TWI517337B - Metal line structure and manufacturing method for trench - Google Patents

Metal line structure and manufacturing method for trench Download PDF

Info

Publication number
TWI517337B
TWI517337B TW100106232A TW100106232A TWI517337B TW I517337 B TWI517337 B TW I517337B TW 100106232 A TW100106232 A TW 100106232A TW 100106232 A TW100106232 A TW 100106232A TW I517337 B TWI517337 B TW I517337B
Authority
TW
Taiwan
Prior art keywords
layer
trench
wire
metal
mask layer
Prior art date
Application number
TW100106232A
Other languages
Chinese (zh)
Other versions
TW201236125A (en
Inventor
陳信琦
廖俊雄
賴育聰
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100106232A priority Critical patent/TWI517337B/en
Publication of TW201236125A publication Critical patent/TW201236125A/en
Application granted granted Critical
Publication of TWI517337B publication Critical patent/TWI517337B/en

Links

Description

金屬導線結構以及溝槽製造方法Metal wire structure and groove manufacturing method

本發明係涉及半導體元件及製程技術,且特別是有關於金屬導線結構以及溝槽製作方法。The present invention relates to semiconductor devices and process technology, and more particularly to metal wire structures and trench fabrication methods.

隨著半導體晶片上積體電路之密度越來越大,用以定義圖案之光罩的解析度也隨之增加,但因曝光光源波長範圍之限制,光罩的解析度也已到達極限,除非將曝光光源波長向下縮小,否則光罩的解析度已無法符合下一代積體電路的需求。為能解決此一問題,將圖案分離成兩張解析度較低的光罩來分別曝光後合成同一層結構,例如金屬導線結構,已是為現今常見的作法。As the density of integrated circuits on semiconductor wafers increases, the resolution of the mask used to define the pattern increases, but the resolution of the mask has reached its limit due to the limitation of the wavelength range of the exposure source, unless The wavelength of the exposure light source is reduced downward, otherwise the resolution of the mask cannot meet the requirements of the next generation integrated circuit. In order to solve this problem, it is a common practice today to separate the pattern into two lower resolution masks to separately expose the same layer structure, such as a metal wire structure.

由於曝光過程中必然會發生對準誤差,因此在兩光罩分別定義出之導線接合處便設有重疊區域,但重疊區域會受到兩次蝕刻的侵襲,很容易過度蝕刻而造成後續製程之困擾,而如何改善此類習用手段之缺失,係為發展本案之主要目的。Due to the inevitable alignment error during the exposure process, overlapping areas are provided at the wire joints defined by the two masks, but the overlapping areas are affected by two etchings, which are easily over-etched and cause subsequent processes. And how to improve the lack of such practices is the main purpose of the development of this case.

因此,本發明的目的之一是提供一種金屬導線結構,以達成改善習用手段的缺失之目的。Accordingly, it is an object of the present invention to provide a metal wire structure for the purpose of improving the absence of conventional means.

本發明的另一目的是提供一種溝槽製作方法,以達成改善習用手段的缺失之目的。Another object of the present invention is to provide a method of making a groove for the purpose of improving the lack of conventional means.

具體地,本發明實施例提出的一種金屬導線結構,其包含基板、目標層、溝槽以及導線。目標層位於基板上方;溝槽形成於目標層中,溝槽底部具有微溝槽且微溝槽之深度不大於50埃;導線鑲嵌於溝槽中。Specifically, a metal wire structure according to an embodiment of the present invention includes a substrate, a target layer, a trench, and a wire. The target layer is located above the substrate; the trench is formed in the target layer, the bottom of the trench has a micro trench and the depth of the micro trench is no more than 50 angstroms; the wire is embedded in the trench.

於本發明的一實施例中,上述之基板係為矽基板,目標層係為超低介電常數材料(ULK)。In an embodiment of the invention, the substrate is a germanium substrate, and the target layer is an ultra low dielectric constant material (ULK).

於本發明的一實施例中,上述之導線係為閘極電極,且閘極電極係由多晶矽或金屬完成。In an embodiment of the invention, the wire is a gate electrode, and the gate electrode is made of polysilicon or metal.

於本發明的一實施例中,上述之導線係為內連線,且內連線係為銅線。In an embodiment of the invention, the wire is an interconnect and the interconnect is a copper wire.

