TWI513030B - Light-emitting diode and method for manufacturing the same - Google Patents
Light-emitting diode and method for manufacturing the same Download PDFInfo
- Publication number
- TWI513030B TWI513030B TW099117498A TW99117498A TWI513030B TW I513030 B TWI513030 B TW I513030B TW 099117498 A TW099117498 A TW 099117498A TW 99117498 A TW99117498 A TW 99117498A TW I513030 B TWI513030 B TW I513030B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- emitting
- emitting diode
- substrate
- electrode
- Prior art date
Links
Landscapes
- Led Devices (AREA)
Description
本發明涉及一種發光二極體,尤其涉及一種發光二極體的製造方法。 The present invention relates to a light emitting diode, and more particularly to a method of manufacturing a light emitting diode.
近年來,隨著人們對半導體發光材料研究的不斷深入以及發光二極體(LED)製造工藝的不斷改進,發光二極體的發光效率以及色彩方面均取得了相當大的突破,使發光二極體應用領域跨越至高效率照明光源市場成為可能。然而,發光二極體產生的光只有在小於臨界角的情況下才能射出至外界,否則由於內部反射等原因,大量的光將在發光二極體內部損失掉,無法射出至外界,導致發光二極體的出光率低下,亮度不高。因而有必要尋求一種能有效提升發光二極體的出光率的製造方法及由此得到的高亮度的發光二極體。 In recent years, with the deepening of research on semiconductor luminescent materials and the continuous improvement of the manufacturing process of light-emitting diodes (LEDs), the luminous efficiency and color of light-emitting diodes have made considerable breakthroughs, making the light-emitting diodes It is possible to cross the field of high-efficiency lighting sources in the field of application. However, the light generated by the light-emitting diode can be emitted to the outside only when it is less than the critical angle. Otherwise, due to internal reflection and the like, a large amount of light will be lost inside the light-emitting diode and cannot be emitted to the outside world, resulting in the light-emitting two. The polar body has a low light extraction rate and low brightness. Therefore, it is necessary to find a manufacturing method capable of effectively improving the light-emitting rate of the light-emitting diode and the high-brightness light-emitting diode obtained thereby.
有鑒於此,有必要提供一種高亮度的發光二極體及其製造方法。 In view of the above, it is necessary to provide a high-intensity light-emitting diode and a method of manufacturing the same.
一種發光二極體,包括基板、位於該基板上的發光結構、及設置於該發光結構上的電極,其中該發光結構的外表面為發光二極體的出光面,所述出光面與電極相連接的部分為平滑面,出光面位於電極外圍的部分至少一部分為粗糙面。 A light-emitting diode includes a substrate, a light-emitting structure on the substrate, and an electrode disposed on the light-emitting structure, wherein an outer surface of the light-emitting structure is a light-emitting surface of the light-emitting diode, and the light-emitting surface is opposite to the electrode The connected portion is a smooth surface, and at least a portion of the portion of the light-emitting surface located at the periphery of the electrode is a rough surface.
一種發光二極體的製造方法,包括以下步驟:提供一晶片,該晶片包括基板及形成於基板上的發光結構;在發光結構上形成電極;在該發光結構的外表面及電極上塗布光阻;蝕刻以去除光阻,使發光結構的外表面及電極的外表面粗化。 A method for manufacturing a light-emitting diode, comprising the steps of: providing a wafer comprising a substrate and a light-emitting structure formed on the substrate; forming an electrode on the light-emitting structure; coating a photoresist on an outer surface of the light-emitting structure and the electrode Etching to remove the photoresist to roughen the outer surface of the light emitting structure and the outer surface of the electrode.
與習知技術相比,本發明通過使發光二極體的出光面粗化,改變與外界界面的幾何形狀,提升發光二極體的出光率,從而提升發光二極體的亮度。 Compared with the prior art, the present invention improves the brightness of the light-emitting diode by roughening the light-emitting surface of the light-emitting diode, changing the geometry of the interface with the external environment, and improving the light-emitting diode.
