are subjected to a doping process.

在本實施例中,從上視方向來看,溝槽式閘極結構200的長度的延伸方向(即,X方向)大體上垂直於汲極摻雜區400的長度的延伸方向(即,Y方向),如第4A圖所示。 In the present embodiment, the extending direction of the length of the trench gate structure 200 (i.e., the X direction) is substantially perpendicular to the extending direction of the length of the gate doping region 400 (i.e., Y) as viewed from the top direction. Direction) as shown in Figure 4A.

具有溝槽式閘極之半導體裝置的驅動電流從汲極摻雜區400通過場氧化層240下方,且沿著溝槽式閘極結構200垂直於汲極摻雜區400的長度的延伸方向(即,Y方向)的兩相對側壁,水平地流向對應的源極摻雜區300,如第4A圖的箭號50所示。根據本發明實施例,具有溝槽式閘極之半導體裝置的閘極通道寬度W相等於單一溝槽式閘極結構200中的閘極電極層230的深度。而由於驅動電流沿著溝槽式閘極結構200的兩相對 側壁流向源極摻雜區300,因此總閘極通道寬度為閘極電極層230的深度的兩倍或複數溝槽式閘極結構200中的閘極電極層230的深度的兩倍之總和。 The drive current of the semiconductor device having the trench gate passes from the drain doping region 400 through the field oxide layer 240 and along the extending direction of the trench gate structure 200 perpendicular to the length of the gate doped region 400 ( That is, the two opposite side walls of the Y direction flow horizontally to the corresponding source doping region 300 as indicated by arrow 50 of FIG. 4A. In accordance with an embodiment of the invention, the gate channel width W of a semiconductor device having a trench gate is equal to the depth of the gate electrode layer 230 in the single trench gate structure 200. And because the driving current is along the two opposite sides of the trench gate structure 200 The sidewalls flow toward the source doped region 300, such that the total gate channel width is twice the depth of the gate electrode layer 230 or twice the depth of the gate electrode layer 230 in the plurality of trench gate structures 200.

相較於長度的延伸方向平行於汲極摻雜區的溝槽式閘極結構,根據本發明實施例,當溝槽式閘極結構的長度的延伸方向大體上垂直於汲極摻雜區的長度的延伸方向,使總閘極通道寬度為溝槽式閘極結構中的閘極電極層的深度的兩倍時,能夠在相同的所需驅動電流下,縮小閘極結構的尺寸且增加裝置面積的使用效率,進而縮小半導體裝置的尺寸。 The length of the trench gate structure extends substantially perpendicular to the drain doped region, in accordance with an embodiment of the invention, as compared to the trench gate structure of the drain doped region. When the length is extended so that the total gate channel width is twice the depth of the gate electrode layer in the trench gate structure, the size of the gate structure can be reduced and the device can be increased under the same required driving current. The use efficiency of the area further reduces the size of the semiconductor device.

本發明實施例之半導體裝置及其製造方法可應用於橫向擴散金屬氧化物半導體電晶體(laterally diffused metal oxide semiconductor,LDMOS)、N型通道絕緣閘極雙極性電晶體(N-channel insulated gate bipolar transistor,NIGBT)等各種低電壓、高電壓及極高電壓的元件。 The semiconductor device and the method for fabricating the same according to the embodiments of the present invention are applicable to a laterally diffused metal oxide semiconductor (LDMOS), an N-channel insulated gate bipolar transistor (N-channel insulated gate bipolar transistor). , NIGBT) and other low voltage, high voltage and very high voltage components.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可更動與組合上述各種實施例。 While the invention has been described above in terms of the preferred embodiments thereof, which are not intended to limit the invention, the invention may be modified and combined with the various embodiments described above without departing from the spirit and scope of the invention. example.

10‧‧‧主動區 10‧‧‧active area

20‧‧‧場板區 20‧‧‧Field area

50‧‧‧驅動電流 50‧‧‧ drive current

100‧‧‧基板 100‧‧‧Substrate

200‧‧‧溝槽式閘極結構 200‧‧‧ Trench gate structure

210‧‧‧溝槽 210‧‧‧ trench

220‧‧‧介電層 220‧‧‧ dielectric layer

230‧‧‧閘極電極層 230‧‧‧ gate electrode layer

240‧‧‧場氧化層 240‧‧ ‧ field oxide layer

250‧‧‧場板電極 250‧‧ ‧ field plate electrode

300‧‧‧源極摻雜區 300‧‧‧ source doped area

350‧‧‧井區 350‧‧‧ Well Area

400‧‧‧汲極摻雜區 400‧‧‧汲polar doped area

Claims (23)