於本發明的一實施例中,上述之微溝槽係位於第一光罩與第二光罩所重疊定義之區域。In an embodiment of the invention, the micro-groove is located in a region defined by the first reticle and the second reticle.

於本發明的一實施例中,上述之微溝槽係位於第一光罩與第二光罩所重疊定義且產生部份未對準(Partially mis-aligned)之區域。In an embodiment of the invention, the micro-groove is located in a region that is overlapped by the first reticle and the second reticle and is partially mis-aligned.

於本發明的一實施例中,上述之微溝槽上方之導線係屬於I型交接處、T型交接處、L型轉角處、Π型交接處或S型轉角處。In an embodiment of the invention, the wire above the micro-trench belongs to the type I junction, the T-shaped junction, the L-shaped corner, the Π-type junction or the S-shaped corner.

本發明實施例提出的一種溝槽製造方法,其包含下列步驟:提供一基板;於基板上方依序形成目標層與多層罩幕層,多層罩幕層至少包含金屬罩幕層與介電層;於多層罩幕層上方形成第一光阻結構層;使用第一光罩對第一光阻結構層進行定義而形成第一開口;使用第一開口對露出之多層罩幕層進行蝕刻,用以除去介電層而露出金屬罩幕層後,再除去第一光阻結構層;於多層罩幕層上方形成第二光阻結構層;使用第二光罩對第二光阻結構層進行定義而形成第二開口,第二開口與第一開口之位置有部份重疊;使用第二開口對露出之多層罩幕層進行蝕刻以除去介電層而露出金屬罩幕層後,再除去第二光阻結構層;使用剩餘之介電層為罩幕對金屬罩幕層進行蝕刻而形成第三開口;以及使用第三開口對露出之目標層進行蝕刻而完成溝槽。A trench manufacturing method according to an embodiment of the present invention includes the steps of: providing a substrate; sequentially forming a target layer and a plurality of mask layers on the substrate; the multilayer mask layer comprising at least a metal mask layer and a dielectric layer; Forming a first photoresist structure layer over the multilayer mask layer; defining a first photoresist layer by using a first mask to form a first opening; and etching the exposed plurality of mask layers using the first opening After removing the dielectric layer to expose the metal mask layer, removing the first photoresist structure layer; forming a second photoresist structure layer over the multilayer mask layer; defining the second photoresist structure layer by using the second mask Forming a second opening, the second opening partially overlapping the position of the first opening; using the second opening to etch the exposed plurality of mask layers to remove the dielectric layer to expose the metal mask layer, and then removing the second light a resistive structure layer; the metal mask layer is etched using a remaining dielectric layer as a mask to form a third opening; and the exposed target layer is etched using a third opening to complete the trench.

於本發明的一實施例中,上述之溝槽製作方法更包含下列步驟:於溝槽中鑲嵌一導線。In an embodiment of the invention, the trench fabrication method further comprises the steps of: embedding a wire in the trench.

於本發明的一實施例中,上述之多層罩幕層中更包含緩衝層(buffer layer),位於金屬罩幕層與目標層之間。In an embodiment of the invention, the multi-layer mask layer further includes a buffer layer between the metal mask layer and the target layer.

於本發明的一實施例中,上述之緩衝層係由氮氧化矽或氮化硼完成,金屬罩幕層係由氮化鈦/鈦層完成,介電層係由氧化矽、氮化矽、氮氧化矽、碳化矽或碳氧化矽完成,金屬罩幕層與緩衝層之蝕刻選擇比為大於8,介電層與金屬罩幕層之蝕刻選擇比為大於5。In an embodiment of the invention, the buffer layer is made of lanthanum oxynitride or boron nitride, the metal mask layer is formed by a titanium nitride/titanium layer, and the dielectric layer is made of tantalum oxide or tantalum nitride. The ruthenium oxynitride, tantalum carbide or tantalum carbonitride is completed, the etching selectivity ratio of the metal mask layer to the buffer layer is greater than 8, and the etching selectivity ratio of the dielectric layer to the metal mask layer is greater than 5.

於本發明的一實施例中,上述之第一光阻結構層與第二光阻結構層係各由三層光阻結構層完成。In an embodiment of the invention, the first photoresist structure layer and the second photoresist structure layer are each completed by three photoresist structures.