10、710‧‧‧基板 10, 710‧‧‧ substrate
100‧‧‧晶片 100‧‧‧ wafer
20‧‧‧N型半導體層 20‧‧‧N type semiconductor layer
200‧‧‧光阻 200‧‧‧Light resistance
22、52、62、72‧‧‧上表面 22, 52, 62, 72‧ ‧ upper surface
24‧‧‧漫反射面 24‧‧‧Diffuse surface
30‧‧‧發光層 30‧‧‧Lighting layer
40‧‧‧P型半導體層 40‧‧‧P type semiconductor layer
400、500、600、700‧‧‧發光二極體 400, 500, 600, 700‧‧‧Lighting diodes
422、452、462、472、590‧‧‧粗糙面 422, 452, 462, 472, 590‧‧‧ rough surface
50‧‧‧電流擴散層 50‧‧‧current diffusion layer
60、70‧‧‧電極 60, 70‧‧‧ electrodes
90‧‧‧發光結構 90‧‧‧Lighting structure
圖1為本發明一較佳實施例發光二極體的製造方法流程圖。 1 is a flow chart of a method of manufacturing a light-emitting diode according to a preferred embodiment of the present invention.
圖2為用於製造本發明發光二極體的晶片的結構示意圖。 2 is a schematic view showing the structure of a wafer for fabricating the light-emitting diode of the present invention.
圖3為圖2所示晶片塗布光阻後的示意圖。 FIG. 3 is a schematic view of the wafer shown in FIG. 2 after photoresist is applied.
圖4為圖3所示晶片蝕刻後形成的發光二極體的結構示意圖。 4 is a schematic structural view of a light-emitting diode formed after etching of the wafer shown in FIG. 3.
圖5為通過本發明製造方法形成的另一發光二極體的結構示意圖。 Fig. 5 is a schematic view showing the structure of another light-emitting diode formed by the manufacturing method of the present invention.
圖6為通過本發明製造方法形成的又一發光二極體的結構示意圖。 Fig. 6 is a schematic view showing the structure of still another light-emitting diode formed by the manufacturing method of the present invention.
圖7為通過本發明製造方法形成的再一發光二極體的結構示意圖。 Fig. 7 is a schematic view showing the structure of still another light-emitting diode formed by the manufacturing method of the present invention.
下面參照附圖結合實施例對本發明作進一步說明。 The present invention will be further described below in conjunction with the embodiments with reference to the accompanying drawings.
圖1所示為本發明發光二極體製造方法的流程圖,該製造方法主要包括以下步驟:首先提供一晶片,該晶片包括基板及形成於基 板上的發光結構;然後在發光結構上形成電極;之後即在該發光結構的外表面及電極上塗布光阻;進而蝕刻以去除光阻,使發光結構的外表面及電極的外表面粗化,使晶片所產生的光能在多次反射後經由粗化後的出光面射出,提高晶片的出光率,從而得到高亮度的發光二極體。下面結合具體的實施例說明本發明發光二極體製造方法及由本發明發光二極體製造方法所得到的優異的發光二極體。 1 is a flow chart of a method for fabricating a light-emitting diode according to the present invention. The manufacturing method mainly includes the steps of first providing a wafer including a substrate and forming a base. a light-emitting structure on the board; then forming an electrode on the light-emitting structure; then applying a photoresist on the outer surface of the light-emitting structure and the electrode; and etching to remove the photoresist to roughen the outer surface of the light-emitting structure and the outer surface of the electrode The light energy generated by the wafer is emitted through the roughened light-emitting surface after multiple reflections, thereby increasing the light-emitting rate of the wafer, thereby obtaining a high-brightness light-emitting diode. Hereinafter, a method for producing a light-emitting diode of the present invention and an excellent light-emitting diode obtained by the method for producing a light-emitting diode of the present invention will be described with reference to specific embodiments.