一種半導體裝置,包括:一基板,具有一主動區及位於該主動區內的一場板區;至少一溝槽式閘極結構,位於該基板內,其中該場板區位於該至少一溝槽式閘極結構的一第一側;至少一源極摻雜區,位於該至少一溝槽式閘極結構的一第二側的該基板內,其中該第二側相對於該第一側,且該至少一源極摻雜區鄰接於該至少一溝槽式閘極結構的一側壁;以及一汲極摻雜區,位於該主動區的該基板內,其中該場板區位於該汲極摻雜區與該至少一溝槽式閘極結構之間,且從一上視方向來看,該至少一溝槽式閘極結構的長度的延伸方向垂直於該汲極摻雜區的長度的延伸方向。 A semiconductor device comprising: a substrate having an active region and a field region located in the active region; at least one trench gate structure located in the substrate, wherein the field plate region is located in the at least one trench a first side of the gate structure; at least one source doped region in the substrate on a second side of the at least one trench gate structure, wherein the second side is opposite the first side, and The at least one source doped region is adjacent to a sidewall of the at least one trench gate structure; and a drain doped region is located in the substrate of the active region, wherein the field plate region is located at the drain Between the stray region and the at least one trench gate structure, and extending from a top view direction, an extension direction of the length of the at least one trench gate structure is perpendicular to an extension of a length of the drain doped region direction. 如申請專利範圍第1項所述之半導體裝置,其中該至少一源極摻雜區的深度等於或大於該至少一溝槽式閘極結構的深度。 The semiconductor device of claim 1, wherein the at least one source doping region has a depth equal to or greater than a depth of the at least one trench gate structure. 如申請專利範圍第1項所述之半導體裝置,其中該半導體裝置的閘極通道寬度為該至少一溝槽式閘極結構中的一閘極電極層的深度。 The semiconductor device of claim 1, wherein the gate channel width of the semiconductor device is a depth of a gate electrode layer in the at least one trench gate structure. 如申請專利範圍第1項所述之半導體裝置,其中該至少一溝槽式閘極結構為一長條狀柱體,且該柱體的一底面具有橢圓形、圓角矩形、矩形或多邊形之外型。 The semiconductor device according to claim 1, wherein the at least one trench gate structure is an elongated column, and a bottom surface of the pillar has an elliptical shape, a rounded rectangle, a rectangle or a polygon. Appearance. 如申請專利範圍第1項所述之半導體裝置,其中該半導體裝置包括複數溝槽式閘極結構及對應的複數源極摻雜區,且 其中該等溝槽式閘極結構彼此間隔排列,且該等源極摻雜區彼此間隔排列。 The semiconductor device of claim 1, wherein the semiconductor device comprises a plurality of trench gate structures and corresponding complex source doped regions, and The trench gate structures are spaced apart from each other, and the source doped regions are spaced apart from each other. 如申請專利範圍第5項所述之半導體裝置,其中該等溝槽式閘極結構之間具有相同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距,且其中該等源極摻雜區之間具有相同的間距。 The semiconductor device of claim 5, wherein the trench gate structures have the same pitch between each other, and each trench gate structure and the drain doped region have the same The pitch, and wherein the source doped regions have the same spacing between them. 如申請專利範圍第5項所述之半導體裝置,其中該等溝槽式閘極結構之間具有不同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距,且其中該等源極摻雜區之間具有不同的間距。 The semiconductor device of claim 5, wherein the trench gate structures have different pitches between each, and each trench gate structure has the same relationship with the drain doped region. Spacing, and wherein there is a different spacing between the source doped regions. 如申請專利範圍第5項所述之半導體裝置,其中該等溝槽式閘極結構具有相同的外型。 The semiconductor device of claim 5, wherein the trench gate structures have the same shape. 如申請專利範圍第5項所述之半導體裝置,其中該等溝槽式閘極結構具有不同的外型。 The semiconductor device of claim 5, wherein the trench gate structures have different shapes. 如申請專利範圍第1項所述之半導體裝置,其中該至少一溝槽式閘極結構包括:一介電層,順應性地位於該基板內的一溝槽內;以及一閘極電極層,位於該介電層上,且填滿該溝槽。 The semiconductor device of claim 1, wherein the at least one trench gate structure comprises: a dielectric layer compliantly located in a trench in the substrate; and a gate electrode layer, Located on the dielectric layer and filling the trench. 如申請專利範圍第1項所述之半導體裝置,更包括:一場氧化層,位於該場板區的該基板上;以及一場板電極,位於該場氧化層上。 The semiconductor device of claim 1, further comprising: a field oxide layer on the substrate of the field plate region; and a field plate electrode on the field oxide layer. 如申請專利範圍第1項所述之半導體裝置,其中該半導體裝置更包括至少一摻雜區,位於該至少一溝槽式閘極結構的該第一側的該基板內,且其中該至少一摻雜區與該至少一 源極摻雜區具有相同的導電類型。 The semiconductor device of claim 1, wherein the semiconductor device further comprises at least one doped region in the substrate on the first side of the at least one trench gate structure, and wherein the at least one Doped region and at least one The source doped regions have the same conductivity type. 一種半導體裝置的製造方法,包括:提供一基板,該基板具有一主動區及位於該主動區內的一場板區;在該基板內形成至少一溝槽式閘極結構,其中該場板區位於該至少一溝槽式閘極結構的一第一側;在該至少一溝槽式閘極結構的一第二側的該基板內形成至少一源極摻雜區,其中該第二側相對於該第一側,且該至少一源極摻雜區鄰接於該至少一溝槽式閘極結構的一側壁;以及在該主動區的該基板內形成一汲極摻雜區,其中該場板區位於該汲極摻雜區與該至少一溝槽式閘極結構之間,且從一上視方向來看,該至少一溝槽式閘極結構的長度的延伸方向垂直於該汲極摻雜區的長度的延伸方向。 