於本發明的一實施例中,上述之介電層厚度之範圍介於金屬罩幕層厚度之五倍與金屬罩幕層厚度之0.8倍之間。In an embodiment of the invention, the thickness of the dielectric layer is between five times the thickness of the metal mask layer and 0.8 times the thickness of the metal mask layer.

於本發明的一實施例中,上述之多層罩幕層中更包含第二介電層與第二金屬罩幕層,位於上述之金屬罩幕層之下方,而上述之溝槽製造方法更包含:使用第三開口對露出之第二介電層進行蝕刻而露出第二金屬罩幕層;以及使用第三開口對露出之第二金屬罩幕層進行蝕刻。In an embodiment of the present invention, the multi-layer mask layer further includes a second dielectric layer and a second metal mask layer, which are located under the metal mask layer, and the trench manufacturing method further includes : etching the exposed second dielectric layer using a third opening to expose the second metal mask layer; and etching the exposed second metal mask layer using the third opening.

本發明實施例藉由製程的改良,使得微溝槽之深度不會超過50埃因而遠小於習用手段所產生的微溝槽之深度,因此可有效避免後續製程之困擾,進而改善習用手段之缺失,達成發展本案之主要目的。The embodiment of the invention improves the process, so that the depth of the micro-grooves does not exceed 50 angstroms and is thus much smaller than the depth of the micro-grooves generated by the conventional means, thereby effectively avoiding the troubles of subsequent processes and improving the lack of conventional means. To achieve the main purpose of developing this case.

請參見第一圖,其係針對重疊區域進行重點表示之鑲嵌用溝槽結構布局上視示意圖,而圖中第一部份圖案21與第二部份圖案22分別由兩張光罩來完成定義,其中兩圖案間具有一重疊區域210。Please refer to the first figure, which is a top view of the layout of the inlaid trench structure for highlighting the overlapping area, and the first partial pattern 21 and the second partial pattern 22 are respectively defined by two masks. There is an overlapping area 210 between the two patterns.

再請參見第二圖(a)(b)(c)(d)(e)(f)(g)之所示,其係針對兩個光罩重疊區域進行重點表示之本案較佳實施例方法步驟流程示意圖,是依照第一圖中箭頭標示處之剖面圖所進行之說明。Referring again to the second figure (a) (b) (c) (d) (e) (f) (g), which is a preferred embodiment of the present invention for highlighting the two mask overlap regions The schematic diagram of the step flow is described in accordance with the cross-sectional view indicated by the arrow in the first figure.

首先,第二圖(a)係利用第一光罩(圖中未示出)來對氮氧化矽層33、氮化鈦/鈦層34以及蓋氧化矽層35所構成之多層罩幕層來進行第一部份圖案21(第一圖所示)定義後之剖面示意圖,本實施例主要先去除其中之蓋氧化矽層35但停止於氮化鈦/鈦層34上,用以形成如圖所示之開口360。接著如第二圖(b)之所示,在形成三層(tri-layer)光阻層361、362、363後,利用第二光罩(圖中未示出)來對光阻層363進行定義,進而露出與第二部份圖案22(第一圖所示)相似之開口364,而圖中虛線所示係為導線接合處之重疊區域。First, the second figure (a) utilizes a first mask (not shown) for the multilayer mask layer of the yttria layer 33, the titanium nitride/titanium layer 34, and the cap oxide layer 35. A schematic cross-sectional view of the first partial pattern 21 (shown in the first figure) is performed. In this embodiment, the cap oxide layer 35 is removed first but stopped on the titanium nitride/titanium layer 34 to form a pattern. The opening 360 is shown. Then, as shown in the second diagram (b), after the tri-layer photoresist layers 361, 362, and 363 are formed, the photoresist layer 363 is performed by using a second mask (not shown). The definition, and thus the opening 364 similar to the second partial pattern 22 (shown in the first figure) is exposed, and the dashed line in the figure is the overlapping area of the wire joint.