如圖2所示,用於製造本發明發光二極體的晶片100可為一普通半導體晶片,包括基板10及形成於該基板10上的發光結構90。本實施例中,基板10為藍寶石(Sapphire),發光結構90依序包含N型半導體層20、發光層30、P型半導體層40、及電流擴散層50,其中N型半導體層20、發光層30、P型半導體層40的材料為氮化鋁銦鎵(AlxInyGa1-x-yN,其中0≦x≦1;0≦y≦1;且x+y≦1)。本實施例中,電流擴散層50上形成有P型電極60,而N型半導體層20上形成有N型電極70。在其他實施例中,晶片也可為垂直結構,即其P型電極與N型電極分別置於晶片的相對兩側。 As shown in FIG. 2, the wafer 100 for fabricating the light-emitting diode of the present invention may be a conventional semiconductor wafer including a substrate 10 and a light-emitting structure 90 formed on the substrate 10. In this embodiment, the substrate 10 is sapphire, and the light emitting structure 90 sequentially includes an N-type semiconductor layer 20, a light-emitting layer 30, a P-type semiconductor layer 40, and a current diffusion layer 50, wherein the N-type semiconductor layer 20 and the light-emitting layer 30. The material of the P-type semiconductor layer 40 is aluminum indium gallium nitride (Al x In y Ga 1-xy N, where 0≦x≦1; 0≦y≦1; and x+y≦1). In the present embodiment, a P-type electrode 60 is formed on the current diffusion layer 50, and an N-type electrode 70 is formed on the N-type semiconductor layer 20. In other embodiments, the wafer may also be of a vertical structure, that is, its P-type electrode and N-type electrode are respectively disposed on opposite sides of the wafer.
N型半導體層20是通過化學氣相沉積法(Chemical Vapor Deposition,CVD),例如有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition,MOCVD),或是分子束磊晶(Molecular Beam Epitaxy,MBE)直接生長於基板10上,發光層30形成於N型半導體層20與P型半導體層40之間,然後通過蝕刻裸露出部分N型半導體層20,再利用蒸鍍、濺鍍等物理沉積方法將N型電極70設置於N型半導體層20的裸露部分之上。 The N-type semiconductor layer 20 is formed by Chemical Vapor Deposition (CVD), such as Metal Organic Chemical Vapor Deposition (MOCVD), or Molecular Beam Epitaxy (MBE). Directly grown on the substrate 10, the light-emitting layer 30 is formed between the N-type semiconductor layer 20 and the P-type semiconductor layer 40, and then a portion of the N-type semiconductor layer 20 is exposed by etching, and then physical deposition methods such as evaporation and sputtering are used. The N-type electrode 70 is disposed over the exposed portion of the N-type semiconductor layer 20.
電流擴散層50為透明結構,形成於P型半導體層40之上,以提高 電流的分佈,增強晶片100的發光效率。所述電流擴散層50的材料可為鎳金合金(Ni-Au Alloy)、氧化銦錫(Indium Tin Oxide,ITO)、氧化銦鋅(Indium Zinc Oxide,IZO)、氧化銦鎢(Indium Tungsten Oxide,IWO)、氧化銦鎵(Indium Gallium Oxide,IGO)等。類似地,P型電極60亦可通過蒸鍍、濺鍍等物理沉積方法形成於於電流擴散層50之上。 The current diffusion layer 50 is a transparent structure formed on the P-type semiconductor layer 40 to improve The distribution of current enhances the luminous efficiency of the wafer 100. The material of the current diffusion layer 50 may be Ni-Au Alloy, Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), Indium Tungsten Oxide (Indium Tungsten Oxide, IWO), Indium Gallium Oxide (IGO), and the like. Similarly, the P-type electrode 60 may be formed on the current diffusion layer 50 by a physical deposition method such as evaporation or sputtering.
然後在晶片100的外表面塗布光阻200,該光阻200可為丙二醇甲醚醋酸酯(Propylene Glycol Mono-methyl Ether Acetate,PGMEA)或聚甲基丙烯酸甲酯(Polymethylmethacrylate,PMMA)等材料。如圖3所示,本實施例中,光阻200是塗布於晶片100的出光面上,即塗布於電流擴散層50的上表面52(如圖2所示)以及N型半導體層20的裸露部分的上表面22上(如圖2所示),並完全覆蓋P型電極60與N型電極70。優選地,光阻200的厚度為0.4微米左右。 Then, a photoresist 200 is coated on the outer surface of the wafer 100. The photoresist 200 may be a material such as Propylene Glycol Mono-methyl Ether Acetate (PGMEA) or Polymethylmethacrylate (PMMA). As shown in FIG. 3, in the present embodiment, the photoresist 200 is applied on the light-emitting surface of the wafer 100, that is, applied to the upper surface 52 of the current diffusion layer 50 (as shown in FIG. 2) and exposed to the N-type semiconductor layer 20. A portion of the upper surface 22 (shown in FIG. 2) and completely covers the P-type electrode 60 and the N-type electrode 70. Preferably, the thickness of the photoresist 200 is about 0.4 microns.