A method of fabricating a semiconductor device, comprising: providing a substrate having an active region and a field region located in the active region; forming at least one trench gate structure in the substrate, wherein the field plate region is located a first side of the at least one trench gate structure; at least one source doped region is formed in the substrate on a second side of the at least one trench gate structure, wherein the second side is opposite to the second side The first side, and the at least one source doped region is adjacent to a sidewall of the at least one trench gate structure; and a drain doped region is formed in the substrate of the active region, wherein the field plate The region is located between the drain doped region and the at least one trench gate structure, and the length direction of the at least one trench gate structure extends perpendicular to the drain electrode when viewed from a top view direction The extension of the length of the miscellaneous zone. 如申請專利範圍第13項所述之半導體裝置的製造方法,其中該至少一源極摻雜區的深度等於或大於該至少一溝槽式閘極結構的深度。 The method of fabricating a semiconductor device according to claim 13, wherein the at least one source doping region has a depth equal to or greater than a depth of the at least one trench gate structure. 如申請專利範圍第13項所述之半導體裝置的製造方法,其中該半導體裝置的閘極通道寬度為該至少一溝槽式閘極結構中的一閘極電極層的深度。 The method of fabricating a semiconductor device according to claim 13, wherein the gate channel width of the semiconductor device is a depth of a gate electrode layer in the at least one trench gate structure. 如申請專利範圍第13項所述之半導體裝置的製造方法,其中該至少一溝槽式閘極結構為一長條狀柱體,且該柱體的一底面具有橢圓形、圓角矩形、矩形或多邊形之外型。 The method of manufacturing a semiconductor device according to claim 13, wherein the at least one trench gate structure is an elongated column, and a bottom surface of the pillar has an elliptical shape, a rounded rectangle, and a rectangular shape. Or a polygon type. 如申請專利範圍第13項所述之半導體裝置的製造方法,其 中該半導體裝置包括複數溝槽式閘極結構及對應的複數源極摻雜區,且其中該等溝槽式閘極結構彼此間隔排列,且該等源極摻雜區彼此間隔排列。 A method of manufacturing a semiconductor device according to claim 13, wherein The semiconductor device includes a plurality of trench gate structures and corresponding complex source doped regions, and wherein the trench gate structures are spaced apart from each other, and the source doped regions are spaced apart from each other. 如申請專利範圍第17項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構之間具有相同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距,且其中該等源極摻雜區之間具有相同的間距。 The method of fabricating a semiconductor device according to claim 17, wherein the trench gate structures have the same pitch between each trench gate structure and the drain doping region. Having the same pitch, and wherein the source doped regions have the same spacing between them. 如申請專利範圍第17項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構之間具有不同的間距,且每一溝槽式閘極結構與該汲極摻雜區之間具有相同的間距,且其中該等源極摻雜區之間具有不同的間距。 The method of fabricating a semiconductor device according to claim 17, wherein the trench gate structures have different pitches between each trench gate structure and the drain doped region. Having the same pitch, and wherein there is a different spacing between the source doped regions. 如申請專利範圍第17項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構具有相同的外型。 The method of fabricating a semiconductor device according to claim 17, wherein the trench gate structures have the same shape. 如申請專利範圍第17項所述之半導體裝置的製造方法,其中該等溝槽式閘極結構具有不同的外型。 The method of fabricating a semiconductor device according to claim 17, wherein the trench gate structures have different shapes. 如申請專利範圍第13項所述之半導體裝置的製造方法,更包括:在該場板區的該基板上形成一場氧化層;以及在該場氧化層上形成一場板電極。 The method of fabricating a semiconductor device according to claim 13, further comprising: forming a field oxide layer on the substrate of the field plate region; and forming a field plate electrode on the field oxide layer. 如申請專利範圍第13項所述之半導體裝置的製造方法,更包括在該至少一溝槽式閘極結構的該第一側的該基板內形成至少一摻雜區,其中該至少一摻雜區與該至少一源極摻雜區具有相同的導電類型。 The method of fabricating the semiconductor device of claim 13, further comprising forming at least one doped region in the substrate on the first side of the at least one trench gate structure, wherein the at least one doping The region has the same conductivity type as the at least one source doped region.
TW102131198A 2013-08-30 2013-08-30 Semiconductor device and methods for forming the same TWI517402B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102131198A TWI517402B (en) 2013-08-30 2013-08-30 Semiconductor device and methods for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102131198A TWI517402B (en) 2013-08-30 2013-08-30 Semiconductor device and methods for forming the same