然後利用開口364對光阻層361、362進行蝕刻,進而形成如第二圖(c)所示之開口365,接著對露出之蓋氧化矽層35進行蝕刻,最後停止於氮化鈦/鈦層34,形成如第二圖(d)所示之開口380,然後再將剩餘光阻層去除,進而形成如第二圖(e)所示之開口381。Then, the photoresist layers 361 and 362 are etched by the opening 364 to form an opening 365 as shown in the second figure (c), and then the exposed cap oxide layer 35 is etched, and finally stopped at the titanium nitride/titanium layer. 34, forming an opening 380 as shown in the second figure (d), and then removing the remaining photoresist layer to form an opening 381 as shown in the second figure (e).

最後再利用開口381來對下方之氮化鈦/鈦層34進行蝕刻而停在氮氧化矽層33上,進而形成如第二圖(f)所示之開口382,而此時開口382底部露出之微溝槽383之深度將小於50埃,遠小於習用手段中過度蝕刻所產生溝槽之深度。而後續便可利用開口382來對下方目標層之超低介電常數材料(ULK)39進行溝槽結構40與導線結構41之製作,最後完成如第二圖(g)所示之結構,微溝槽383係位於一第一光罩中第一部份圖案與一第二光罩中第二部份圖案所重疊定義之區域,即使如第二圖(h)所示,第一光罩與第二光罩重疊定義時第一部份圖案91與第二部份圖案92產生部份未對準(Partially mis-aligned)的情況。但因微溝槽383之深度很小,因此可有效避免後續製程之困擾,進而改善習用手段之缺失,達成發展本案之主要目的。Finally, the lower titanium nitride/titanium layer 34 is etched by the opening 381 to stop on the yttrium oxynitride layer 33, thereby forming an opening 382 as shown in the second figure (f), and the bottom of the opening 382 is exposed at this time. The depth of the micro-grooves 383 will be less than 50 angstroms, which is much smaller than the depth of the trenches created by over-etching in conventional means. Then, the opening 382 can be used to fabricate the trench structure 40 and the wire structure 41 of the ultra-low dielectric constant material (ULK) 39 of the lower target layer, and finally complete the structure as shown in the second figure (g). The groove 383 is located in a region defined by the first partial pattern of the first mask and the second partial pattern of the second mask, even if the first mask is as shown in the second diagram (h) When the second mask overlap is defined, the first partial pattern 91 and the second partial pattern 92 are partially mis-aligned. However, because the depth of the micro-grooves 383 is small, it can effectively avoid the troubles of subsequent processes, thereby improving the lack of conventional means and achieving the main purpose of developing the case.

而為能更進一步縮小微溝槽383之深度,也可重複沉積上述氮化鈦/鈦層34以及蓋氧化矽層35,使得該多層罩幕層中除了原本的氮化鈦/鈦層34以及蓋氧化矽層35外,更包含由氮化鈦/鈦構成之第二金屬罩幕層421與氧化矽構成第二介電層420,其位於氮化鈦/鈦層34之下方,例如第三圖(a)(b)(c)之所示,其係接續在第二圖(e)之後,第三圖(a)表示出使用該開口382對露出之該第二介電層420進行蝕刻,進而露出如第三圖(b)所示之第二金屬罩幕層421,然後再如第三圖(c)所示,使用該開口382對露出之該第二金屬罩幕層421進行蝕刻而停在氮氧化矽層33。如此藉由反覆的高選擇比蝕刻,將可讓微溝槽383之深度縮得更小,進而達到更佳的溝槽底部平坦度。In order to further reduce the depth of the micro trench 383, the titanium nitride/titanium layer 34 and the cap oxide layer 35 may be repeatedly deposited, so that the multilayer mask layer includes the original titanium/titanium layer 34 and The second oxidized layer 421 composed of titanium nitride/titanium and the yttria constitute a second dielectric layer 420, which is located below the titanium nitride/titanium layer 34, for example, the third layer. (a)(b)(c), which is continued after the second figure (e), and the third figure (a) shows the use of the opening 382 to etch the exposed second dielectric layer 420. And exposing the second metal mask layer 421 as shown in the third figure (b), and then etching the exposed second metal mask layer 421 using the opening 382 as shown in the third figure (c). It stops at the yttria layer 33. Thus, by repeating the high selection ratio etching, the depth of the micro trench 383 can be reduced to a smaller extent, thereby achieving better groove bottom flatness.