然後即可將帶有光阻200的晶片100置入感應耦合等離子體蝕刻機(Inductively Coupled Plasma Etcher,ICP Etcher)中進行蝕刻,由於光阻200的主成分為有機化合物,置放於高功率,如300w下會產生碳化及聚集的現象,因此可得到不規則的圖案,從而通過感應耦合等離子體蝕刻,當光阻200消失時,晶片100塗布有光阻200的外表面會被粗化,改變晶片100與外界的界面形狀,使晶片100所產生的光能在多次反射後經由粗化後的外表面的合適的位置射出,提高出光率,得到高亮度的發光二極體。 Then, the wafer 100 with the photoresist 200 can be placed in an Inductively Coupled Plasma Etcher (ICP Etcher) for etching. Since the main component of the photoresist 200 is an organic compound, it is placed at a high power. If carbonization and aggregation occur at 300w, an irregular pattern can be obtained, so that by the inductively coupled plasma etching, when the photoresist 200 disappears, the outer surface of the wafer 100 coated with the photoresist 200 is roughened and changed. The shape of the interface between the wafer 100 and the outside is such that the light energy generated by the wafer 100 is emitted after a plurality of reflections through a suitable position on the roughened outer surface, thereby improving the light extraction rate and obtaining a high-luminance light-emitting diode.
圖4所示即為圖3中晶片100蝕刻後所形成的發光二極體400的結構示意圖,由於是將光阻200塗布於電流擴散層50的上表面52以及N 型半導體層20的裸露部分的上表面22(如圖2所示)上,並完全覆蓋P型電極60與N型電極70,蝕刻後,透明電流擴散層50的上表面52(如圖2所示)形成粗糙面452、N型半導體層20裸露部分的上表面22形成粗糙面422、P型電極60的上表面62(如圖2所示)形成粗糙面462、N型電極70的上表面72則(如圖2所示)形成粗糙面472,所述粗糙面452、422、462、472的高度範圍為0.1~1微米,大小為0.1~10微米。 4 is a schematic structural view of the light-emitting diode 400 formed after the wafer 100 is etched in FIG. 3, since the photoresist 200 is applied to the upper surface 52 and the N of the current diffusion layer 50. The upper surface 22 (shown in FIG. 2) of the exposed portion of the semiconductor layer 20 is completely covered with the P-type electrode 60 and the N-type electrode 70, and after etching, the upper surface 52 of the transparent current diffusion layer 50 (as shown in FIG. 2) The rough surface 452 is formed, the upper surface 22 of the exposed portion of the N-type semiconductor layer 20 forms a rough surface 422, and the upper surface 62 of the P-type electrode 60 (shown in FIG. 2) forms a rough surface 462, the upper surface of the N-type electrode 70. 72 (shown in FIG. 2) forms a rough surface 472 having a height ranging from 0.1 to 1 micrometer and a size of 0.1 to 10 micrometers.
由於P型電極60、N型電極70是在蝕刻之前形成的,因此在蝕刻完成之後,P型半導體層40與P型電極60連接的位置以及N型半導體層20與N型電極70連接的位置並未被粗化,仍然為平滑面,保持P型電極60、N型電極70與P型半導體層40及N型半導體層20之間的電性接觸,有效避免電極直接形成於粗糙面上可能出現的漏電或電壓上升等問題。而出光面位於P型電極60與N型電極70外圍的部分,即電流擴散層50上的粗糙面452、N型半導體層20上的粗糙面422改變了發光二極體400與外界的界面形狀,改變了光射向出光面的入射角,從而發光層30所產生的光更容易經由粗糙面452、422出至外界照明,提升發光二極體400的亮度。 Since the P-type electrode 60 and the N-type electrode 70 are formed before etching, the position where the P-type semiconductor layer 40 is connected to the P-type electrode 60 and the position where the N-type semiconductor layer 20 is connected to the N-type electrode 70 after the etching is completed It is not roughened, and is still a smooth surface, and the electrical contact between the P-type electrode 60 and the N-type electrode 70 and the P-type semiconductor layer 40 and the N-type semiconductor layer 20 is maintained, thereby effectively preventing the electrode from being directly formed on the rough surface. Problems such as leakage or voltage rise. The portion of the light-emitting surface located at the periphery of the P-type electrode 60 and the N-type electrode 70, that is, the rough surface 452 on the current diffusion layer 50 and the rough surface 422 on the N-type semiconductor layer 20 change the interface shape of the light-emitting diode 400 and the outside. The incident angle of the light to the light-emitting surface is changed, so that the light generated by the light-emitting layer 30 is more easily emitted to the outside through the rough surfaces 452 and 422, thereby improving the brightness of the light-emitting diode 400.
通過對1000顆以上的發光二極體400進行測試,在使用350mA電流的條件下,未經粗化處理的發光二極體的平均電壓為3.92V、平均波長為398.26nm、平均亮度為137.487mW,而經過粗化處理的發光二極體400的平均電壓為3.94V,平均波長為398.84nm,平均亮度為164.551mW,其資料如表1及表2所示:表1 未經粗化處理的發光二極體
由此驗證,本發明的發光二極體製造方法包含下列優點:(一)大幅提高發光二極體的發光效益(發光二極體粗化前後的亮度差異近30mW);(二)不會影響發光二極體的電性(發光二極體粗化前後的平均電壓未有顯著差異);及(三)不會破壞發光二極體之結構(發光二極體粗化前後的波長未有顯著的位移)。 It is thus verified that the method for manufacturing the light-emitting diode of the present invention comprises the following advantages: (1) greatly improving the luminous efficiency of the light-emitting diode (the difference in brightness before and after the light-emitting diode is about 30 mW); (2) not affecting The electrical properties of the light-emitting diode (the average voltage before and after the light-emitting diode is not significantly different); and (3) the structure of the light-emitting diode is not destroyed (the wavelength before and after the light-emitting diode is not significant) Displacement).
實際上,光阻200塗布於晶片100上的位置決定了蝕刻之後晶片100被粗化的外表面的位置,如圖5所示為由本發明製造方法所得到的另一發光二極體500的結構示意圖,作為本發明地進一步改進,在製造時將光阻200塗布於發光結構90的整個外表面上,包 括發光結構90頂部的出光面以及側面,從而在蝕刻之後不僅電流擴散層50上與N型半導體層20上形成粗糙面452、422,發光結構90的側面亦被粗化形成粗糙面590。從而發光層30所產生的光線不僅可由發光二極體500頂部的出光面,即粗糙面452、422射出,還可由側面的粗糙面590射出,更進一步能提高發光二極體500之出光率。 In fact, the position where the photoresist 200 is coated on the wafer 100 determines the position of the outer surface of the wafer 100 which is roughened after etching, as shown in FIG. 5 is the structure of another light-emitting diode 500 obtained by the manufacturing method of the present invention. Schematic, as a further improvement of the present invention, the photoresist 200 is applied to the entire outer surface of the light emitting structure 90 at the time of manufacture, The light-emitting surface and the side surface of the top of the light-emitting structure 90 are included, so that not only the rough surface 452, 422 is formed on the current diffusion layer 50 and the N-type semiconductor layer 20 after the etching, but also the side surface of the light-emitting structure 90 is roughened to form a rough surface 590. Therefore, the light generated by the light-emitting layer 30 can be emitted not only by the light-emitting surface of the top of the light-emitting diode 500, that is, the rough surfaces 452 and 422, but also by the rough surface 590 of the side surface, and the light-emitting rate of the light-emitting diode 500 can be further improved.