Publications (2)

Publication Number Publication Date
TW201508920A TW201508920A (en) 2015-03-01
TWI517402B true TWI517402B (en) 2016-01-11

Family

ID=53186342

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131198A TWI517402B (en) 2013-08-30 2013-08-30 Semiconductor device and methods for forming the same

Country Status (1)

Country Link
TW (1) TWI517402B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611505B (en) * 2016-06-02 2018-01-11 世界先進積體電路股份有限公司 Trench isolation structure and methods for forming the same
US10347524B2 (en) 2016-09-12 2019-07-09 Vanguard International Semiconductor Corporation Trench isolation structures and methods for forming the same

Also Published As

Publication number Publication date
TW201508920A (en) 2015-03-01

Similar Documents

Publication Publication Date Title
JP5580150B2 (en) Semiconductor device
TWI503984B (en) Integrated circuit device and method of forming the same
US8704304B1 (en) Semiconductor structure
CN103035725B (en) The VDMOS device that bigrid is tied up
TWI610435B (en) High-voltage finfet device having ldmos structure and method for manufacturing the same
US8969157B2 (en) Method of manufacturing semiconductor device having field plate electrode
US8680608B2 (en) Power semiconductor device with a low on resistence
JP2010135791A (en) Semiconductor device and method of manufacturing the same
KR20180135035A (en) Super-junction power transistor and manufacturing method thereof
JP2009081397A (en) Semiconductor device and its manufacturing method
JP6237064B2 (en) Semiconductor device
US9478640B2 (en) LDMOS device with step-like drift region and fabrication method thereof
JP2008300420A (en) Semiconductor device, and method of manufacturing semiconductor device
WO2016049992A1 (en) Vertical double-diffused metal-oxide semiconductor field-effect transistor and manufacturing method therefor
US10243051B2 (en) Transistor device with a field electrode that includes two layers
CN113838906B (en) LDMOS transistor and preparation method thereof
KR101530579B1 (en) Semiconductor device and method for manufacturing the same
TWI517402B (en) Semiconductor device and methods for forming the same
US10896959B2 (en) Top structure of super junction MOSFETs and methods of fabrication
JP5385567B2 (en) Semiconductor device and manufacturing method of semiconductor device
US9048312B2 (en) Semiconductor device and method for forming the same
TWI511294B (en) Semiconduvtor device and methods for forming the same
TWI772588B (en) Semiconductor device and fabrication method thereof
TWI689098B (en) Multi-trench mosfet and fabricating method thereof
US9773902B2 (en) Trench-gate semiconductor device and method for forming the same