而本案可應用之目標層除了上述超低介電常數材料(ULK)外,也可以是氮氧化矽。至於完成之導線結構41可為閘極電極或是內連線,閘極電極可由多晶矽或金屬完成,而內連線則可為銅線。而導線接合處之重疊區域係可為I型交接處51、T型交接處52、L型轉角處53、Π型交接處54或是S型轉角處55,其示意圖請參見第四圖之所示。而由氮氧化矽層33、氮化鈦/鈦層34以及蓋氧化矽層35所構成之多層罩幕層,其中由氮氧化矽層33所完成之緩衝層(buffer layer)主要是用以緩衝應力,氮氧化矽層33的另一功能可扮演一保護層(protective layer),用以避免下方目標層凹痕缺陷(crater defect)的產生,氮氧化矽層33還可改由氮化硼完成,但緩衝層(buffer layer)也可完全省略不用。至於由氮化鈦/鈦層完成之金屬罩幕層還可由氮化鉭,鉭或其他金屬完成,而蓋氧化矽層35所完成之介電層還可由氮化矽、氮氧化矽、碳化矽、氮摻雜的碳化矽或碳氧化矽來完成。另外,為能確保蝕刻之正確進行,本案將該金屬罩幕層與該緩衝層之蝕刻選擇比控制在大於8,最佳可為9~11,蝕刻金屬罩幕層可使用以氯(Cl)為基底之蝕刻氣體,該介電層與該金屬罩幕層之蝕刻選擇比控制在大於5,最佳可為6~8,至於蝕刻介電層則可使用以氟(F)為基底之蝕刻氣體,例如CxHyFz。再者,為能確保介電層在對多次蝕刻後仍可發揮罩幕之作用,本案可以將該介電層厚度之範圍控制在介於該金屬罩幕層厚度之五倍與該金屬罩幕層厚度之0.8倍之間,或是將該金屬罩幕層厚度、該介電層厚度以及緩衝層厚度控制在大約相等狀態,例如都控制在約150埃。The target layer to which the present invention can be applied may be bismuth oxynitride in addition to the above-mentioned ultra-low dielectric constant material (ULK). The completed wire structure 41 may be a gate electrode or an interconnect wire, the gate electrode may be completed by polysilicon or metal, and the interconnect wire may be a copper wire. The overlapping area of the wire joints may be an I-type junction 51, a T-shaped junction 52, an L-shaped corner 53, a 交-shaped junction 54 or an S-shaped corner 55, as shown in the fourth figure. Show. The multilayer mask layer composed of the yttrium oxynitride layer 33, the titanium nitride/titanium layer 34 and the capped yttrium oxide layer 35, wherein the buffer layer formed by the yttrium oxynitride layer 33 is mainly used for buffering The stress, another function of the yttria layer 33 can act as a protective layer to avoid the generation of crater defects in the underlying target layer, and the yttria layer 33 can also be modified by boron nitride. However, the buffer layer can also be completely omitted. The metal mask layer completed by the titanium nitride/titanium layer may also be formed of tantalum nitride, tantalum or other metal, and the dielectric layer formed by the capped yttrium oxide layer 35 may also be made of tantalum nitride, tantalum oxynitride or tantalum carbide. , nitrogen-doped lanthanum carbide or lanthanum oxyhydroxide is completed. In addition, in order to ensure the correct etching, the etching selectivity of the metal mask layer and the buffer layer is controlled to be greater than 8, preferably 9-11, and the etching metal mask layer can be used with chlorine (Cl). For the etching gas of the substrate, the etching selectivity of the dielectric layer and the metal mask layer is controlled to be greater than 5, preferably 6-8, and the etching dielectric layer may be etched with fluorine (F) as the substrate. Gas, such as CxHyFz. Furthermore, in order to ensure that the dielectric layer can still function as a mask after multiple etchings, the thickness of the dielectric layer can be controlled to be less than five times the thickness of the metal mask layer and the metal cover. Between 0.8 times the thickness of the curtain layer, or the thickness of the metal mask layer, the thickness of the dielectric layer, and the thickness of the buffer layer are controlled to be approximately equal, for example, controlled to about 150 angstroms.

21...第一部份圖案twenty one. . . First part pattern

22...第二部份圖案twenty two. . . Second part pattern

210...重疊區域210. . . Overlapping area

33...氮氧化矽層33. . . Niobium oxynitride layer

34...氮化鈦/鈦層34. . . Titanium nitride/titanium layer

35...蓋氧化矽層35. . . Cover yttrium oxide layer

360、364、365、380、381、382...開口360, 364, 365, 380, 381, 382. . . Opening

361、362、363...光阻層361, 362, 363. . . Photoresist layer

383...微溝槽383. . . Micro-groove

39...超低介電常數材料39. . . Ultra low dielectric constant material

40...溝槽結構40. . . Groove structure

41...導線結構41. . . Wire structure

420...第二介電層420. . . Second dielectric layer

421...第二金屬罩幕層421. . . Second metal cover layer

51...I型交接處51. . . Type I junction

52...T型交接處52. . . T-type junction

53...L型轉角處53. . . L-shaped corner

54...Π型交接處54. . .交 type junction

55...S型轉角處55. . . S-shaped corner

第一圖繪示出利用兩張光罩來完成銅導線鑲嵌所需溝槽結構之中針對重疊區域進行重點表示之布局上視示意圖。The first figure shows a schematic top view of the layout of the overlapping regions required for the copper wire inlay using two masks.

第二圖(a)(b)(c)(d)(e)(f)(g)(h)繪示出針對重疊區域進行重點表示之本案較佳實施例方法步驟流程示意圖。The second figure (a)(b)(c)(d)(e)(f)(g)(h) depicts a schematic flow chart of the method steps of the preferred embodiment of the present invention for highlighting the overlapping regions.

第三圖(a)(b)(c)繪示出針對重疊區域進行重點表示之另一較佳實施例方法之部份步驟流程示意圖。Third (a), (b) and (c) are schematic flow diagrams showing part of the steps of another preferred embodiment of the method for highlighting overlapping regions.

第四圖繪示出導線接合處之重疊區域之各種示例圖。The fourth figure depicts various exemplary diagrams of overlapping regions of wire bonds.

40...溝槽40. . . Trench

41...導線41. . . wire

Claims (20)