圖6所示為由本發明製造方法所得到的又一發光二極體600的結構示意圖,其不同之處在於:在塗布光阻200之前,先在P型電極60與N型電極70上覆蓋一保護層,從而在蝕刻中由於保護層的存在,P型電極60與N型電極70的上表面62、72並未被粗化,仍為平滑面。所述保護層的材料可為二氧化矽(Silicon Dioxide,SiO2)、氮化矽(Silicon Nitride,Si3N4)等。蝕刻完成之後,可將保護層浸入化學溶液中,以超音波震動加上紫外光(UV)照射提高溶液溫度的方式加速保護層與化學溶液之間的化學反應去除保護層。所述化學溶液的溫度大約高至150℃左右,對於二氧化矽、氮化矽保護層,化學溶液可選擇緩衝氧化蝕刻液(Buffer Oxide Etcher,BOE)。 FIG. 6 is a schematic view showing the structure of another light-emitting diode 600 obtained by the manufacturing method of the present invention, which is different in that a coating of the P-type electrode 60 and the N-type electrode 70 is performed before the photoresist 200 is applied. The protective layer is such that the upper surfaces 62, 72 of the P-type electrode 60 and the N-type electrode 70 are not roughened due to the presence of the protective layer during etching, and are still smooth surfaces. The material of the protective layer may be Silicon Dioxide (SiO 2 ), Silicon Nitride (Si 3 N 4 ) or the like. After the etching is completed, the protective layer may be immersed in the chemical solution to accelerate the chemical reaction between the protective layer and the chemical solution to remove the protective layer by ultrasonic vibration plus ultraviolet (UV) irradiation to increase the temperature of the solution. The temperature of the chemical solution is about up to about 150 ° C. For the protective layer of cerium oxide and tantalum nitride, the chemical solution may be selected from Buffer Oxide Etcher (BOE).
圖7所示為由本發明製造方法所得到的再一發光二極體700的結構示意圖,其不同之處在於:基板710與發光結構90接觸的面被粗化形成漫反射面24,從而可有效地將發光層30射向基板710的光反射向出光面,即粗糙面452、422。該漫反射面24的形成是在成長發光結構90之前,類似於出光面的粗化,也可在基板710上塗布光阻200並置入感應耦合等離子體蝕刻機中蝕刻,從而在基板710上形成粗化的漫反射面24,之後即可在漫反射面24上成長發 光結構90並粗化發光結構90的出光面,形成發光二極體700。發光層30所產生的光部分射向基板710,在漫反射面24處發生漫反射,以不同的角度射向發光二極體700的粗化後的出光面,提高發光二極體700內部的光向外界射出的機會,因而增加發光二極體700的出光率。 FIG. 7 is a schematic structural view of a further light-emitting diode 700 obtained by the manufacturing method of the present invention, wherein the surface of the substrate 710 in contact with the light-emitting structure 90 is roughened to form a diffuse reflection surface 24, thereby being effective. The light that is emitted from the light-emitting layer 30 toward the substrate 710 is reflected toward the light-emitting surface, that is, the rough surfaces 452, 422. The diffuse reflection surface 24 is formed before the growth of the light-emitting structure 90, similar to the roughening of the light-emitting surface, and the photoresist 200 may be coated on the substrate 710 and placed in an inductively coupled plasma etching machine to be etched on the substrate 710. Forming a rough diffuse reflecting surface 24, and then growing on the diffuse reflecting surface 24 The light structure 90 and the light-emitting surface of the light-emitting structure 90 are roughened to form a light-emitting diode 700. The light portion generated by the light-emitting layer 30 is directed toward the substrate 710, diffusely reflected at the diffuse reflection surface 24, and is incident on the roughened light-emitting surface of the light-emitting diode 700 at different angles to improve the inside of the light-emitting diode 700. The opportunity for light to be emitted to the outside increases the light extraction rate of the light-emitting diode 700.
綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,在爰依本發明精神所作之等效修飾或變化,皆應涵蓋於以下之申請專利範圍內。 In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. The above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art will be included in the following claims.
10‧‧‧基板 10‧‧‧Substrate
20‧‧‧N型半導體層 20‧‧‧N type semiconductor layer
30‧‧‧發光層 30‧‧‧Lighting layer
40‧‧‧P型半導體層 40‧‧‧P type semiconductor layer
400‧‧‧發光二極體 400‧‧‧Lighting diode
422、452、462、472‧‧‧粗糙面 422, 452, 462, 472‧‧‧ rough surface
50‧‧‧電流擴散層 50‧‧‧current diffusion layer
60、70‧‧‧電極 60, 70‧‧‧ electrodes
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099117498A TWI513030B (en) | 2010-06-01 | 2010-06-01 | Light-emitting diode and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099117498A TWI513030B (en) | 2010-06-01 | 2010-06-01 | Light-emitting diode and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201145558A TW201145558A (en) | 2011-12-16 |
TWI513030B true TWI513030B (en) | 2015-12-11 |
Family
ID=46765960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099117498A TWI513030B (en) | 2010-06-01 | 2010-06-01 | Light-emitting diode and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI513030B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7037738B2 (en) * | 2002-01-18 | 2006-05-02 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor light-emitting element |
TW200903860A (en) * | 2006-12-29 | 2009-01-16 | Semi Photonics Co Ltd | Light emitting diodes (LEDs) with improved light extraction by roughening |
TW200943593A (en) * | 2008-03-31 | 2009-10-16 | Bridgelux Inc | Light emitting diodes with patterned current blocking metal contact |
TW201001757A (en) * | 2008-05-09 | 2010-01-01 | Ind Tech Res Inst | Light emitting device |
US20100096657A1 (en) * | 2008-08-12 | 2010-04-22 | Chen Ou | Light-emitting device having a patterned surface |
-
2010
- 2010-06-01 TW TW099117498A patent/TWI513030B/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7037738B2 (en) * | 2002-01-18 | 2006-05-02 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor light-emitting element |
TW200903860A (en) * | 2006-12-29 | 2009-01-16 | Semi Photonics Co Ltd | Light emitting diodes (LEDs) with improved light extraction by roughening |
TW200943593A (en) * | 2008-03-31 | 2009-10-16 | Bridgelux Inc | Light emitting diodes with patterned current blocking metal contact |
TW201001757A (en) * | 2008-05-09 | 2010-01-01 | Ind Tech Res Inst | Light emitting device |
US20100096657A1 (en) * | 2008-08-12 | 2010-04-22 | Chen Ou | Light-emitting device having a patterned surface |
Also Published As
Publication number | Publication date |
---|---|
TW201145558A (en) | 2011-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102157640B (en) | Method for manufacturing gallium nitride (GaN)-based light-emitting diode (LED) chip with p-GaN layer subjected to surface roughening | |
CN101325237A (en) | LED chip and manufacturing method thereof | |
CN102024898B (en) | LED (light-emitting diode) and manufacturing method thereof | |
CN102263173A (en) | Light-emitting diode and its manufacturing method | |
CN1510765A (en) | Light emitting device of gallium nitride based III-V group compound semiconductor LED and method for manufacturing same | |
CN101093866A (en) | Clear electrode of semiconductor light emitting device of nitride, and preparation method | |
TWI623115B (en) | Film type flip chip light-emitting diode with roughened surface and manufacturing method thereof | |
KR101101858B1 (en) | Semiconductor light emitting device and manufacturing method thereof | |
CN104124321A (en) | Semiconductor light-emitting element and manufacturing method thereof | |
CN106549087A (en) | A kind of preparation method of high brightness LED chip | |
JP2007221146A (en) | Vertical light emitting device and manufacturing method thereof | |
CN102130252B (en) | Light-emitting diode and its manufacturing method | |
CN103441198A (en) | LED high-brightness upside-down mounting chip and manufacture method thereof | |
TWI495159B (en) | Light emitting diode element | |
TW201340388A (en) | Light-emitting diode crystal grain and manufacturing method thereof | |
CN103187495B (en) | Light-emitting diode chip for backlight unit and manufacture method thereof | |
CN105374917A (en) | Light emitting diode and manufacturing method thereof | |
CN103022298A (en) | High voltage LED chip with light guide pillar and preparation method of high voltage LED chip | |
CN103050600A (en) | Chip of light-emitting diode and preparation method thereof | |
TWI513030B (en) | Light-emitting diode and method for manufacturing the same | |
CN101635324B (en) | Light emitting element and manufacturing method thereof | |
CN104795480A (en) | Positive packaging LED chip of N-electrode extension-wire dotted distribution and preparation method of chip | |
CN103165780A (en) | Manufacturing method of GaN-based LED chip with improved brightness | |
CN103594593B (en) | There is the manufacture method of the inverted light-emitting diode (LED) of alligatoring transparency electrode | |
CN102683521B (en) | The manufacture method of light-emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |