TWI512573B - 在顯示器上感測觸控事件之方法及裝置 - Google Patents
在顯示器上感測觸控事件之方法及裝置 Download PDFInfo
- Publication number
- TWI512573B TWI512573B TW099140027A TW99140027A TWI512573B TW I512573 B TWI512573 B TW I512573B TW 099140027 A TW099140027 A TW 099140027A TW 99140027 A TW99140027 A TW 99140027A TW I512573 B TWI512573 B TW I512573B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- transparent layer
- touch
- sensitive display
- source
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
- G06F3/0421—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Description
本申請案根據專利法主張於2009年11月25日提出申請之美國專利申請案第12/625882號的權益。
本發明是有關於用以感測在像是液晶顯示器,有機發光二極體顯示器等等之觸敏性顯示器上的觸控事件之方法及設備。
顯示器市場亟求一種能夠提供觸敏功能性的顯示器-並且預期具備觸敏功能性之顯示器的市場規模在未來將會巨幅成長。因此,眾多廠商現已投入研發各種感測技術,包含電阻式,投射電容式,紅外線等等。許多這些技術雖可獲得合理的觸控功能性,然各項技術對於特定應用項目而言確伴隨一些效能缺點,同時近乎該等所有都將對於顯示器製造導致顯著的成本增加。
就以效能來說,觸敏性顯示器的基本測度為觸控事
件的正確感測以及該觸控事件在該觸控/顯示器窗口上之精確位置的決定結果。對於另增的功能性而言,許多次要屬性就變得具有關鍵性,這些包含感測除手指以外之各式觸控實作物,像是點筆,光筆等等的彈性;感測多個、同時的觸控事件的能力;位置解析度;以及區分偽假觸控的能力(懸停或者環境性的擾動)。
由於觸敏性顯示器愈來愈廣泛地運用於行動裝置應用項目,像是iPhoneTM
,iPODTM
等等,因此觸敏性顯示器的整體厚度及重量即成為商業可用性的重要測度。當將此等額外關鍵標準納入考量時,僅極少的感測器技術方能勝出。
在目前是由電阻式觸控銀幕主導市場,原因在於其可擴充性和相對較低的成本。各種常見的電阻式觸控銀幕為4線類型者,其中兩個未經樣式化透明導體(通常鍍置以氧化銦錫,ITO)面朝彼此,其一者位於塑膠薄膜的底側上而另一者則位於玻璃基板的頂面處。電壓係經交替地施加於位在相對邊緣上的各個導體。由於該等導體內的電阻性之故,電壓會跨於該薄片而下降。當一給定薄片並未被施予電壓時,該薄片即作為感測器。當該塑膠膜層透過一觸控事件而移位時,這兩個導體薄片即彼此互相接觸,並且電流自被供給能量之薄片流至該未被供給能量之薄片。該接觸點之所在處的電壓是根據距該輸入來源的距離而定,如此可供在一個維度上決定接觸位置。藉由顛倒這兩個薄片的來源及感測角色,即可在另一維度上以類似方式決定其位置。
然確存在多項與電阻式觸控銀幕相關聯的缺點,像
是該塑膠膜層相當易於損壞,該ITO鍍層易於破裂(因為這種鍍層相當易碎),同時該ITO鍍層並無法如所需般透明且具有導體性。電阻式觸控銀幕亦無法支援最先在iPhoneTM
上所普及化的多觸控功能(該者是利用電容式觸控銀幕)。能夠在iPhone上進行的極輕微觸控在電阻式觸控銀幕上亦非可行,其理由是該膜層必須實體地移位以帶動兩個ITO鍍層產生接觸。
電容式觸控銀幕在成本上雖較電阻式變化項目昂貴,然卻更加受到歡迎。電容式觸控銀幕含有觸控玻璃層及覆蓋玻璃層。該觸控玻璃層在相對側上載荷有電性跡線(通常為ITO),這些跡線一般是按交叉格網樣式,且其間設置以絕緣體(玻璃)。由於人體為導體,所以碰觸到該覆蓋玻璃會造成部份靜電場的扭曲,而可按電容值的變化加以測量。在一給定方向上將方波循序地輸入至各條電性跡線內,並且對在另一方向上連至各條線路的相互電容性耦接進行感測。若手指碰觸到該覆蓋玻璃,則在一個以上單元胞格處(即該格網之各別跡線的交叉處)的相互電容值將會下降。電容式觸控銀幕之所以成為所冀求者的原因在於,其可提供多觸控感測的能力;其可感測甚至極為輕微之觸控事件的能力;其強固性(無須具有彈性);以及其透明特徵。
然電容式觸控銀幕的不足之處則包含:無法進行點筆觸控感測,難以擴充至較大尺寸以及高製造成本。
因此,業界確需一種能夠推進觸控銀幕技術的新穎方法與設備,籍以納入:良好的擴充性,低成本,點筆感測
的能力,強固性,優質的透明度,對於多觸控事件的敏感性,以及對於輕微觸控事件的敏感性。
根據本發明揭示內容之一個或多個具體實施例,一種用以提供觸敏性顯示器的方法及設備,其中包含:顯示層;透明層,此者係位於該顯示層之上;至少一個光源,此者導引光線以傳播進入及/或通過該透明層;至少一個光線感測元件,此者係與該透明層連通,並可運作以回應於一碰觸該透明層之表面且擾動經此通過之光線的傳播之物體而接收所散射的光線;以及控制線路,此者含有處理器,該處理器接收來自該至少一個光線感測元件並表示該散射光線的訊號,同時計算該物體碰觸該透明層的一個或多個位置。
一種根據本發明揭示內容之一個或多個具體實施例的方法,該方法可包含:在顯示層上設置透明層;導引光線以傳播進入及/或通過該透明層;測量所散射的光線以回應物體碰觸透明層之表面以及擾動通過其中之光線的傳播;以及按照測量散射光線之步驟所獲得的信號來計算物體碰觸該透明層的一個或多個位置。
自本發明揭示內容說明,且併同於隨附圖式時,熟諳本項技藝之人士將即能顯知本發明揭示內容具體實施例的其他特點,特性與優點。
100A,100B,100C,100D‧‧‧觸敏性顯示器
102‧‧‧顯示層
104‧‧‧玻璃層
105‧‧‧彈力觸控層
106‧‧‧表面
110,110A,110B,110C,110D‧‧‧光源
112‧‧‧受導引光線模式
114‧‧‧散射光線
116,116A,116B,116C,116D‧‧‧感測元件
120A,120B‧‧‧光線抑制構件
122,124‧‧‧光線
130A,130B,130C,130D‧‧‧邊緣
134A‧‧‧虛線
140‧‧‧控制線路
142‧‧‧微處理器
144‧‧‧驅動器線路
146‧‧‧介面線路
126A,126B‧‧‧濾波器
128A‧‧‧藍光
128B‧‧‧綠光
128C‧‧‧紅光
128D‧‧‧紅外光線
129A,129B,129C,129D‧‧‧濾光特徵
150‧‧‧前置放大器
152‧‧‧線路
160‧‧‧乘法器區塊
154,156‧‧‧線路
180‧‧‧轉換器
170‧‧‧積分器
200‧‧‧主動式點筆
202‧‧‧殼體
204‧‧‧球體
206‧‧‧電池
208‧‧‧彈簧環圈
210‧‧‧光源
212‧‧‧平板
214‧‧‧開關接點
作為說明用途,附圖中所顯示為優先的形式,不過人們了解在此所說明實施例並不受限於所顯示精確排列以及
方法。
圖1為一擁有一些能夠適用於本發明揭示內容一個或多個具體實施例之特徵的觸敏性顯示器之側視圖;圖2A-2B為運用根據本發明揭示內容一個或多個具體實施例之光線反射降低構件的觸敏性顯示器之側視圖;圖3為根據一個或多個本發明揭示內容進一步具體實施例之觸敏性顯示器的替代性實作之略視圖;圖4為運用根據一個或多個本發明揭示內容具體實施例之進一步光線反射降低構件的觸敏性顯示器之側視圖;圖5為說明圖4光線反射降低構件中所使用之一個或多個濾波器的一些透光特徵之圖形;圖6為根據一個或多個本發明揭示內容又進一步具體實施例之觸敏性顯示器的進一步替代性實作之略視圖;圖7為可根據一個或多個本發明揭示內容又進一步具體實施例所使用之作用點筆的略視圖;圖8為根據一個或多個本發明揭示內容進一步具體實施例之替代性觸敏性顯示器的側視圖;以及圖9為適用於一個或多個本發明揭示內容具體實施例之數碼調變器及解調變器線路的區塊圖。
現參照於隨附圖式,其中類似編號是表示相仿構件,而圖1顯示根據一個或多個本發明揭示內容具體實施例及所述特點的觸敏性顯示器100A。該觸敏性顯示器100A可運用於各種消費性電子物項,例如行動電話和其他能夠進行無
線通訊的電子裝置,音樂播放器,筆記型電腦,行動裝置,遊戲控制台,電腦「滑鼠」,電子書閱讀器以及其他裝置。
該觸敏性顯示器100A含有一顯示層102以及一玻璃層104(此者可運作如保護覆蓋層)。該觸敏性顯示器100A可於該顯示層102以及該玻璃層104之間含有空氣間隙。
玻璃層104含有一表面106,此者可供使用者透過觸控事件以與該觸敏性顯示器100A進行互動。可在該表面106上,或是藉此,向使用者呈現各種指標或示符,俾於此項互動活動過程中導引該使用者。藉由範例,該示符可包含在該玻璃層104之表面106上位於旁以供表示即如使用者選擇,軟體執行等等的區域。即如本案說明後文中所進一步詳細討論者,該觸敏性顯示器100A可含有電子線路,此線路可接收來自該玻璃層104的訊號以偵測觸控事件,包含該等事件在該表面106上的特定位置。
該玻璃層104可為自任何適當的透明材料所構成,像是玻璃,塑膠等等。塑膠雖較為價廉,然據信玻璃可獲致較佳的效能。因此,本案說明的其餘部份將假定是利用玻璃材料以構成該玻璃層104。藉由範例,該玻璃可為化學強化玻璃,像是石灰蘇打類型玻璃。這種類型的玻璃之一即為經離子交換硬化的鹼鋁矽酸鹽玻璃。這些類型的玻璃一般說來具有複雜成分,不僅包含Na2
O(氧化鈉),CaO(氧化鈣)和SiO2
(二氧化矽),而同時亦含有許多其他的氧化物,像是MgO,Li2
O,K2
O,ZnO以及ZrO2
。一旦經離子交換而硬化後,這些類型的玻璃可展現出一些令其等能夠不僅適合於觸控銀幕
應用項目,而同時亦可運用在覆蓋玻璃(保護)應用項目。適合作為玻璃層104石灰蘇打型式玻璃之配方及/或製造詳細說明可參考下列一個或多個文獻:2007年7月31日申請之美國第11/888,213號專利;2009年8月7日申請之美國第12/537,393號專利;2009年8月21日申請之美國第12/545,475號專利;2009年2月25日申請之美國第12/392,577號專利;這些專利之說明在此加入作為參考。
該顯示層102可為利用任何已知的電子顯示器技術所實作,像是LCD顯示器技術等等。該顯示層可包含背光構件(未予圖示),此構件可產生並傳發光線穿過該玻璃層104,這通常是垂直地穿過該表面106,即如依虛線箭頭所示者。在一個或多個具體實施例裡,可藉由該顯示層102將光線投射穿過該玻璃層104以向使用者呈現前述示符。
無論究係透過該背光構件抑或其他的光源110,該觸敏性顯示器100A皆含有至少一個光源,此者可導引光線以傳播至該玻璃層內及/或穿過玻璃層。在該顯示層102的背光構件情況下,自此而來的光線會傳播穿過該玻璃層104,且通常是按垂直方式。而在該光源110的情況下,自此而來的光線會經由該玻璃層104的邊緣而耦接進入其內,並且以受導引光線模式112於該玻璃內傳播。藉由範例,該光源110可含有一個或多個LED,像是發射位於約400nm至約650nm波長範圍內之光線的可見光LED,或者是發射超出約700nm波長處之光線的紅外光LED。
當一像是使用者手指之物體碰觸到該玻璃層104的
表面106時,經此而行的光線傳播就會被擾動,故而產生散射光線114。該觸敏性顯示器100A含有至少一感測元件116,此者係與該玻璃層104連通,同時可運作以回應於該物體碰觸到該表面106來接收或感測該散射光線114。該至少一感測元件116(像是光二極體,成像器或類似裝置)可產生表示該散射光線114而足可供計算該物體碰觸該玻璃層104之一個或多個位置的訊號。後文說明中將進一步詳細討論計算觸控事件之位置的方法。
為維持良好的訊號對雜訊比以供藉由該光線感測元件116正確地感測該散射光線114,會希望該耦合進入受導引光線模式112及/或離於該玻璃層104邊緣表面之散射光線114的反射最小化。對此,並參照圖2A及2B,該觸敏性顯示器100A(及/或任何其他本發明揭示內容具體實施例)可進一步含有一個或多個光線抑制構件120A及/或120B,該等可運作以減少這些光線反射。
該光線抑制構件120A含有沿該玻璃層104之至少一邊緣所設置的低反射性色料(像是暗黑塗劑或光線吸收材料)。而當運用至少一個光源110以耦合進入該受導引光線模式112時,則會希望將該光線抑制構件120A的低反射性色料設置在離於該光源110的相對邊緣上。當僅將該低反射性色料施用於該邊緣表面本身時可良好運作;然而,據信當將該色料設置在該邊緣表面上,並連同該玻璃層104上方及下方表面中鄰近於此邊緣的至少一部份上,時確可獲得有利效果。而若將該色料納入在該玻璃層104的所有邊緣表面上以
及鄰接表面的相關部份則可為最佳。
該光線抑制構件120B在該(等)邊緣處含有該玻璃層104的漸變厚度。同樣地,當運用至少一個光源110以耦合進入該受導引光線模式112時,會希望將該光線抑制構件120B的漸變邊緣設置在離於該光源110的相對邊緣上。此外,也可能同樣地希望在該玻璃層104的所有邊緣上運用該光線抑制構件120B。該光線抑制構件120B的漸變性可將「泄漏波導」特徵傳授予該玻璃層104,藉以抑制反射回到該玻璃的光線。基本上,該光線抑制構件120B的漸變化可藉由讓光線抵達該玻璃層104的邊緣而泄離以減少向後散射。
為解釋該泄漏波導特徵的功能性,圖2B說明在該玻璃層104內的兩條經導引光線。該第一個光線122相對於該表面106的法向約呈40度,此角度是接近對於具有約1.572折射指數之玻璃為約39.5度的關鍵角。而該第二光線124會先自該玻璃層104的中心向下傳播,然後方才撞擊到該漸變化範圍。這兩條光線122,124是代表經導引之波光角度的極端範圍。當該等光線122,124撞擊,反射並再撞擊該光線抑制構件120B的漸變化部份時,入射角會改變,直到該等是以低於該關鍵角入射並開始泄離於該玻璃層104為止。按此方式,即可降低及/或最小化返回至該玻璃層104的反射。
該向後散射的抑制品質(即如彈跳次數及返回損失)將會依據該玻璃層104的幾何性和折射指數而定。現已經由計算估計,對於具有約1.572折射指數,1單位厚度以及10度漸變化(即如漸變約5.59單位)的玻璃而言,該等光線122,
124將會體驗到約7次泄漏彈跳。在此雖考量且揭示為10度的漸變化,然亦可運用其他的漸變角度。一般說來,漸變若愈淺,則該等光線122,124在反射返回該玻璃層104內之前就會遭遇到愈多次的泄漏彈跳。對於該光線122的進一步計算顯示對於p偏光光線約有6.65E-13的返回損失(因七次泄漏彈跳所致生),而對於s偏光則約有3.01E-9的返回損失。所反射光線為強烈s偏光。由於該LED光源110為隨機偏光,因此平均邊緣反射約為1.5E-9。藉由將一p透光偏光鏡放置在該光線感測元件116之前側可達到進一步的反射抑制結果(二階或三階的規模)。此外,將前述色料(即如暗黑塗劑或光線吸收材料)運用在該漸變上亦可減少邊緣反射。
現參照圖3,該圖說明根據一個或多個本發明揭示內容進一步具體實施例之觸敏性顯示器100B的替代性實作之略視圖。該觸敏性顯示器100B含有一顯示層(未予圖示)以及一玻璃層104,此者是以頂視方式所顯示,並且再度地亦可作為保護覆蓋玻璃層。在本具體實施例裡,該觸敏性顯示器100B含有複數個光源110A,110B,110C及110D,其中各個光源110係與該玻璃層104之邊緣130A,130B,130C及130D的一各別者相聯通。即如後文中所進一步討論者,在該玻璃層104各個邊緣處運用至少一個光源110可相對於較少數量之光源110而提供有利的功能性。但是,在此雖顯示四個此等光源110,然任何合理數量皆可運用。例如可使用二,三或更多個光源110。
該觸敏性顯示器100B含有複數個光線感測元件
116A,116B,116C及116D,各者策略性地位於該銀幕的周圍。尤其,當該等光線感測元件116之各別者位於該玻璃層104的各個角落處時可達到有利操作。然應瞭解確可運用任意數量的光線感測元件116,同時可使用其等任何(多個)位置,只要達到足夠的感測功能性即可。
該觸敏性顯示器100B亦含有,或經耦接於,一控制線路140。該控制線路140可提供對於供給能量給該等光源110,接收來自該等光線感測元件116之訊號,以及處理該等訊號俾決定該物體碰觸該玻璃層104表面106之一個或多個位置所必要的功能性。尤其,該控制線路含有微處理器142,驅動器線路144及介面線路146。該微處理器142係透過訊號線路,匯流排等等耦接於該驅動器線路144及該介面線路146。該微處理器142可執行電腦可讀取數碼(軟體程式),此數碼控制並協調該驅動器線路144及該介面線路146的動作以達到前述功能。例如,該微處理器142可將控制訊號提供至該驅動器線路144而表示何時應開啟及關閉該等各別光源110。即如後文所將進一步詳細論者,該微處理器142亦可提供額外資訊以使得該驅動器線路144能夠對自該等光源110所發射的光線進行調變。該介面線路146可接收來自該等光線感測元件116的訊號,並且處理此等訊號故而能夠將該等訊號輸入至該微處理器142。例如,當該等光線感測元件116為光二極體時,該介面線路146可將適當的偏壓條件提供予該等光二極體,使得該等光二極體能夠適當地感測光線能量。對此,該介面線路146可於特定的時間間隔過程中令一
些光線感測元件116為作用中而其他則為非作用中。該介面線路146亦可處理自該等光二極體所接收的類比訊號,並且將該等訊號轉換成適用於該微處理器142的數位格式。
可運用像是標準數位線路的適當硬體,任何可運作以執行軟體及/或韌體程式的已知處理器,一個或多個像是可程式化唯讀記憶體(PROM),可程式化陣列邏輯裝置(PAL)等等的可程式化數位裝置或系統,來實作該微處理器142。此外,該控制線路140雖經顯示如被劃分成一些功能性區塊(該微處理器142,該驅動器144及該介面146),然而該等區塊可為藉由分別線路及/或合併為一個或多個功能性單元所實作。
該微處理器142可運行不同的軟體程式以執行不同技術來計算出該物體碰觸該玻璃層104之表面106的一個或多個位置。其中一項技術即為三角測量法,該法係用以藉由從多個已知點測量對一可變點(在本案中該(等)點處即為該物體碰觸到該玻璃層104的位置)之角度俾決定該可變點位置的眾知程序。然後,可依照一角度的第三點而藉由一條已知側邊和兩個已知角度來計算該可變點。在該觸敏性顯示器100B裡,該等光線感測元件116之任何其中兩者皆可提供該三角測量演算法中的固定點。而為改善位置計算的正確度,可能會希望利用多個光線感測元件116組對以多次地計算該碰觸點,接著再利用統計計算俾獲致該最終碰觸位置。
但在一些具體實施例裡,該等光線感測元件116的操作特徵可能會造成此三角測量法出現問題。例如,若該等光線感測元件116為僅測量光線強度的光二極體,則三角測
量法可能有所困難或甚無法實行。一種計算觸控事件位置之替代方式為比較被該等光線感測元件116所感測到的各別訊號強度。藉由範例,若構件116A及116D測量到相同的訊號強度,則可決定該觸控事件的位置會是位在一條離該等兩個構件116A及116D為等距的直線上。然若該等訊號並不相等,則該觸控事件的位置可決定為較靠近其中一者而離另一者較遠。確實,該觸控事件的位置並非位於一條直線上,而是在一條弧線上。藉由感測第三構件116B的訊號強度,即可獲以決定該觸控事件位置的單一點。為提供說明,然非限制,一種用於根據自該等光線感測元件116所收到之振幅資料以在該玻璃層104上計算觸控事件位置的示範性演算法將於本案後文中標題為「範例-位置感測演算法」乙節裡詳細討論。
在影響用以計算該碰觸位置之數學技術的正確度之多項因素中,其一為該微處理器142在自該等光線感測元件116所收到而源於一特定光源110或一組光源110之光線能量所獲的多個訊號中進行區分的能力。對此,該控制線路140可運作以令該光線是自至少兩個(且最好是所有)光源110所發出,藉以納入至少一區分特徵。按此方式,該微處理器142可從由該等光線感測元件116所產生之訊號中取得此特徵的表示,並因而區分在該等訊號中哪些是源自回應於該等光源110之特定者所產生的散射光線。
該區分特徵可包含如下至少一者:(i)自該等光源110之兩個或更多者所發出的光線之不同波長;(ii)調變成分,而藉此自兩個或更多光源所發出之光線係依各別,不同的數碼
所調變;(iii)頻率調變成分,而藉此自兩個或更多光源所發出之光線係依各別,不同的頻率所調變;以及(iv)時間成分(或時間多工),而藉此光線是在不同的時點處自兩個或更多光源所發出。
而採用前述各個區分特徵,該等光源110各者又可藉由具有不同光線波長的各別LED所實作。例如,該光源110A可發射位於第一波長範圍內的光線,像是在約430nm與約470nm之間(此範圍概為藍光頻譜)。該光源110B可發射位於第二波長範圍內的光線,像是在約490nm與約550nm之間(此範圍概為綠光頻譜)。該光源110C可發射位於第三波長範圍內的光線,像是在約615nm與約650nm之間(此範圍概為紅光頻譜)。這些可見藍,綠及紅光波長範圍僅為說明之目的。的確,其他範圍(包含合成藍-綠光,綠-紅光等等)亦為可行。此外,亦可運用非可見波長,像是紅外線波長。因此,例如該光源110D可發射位於第四波長範圍內的光線,像是在約820nm與約880nm之間。
給定兩個或更多的光源110可發射位於不同波長處的光線,可在該玻璃層104本身及/或該控制線路140之內採取多項步驟以區分從該等光線感測元件116所收到的訊號。例如,該等光線感測元件116可為按傾向於僅令一些構件116感測源自一些光源110之散射光線的方式所設置。尤其,給定該等光線感測元件116的指向,各個光源110的光線投射領域可排除一部分的光線感測元件116。藉由範例,該光源110A的光線投射領域可包含在該玻璃層104中僅依虛線134A
所朝向的部份。假設在該玻璃層104之邊緣130處的光線反射降低或最小化,則僅該等光線感測元件116A及116D(沿與該光源110A相同的邊緣130A)能夠收到來自於源生自該光源110A之觸控事件的散射光線能量,然並無光線能量自其直接地入射。類似分析可適用於其他的光源110及光線感測元件116。
該等光線感測元件116本身可按不同方式回應於該光線能量的波長,即如業界所眾知者。例如,一給定光線感測元件116可含有多個感測器,該等能夠回應於一些波長而非其他者,藉以提供不僅表示該所收光線能量之規模,同時亦表示其(等)之波長的輸出。
該控制線路140,並尤其是該微處理器142,可在多個自各別光線感測元件116所收到的訊號中區分為來自於光線散射事件而不同於來自該等光源110的入射光線。此外,可將該等訊號應用在適合於計算該玻璃層104上之觸控事件的位置或多個位置之數學演算法。
即如前述,利用該波長區分特徵(以及一個或多個如後文討論的其他特徵)之碰觸位置計算作業的正確度是受到在該玻璃層104邊緣130處之光線反射的程度與特徵所影響。而最希望的是能夠將此等邊緣反射予以降低或最小化。對此,該觸敏性顯示器100B可含有超出或另增於參照圖2A-2B所討論者的許多額外特性,藉以減少此等邊緣反射。
對此,現參照圖4,該圖說明運用一進一步光線反射降低構件之玻璃層104的側視圖。特別地,光線抑制構件
120A可為沿該玻璃層104的邊緣130(並且最好是所有的邊緣)而設置。該光線抑制構件120A可包含各別窗口,而可經此以鄰接於各別光源110,使得透過此處而來的光線能夠無所阻礙地耦合進入於該玻璃層104內。為降低來自於該窗口及/或該光源110本身(因自另一個光源或散射事件所入射之光線能量所致生)的反射,可在該光源110與該玻璃層104的邊緣130之間設置至少一濾波器126。該濾波器126可運作以衰減大致位於由該等各別光源110所產生之波長範圍以外的光線。按此方式,該窗口和該光源110本身對於此等波長範圍之外的光線將顯似為「暗黑」(亦即無反射性)。在可見光波長範圍的情況下,可能依據其特定濾光特徵而定運用單一個濾波器126。然在一些情況下,可能需要第一及第二濾波器126A,126B以過濾整個所欲範圍。例如,其一濾波器126A可衰減位於第一可見波長範圍(像是前述的藍光範圍)之外的光線,而另一濾波器126B則可衰減位於另一範圍,像是紅外線波長範圍,之外的光線。
圖5說明該等一個或多個濾波器126的一些透光特徵之圖形。尤其此圖顯示出該等入射光線波長(即如藍光128A,綠光128B,紅光128C,紅外光線128D)與各別濾光特徵129A,129B,129C,129D之間的關係。該圖形的垂直軸線係視情況而定為該等來源110或通過該濾波器126的透光百分比,而水平軸線則是按nm為單位的光線波長。
若決定前述色料,漸變及/或濾波器126並無法足夠地衰減該等邊緣反射,則可藉由按照一些額外資訊以調變由
該等光源110所產生之光線藉此進一步區分來自於該等光線感測元件116的所欲訊號相對於非所欲訊號。藉由範例,該驅動器線路144可調變該等光源110的一個或多個者,使得來自於該等的各別光線含有一些像是正交數碼的數碼,即如眾知的Walsh數碼。藉由範例,由特定光源110所產生之光線可含有按一特定位元速率(像是1KHz)的經調變20位元Walsh數碼。該介面線路146可含有一接收器,此者能夠解調變該特定Walsh數碼,同時拒斥並未含有該數碼的訊號。此調變/解調變程序可確保只會對回應於來自一觸控事件之散射光線(而不同於由其他位在相對或相鄰邊緣上之光源110所直接發射的光線)而產生的訊號進行處理以供計算該碰觸位置。注意到該等調變器及解調變器線路(像是對於正交編碼法則)為訊號處理業界所眾知。為本發明揭示內容討論之目的,此等調變器及解調變器線路實作的進一步詳細說明可如後文中標題為「範例-數碼調變實作」乙節中所敘述。
前述數碼調變其一變化項目即為頻率調變的應用。在本具體實施例裡,該驅動器線路144可調變該等光源110的一個或多個者,使得來自於該等的各別光線含有某一或一些頻率(這些頻率可由一經諧調的接收器加以區分)。該介面線路146可含有適當的接收器,而能夠解調變該特定頻率同時拒斥並未含有該頻率的訊號。即如數碼調變般,此調變/解調變程序可確保只會對回應於來自一觸控事件之散射光線(而不同於由位在相對或相鄰邊緣上之光源110所直接發射的光線)而產生的訊號進行處理以供計算該碰觸位置。注意到頻率調
變器及解調變器線路為訊號處理業界所眾知,並因而本發明揭示內容說明中省略其實作的詳細說明。
現採取下一種能夠用以協助隔離出載荷對於特定散射事件和特定光線感測元件116之資訊的訊號之區分特徵,即可按時間多工方式(time multiplexing fashion)供給能量給各該等光源110。例如,該控制線路140(即如該驅動器線路144)可令在特定的時間間隔過程裡僅該等光源110之單一(或特定)者發射光線。同時,該控制線路140(即如該介面線路146)可准允在該時間間隔過程裡僅一部份的光線感測元件116為作用中。
為解釋上述說明,當該光源110A為作用中時,該控制線路140可僅啟動該等光線感測元件116A及116D。在這些條件下,同時假設為有限的邊緣反射,則僅該等光線感測元件116A及116D(沿與該光源110A相同的邊緣130A)能夠收到來自於源生自該光源110A之觸控事件的散射光線能量,而並無光線能量自其直接地入射。類似分析可適用於其他時間間隔過程中的其他光源110及光線感測元件116。注意到可藉由一次供給能量給一個以上的光源110以運用這種時間多工方式,然在計算該碰觸位置時必須謹慎地處理多個光源。此外,由於單一次為作用中之光源110及光線感測元件116的數量為有限,所以時間多工方式可運用於其有相同波長或波長範圍的光源110。因此,為減少該玻璃層104表面106上之污物的影響,及/或供以在該表面106上實際地標明,或另為阻擋,示符,該等光源可皆為紅外線的變化項目。
利用時間多工方式,該控制線路140可在多個自各別光線感測元件116所收到的訊號中區分為來自於光線散射事件而不同於來自該等光源110的入射光線。如此可供將該等訊號應用在例如計算該玻璃層104上之觸控事件的位置或多個位置之演算法。同樣地,可運用後文中標題為「範例-位置感測演算法」乙節所討論的示範性演算法以計算觸控事件的位置。
現參照圖6,該圖說明根據一個或多個本發明揭示內容進一步具體實施例之觸敏性顯示器100C的替代性實作之略視圖。該觸敏性顯示器100C亦含有一顯示層(未予圖示)以及一玻璃層104,此者是以頂視方式所顯示。在本具體實施例裡,該觸敏性顯示器100C含有沿其一邊緣130A的複數個光源110A(像是四個),沿另一邊緣130B的複數個光源110B等。類似地,該觸敏性顯示器100C含有沿該邊緣130A的複數個光線感測元件(像是四個),沿該另一邊緣130B的複數個光線感測元件等等。即如本發明揭示內容其他具體實施例般,該觸敏性顯示器100C亦含有,或經耦接於,一控制線路140。該觸敏性顯示器100C可按類似於先前具體實施例之觸敏性顯示器100B的方式運作,然沿該玻璃層104給定邊緣130上之所有光源110在波長分割多工的情況下皆可具有相同波長(或其範圍),且/或在時間分割多工的情況下被同時地啟動/關閉。對於沿各個各別邊緣130上的光線感測元件116而言,亦為如此。
根據觸敏性顯示器的進一步替代性實作,任何如圖
1,3及6所示的前述實作皆可依照螢光原理而運作。在該物體(像是手指)可回應於來自碰觸該玻璃層104表面106之入射光線而發射螢光的情況下,來自該物體的螢光可為耦合進入於該玻璃層104內。經由審慎地選擇該等光源110,該螢光可擁有不同,比起該入射光線者為較高的波長,而所散射光線可隨即被該控制線路140偵得並拒斥該入射光線的偵測結果。即如目前文獻所述,手指可向後散射光線而供以偵得觸控事件。能夠產生類似光線散射的被動式點筆可達到相同效果。然提供主動式點筆的可能性確實存在。不以反射在該覆蓋玻璃內或經其所提供的光線,主動式點筆可為一個光源。
現參照圖7,該圖說明一主動式點筆200的略視圖,此者可併同於一個或多個本發明揭示內容觸敏性顯示器100而運用。一般說來,該主動式點筆200的方式是將用於碰觸位置感測的光源210放置在該實作的殼體202內,且該使用者可用以碰觸該玻璃層104,而非仰賴於光線散射。這種方式的優點在於強固性,因為該光源210會遠強於任何向後散射光線,實際上會強烈到使用者可將其手掌停駐於玻璃層104上並同時以主動式點筆200進行書寫,然又不致衰減過多光線而妨礙位置偵測作業。當利用該主動式點筆200時,在該玻璃層104內或經其而提供光線的光源110則非必要,因此可消除該等光源或予以暫時關閉。暫時關閉該等光源110可提供雙重操作模式:一種模式是利用該等光源110的觸控感測;而另一種模式則是利用該主動式點筆200的觸控感測。
該光源210可為LED,像是IR LED,而在此情況下
該等光線感測元件116可經調適以感測IR光線。若該光線須如前述般予以調變,則可運用一種用以對來自於該光源210之光線發射和在該等光線感測元件116處所偵得之訊號進行同步化的裝置。給定前述討論以及後文中參照圖9所顯示和所敘述的系統,熟諳本項技藝之人士將隨能顯知此款裝置。來自該光源的光線照入位於該殼體202之尾部末端處的球體204,此球體204散漫並隨機化從該主動式點筆200所發射的光線。此漫射可使得該主動式點筆200之姿態不會對自該等光線感測元件116之視點的光線偵測作業造成影響。該球體204可為由任何適當材料所製成,像是塑膠而經填入以例如約1%的二氧化鈦來作為散射介質。
然當並未接觸到該玻璃層104時,不希望由該電池206提供能量給該光源210。現有廣泛各種可能的機械性組態以供僅在當接觸到該玻璃層104時方才啟動該主動式點筆200。藉由範例,該球體204可藉由一彈簧環圈208而朝向該殼體202的尾部末端向前偏置。該彈簧環圈208可為由一些彈性材料所製成,此者能夠以相當微小力度所壓縮,而當壓力釋放後隨即彈回其正常的較大形狀。當在該球體204上施加壓力並壓縮該彈簧環圈208時,一導體接觸平板212可接合兩個開關接點214以讓電流自該電池206流至該光源210。此外,或另者,可去除該電池206,並且該點筆200可覓得由位在該觸敏性顯示器100內之主機所輸出的電力。
圖8說明一種進一步替代性的觸敏性顯示器100D。該觸敏性顯示器100D含有顯示層102,玻璃層104(此者可為
設置在該顯示層102上方),以及經設置於該玻璃層104頂上的彈力觸控層105。可經由間隔器等等以在該彈力觸控層105與該玻璃層104之間產生一溝隙。該彈力觸控層105是由適當聚合物所構成,此者可具有彈性並回應於觸控事件而接觸到該玻璃層104。此外,該彈力觸控層105是由擁有良好波導性質的材料所構成。該光源110可產生光線,而且在導引模下可予耦合進入至該玻璃層104並於其內傳播。由於該玻璃層104內部的全內反射之故,因此若無觸控事件,則光線不會耦合進入至該彈力觸控層105內,並因而該等光線感測元件116不會感測到散射光線。而當出現觸控事件時,在該玻璃層104裡傳播之光線的導引模會被中斷,並且部份的光線會耦合進入至該彈力觸控層105。故而該等光線感測元件116可對此光線進行測量,並且將表示該者的訊號提供予一控制線路(未予圖示)。按此方式,該控制線路即可利用類似於前揭所述之技術和設備以計算出該觸控事件的位置。
本節說明一種可用以在前文中所揭示並討論之一個或多個具體實施例中計算觸控事件的位置偵測演算法。在本節裡將描述該位置偵測演算法,並連帶地考量有關於該者按觸敏性顯示器操作管理之程式的實作。
經由背景說明,在日常生活裡,大眾通常需要評估隨機事件的機率。這些範例包含丟擲骰子,從卡堆中抽出卡片,或是估算出測量儀器的雜訊。在該等情況下,可利用描述實體系統(或機率分佈)之模型的知識以作出有關於結果的
預測。而當進行資料模型化峙,則是希望作出相反的動作:給定經驗性資料的知識,會希望找出能夠提供良好描述的模型。為達此一目的,可參照於貝式(Bayes)定理,其中陳述
而給定經驗性資料,將其施用於本項找出該模型的問題,貝式定理即變成
該機率P
(model
)稱為「前者」;而若無對於對哪一模型可能為有效的假設,則該項可採為常數。分母僅為正範化常數,以確保所有模型的機率會等於一。因此可得到
這表示,給定該支援資料而一模型為有效的機率會是與給定該特定模型而觀察該資料的機率成正比。此結果為後文討論之參數擬配方法的基礎。
實體設定可提供N
個資料點(即由光線感測元件116所測得的訊號),經標註為,i
=1,K,N
,吾人希望將其擬配於一模型f i
(a 1
,K,a M
),其中a j
,j
=1,K,M
,為未知參數。此模型通常是利用對於隨機程序之本質的實體觀念所建構的函數。
若各資料點的實驗誤差為具有標準差σ i
的常態分佈,則在實驗上給定該模型能預測該等數值f i
,測量該資料集合的機率可為給定如下
即如貝式定理的討論,吾人知曉,給定所觀察資料,
等式(4)亦為屬於有效之模型的機率。因此,最可能的模型就是將等式(4)最大化者,或是等同地將其對數的負值予以最小化者,即
由於N
和△f
為常數,因此找到最可能模型實等同於將下列量值最小化
所以,該問題可歸結為在M
維度參數空間裡找到一(概為)非線性函數的最小值。該等能夠將χ2
最小化的數值a 1
,K,a M
稱為「最佳擬配參數(best-fit parameters)」或「最大似然性估計子(maximum likelihood estimators)」。
前文概述的最小平方程序包含假定一模型,並且選擇能夠產獲該模型與該資料間之最佳擬配的參數。然如此並無法保證該模型確為該隨機程序的良好表示。所需要的是「擬配良好度(goodness-of-fit)」關鍵標準以供決定該模型是否確為適切。
此項關鍵標準可由下列結果所提供:若該模型按其參數為線性,則該量值χ2
在當被最小化時應遵守具有自由度v
=N-M
的分佈。從而,該「真實(true)」模型具有大如χ2
之分佈的機率Q
可如下式給定Q
=1-P
(χ 2
|v
), (7)其中P
(χ 2
|v
)為不完全的伽瑪函數,
而
多數的計算軟體皆能夠獲用該不完全伽瑪函數;在MatlabTM
中,可藉”gammainc”命令叫用。若Q
接近於一,則該模型可良好地擬配於該資料。相反地,若此值極微,則該擬配並非良好者。實作上,在拒絕一模型之前,此Q
可甚低如10-3
。
分佈雖僅針對線性模型而言為嚴格有效,然即使是對於按其參數為非線性的模型來說,此者亦通常為良好近似。
現假定該模型f i
(a 1
,K
,a M
)對於參數a j
而言其有非線性相關性。為此理由,必須以迭遞方式尋得的最小值。從一些初始猜測值開始,吾人可修改該等參數以縮小χ2
的數值。重複該項程序,直到χ2
不再減少為止。
在此應按照χ2
究係接近於一最小值,抑或遠離此值,而考量到兩個範域。遠離於一最小值,其第一導數為大,故而可藉由梯度步階向下以減少平方。從步階n
處的參數數值開始,經標註為向量a (n
)
,在步驟n
+1處的數值可如下式給定a (n
+1)
=a (n
)
-constant
×▽χ 2
(a (n
)
). (10)
出現在此項等式內的常數應為足夠地小,藉以不致因過大跨度而錯失該最小值。適當數值可如後文給定。
在靠近最小值處,χ2
的梯度為小,並因而位於該最小值a min
附近的二次部份展開為有效:
對a k
取得導數,可獲得
在此引入註記
則等式(12)可改寫為
或者按矩陣形式,
因此,在步驟n
處從數值a (n
)
開始,在步驟n
+1處對該最小值的近似結果可如下式給定a (n
+1)
=a (n
)
+α -1 β
. (17)
現詳述該等矩陣元素β k
及α kl
的計算過程。從等式(6)的定義,可得到
牽涉到f i
之第二階導數的第二項在實作上通常會被忽略不計,理由是此者相較於含有該第一階導數的數項可能過於微小,同時實際上可能會造成該最小化演算法變得不穩定。因而將會利用下列公式以計算該等矩陣元素α kl
:
等式(10)及(17)可依照該究遠離於或接近於一最小值以提供該迭遞程序。然何以知曉現屬何範域以及何時應進行轉換。茲提出一種機智訣竅是運用Levenberg-Marquardt方法。此方法亦可解決尋找一常數以利用等式(10)的問題。
假定將該矩陣α
替換以α
',後者是從α
藉由將該等對角元素乘以1+λ所獲得,其中λ為常數,其數值可為逐一迭遞而改變:
等式(23)的迭遞公式可確保自遠離於最小值之範域至接近於最小值之範域的轉移。的確,若λ非常大,則矩陣α
’基本上為對角性,因而等式(23)就變成為
上式實為具有步階常數1/(α kk
λ)的等式(10),此者為微小,原因是λ為大。相反地,當λ非常小時,則矩陣α
’即降減至α
,並且等式(23)等同於等式(17)。由於可按照λ的數值涵蓋兩者範域,故而能夠將等式(23)運用在該迭遞程序以尋得平方的最小值。
最後,可顯示出一旦尋獲χ2
的最小值之後,α -1
即為該等參數的共變矩陣。尤其,該等估計值的標準差是由α -1
的對角元素所給定:σ 2
(a j
)=(α -1
) jj
. (25)
下列演算法可用以最小化該平方以利尋得最佳擬配參數。
1. 自對於該等參數a 1
、...、a M
之初始猜測起始。
2. 計算χ2
(a 1
、...、a M
)。
3. 挑選λ為小,即如λ=0.001。
4. 構成矩陣α
’及β
,並且利用等式(23)以計算次一猜測a (n
+1
)
。
5. 若χ 2
(a (n
+1)
) χ 2
(a (n
)
),則將λ減少10並且返回步驟4。(換言之,現為遠離於最小值,而必須依循梯度且同時採行較小步階。)
6. 若χ 2
(a (n
+1)
)<χ 2
(a (n
)
)(亦即現為接近於最小值),則將λ減少10並且更新該解:a (n
)
→a (n
+1)