一種金屬導線結構,其包含:一基板;一目標層,由單一構造構成,位於該基板上方;一溝槽,形成於該目標層中,該溝槽底部具有一微溝槽,該微溝槽之深度不大於50埃,其中該微溝槽係位於該目標層的中間;以及一導線,鑲嵌於該溝槽中。 A metal wire structure comprising: a substrate; a target layer formed by a single structure over the substrate; a trench formed in the target layer, the trench having a micro trench at the bottom, the micro trench The depth is no more than 50 angstroms, wherein the micro-groove is located in the middle of the target layer; and a wire is embedded in the trench. 如申請專利範圍第1項所述之金屬導線結構,其中該基板係為一矽基板,該目標層係為一超低介電常數材料(ULK)。 The metal wire structure of claim 1, wherein the substrate is a germanium substrate, and the target layer is an ultra low dielectric constant material (ULK). 如申請專利範圍第1項所述之金屬導線結構,其中該導線係為一閘極電極,該閘極電極係由多晶矽或金屬完成。 The metal wire structure of claim 1, wherein the wire is a gate electrode, and the gate electrode is made of polysilicon or metal. 如申請專利範圍第1項所述之金屬導線結構,其中該導線係為一內連線,該內連線係為一銅線。 The metal wire structure of claim 1, wherein the wire is an interconnecting wire, and the interconnecting wire is a copper wire. 如申請專利範圍第1項所述之金屬導線結構,其中該微溝槽係位於一第一光罩與一第二光罩所重疊定義之一區域。 The metal wire structure of claim 1, wherein the micro-groove is located in a region defined by a first reticle and a second reticle. 如申請專利範圍第1項所述之金屬導線結構,其中該微溝槽係位於一第一光罩與一第二光罩所重疊定義且產生部份未對準之一區域。 The metal wire structure of claim 1, wherein the micro-groove is located in a region where a first mask and a second mask are overlapped and a partial misalignment is generated. 如申請專利範圍第5項所述之金屬導線結構,其中該微溝槽上方之該導線係屬於一I型交接處、一T型交接處、一L型轉角處、 一Π型交接處或S型轉角處。 The metal wire structure according to claim 5, wherein the wire above the micro groove belongs to a type I junction, a T-shaped junction, an L-shaped corner, A type of junction or S-shaped corner. 一種溝槽製造方法,其包含下列步驟:提供一基板;於該基板上方依序形成一目標層與一多層罩幕層,該多層罩幕層至少包含一金屬罩幕層與一介電層;於該多層罩幕層上方形成一第一光阻結構層;使用一第一光罩對該第一光阻結構層進行定義而形成一第一開口;使用該第一開口對露出之該多層罩幕層進行蝕刻,用以除去該介電層而露出該金屬罩幕層後,再除去該第一光阻結構層;於該多層罩幕層上方形成一第二光阻結構層;使用一第二光罩對該第二光阻結構層進行定義而形成一第二開口,該第二開口與該第一開口之位置有部份重疊;使用該第二開口對露出之該多層罩幕層進行蝕刻以除去該介電層而露出該金屬罩幕層後,再除去該第二光阻結構層;使用剩餘之該介電層為罩幕對該金屬罩幕層進行蝕刻而形成一第三開口;以及使用該第三開口對露出之該目標層進行蝕刻而完成一溝槽。 A trench manufacturing method includes the steps of: providing a substrate; sequentially forming a target layer and a multilayer mask layer over the substrate, the multilayer mask layer comprising at least a metal mask layer and a dielectric layer Forming a first photoresist structure layer over the multilayer mask layer; defining a first photoresist layer by using a first mask to form a first opening; and using the first opening pair to expose the plurality of layers The mask layer is etched to remove the dielectric layer to expose the metal mask layer, and then remove the first photoresist structure layer; a second photoresist structure layer is formed over the multilayer mask layer; The second mask defines the second photoresist structure layer to form a second opening, and the second opening partially overlaps the position of the first opening; and the multilayer mask layer is exposed by using the second opening pair Etching to remove the dielectric layer to expose the metal mask layer, and then removing the second photoresist structure layer; using the remaining dielectric layer as a mask to etch the metal mask layer to form a third Opening; and using the third opening to expose The target layer is etched to complete a groove. 如申請專利範圍第8項所述之溝槽製造方法,其中該基板係為一矽基板,該目標層係為一超低介電常數材料(ULK)。 The trench manufacturing method of claim 8, wherein the substrate is a germanium substrate, and the target layer is an ultra low dielectric constant material (ULK). 如申請專利範圍第8項所述之溝槽製造方法,其中更包含下列步驟:於該溝槽中鑲嵌一導線。 The trench manufacturing method of claim 8, further comprising the step of: embedding a wire in the trench. 如申請專利範圍第10項所述之溝槽製造方法,其中該導線係為一閘極電極,該閘極電極係由多晶矽或金屬完成。 The method of manufacturing a trench according to claim 10, wherein the wire is a gate electrode, and the gate electrode is made of polysilicon or metal. 如申請專利範圍第10項所述之溝槽製造方法,其中該導線係為一內連線,該內連線係為一銅線。 The method of manufacturing a trench according to claim 10, wherein the wire is an interconnecting wire, and the interconnecting wire is a copper wire. 如申請專利範圍第8項所述之溝槽製造方法,其中該多層罩幕層中更包含一緩衝層,位於該金屬罩幕層與該目標層之間。 The trench manufacturing method of claim 8, wherein the multilayer mask layer further comprises a buffer layer between the metal mask layer and the target layer. 如申請專利範圍第13項所述之溝槽製造方法,其中該緩衝層係由氮氧化矽或氮化硼完成。 The method of manufacturing a trench according to claim 13, wherein the buffer layer is completed by hafnium oxynitride or boron nitride. 如申請專利範圍第14項所述之溝槽製造方法,其中該金屬罩幕層係由氮化鈦/鈦層完成。 The trench manufacturing method of claim 14, wherein the metal mask layer is completed by a titanium nitride/titanium layer. 如申請專利範圍第15項所述之溝槽製造方法,其中該介電層係由氧化矽、氮化矽、氮氧化矽、碳化矽、氮摻雜的碳化矽或碳氧化矽完成。 The trench manufacturing method according to claim 15, wherein the dielectric layer is made of tantalum oxide, tantalum nitride, niobium oxynitride, tantalum carbide, nitrogen-doped tantalum carbide or tantalum carbonitride. 如申請專利範圍第13項所述之溝槽製造方法,其中該金屬罩幕層與該緩衝層之蝕刻選擇比為大於8,該介電層與該金屬罩幕層之蝕刻選擇比為大於5。 The trench manufacturing method of claim 13, wherein an etching selectivity ratio of the metal mask layer to the buffer layer is greater than 8, and an etching selectivity ratio of the dielectric layer to the metal mask layer is greater than 5 . 如申請專利範圍第8項所述之溝槽製造方法,其中該第一光阻結構層與該第二光阻結構層係各由一三層光阻結構層完成。 The trench manufacturing method of claim 8, wherein the first photoresist structure layer and the second photoresist structure layer are each completed by a three-layer photoresist structure layer. 如申請專利範圍第8項所述之溝槽製造方法,其中該介電層厚 度之範圍介於該金屬罩幕層厚度之五倍與該金屬罩幕層厚度之0.8倍之間。 The trench manufacturing method of claim 8, wherein the dielectric layer is thick The extent is between five times the thickness of the metal mask layer and 0.8 times the thickness of the metal mask layer. 如申請專利範圍第8項所述之溝槽製造方法,其中該多層罩幕層中更包含一第二介電層與一第二金屬罩幕層,其位於該金屬罩幕層之下方,而該方法更包含:使用該第三開口對露出之該第二介電層進行蝕刻而露出該第二金屬罩幕層;以及使用該第三開口對露出之該第二金屬罩幕層進行蝕刻。 The trench manufacturing method of claim 8, wherein the multilayer mask layer further comprises a second dielectric layer and a second metal mask layer under the metal mask layer, and The method further includes: etching the exposed second dielectric layer using the third opening to expose the second metal mask layer; and etching the exposed second metal mask layer using the third opening.
TW100106232A 2011-02-24 2011-02-24 Metal line structure and manufacturing method for trench TWI517337B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100106232A TWI517337B (en) 2011-02-24 2011-02-24 Metal line structure and manufacturing method for trench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100106232A TWI517337B (en) 2011-02-24 2011-02-24 Metal line structure and manufacturing method for trench

Publications (2)

Publication Number Publication Date
TW201236125A TW201236125A (en) 2012-09-01
TWI517337B true TWI517337B (en) 2016-01-11

Family

ID=47222771

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100106232A TWI517337B (en) 2011-02-24 2011-02-24 Metal line structure and manufacturing method for trench

Country Status (1)

Country Link
TW (1) TWI517337B (en)

Also Published As

Publication number Publication date
TW201236125A (en) 2012-09-01

Similar Documents

Publication Publication Date Title
US9330965B2 (en) Double self aligned via patterning
TWI556066B (en) Method of performing a self-aligned litho-ethch process
TWI421920B (en) Method of manufacturing semiconductor device
JP4606967B2 (en) Manufacturing method of semiconductor device
KR20110001189A (en) Method for forming semiconductor device
JP2009060074A (en) Method for forming contact of semiconductor device
JP4334558B2 (en) Pattern formation method
TWI517337B (en) Metal line structure and manufacturing method for trench
TWI443758B (en) Method of forming gate conductor structures
KR100745898B1 (en) Method for forming semiconductor device
CN109003937B (en) Method for manufacturing semiconductor memory device
US10699913B2 (en) Manufacturing method for trench
US20110130008A1 (en) Method to control critical dimension
TWI488224B (en) Removing method of a hard mask
KR100943500B1 (en) Method for simultaneously manufacturing semiconductor devices
TWI573249B (en) Method for manufacturing semiconductor layout pattern, method for manufacturing semiconductor device, and semiconductor device
JP6307851B2 (en) Stencil mask and manufacturing method thereof
TWI478212B (en) Method for forming patterns
TW201322376A (en) Method of forming word line of embedded flash memory
KR101096190B1 (en) Semiconductor device and method for forming using the same
KR20060124855A (en) Method for fabricating semiconductor device
TWI518743B (en) Method for fabricating patterned structure of semiconductor device
CN102683392B (en) metal wire structure and groove manufacturing method
KR100209337B1 (en) Method for forming metal wiring with sog oxide film
TW202407805A (en) Method for forming alignment keys of semiconductor structure and semiconductor structure having alignment keys