.返回至步驟4。
7. 當χ2
改變不到0.001時即告停止。
一旦既已尋得最佳擬配參數後,計算等式(7)所給定的機率Q
以確定該擬配為良好者總較為妥當。
現說明如何運用前文詳述之參數擬配方法以在本文所討論的一個或多個觸敏性顯示器具體實施例裡識別觸控事件的位置。為教示之目的,首先將開始描述一極度簡化模型,此模型說明該演算法的工作方式,並且將顯示相比於較簡易的代數公式該項技術可較佳地執行。然後將說明較為實際的模型。
為施用前述的一般機械技術,應標定用於該資料的模型。此為有關所考量之實體系統的觀點所能運作處。可將各式細修項目納入在該模型內以描述具有所欲精確層級的現實性。在本節中將開始於可行的最簡單模型,其中觸抵該等偵測器的振幅係隨著至該觸控事件之距離的倒數而變。此一
模型為合理,原因是由碰觸該表面之手指所散射進入該平面波導內的光線之振幅會隨而減少。然而,這項描述確為過度簡化,因為這是假定該訊號位準為已知且固定,該光線並未因傳播通過該波長而衰減,並同時忽略該等偵測器之回應的角度相關性。然而,此一模型可作為熟悉該演算法的良好起點。
因此,本節中將假定該偵測器i
的回應是由下式給定
而該觸控事件與該偵測器之間的距離為
在此,x
及y
為該觸控事件的未知座標,並且x i
及y i
為各個偵測器的已知座標。
該等未知參數x
及y
的分佈,函數可如下式給定
其中為來自該等N
個偵測器各者的所測得訊號。為建構將該最小化所必要的矩陣α
及β
,必須計算f i
的導數:
然後可按迭遞方式得到含有該等未知參數a
=[x
,y
]'
的向量,而隨後為第2.5節所詳細說明的程序。
一旦獲得該解之後,即可藉由標準差以給定在位置上的誤差,即
該最小化演算法的進行方式可如圖1及2所示。在此所使用的範例係針對長方形顯示器,其縱橫比為2:1,並具有4個位於角落處且座標為(x i
,y i
)=(±1,±0.5)的偵測器。可利用下列公式產生合成資料以模擬在位置(x 0
,y 0
)處的碰觸,
即
該最小化程序是利用原點(x
,y
)=(0,0)作為初始猜測所執行。而經該演算法之後透過該模型化可展現χ2
(x
,y
)的點繪圖以及軌線。經僅數次迭遞之後即可尋得位於(x 0
,y 0
)處的最小值。
一般說來,即以該偵測器資料,並無法找到對於該觸控事件之位置的代數表示式。然藉由簡單的1/r
模型,則代數表示式確實存在。在本例中有趣之處在於瞭解統計方式是如何地相較於代數公式。
代數公式可藉由寫下1/f i 2
的表示式而獲得:
取用一對偵測器1及2並且計算量值1/f 1 2
-1/f 2 2
,則可得到
若設置這些偵測器而使得x 2
=-x 1
且y 2
=y 1
,則可隔離出x
座標:
按類似方式,即可藉由取用兩個設置在x 2
=x 1
和y 2
=-y 1
處的不同偵測器以隔離出y
座標。因此,利用4個經對稱地設置在寬度w x
且高度w y
之長方形角落處的偵測器,可利用下列公式以擷取該等座標:
現暫將對於較複雜之模型其代數解並不必然地存在的事實擱置一旁。在缺少偵測器雜訊的情況下,該等代數公式可正確地給定位置並以非常少數的運算作業。在本例中並不需要採行統計方式。然當出現偵測器雜訊時,何種方法較為正確則並不明顯。現已進行數值性實驗以回答此項問題。首先假定一長方形顯示器,並且在4個角落(±1,±0.5)各者處設有偵測器。對於一給定碰觸位置(x 0
,y 0
)產生合成資料,並且將高斯雜訊增置於各個偵測器的數值內。然後利用該最小化演算法及該代數公式兩者以復原該觸控事件的位置。重複此項程序100次以獲得大量的統計值。然後計算按兩者方式所獲得之x
及y
座標的標準差並加以比較。接著對於不同的碰觸位置(x 0
,y 0
)數值重複整個程序。
在本範例中,經增入至該合成資料內之雜訊為具有標準差σ i
=0.05的高斯雜訊。來自於正確度研究的結果可比較藉由代數及統計方法所獲得之經復原座標σ x
及σ y
的不確定性。(在後者情況下,標準差是以兩種方式獲得:自該等解析公式等式(40-41),以及從許多統計實作方法。)
透過實驗可決定統計方法較代數公式為正確。亦發現到自多個實作獲得的標準差會等於以理論方式所預測者,如此確能強化對於底層理論的信賴度。
代數方式的不良正確度肇因於這些公式是利用實驗
資料之倒數的平方,f i -2
,之事實。基於此項原因,被預期含有多數資訊的強訊號實則具有弱貢獻度。相反地,易受雜訊所影響的弱訊號則具有主導性的貢獻度。如此可解釋為何以代數方式所決定之位置的誤差相較於按統計方式所獲得時會為較大。
在一組牽涉到利用前述螢光技術的實驗裡,抵達光偵測器的訊號基本上會遵守在前節中所描述的1/r
模型。然須納入數項重大改良。
首先,發現到需要將光線在當於玻璃之內藉由全內部反射而傳播時的衰減納入考量。因而,可將exp(-αr
)的因數納入在該模型內。在1.1mm厚度的Gorilla玻璃片中,據估計該衰減係數的數值為α 7m-1
。
其次,發現到光偵測器的回應離於該法線方向而陡降超過60°。這是因為斜面設計之故,該者斜面含有一沿整個邊緣而與該玻璃之表面相接觸的O型環,藉以避免雜散光線撞擊到偵測器。此者雖在法線方向上僅造成可忽略損失,然該O型環對於按大角度進入該斜面的光線而言確會導致顯著衰減。該等偵測器的角度相關性可如具有exp[-(θ
/θ max
) m
]形式的超高斯透光函數所表,m
為一偶整數。已發現數值θ max 85°及m
=6可提供與所測得之回應廓型合理的一致性。
最後,散射光線的量值為未知並且在時間上有所變化。因此,該模型需要納入可供自一時間步階改變至次一者的整體未知比例性常數。
同時,該等偵測器的敏感度彼此之間可略微地改
變。因此各個偵測器的回應需乘上一已知校調因數,其數值需予單次性測量,而之後則假定保持為固定。
收集所有這些貢獻項目,該等光偵測器的回應可如下式所描述f i
(x
,y
,C
)=CH i g
[R i
(x
,y
)]h
[θ i
(x
,y
)], (48)其中
並且H i
表註該校調常數。此模型含有三個未知參數:該位置(x
,y
)以及該振幅C
。及雖可加以分別R
及θ
,然無須如此。距離可如常般由下式給定
該角度可藉由計算該位置向量與至該感測器之邊緣的法線間之向量乘積所獲得:R i
×n
=z R i
sinθ i
. (52)在計算向量乘積時,可發現θ i
=arcsinu i
, (53)其中
並且其中n ix
及n iy
為與偵測器i
相關聯之法線向量的x
及y
成分。
對於最小化演算法所必需之矩陣α
及β
計算作業會需要計算相對於其可變參數的導數f i
。而相對於振幅C
的導
數則為直觀性:
這些相對於該等位置變數為
相對於y
的導數則為類似,除/以外,此者含有符號差異:
然後依據等式(18)及(20),並隨後以如第3節所述之程序,俾構成矩陣及。值得注意的是現為33矩陣,因為有3個未知數待予求解。
前述之位置偵測演算法僅為管理該觸控感測器操作之程式的其一特點。該程式需要由該控制器機板所產生的資料,檢查錯誤,執行資料平滑運算,監視並更新基準線位準,呼叫位置偵測演算法,決定該結果是否通過品質測試,管理由使用者所輸入之觸控事件的歷史,並且在銀幕上顯示結果。本節中將進一步詳細說明這些任務。
在示範性設定裡,由光二極體所產生的電性訊號會由一控制器機板加以處理。在其眾多功能中,此控制器可產生用以驅動該紅外線背光的調變訊號。此項位於1kHz附近的
調變為必要,藉以消除週遭光線。該控制器機板接收來自該等光二極體的10個訊號,放大該等各者,並且藉由將該等乘上該調變訊號並在多個時段上予以積分來進行同步偵測。然後利用類比至數位轉換器將各個通道離散化,並且經由序列連接埠發送結果。此為本Matlab程式可接收作為輸入的資料串流。
該資料首先加以平滑化以降低雜訊。若無此步驟,則雜訊可能足夠地大而在所算得位置上造成閃動。在下一節裡將會對利用遞迴時域濾波器以平滑化該資料進行說明。
當該程式改動後,會對該訊號位準進行監視一段微短時間(0.1s)以取得基準線。此基準線會被自資料中扣減,而其結果即為傳送至該位置偵測演算法的數值。該基準線會被頻繁更新,理由是該背景位準易於漂移,尤其是因累積在該觸控銀幕表面上的污塵及指紋之故。該基準線係經調整,因而此者不會超過該訊號位準,同時每當所有訊號皆維持固定一足夠長的時段時(通常為0.5s)亦然。
當該等訊號其中一者超過某門檻值時,即呼叫該位置偵測演算法。如何撿選該初始猜測係一微妙課題,因為這會決定該演算法是否為收斂。當首次呼叫該演算法時,會接續地嘗試許多位置並且保留最佳擬配該資料的結果。對於該訊號振幅的初始猜測是利用訊號位準所估算出。而當後續地叫用該演算法時,就會利用來自先前時間步階的結果以作為對於次一時間步階的初始猜測。
在該演算法送返一位置後,此者必須通過多項品質
測試。首先,該訊號振幅(該參數C
)必須高於某一門檻值。此為有所必要以利識別一觸控事件的結束。第二,該位置的不確定性(針對於標準差σ x
及σ y
)必須低於某一數值。如此可確保只會保留既經決定為擁有合理信賴度的位置。第三,若一資料點自先前數值”跳躍”過遠,則予以拒斥。這可防止傾向一觸控事件起點處及終點處出現的非實體地快速移位,此時該等訊號會增自或減至一微弱數值。
最後,該程式持續追蹤該會期的歷史。據此可對連續跡線進行識別,並於銀幕上按如連續線段所顯示。基本的”小畫家(Paint)”程式可讓使用者能夠在銀幕上觀看到該等於該玻璃的表面上所繪者。
前文曾說明來自該控制器機板的訊號在饋送至該位置尋找演算法之前既經平滑化,藉以降低因雜訊所致生的閃動。此項步驟是在時域裡利用遞迴線性濾波器(又稱為「無限脈衝回應濾波器」)所執行。本節中為完整性之目的提供該理論的概要。
假定現有一雜訊資料串流,並希望當該資料為可獲用時隨能自其以按即時方式建構出平滑化版本。所能獲用之資訊為所有雜訊的集合以及目前所能獲用的平滑化數值。用以建構該平滑化資料的程序可藉由一般性的線性濾波器所描述,即
其中x n
表示原始,雜訊資料,並且y n
為平滑化資料。其目標為決定將能產生所欲濾波器的係數c k
和d j
。利用一諧
波訊號作為輸入並確定該輸出滿足該所欲濾波器以將此時域程序關聯於頻域中所定義的濾波器。現假定諧波訊號,x k
=x 0 e 2πikf
△
(62)
y k
=y 0 e 2πikf
△
, (63)具有振幅x 0
和y 0
,以及週期1/f
。在此,△表示取樣速率。代入(61)內,可發現該等係數c k
和d j
與該所欲過濾函數H
(f
)之間的關係為:
為方便之目的可引入z
=e 2πif
△
。則該濾波器可改寫成
若所有d j
皆為零,則該濾波器為非遞迴性,因為此者是與該平滑化資料的先前數值無關。這種濾波器總為穩定。然若至少一d j
為非零,則該濾波器為遞迴性。一般說來,遞迴濾波器執行效能較佳,但可能不穩定。穩定的條件為下列特徵等式
的所有根都必須位在單位圓之內。
本案文稍後將概略地說明建構具有過濾函數並同時滿足該穩定性條件之所欲濾波器的程序。其概念為利用變數的變化,如此令其易於識別一過濾函數究為穩定與否。對此,可引入
此變數變化可將該單位圓的內部(亦即穩定性範圍)對映至複數平面的上半部。因此,即以w
而言,該特徵等式(66)的零值必須位於該上半部平面內俾確保穩定性。
即如範例,現考慮下式:簡單的低通濾波器為
其中b
為關聯於切截頻率。則該回應的振幅為
為決定H
的極點位於何處,可僅將該過濾函數的分母因式分解:
H
的極點位於±ib
處,然現已知曉僅+ib
對應於穩定濾波器。故而在H
(f
)的表示式裡僅保留該因式:
現可驗證此表示式確滿足等式(69)所給定的振幅。該-i
因數係經納入以獲得所欲相位回應(亦即,在f
=0處為零相位位移)。利用等式(67),該過濾函數可按照z -1
的次方所改寫成:
藉由比較於遞迴濾波器的一般表示,等式(65),可僅讀出該過濾係數:
至此所述之濾波器實非良好的濾波器,因為其切截極低。可藉由利用略微複雜的過濾函數以獲得具有較陡峭切截的濾波器:
其振幅回應為
存在有四個極點,位於e iπ
/4 b
,e 3iπ
/4 b
,e 5iπ
/4 b
和e 7iπ
/4 b
處。而只有前二者是位在上半平面內並滿足該穩定性條件,因此僅該等為所保留的因數:
其中為相位因數,此者將於稍後決定為π
。代換於z
,可將該濾波器改寫為等式(65)的標準形式。經過冗長的代數運算後,發現遞迴係數為
此濾波器可返回兩個時間步階。由於其較尖銳切截之故,因而此濾波器為LightTouch原型中所實作者。可發現利用切截參數能夠提供適當的雜訊降低結果。
即如前述,該驅動器線路144可調變該等光源110的一個或多個者,使得來自於該等的各別光線含有一些像是正交數碼的數碼,即如眾知的Walsh數碼。為討論之目的,本節提供適用於執行數碼調變以消除來自該等光源110中四個同時光線能量來源之串擾的調變器及解調變器實作之詳細說明。
參照圖9,其中說明一線路區塊圖,此線路適用於提供前述的數碼調變及解調變作業。注意到可運用相同的一般線路技術以實作任何前述的調變具體實施例(包含頻率調變在內),然實作不同調變法則會有一些韌體變更及軟體變更。
為簡易之目的,圖中顯示具有單一LED光源110的單一接收器通道,然應注意可運用多個光源110。該線路可運用於相敏偵測以及特定的虛似隨機數碼兩者。在相敏偵測模式下,該微處理器142可在線路142A上產生(+/-1)方波突波至該驅動器線路144。該方波頻率可略為任意,然應為足夠高而超過該前置放大器150的1/f雜訊,然又足夠低而位於多數低成本,低雜訊操作放大器的帶寬限制內。此外,該方波突波的頻率不應位於該60Hz電力頻率的諧波處。約1kHz的頻率可良好運作。該方波突波之週期數是根據多項因素而定,
然為按50Hz速率進行測量以符合於Microsoft的Windows 7標準,20個週期(對應於20ms)完成整個序列可良好運作。該光源110是由相同的方波突波波形所驅動;不過,該等光源110只有在該方波的正半週期過程中方才切換啟動。
觸控訊號將會同步於該光源110輸出,並在該光線感測元件116(即如光二極體)中產生方波光電流。該光電流可由該跨阻抗前置放大器150轉換成電壓。
線路152上的前置放大器訊號電壓輸出會在該乘法器區塊160裡乘上雙極數碼俾產生此訊號的乘積(線路152)以及線路154上的數碼。一旦完成該數碼突波之後,該微處理器142命令該類比至數位轉換器180取樣並數位化該積分器170的輸出,隨後藉由關閉該傾洩開關以命令重置該積分器170。該乘法器區塊160的數值係經選定以使得,對於固定的背景訊號而言,在乘以該雙極數碼後,可在線路156上獲得雙極輸出訊號,以及前導為精確零值之雙極背景訊號的積分。這可獲以進行同步偵測而同時抑制背景光線。除背景抑制外尚有其他益處。同步偵測運作如窄帶濾波器,此者居中於方波頻率並且擁有近似等於1/T的帶寬,其中T為該方波突波或積分時間的長度。令該積分時間較長可減少偵測帶寬以及雜訊。
來自所有光線感測元件116的經數位化訊號(線路156)會由該微處理器142收集,該者接著即利用前文詳細說明的演算法以計算該碰觸位置。
而對於利用雙極方波突波訊號作為數碼的替代方
式,可有其他有趣的選擇。為實作感測來自於部份光源110而非其他者之光線的光學接收器,可運用Walsh數碼,這是一種虛似雜訊數碼(運用在CDMA行動電話網路)。Walsh數碼在長度上可為簡易地建構,其為2的次方。對於像是20位元序列的其他長度,則可利用眾知Hadamard矩陣的橫列。底下列出其中一種20階Hadamard矩陣。
各個+及-符號是代表該雙極序列的+1及-1值。注意到該等數碼為均衡化。換言之,存在有相等數量的1及-1,因此各個橫列的總和為零。因此,固定背景的積分將為零,
正如前述方波數碼般。這些Hadamard序列的其一重要性質是該等為正交。因而將兩個不同數碼彼此相乘並加總結果可獲得零值。這項性質可使得由Hadamard數碼所驅動的接收器對於按不同Hadamard數碼所調變的訊號不具敏感性。
現參照圖9的區塊圖,顯然地若增入按橫列1 Hadamard數碼所調變的第二光源110,而同時該乘法器160是由該橫列2數碼所驅動,則積分器170的輸出為零,因為該線路執行如前所述的相同操作。
本發明揭示內容具體實施例雖既已參照於特定特點和特性所描述,然應暸解該等具體實施例僅為說明所欲原理與應用項目。因此,應暸解確能對該等示範性具體實施例進行無數修改並可設計其他排置,而不致悖離後載申請專利範圍的精神及範疇。
100A‧‧‧觸敏性顯示器
102‧‧‧顯示層
104‧‧‧玻璃層
105‧‧‧彈力觸控層
106‧‧‧表面
110‧‧‧光源
112‧‧‧受導引光線模式
114‧‧‧散射光線
116‧‧‧感測元件
Claims (12)
- 一種觸敏性顯示器,包含:一顯示層;一透明層,設置於該顯示層上方,其中該透明層包含一頂表面以及一底表面,該頂表面與該底表面大致平行,且該透明層包含至少四個邊緣表面;與各邊緣表面相鄰之至少一個光源,該至少一個光源導引光線經由該透明層的該邊緣表面傳播進入並通過該透明層的大部分;與各邊緣表面相鄰並與該透明層接觸之至少一個光線感測元件,該至少一個光線感測元件可運作來接收散射光線,所述散射光線係回應一物體碰觸該透明層之該頂表面並擾動來自一光源之光線通過該透明層之傳播,該光源與該光線感測元件所在之該相同的邊緣表面相鄰;以及一控制線路,包括一處理器,該處理器接收來自該至少一個光線感測元件並表示該散射光線的訊號,並計算該物體碰觸該透明層的一個或多個位置其中該透明層的各邊緣表面以及與該等邊緣表面相鄰之該透明層的至少部分該頂表面及底表面包含一光線降低構件(light reduction mechanism)。
- 如申請專利範圍第1項所述之觸敏性顯示器,其中: 與各邊緣表面相鄰之該至少一個光源係連通該透明層,使得光線耦合進入該透明層並以一受導引模式(guided mode)傳播;以及該物體碰觸該透明層導致該光線的不連續並擾動該光線之該受導引模式,因而產生該散射光線。
- 如申請專利範圍第1項所述之觸敏性顯示器,其中:由與各邊緣表面相鄰之各光源發出的光線包括至少一個區分特徵,使得該處理器可操作來區分該等訊號中的某些訊號為來自於回應各光源所產生之散射光線。
- 如申請專利範圍第3項所述之觸敏性顯示器,其中該至少一個區分特徵包括至少下列一項:自各光源發出的光線之不同波長;時間成分(temporal component),因而由各光源發出的光線相較於自其它光源發出的光線係在不同的時間點發出;調變成分(modulation component),因而由各光源發出的光線係以一獨特編碼(unique code)調變;以及更進一步調變成分,因而由各光源發出的光線係以一獨特頻率(unique frequency)調變。
- 如申請專利範圍第1項所述之觸敏性顯示器,其中該光線降低構件(light reduction mechanism)包含一低反射性色料(low reflectance pigment)沿著該透明層之一邊緣設置。
- 如申請專利範圍第5項所述之觸敏性顯示器,進一步包含:至少一個濾波器,設置於各光源與該透明層之間,並操作來衰減光線。
- 如申請專利範圍第6項所述之觸敏性顯示器,其中至少一個濾波器包括紅外線濾波器,其操作來衰減在紅外線波長範圍內之光線。
- 如申請專利範圍第4項所述之觸敏性顯示器,其中:該控制線路包括一光源驅動線路,其操作來依時間順序供給能量給各光源;以及該處理器計算該物體碰觸該透明層之一個或多個位置,其部份依據區分出該等訊號中的某些訊號為在某些時間回應來自該等光線感測元件中的特定一個或多個光線感測元件之光線所產生,且該等訊號中的其他某些訊號為在其他某些時間回應來自該等光線感測元件中的特定一個或多個其他光線感測元件之光線所產生。
- 一種使用如申請專利範圍第1項所述之顯示器的方法,該方法包含:導引光線以傳播進入並通過該透明層; 測量散射光線,所述散射光線係回應一物體碰觸該透明層之一表面並擾動光線通過該透明層之傳播;以及按照藉由測量散射光線之步驟所獲得的訊號來計算該物體碰觸該透明層的一個或多個位置。
- 如申請專利範圍第9項所述之方法,進一步包含:耦合光線進入該透明層,使得光線以一受導引模式(guided mode)在該透明層中傳播;以及藉由碰觸該透明層之該表面而擾動光線之該受導引模式。
- 如申請專利範圍第9項所述之方法,進一步包含:經由至少一個光源導引光線進入該透明層,該至少一個光源與該透明層的各邊緣連通;在由各別光源發出之光線中包括至少一個區分特徵;以及依據該至少一個區分特徵區分出該等訊號中的某些訊號為來自於回應各別光源所產生之散射光線。
- 如申請專利範圍第11項所述之方法,其中該至少一個區分特徵包括至少下列一項:自各光源發出的光線之不同波長;時間成分(temporal component),因而由各光源發出的光線相較於自其它光源發出的光線係在不同的時間點發出; 調變成分(modulation component),因而由各光源發出的光線係以一獨特編碼(unique code)調變;以及更進一步調變成分,因而由各光源發出的光線係以一獨特頻率(unique frequency)調變。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/625,882 US8436833B2 (en) | 2009-11-25 | 2009-11-25 | Methods and apparatus for sensing touch events on a display |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201140402A TW201140402A (en) | 2011-11-16 |
TWI512573B true TWI512573B (zh) | 2015-12-11 |
Family
ID=43837296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099140027A TWI512573B (zh) | 2009-11-25 | 2010-11-19 | 在顯示器上感測觸控事件之方法及裝置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US8436833B2 (zh) |
EP (1) | EP2504747A2 (zh) |
JP (1) | JP5909193B2 (zh) |
KR (1) | KR101715975B1 (zh) |
CN (2) | CN105930013A (zh) |
TW (1) | TWI512573B (zh) |
WO (1) | WO2011066100A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI585647B (zh) * | 2016-04-07 | 2017-06-01 | 奇象光學有限公司 | 光學膜片以及使用者輸入系統 |
TWI665600B (zh) * | 2016-10-19 | 2019-07-11 | 群邁通訊股份有限公司 | 電子裝置及其觸控方法 |
TWI780663B (zh) * | 2021-04-16 | 2022-10-11 | 圓展科技股份有限公司 | 互動式觸控系統的操作判斷方法 |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2424269A (en) * | 2004-04-01 | 2006-09-20 | Robert Michael Lipman | Control apparatus |
SE533704C2 (sv) | 2008-12-05 | 2010-12-07 | Flatfrog Lab Ab | Pekkänslig apparat och förfarande för drivning av densamma |
US8419965B1 (en) * | 2009-06-16 | 2013-04-16 | Rockwell Collins, Inc. | System and method for texturing glass |
TWI470508B (zh) * | 2009-08-12 | 2015-01-21 | Au Optronics Corp | 觸控面板以及具有此觸控面板之觸控式顯示裝置 |
TWI424339B (zh) * | 2009-11-04 | 2014-01-21 | Coretronic Corp | 光學觸控裝置與驅動方法 |
EP2517090A1 (en) * | 2009-12-21 | 2012-10-31 | FlatFrog Laboratories AB | Touch surface with identification of reduced performance |
US8917262B2 (en) * | 2010-01-08 | 2014-12-23 | Integrated Digital Technologies, Inc. | Stylus and touch input system |
US8648815B2 (en) * | 2010-02-15 | 2014-02-11 | Elo Touch Solutions, Inc. | Touch panel that has an image layer and detects bending waves |
TWI408631B (zh) * | 2010-04-09 | 2013-09-11 | Wintek Corp | 觸控顯示裝置 |
US20120013565A1 (en) * | 2010-07-16 | 2012-01-19 | Perceptive Pixel Inc. | Techniques for Locally Improving Signal to Noise in a Capacitive Touch Sensor |
TW201205386A (en) * | 2010-07-21 | 2012-02-01 | Pixart Imaging Inc | Touch system and touch sensing method |
JP5578566B2 (ja) * | 2010-12-08 | 2014-08-27 | 株式会社ワコム | 指示体検出装置および指示体検出方法 |
TWI439888B (zh) * | 2011-02-11 | 2014-06-01 | Pixart Imaging Inc | 應用於光學指標裝置之影像擷取裝置及其方法 |
US8587501B2 (en) * | 2011-02-17 | 2013-11-19 | Global Oled Technology Llc | Electroluminescent display device with optically communicating chiplets |
US9528820B2 (en) | 2011-06-09 | 2016-12-27 | Ams Ag | System and method for using a linear polarizer to reduce optical crosstalk for optical proximity sensors |
US20120313895A1 (en) * | 2011-06-10 | 2012-12-13 | Texas Instruments Incorporated | Touch screen |
US9292131B2 (en) * | 2011-07-14 | 2016-03-22 | 3M Innovative Properties Company | Light guide for backlight |
US9035911B2 (en) * | 2011-07-14 | 2015-05-19 | 3M Innovative Properties Company | Digitizer using position-unique optical signals |
US9035912B2 (en) * | 2011-07-14 | 2015-05-19 | 3M Innovative Properties Company | Digitizer for multi-display system |
TWI452496B (zh) * | 2011-09-14 | 2014-09-11 | Au Optronics Corp | 觸碰面板之訊號處理方法 |
TW201333787A (zh) * | 2011-10-11 | 2013-08-16 | Flatfrog Lab Ab | 觸控系統中改良的多點觸控偵測 |
KR101293833B1 (ko) * | 2011-11-11 | 2013-08-07 | 재단법인대구경북과학기술원 | 터치 스크린 장치 및 터치 스크린 장치의 동작 방법 |
TW201322070A (zh) * | 2011-11-21 | 2013-06-01 | Novatek Microelectronics Corp | 雜訊過濾方法 |
US9582083B2 (en) * | 2011-12-22 | 2017-02-28 | Apple Inc. | Directional light sensors |
US8823678B2 (en) * | 2012-01-09 | 2014-09-02 | Broadcom Corporation | Waterproof baseline tracking in capacitive touch controllers |
EP2620843A1 (en) * | 2012-01-27 | 2013-07-31 | Research In Motion Limited | Electronic device including touch-sensitive display |
US9229567B2 (en) | 2012-01-27 | 2016-01-05 | Blackberry Limited | Electronic device including touch-sensitive display |
EP2817696A4 (en) * | 2012-02-21 | 2015-09-30 | Flatfrog Lab Ab | TOUCH DETERMINATION WITH ENHANCED DETECTION OF WEAK INTERACTIONS |
JP2013214268A (ja) * | 2012-03-09 | 2013-10-17 | Sharp Corp | 入力装置およびそれを具備する入力システム |
US9880653B2 (en) * | 2012-04-30 | 2018-01-30 | Corning Incorporated | Pressure-sensing touch system utilizing total-internal reflection |
US10168835B2 (en) | 2012-05-23 | 2019-01-01 | Flatfrog Laboratories Ab | Spatial resolution in touch displays |
US9952719B2 (en) | 2012-05-24 | 2018-04-24 | Corning Incorporated | Waveguide-based touch system employing interference effects |
US8982091B1 (en) * | 2012-05-24 | 2015-03-17 | Maxim Integrated Products, Inc. | Hadamard matrix based projected mutual capacitance touch panel decoding |
US9041690B2 (en) | 2012-08-06 | 2015-05-26 | Qualcomm Mems Technologies, Inc. | Channel waveguide system for sensing touch and/or gesture |
EP2701041A1 (en) * | 2012-08-24 | 2014-02-26 | BlackBerry Limited | Method and apparatus pertaining to detecting a light-emitting stylus' position |
US9619084B2 (en) | 2012-10-04 | 2017-04-11 | Corning Incorporated | Touch screen systems and methods for sensing touch screen displacement |
US9285623B2 (en) * | 2012-10-04 | 2016-03-15 | Corning Incorporated | Touch screen systems with interface layer |
US9557846B2 (en) | 2012-10-04 | 2017-01-31 | Corning Incorporated | Pressure-sensing touch system utilizing optical and capacitive systems |
US20140210770A1 (en) | 2012-10-04 | 2014-07-31 | Corning Incorporated | Pressure sensing touch systems and methods |
US20140111478A1 (en) * | 2012-10-19 | 2014-04-24 | Pixart Imaging Incorporation | Optical Touch Control Apparatus |
US20140152914A1 (en) * | 2012-11-30 | 2014-06-05 | Corning Incorporated | Low-Fe Glass for IR Touch Screen Applications |
US10268319B2 (en) * | 2012-12-17 | 2019-04-23 | Flatfrog Laboratories Ab | Edge-coupled touch-sensitive apparatus |
JP2014142892A (ja) * | 2013-01-25 | 2014-08-07 | Stanley Electric Co Ltd | 光学式位置検知装置 |
US9697745B2 (en) * | 2013-03-15 | 2017-07-04 | Verizon Patent And Licensng Inc. | Auxiliary sensor for touchscreen device |
US10019113B2 (en) | 2013-04-11 | 2018-07-10 | Flatfrog Laboratories Ab | Tomographic processing for touch detection |
KR101418305B1 (ko) | 2013-05-16 | 2014-07-10 | 주식회사 알엔웨어 | 터치 스크린 장치 |
CN103336645B (zh) * | 2013-06-24 | 2017-04-12 | 敦泰科技有限公司 | 电容式触控设备及其检测系统 |
US9874978B2 (en) | 2013-07-12 | 2018-01-23 | Flatfrog Laboratories Ab | Partial detect mode |
EP3036834B1 (en) | 2013-08-19 | 2017-07-26 | TouchSensor Technologies, LLC | Capacitive sensor filtering method |
US10013113B2 (en) | 2013-08-19 | 2018-07-03 | Touchsensor Technologies, Llc | Capacitive sensor filtering apparatus, method, and system |
US9569054B2 (en) | 2013-08-19 | 2017-02-14 | Touchsensor Technologies, Llc | Capacitive sensor filtering apparatus, method, and system |
US9430097B2 (en) * | 2013-09-30 | 2016-08-30 | Synaptics Incorporated | Non-orthogonal coding techniques for optical sensing |
WO2015081436A1 (en) * | 2013-12-03 | 2015-06-11 | Polyvalor, Limited Partnership | Low loss optical waveguides inscribed in media glass substrates, associated optical devices and femtosecond laser-based systems and methods for inscribing the waveguides |
KR101459487B1 (ko) * | 2013-12-17 | 2014-11-07 | 현대자동차 주식회사 | 차량용 디스플레이 장치 |
CN103701449B (zh) * | 2013-12-19 | 2017-11-03 | 深圳Tcl新技术有限公司 | 复合型按键的控制装置、控制方法及显示设备 |
KR20150077186A (ko) * | 2013-12-27 | 2015-07-07 | 삼성전기주식회사 | 터치스크린 장치 및 터치 감지 방법 |
WO2015108479A1 (en) | 2014-01-16 | 2015-07-23 | Flatfrog Laboratories Ab | Light coupling in tir-based optical touch systems |
WO2015108480A1 (en) | 2014-01-16 | 2015-07-23 | Flatfrog Laboratories Ab | Improvements in tir-based optical touch systems of projection-type |
US9298284B2 (en) | 2014-03-11 | 2016-03-29 | Qualcomm Incorporated | System and method for optically-based active stylus input recognition |
US10116868B2 (en) | 2014-04-28 | 2018-10-30 | Qualcomm Incorporated | Display-integrated user-classification, security and fingerprint system |
US9582117B2 (en) * | 2014-04-28 | 2017-02-28 | Qualcomm Incorporated | Pressure, rotation and stylus functionality for interactive display screens |
US20170131840A1 (en) | 2014-06-17 | 2017-05-11 | Corning Incorporated | Algorithms and implementation of touch pressure sensors |
CN104035620B (zh) * | 2014-06-20 | 2018-09-07 | 深圳印象认知技术有限公司 | 光学感应键、触摸屏、指纹采集设备、电子设备 |
US10161886B2 (en) | 2014-06-27 | 2018-12-25 | Flatfrog Laboratories Ab | Detection of surface contamination |
US9898114B2 (en) * | 2014-12-23 | 2018-02-20 | Intel Corporation | Electroactive privacy layer of a display device |
WO2016111084A1 (ja) * | 2015-01-08 | 2016-07-14 | シャープ株式会社 | 光学検知部材及びそれを備えるタッチパネル装置 |
CN107209608A (zh) | 2015-01-28 | 2017-09-26 | 平蛙实验室股份公司 | 动态触摸隔离帧 |
US10318074B2 (en) | 2015-01-30 | 2019-06-11 | Flatfrog Laboratories Ab | Touch-sensing OLED display with tilted emitters |
WO2016130074A1 (en) | 2015-02-09 | 2016-08-18 | Flatfrog Laboratories Ab | Optical touch system comprising means for projecting and detecting light beams above and inside a transmissive panel |
US10401546B2 (en) | 2015-03-02 | 2019-09-03 | Flatfrog Laboratories Ab | Optical component for light coupling |
US10310674B2 (en) * | 2015-07-22 | 2019-06-04 | Semiconductor Components Industries, Llc | Optical touch screen system using radiation pattern sensing and method therefor |
DE102015117226A1 (de) * | 2015-09-15 | 2017-03-16 | Preh Gmbh | Anordnung aus elektrischer Anzeige und Drehsteller mit Fremdkörpereindringschutz |
US10039526B2 (en) | 2015-09-17 | 2018-08-07 | Qualcomm Incorporated | Pixel receiver with low frequency noise reduction for ultrasonic imaging apparatus |
DE102015121237B4 (de) | 2015-12-07 | 2017-11-02 | Merschbrock Vermietung & Verpachtung GmbH & Co. KG | Gewürzmühle |
EP4075246B1 (en) | 2015-12-09 | 2024-07-03 | FlatFrog Laboratories AB | Stylus for optical touch system |
US10043051B2 (en) * | 2016-03-07 | 2018-08-07 | Microsoft Technology Licensing, Llc | Triggered image sensing with a display |
CN105843457B (zh) * | 2016-03-23 | 2018-12-21 | 南京铁道职业技术学院 | 数字无线定位电子白板 |
CN105892761B (zh) * | 2016-03-28 | 2019-01-01 | 南京铁道职业技术学院 | 增强牢靠性的数字无线定位电子白板 |
US11198639B2 (en) * | 2016-06-13 | 2021-12-14 | Corning Incorporated | Multicolored photosensitive glass-based parts and methods of manufacture |
CN106293273B (zh) * | 2016-08-11 | 2018-06-08 | 京东方科技集团股份有限公司 | 触控基板和触控显示装置 |
US10663361B2 (en) * | 2016-10-13 | 2020-05-26 | The Trustees Of Columbia University In The City Of New York | Systems and methods for tactile sensing |
WO2018094089A1 (en) * | 2016-11-16 | 2018-05-24 | Gregory Frank Echols | Optical touch panel display and method of operation thereof |
US10761657B2 (en) | 2016-11-24 | 2020-09-01 | Flatfrog Laboratories Ab | Automatic optimisation of touch signal |
CN108123055B (zh) | 2016-11-30 | 2020-07-21 | 财团法人工业技术研究院 | 发光装置 |
CN108122487B (zh) | 2016-11-30 | 2020-07-17 | 财团法人工业技术研究院 | 显示面板以及感测显示面板 |
KR102629629B1 (ko) | 2016-12-07 | 2024-01-29 | 플라트프로그 라보라토리즈 에이비 | 개선된 터치 장치 |
GB2558667A (en) * | 2017-01-17 | 2018-07-18 | T Phy Ltd | Optical input devices |
WO2018141948A1 (en) | 2017-02-06 | 2018-08-09 | Flatfrog Laboratories Ab | Optical coupling in touch-sensing systems |
US20180275830A1 (en) | 2017-03-22 | 2018-09-27 | Flatfrog Laboratories Ab | Object characterisation for touch displays |
CN110663015A (zh) | 2017-03-28 | 2020-01-07 | 平蛙实验室股份公司 | 触摸感应装置和用于组装的方法 |
CN117311543A (zh) | 2017-09-01 | 2023-12-29 | 平蛙实验室股份公司 | 触摸感测设备 |
CN110134258B (zh) * | 2018-02-08 | 2023-02-28 | 敦泰电子有限公司 | 主动式触控笔及行动装置系统 |
US11567610B2 (en) | 2018-03-05 | 2023-01-31 | Flatfrog Laboratories Ab | Detection line broadening |
US11167375B2 (en) | 2018-08-10 | 2021-11-09 | The Research Foundation For The State University Of New York | Additive manufacturing processes and additively manufactured products |
CN112889016A (zh) | 2018-10-20 | 2021-06-01 | 平蛙实验室股份公司 | 用于触摸敏感装置的框架及其工具 |
CN109508119B (zh) * | 2018-12-21 | 2020-06-30 | 武汉华星光电半导体显示技术有限公司 | 悬浮触控显示装置及悬浮触控方法 |
WO2020153890A1 (en) | 2019-01-25 | 2020-07-30 | Flatfrog Laboratories Ab | A videoconferencing terminal and method of operating the same |
CN114730228A (zh) | 2019-11-25 | 2022-07-08 | 平蛙实验室股份公司 | 一种触摸感应设备 |
GB2594232B (en) | 2019-12-24 | 2023-10-11 | Uniphy Ltd | Optical touch screen |
CN111157154B (zh) * | 2020-01-07 | 2021-04-09 | 腾讯科技(深圳)有限公司 | 触觉传感器、触碰事件的检测方法、装置及智能机器人 |
JP2023512682A (ja) | 2020-02-10 | 2023-03-28 | フラットフロッグ ラボラトリーズ アーベー | 改良型タッチ検知装置 |
CN113377224B (zh) * | 2020-03-09 | 2024-04-02 | 纮康科技股份有限公司 | 用于电容式触控面板的多模式作业方法及计算设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4346376A (en) * | 1980-04-16 | 1982-08-24 | Bell Telephone Laboratories, Incorporated | Touch position sensitive surface |
TW200532571A (en) * | 2003-11-25 | 2005-10-01 | 3M Innovative Properties Co | Light emitting stylus and user input device using same |
US20060158437A1 (en) * | 2005-01-20 | 2006-07-20 | Blythe Michael M | Display device |
US20060227120A1 (en) * | 2005-03-28 | 2006-10-12 | Adam Eikman | Photonic touch screen apparatus and method of use |
US20080007541A1 (en) * | 2006-07-06 | 2008-01-10 | O-Pen A/S | Optical touchpad system and waveguide for use therein |
US20080007540A1 (en) * | 2006-07-06 | 2008-01-10 | O-Pen A/S | Optical touchpad system and waveguide for use therein |
US20080088603A1 (en) * | 2006-10-16 | 2008-04-17 | O-Pen A/S | Interactive display system, tool for use with the system, and tool management apparatus |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4484179A (en) * | 1980-04-16 | 1984-11-20 | At&T Bell Laboratories | Touch position sensitive surface |
US5004913A (en) * | 1982-08-06 | 1991-04-02 | Marcos Kleinerman | Remote measurement of physical variables with fiber optic systems - methods, materials and devices |
US6927384B2 (en) | 2001-08-13 | 2005-08-09 | Nokia Mobile Phones Ltd. | Method and device for detecting touch pad unit |
US7643755B2 (en) * | 2003-10-13 | 2010-01-05 | Noble Peak Vision Corp. | Optical receiver comprising a receiver photodetector integrated with an imaging array |
GB2409515A (en) | 2003-12-24 | 2005-06-29 | Nokia Corp | Analogue navigation device utilising differing refractive indices |
US7538759B2 (en) * | 2004-05-07 | 2009-05-26 | Next Holdings Limited | Touch panel display system with illumination and detection provided from a single edge |
US8013845B2 (en) * | 2005-12-30 | 2011-09-06 | Flatfrog Laboratories Ab | Optical touch pad with multilayer waveguide |
EP2005282B1 (en) * | 2006-03-30 | 2013-01-30 | FlatFrog Laboratories AB | A system and a method of determining a position of a scattering/reflecting element on the surface of a radiation transmissive element |
TW200801513A (en) | 2006-06-29 | 2008-01-01 | Fermiscan Australia Pty Ltd | Improved process |
US7351949B2 (en) * | 2006-07-10 | 2008-04-01 | Avago Technologies General Ip Pte Ltd | Optical generic switch panel |
US8144271B2 (en) * | 2006-08-03 | 2012-03-27 | Perceptive Pixel Inc. | Multi-touch sensing through frustrated total internal reflection |
CN100468304C (zh) * | 2007-04-30 | 2009-03-11 | 友达光电股份有限公司 | 具有触控输入功能的显示装置 |
US7666511B2 (en) * | 2007-05-18 | 2010-02-23 | Corning Incorporated | Down-drawable, chemically strengthened glass for cover plate |
US8581852B2 (en) * | 2007-11-15 | 2013-11-12 | Microsoft Corporation | Fingertip detection for camera based multi-touch systems |
KR101407300B1 (ko) * | 2007-11-19 | 2014-06-13 | 엘지디스플레이 주식회사 | 멀티 터치 평판 표시모듈 |
AR064377A1 (es) * | 2007-12-17 | 2009-04-01 | Rovere Victor Manuel Suarez | Dispositivo para sensar multiples areas de contacto contra objetos en forma simultanea |
DE202009018722U1 (de) * | 2008-02-26 | 2012-11-21 | Corning Inc. | Läutermittel für Silikatgläser |
US8624853B2 (en) * | 2009-06-01 | 2014-01-07 | Perceptive Pixel Inc. | Structure-augmented touch sensing with frustated total internal reflection |
-
2009
- 2009-11-25 US US12/625,882 patent/US8436833B2/en active Active
-
2010
- 2010-11-10 JP JP2012541094A patent/JP5909193B2/ja not_active Expired - Fee Related
- 2010-11-10 CN CN201610202845.8A patent/CN105930013A/zh active Pending
- 2010-11-10 CN CN201080053255.4A patent/CN102754056B/zh not_active Expired - Fee Related
- 2010-11-10 WO PCT/US2010/056119 patent/WO2011066100A2/en active Application Filing
- 2010-11-10 EP EP10782480A patent/EP2504747A2/en not_active Withdrawn
- 2010-11-10 KR KR1020127016350A patent/KR101715975B1/ko active IP Right Grant
- 2010-11-19 TW TW099140027A patent/TWI512573B/zh not_active IP Right Cessation
-
2013
- 2013-04-04 US US13/856,544 patent/US8994695B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4346376A (en) * | 1980-04-16 | 1982-08-24 | Bell Telephone Laboratories, Incorporated | Touch position sensitive surface |
US4346376B1 (zh) * | 1980-04-16 | 1988-12-13 | ||
TW200532571A (en) * | 2003-11-25 | 2005-10-01 | 3M Innovative Properties Co | Light emitting stylus and user input device using same |
US20060158437A1 (en) * | 2005-01-20 | 2006-07-20 | Blythe Michael M | Display device |
US20060227120A1 (en) * | 2005-03-28 | 2006-10-12 | Adam Eikman | Photonic touch screen apparatus and method of use |
US20080007541A1 (en) * | 2006-07-06 | 2008-01-10 | O-Pen A/S | Optical touchpad system and waveguide for use therein |
US20080007540A1 (en) * | 2006-07-06 | 2008-01-10 | O-Pen A/S | Optical touchpad system and waveguide for use therein |
US20080088603A1 (en) * | 2006-10-16 | 2008-04-17 | O-Pen A/S | Interactive display system, tool for use with the system, and tool management apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI585647B (zh) * | 2016-04-07 | 2017-06-01 | 奇象光學有限公司 | 光學膜片以及使用者輸入系統 |
TWI665600B (zh) * | 2016-10-19 | 2019-07-11 | 群邁通訊股份有限公司 | 電子裝置及其觸控方法 |
TWI780663B (zh) * | 2021-04-16 | 2022-10-11 | 圓展科技股份有限公司 | 互動式觸控系統的操作判斷方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013512507A (ja) | 2013-04-11 |
CN102754056A (zh) | 2012-10-24 |
CN102754056B (zh) | 2016-05-04 |
US20140139493A1 (en) | 2014-05-22 |
CN105930013A (zh) | 2016-09-07 |
US8994695B2 (en) | 2015-03-31 |
EP2504747A2 (en) | 2012-10-03 |
WO2011066100A2 (en) | 2011-06-03 |
US20110122091A1 (en) | 2011-05-26 |
JP5909193B2 (ja) | 2016-04-26 |
TW201140402A (en) | 2011-11-16 |
US8436833B2 (en) | 2013-05-07 |
WO2011066100A3 (en) | 2011-09-09 |
KR20120117790A (ko) | 2012-10-24 |
KR101715975B1 (ko) | 2017-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI512573B (zh) | 在顯示器上感測觸控事件之方法及裝置 | |
US9213445B2 (en) | Optical touch-screen systems and methods using a planar transparent sheet | |
US11099688B2 (en) | Eraser for touch displays | |
US9557846B2 (en) | Pressure-sensing touch system utilizing optical and capacitive systems | |
US8823685B2 (en) | Acoustic touch apparatus | |
CN106662938B (zh) | 正交信令触摸用户、手和物体辨别系统和方法 | |
US8686974B2 (en) | Touch-sensitive system and method for controlling the operation thereof | |
TW201337688A (zh) | 使用透明平板的強健性的光學觸控螢幕系統和方法 | |
CN102597936B (zh) | 具备补偿信号轮廓的触摸表面 | |
CN107850964A (zh) | 用于双向正交信令传感器的发送与接收系统和方法 | |
CN106104438A (zh) | 在触摸敏感设备中以减小的灵敏度进行操作的设备和方法 | |
CN106164827A (zh) | 用于输入事件处理的抽选策略 | |
JP2010505182A (ja) | 赤外線タッチスクリーンの打点の座標認識方法及び接点面積認識方法 | |
JP2017509955A (ja) | タッチセンサにおける可能なチャネルの動的割当 | |
KR101272885B1 (ko) | 반사광 파장 인식용 터치 패널 | |
Ugajin et al. | Basic characteristics of a multi-layer touch panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |