TWI511143B - Nonvolatile semiconductor memory device - Google Patents

Nonvolatile semiconductor memory device Download PDF

Info

Publication number
TWI511143B
TWI511143B TW102128484A TW102128484A TWI511143B TW I511143 B TWI511143 B TW I511143B TW 102128484 A TW102128484 A TW 102128484A TW 102128484 A TW102128484 A TW 102128484A TW I511143 B TWI511143 B TW I511143B
Authority
TW
Taiwan
Prior art keywords
voltage
level
bit lines
semiconductor memory
memory device
Prior art date
Application number
TW102128484A
Other languages
Chinese (zh)
Other versions
TW201506937A (en
Inventor
Cheng Hung Tsai
Original Assignee
Elite Semiconductor Esmt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elite Semiconductor Esmt filed Critical Elite Semiconductor Esmt
Priority to TW102128484A priority Critical patent/TWI511143B/en
Publication of TW201506937A publication Critical patent/TW201506937A/en
Application granted granted Critical
Publication of TWI511143B publication Critical patent/TWI511143B/en

Links

Description

非揮發性半導體記憶體元件Non-volatile semiconductor memory component

本發明係關於一種非揮發性半導體記憶體元件。This invention relates to a non-volatile semiconductor memory component.

半導體記憶體元件為資料可以被儲存和儲存的資料可以被讀取的元件。半導體記憶體元件可以分類為揮發性記憶體元件和非揮發性記憶體元件。揮發性記憶體元件需要供應電源持續存在以保存資料,而非揮發性記憶體元件在供應電源消失時仍可保存資料。因此,非揮發性記憶體元件廣泛地使用在電源可能突然被干擾的應用上。A semiconductor memory component is a component in which data from which data can be stored and stored can be read. Semiconductor memory components can be classified into volatile memory components and non-volatile memory components. Volatile memory components require a supply of power to persist to preserve data, while non-volatile memory components retain data when the power supply disappears. Therefore, non-volatile memory components are widely used in applications where the power supply may be suddenly disturbed.

非揮發性記憶體元件包含電子可抹拭唯讀記憶體(Electrically Erasable and Programmable ROM,EEPROM)晶胞,例如flash EEPROM晶胞。圖1顯示一flash EEPROM晶胞10的垂直剖面圖。參照圖1,一深N型井(deep n-type well)12形成於一P型基底11或一主體區域上,而一P型井13形成於該N型井12上。一N型源極區域14和一N型汲極區域15形成於該P型井13內。一P型通道區域(未繪示)形成於該源極區域14和該汲極區域15之間。由一絕緣層16所隔離的一浮接閘極17形成在該P型通道區域上方。由另一絕緣層18所隔離的一控制閘 極19形成在該浮接閘極17上方。The non-volatile memory component comprises an electrically erasable and programmable mable (EEPROM) cell, such as a flash EEPROM cell. Figure 1 shows a vertical cross-sectional view of a flash EEPROM cell 10. Referring to FIG. 1, a deep n-type well 12 is formed on a P-type substrate 11 or a body region, and a P-type well 13 is formed on the N-well 12. An N-type source region 14 and an N-type drain region 15 are formed in the P-well 13. A P-type channel region (not shown) is formed between the source region 14 and the drain region 15. A floating gate 17 isolated by an insulating layer 16 is formed over the P-type channel region. a control gate isolated by another insulating layer 18 A pole 19 is formed above the floating gate 17.

圖2顯示該flash EEPROM晶胞10在程式化運作和抹除運作期間的臨界電壓範圍。參照圖2,該flash EEPROM晶胞10在程式化運作期間具有較高的臨界電壓範圍(大約6至7V),而在抹除運作期間具有較低的臨界電壓範圍(大約1至3V)。Figure 2 shows the threshold voltage range of the flash EEPROM cell 10 during staging and erase operations. Referring to Figure 2, the flash EEPROM cell 10 has a higher threshold voltage range (about 6 to 7 V) during the staging operation and a lower threshold voltage range (about 1 to 3 V) during the erase operation.

參照圖1和圖2,在程式化運作期間,熱電子必須從鄰近該汲極區域15的該通道區域注入至該浮接閘極電極,因此該EEPROM晶胞的臨界電壓範圍會增加。反之,在程式化運作期間注入至該浮接閘極17的熱電子在抹除運作期間必須被移除,因此該EEPROM晶胞的臨界電壓範圍會下降。據此,該EEPROM晶胞的臨界電壓值在程式化和抹除運作後會產生變化。Referring to Figures 1 and 2, during the stylization operation, hot electrons must be injected from the channel region adjacent to the drain region 15 to the floating gate electrode, so that the threshold voltage range of the EEPROM cell increases. Conversely, the hot electrons injected into the floating gate 17 during the staging operation must be removed during the erase operation, so the threshold voltage range of the EEPROM cell will decrease. Accordingly, the threshold voltage value of the EEPROM cell changes after the staging and erasing operations.

圖3顯示一典型的使用NOR架構的flash記憶體陣列之局部示意圖。參照圖3,該flash記憶體陣列30包含複數個記憶體晶胞電晶體31至33。該等晶胞電晶體位於由複數條字元線WL1至WL4、複數條位元線BL1至BL4以及一條源極線(source line)SL1所交錯的區域。圖3中的兩相鄰flash記憶體晶胞31和32,其電性連接至相同的字元線WL1和不同的位元線BL1和BL2,共享相同的源極線SL1。Figure 3 shows a partial schematic view of a typical flash memory array using a NOR architecture. Referring to FIG. 3, the flash memory array 30 includes a plurality of memory cell transistors 31 to 33. The unit cell transistors are located in a region interleaved by a plurality of word line lines WL1 to WL4, a plurality of bit lines BL1 to BL4, and a source line SL1. The two adjacent flash memory cells 31 and 32 in FIG. 3 are electrically connected to the same word line WL1 and different bit lines BL1 and BL2, sharing the same source line SL1.

在程式化運作期間,一程式化電壓VPP(大約4V)會施加至電性連接至一選擇的晶胞記憶體的位元線上,一地 (ground)電壓VSS會施加至電性連接至該選擇的晶胞記憶體的源極線上,且一高電壓VH(大約9V)會施加至電性連接至該選擇的晶胞記憶體的字元線上。同時,該地電壓VSS會施加至電性連接至未被選擇的晶胞記憶體的字元線上。舉例而言,如果該記憶體晶胞31選擇為被程式化而該記憶體晶胞32選擇為不被程式化,則該程式化電壓VPP會施加至該位元線BL1上,該地電壓VSS會施加至該源極線SL1、該位元線BL2和其他字元線WL2至WL4上,且該高電壓VH會施加至該字元線WL1上。在此狀況下,該晶胞記憶體31的臨界電壓值會藉由程式化運作而提高。然而,由於該程式化電壓VPP會施加至電性連接至所有晶胞記憶體的相同位元線上,另一相鄰該晶胞記憶體31的未被選擇的晶胞記憶體33的狀態可能也會被影響。這個現象稱為程式化擾亂(program disturb)。當程式化擾亂發生時,未被選擇的晶胞記憶體33的臨界電壓值可能會被改變。During the stylization operation, a stylized voltage VPP (approximately 4V) is applied to the bit line electrically connected to a selected cell memory, one place A ground voltage VSS is applied to the source line electrically connected to the selected cell memory, and a high voltage VH (about 9V) is applied to the characters electrically connected to the selected cell memory. on-line. At the same time, the ground voltage VSS is applied to the word line electrically connected to the unselected cell memory. For example, if the memory cell 31 is selected to be programmed and the memory cell 32 is selected not to be programmed, the programmed voltage VPP is applied to the bit line BL1, the ground voltage VSS. It is applied to the source line SL1, the bit line BL2, and other word lines WL2 to WL4, and the high voltage VH is applied to the word line WL1. In this case, the threshold voltage value of the cell memory 31 is increased by the stylization operation. However, since the stylized voltage VPP is applied to the same bit line electrically connected to all of the cell memories, the state of the unselected cell memory 33 adjacent to the cell memory 31 may also be Will be affected. This phenomenon is called program disturb. When a stylized disturbance occurs, the threshold voltage value of the unselected cell memory 33 may be changed.

據此,有必要提出一種改良的機制以解決程式化擾亂的影響。Accordingly, it is necessary to propose an improved mechanism to address the effects of stylized disturbances.

本發明係提供一種非揮發性半導體記憶體元件,其包含一記憶體陣列、一步階電壓產生器以及一解碼和位準轉換電路。該記憶體陣列包含複數個記憶體晶胞和電性連接至該等記憶體晶胞的複數條位元線。該步階電壓產生器 用以產生至少以兩步階方式變化的一步階電壓。該解碼和位準轉換電路用以選擇該等位元線中的其中一條,以將該步階電壓作為程式化電壓而施加至所選擇的位元線上。The present invention provides a non-volatile semiconductor memory device comprising a memory array, a step-by-step voltage generator, and a decoding and level conversion circuit. The memory array includes a plurality of memory cells and a plurality of bit lines electrically connected to the memory cells. Step voltage generator Used to generate a step-by-step voltage that changes in at least two steps. The decoding and level conversion circuit is configured to select one of the bit lines to apply the step voltage as a stylized voltage to the selected bit line.

10‧‧‧flash EEPROM晶胞10‧‧‧flash EEPROM cell

11‧‧‧P型基底11‧‧‧P type substrate

12‧‧‧深N型井12‧‧‧Deep N well

13‧‧‧P型井13‧‧‧P type well

14‧‧‧N型源極區域14‧‧‧N-type source region

15‧‧‧N型汲極區域15‧‧‧N type bungee area

16‧‧‧絕緣層16‧‧‧Insulation

17‧‧‧浮接閘極17‧‧‧Floating gate

18‧‧‧絕緣層18‧‧‧Insulation

19‧‧‧控制閘極19‧‧‧Control gate

30‧‧‧記憶體陣列30‧‧‧Memory array

40‧‧‧記憶體元件40‧‧‧ memory components

42‧‧‧記憶體陣列42‧‧‧Memory array

44‧‧‧行解碼和位準轉換電路44‧‧‧ row decoding and level conversion circuits

46‧‧‧列解碼和位準轉換電路46‧‧‧ column decoding and level conversion circuit

48‧‧‧輸入驅動單元48‧‧‧Input drive unit

50‧‧‧步階電壓產生器50‧‧‧step voltage generator

502‧‧‧泵電路502‧‧‧ pump circuit

504‧‧‧反相器504‧‧‧Inverter

506‧‧‧位準移位器506‧‧‧ position shifter

BL1-BLN‧‧‧位元線BL1-BLN‧‧‧ bit line

M1,1-M2,4‧‧‧記憶體晶胞電晶體M1, 1-M2, 4‧‧‧ memory cell crystal

N1‧‧‧NMOS電晶體N1‧‧‧ NMOS transistor

P1,P2‧‧‧PMOS電晶體P1, P2‧‧‧ PMOS transistor

SL1‧‧‧源極線SL1‧‧‧ source line

WL1-WLm‧‧‧字元線WL1-WLm‧‧‧ character line

圖1顯示一flash EEPROM晶胞的垂直剖面圖。Figure 1 shows a vertical cross-sectional view of a flash EEPROM cell.

圖2顯示該flash EEPROM晶胞在程式化運作和抹除運作期間的臨界電壓範圍。Figure 2 shows the critical voltage range of the flash EEPROM cell during stylized and erase operations.

圖3顯示一典型的使用NOR架構的flash記憶體陣列之局部示意圖。Figure 3 shows a partial schematic view of a typical flash memory array using a NOR architecture.

圖4顯示結合本發明一實施例之一非揮發性半導體記憶體元件的方塊示意圖。4 is a block diagram showing a non-volatile semiconductor memory device incorporating one embodiment of the present invention.

圖5顯示圖4所示的該記憶體陣列之局部示意圖。FIG. 5 shows a partial schematic view of the memory array shown in FIG.

圖6顯示圖4所示的該步階電壓產生器之一實施例之電路示意圖。Figure 6 is a circuit diagram showing an embodiment of the step voltage generator shown in Figure 4.

圖7顯示圖6所示的該步階電壓產生器之一可能輸出波形圖。Fig. 7 is a view showing a possible output waveform of one of the step voltage generators shown in Fig. 6.

圖8顯示該記憶體陣列在程式化運作期間的一可能時序圖。Figure 8 shows a possible timing diagram of the memory array during a stylized operation.

圖9顯示施加至不同位元線的程式化電壓之一可能波形圖。Figure 9 shows a possible waveform diagram of one of the stylized voltages applied to different bit lines.

圖10顯示施加至不同位元線的程式化電壓之一可能波形 圖。Figure 10 shows one of the possible waveforms of the stylized voltage applied to different bit lines. Figure.

圖11顯示施加至不同位元線的程式化電壓之一可能波形圖。Figure 11 shows a possible waveform diagram of one of the stylized voltages applied to different bit lines.

圖4顯示結合本發明一實施例之一非揮發性半導體記憶體元件40的方塊示意圖。參照圖4,該記憶體元件40包含一記憶體陣列42、一行解碼和位準轉換電路44、一列解碼和位準轉換電路46、一輸入驅動單元48以及一步階電壓產生器50。4 shows a block diagram of a non-volatile semiconductor memory device 40 incorporating one embodiment of the present invention. Referring to FIG. 4, the memory device 40 includes a memory array 42, a row of decoding and level conversion circuits 44, a column of decoding and level conversion circuits 46, an input driving unit 48, and a step-by-step voltage generator 50.

圖5顯示圖4所示的該記憶體陣列42之局部示意圖。為了簡潔起見,圖5中的記憶體陣列42僅繪示8個記憶體晶胞電晶體M1,1至M2,4、2條字元線WL1和WL2和4條位元線BL1至BL4。參照圖5,該等記憶體晶胞電晶體M1,1至M2,4排列成兩橫列,其中,在第一列中的該些晶胞電晶體M1,1至M1,4中的每一者電性連接至字元線WL1和4條位元線BL1至BL4中的其中一者,而在第二列中的該些晶胞電晶體M2,1至M2,4中的每一者電性連接至字元線WL2和4條位元線BL1至BL4中的其中一者。FIG. 5 shows a partial schematic view of the memory array 42 shown in FIG. For the sake of brevity, the memory array 42 of FIG. 5 shows only eight memory cell transistors M1, 1 to M2, 4, 2 word lines WL1 and WL2 and 4 bit lines BL1 to BL4. Referring to FIG. 5, the memory cell transistors M1,1 to M2,4 are arranged in two courses, wherein each of the cell transistors M1,1 to M1,4 in the first column Electrically connected to one of the word line WL1 and the four bit lines BL1 to BL4, and each of the unit cell transistors M2,1 to M2,4 in the second column It is connected to one of the word line WL2 and the four bit lines BL1 to BL4.

參照圖4和圖5,為了程式化該記憶體陣列42中的多個記憶體晶胞電晶體,該步階電壓產生器50響應於由該輸入驅動單元48所輸出的一模式信號PGM而產生一步階電壓VST至該行解碼和位準轉換電路44。在程式化運作期間,該 列解碼和位準轉換電路46響應於該輸入驅動單元48所輸出的一列位址信號AR以選擇該記憶體陣列42中的一條字元線。舉例而言,該列解碼和位準轉換電路46首先選擇該字元線WL1,接著。一高電壓VH(大約9V)會藉由該字元線WL1施加至晶胞電晶體M1,1至M1,4的閘極上。接著,該行解碼和位準轉換電路44會依序選擇第一至第四條位元線BL1至BL4,且該步階電壓VST會作為程式化電壓而藉由該些位元線BL1至BL4施加至晶胞電晶體M1,1至M1,4的汲極上。Referring to FIGS. 4 and 5, in order to program a plurality of memory cell transistors in the memory array 42, the step voltage generator 50 is generated in response to a mode signal PGM output by the input driving unit 48. The one-step voltage VST is applied to the row decoding and level conversion circuit 44. During stylized operation, The column decode and level conversion circuit 46 is responsive to a column of address signals AR output by the input drive unit 48 to select a word line in the memory array 42. For example, the column decode and level conversion circuit 46 first selects the word line WL1, and then. A high voltage VH (about 9 V) is applied to the gates of the unit cell transistors M1,1 to M1,4 by the word line WL1. Then, the row decoding and level conversion circuit 44 sequentially selects the first to fourth bit lines BL1 to BL4, and the step voltage VST is used as a stylized voltage by the bit lines BL1 to BL4. Applied to the drains of the unit cell transistors M1,1 to M1,4.

圖6顯示圖4所示的該步階電壓產生器50之一實施例之電路示意圖。參照圖6,該步階電壓產生器50包含一泵(pump)電路502、一反相器504、PMOS電晶體P1和P2、一NMOS電晶體N1和一位準移位器(level shifter)506。該泵電路502用以產生泵輸出電壓VPP1和VPP2,兩者位準均高於供應電壓VCC的位準。在本實施例中,該供應電壓VCC的位準為3V,該泵輸出電壓VPP1的位準為4V,而該泵輸出電壓VPP2的位準為9V。此外,在本實施例中,該泵電路502為一內部電路。然而在本發明其他實施例中,該泵電路502可位於該記憶體元件40的外部以減少晶片體積和電路複雜度。FIG. 6 shows a circuit diagram of one embodiment of the step voltage generator 50 shown in FIG. Referring to FIG. 6, the step voltage generator 50 includes a pump circuit 502, an inverter 504, PMOS transistors P1 and P2, an NMOS transistor N1, and a level shifter 506. . The pump circuit 502 is configured to generate pump output voltages VPP1 and VPP2, both of which are higher than the level of the supply voltage VCC. In this embodiment, the level of the supply voltage VCC is 3V, the level of the pump output voltage VPP1 is 4V, and the level of the pump output voltage VPP2 is 9V. Further, in the present embodiment, the pump circuit 502 is an internal circuit. In other embodiments of the invention, however, the pump circuit 502 can be external to the memory element 40 to reduce wafer volume and circuit complexity.

參照圖6,該反相器504用以反相一輸入信號SEL以輸出一反相信號/SEL至該PMOS電晶體P1的閘極。該PMOS電晶體P1的源極用以接收該泵輸出電壓VPP1。該PMOS電晶體P2的源極用以接收該泵輸出電壓VPP2、閘極用以接收該輸 入信號SEL而汲極用以電性連接至該PMOS電晶體P1的汲極。該位準移位器506用以接收來自該PMOS電晶體P1的汲極之電壓VSP,並產生一位準移位電壓VLS,其中該位準移位電壓VLS具有響應於該輸入信號SEL而以步階方式變化的脈波振幅。該NMOS電晶體N1的汲極用以接收該泵輸出電壓VPP1、閘極用以接收該位準移位電壓VLS而源極用以產生該步階電壓VST。Referring to FIG. 6, the inverter 504 is configured to invert an input signal SEL to output an inverted signal /SEL to the gate of the PMOS transistor P1. The source of the PMOS transistor P1 is for receiving the pump output voltage VPP1. The source of the PMOS transistor P2 is configured to receive the pump output voltage VPP2 and the gate for receiving the input The signal SEL is input and the drain is electrically connected to the drain of the PMOS transistor P1. The level shifter 506 is configured to receive the voltage VSP from the drain of the PMOS transistor P1 and generate a one-bit shift voltage VLS, wherein the level shift voltage VLS has a response in response to the input signal SEL The amplitude of the pulse wave that changes in step mode. The drain of the NMOS transistor N1 is for receiving the pump output voltage VPP1, the gate is for receiving the level shift voltage VLS, and the source is for generating the step voltage VST.

圖7顯示圖6所示的該步階電壓產生器50之一可能輸出波形圖。參照圖6,當一致能信號EN致能時,該位準移位器506藉由位準移位該PMOS電晶體P1的閘極電壓VSP而產生該位準移位電壓VLS。參照圖6和圖7,在時間t0時,該致能信號EN致能且輸入信號SEL具有邏輯0的位準,這使得該PMOS電晶體P1截止且該PMOS電晶體P2導通。因此,該電壓VSP會拉升至該泵輸出電壓VPP2。在時間t1後,該輸入信號SEL轉換至邏輯1的位準,這使得該PMOS電晶體P1導通且該PMOS電晶體P2截止。因此,該電壓VSP會下降至該泵輸出電壓VPP1。該電壓VSP係作為該位準移位器506的電源供應電壓。依此結構,該位準移位電路506會產生響應於該輸入信號SEL而以兩步階方式變化的位準移位電壓VLS。詳言之,該位準移位電壓VLS的位準在時間t1時會由該泵輸出電壓VPP2下降至該泵輸出電壓VPP1。因此,該NMOS電晶體N1的汲極電壓在時間t1時會由該泵輸出電壓VPP1下降至電壓 VPP1-VTH,其中VTH為該NMOS電晶體N1的臨界電壓(threshold voltage)。FIG. 7 shows a possible output waveform diagram of the step voltage generator 50 shown in FIG. 6. Referring to FIG. 6, when the coincidence enable signal EN is enabled, the level shifter 506 generates the level shift voltage VLS by shifting the gate voltage VSP of the PMOS transistor P1. Referring to FIGS. 6 and 7, at time t0, the enable signal EN is enabled and the input signal SEL has a level of logic 0, which causes the PMOS transistor P1 to turn off and the PMOS transistor P2 to turn on. Therefore, the voltage VSP is pulled up to the pump output voltage VPP2. After time t1, the input signal SEL transitions to a level of logic 1, which causes the PMOS transistor P1 to be turned on and the PMOS transistor P2 to be turned off. Therefore, the voltage VSP drops to the pump output voltage VPP1. This voltage VSP is used as the power supply voltage of the level shifter 506. With this configuration, the level shift circuit 506 generates a level shift voltage VLS that changes in a two-step manner in response to the input signal SEL. In detail, the level of the level shift voltage VLS is lowered by the pump output voltage VPP2 to the pump output voltage VPP1 at time t1. Therefore, the drain voltage of the NMOS transistor N1 drops from the pump output voltage VPP1 to the voltage at time t1. VPP1-VTH, where VTH is the threshold voltage of the NMOS transistor N1.

現參照圖4,如前所述,為了程式化該記憶體陣列42中的多個記憶體晶胞電晶體,該步階電壓產生器50響應於由該輸入驅動單元48所輸出的該模式信號PGM而產生該步階電壓VST至該行解碼和位準轉換電路44。在程式化運作期間,該行解碼和位準轉換電路44會依序選擇該等位元線BL1至BL4的其中一條,且該步階電壓VST會作為程式化電壓而施加至所選擇的位元線上。圖8顯示該記憶體陣列42在程式化運作期間的一可能時序圖。參照圖4和圖8,在時間t0至t4期間,該列解碼和位準轉換電路46首先選擇該字元線WL1。Referring now to Figure 4, in order to program a plurality of memory cell transistors in the memory array 42, the step voltage generator 50 is responsive to the mode signal output by the input drive unit 48. The step voltage VST is generated by the PGM to the row decoding and level conversion circuit 44. During the stylization operation, the row decoding and level conversion circuit 44 sequentially selects one of the bit lines BL1 to BL4, and the step voltage VST is applied as a stylized voltage to the selected bit. on-line. Figure 8 shows a possible timing diagram of the memory array 42 during stylized operation. Referring to Figures 4 and 8, during time t0 to t4, the column decode and level conversion circuit 46 first selects the word line WL1.

此外,在時間t0時,該行解碼和位準轉換電路44首先選擇該位元線BL1,因此,該電路44會藉由該位元線BL1施加該步階電壓VST至圖5中的晶胞電晶體M1,1上以作為程式化電壓。接著,在時間t1時,該電路44選擇該位元線BL2,因此,該電路44會藉由該位元線BL2施加該步階電壓VST至晶胞電晶體M1,2上以作為程式化電壓。在時間t2至t4期間,該電路44依序選擇該等位元線BL3和BL4,因此,該電路44會藉由該等位元線BL3和BL4而個別施加該步階電壓VST至晶胞電晶體M1,3和M1,4上以作為程式化電壓。其後,相似的步驟會執行在該記憶體陣列42中的其他記憶體晶胞電晶體中,因此運作的細節將不再贅述。參照圖8,由於該步階電壓VST的 振幅在程式化運作期間是以兩步階的方式下降,因此可以改善晶胞間的程式化擾亂現象。In addition, at time t0, the row decoding and level conversion circuit 44 first selects the bit line BL1. Therefore, the circuit 44 applies the step voltage VST to the cell in FIG. 5 by the bit line BL1. The transistor M1,1 is used as a stylized voltage. Then, at time t1, the circuit 44 selects the bit line BL2. Therefore, the circuit 44 applies the step voltage VST to the cell transistor M1, 2 through the bit line BL2 to serve as a stylized voltage. . During the time t2 to t4, the circuit 44 sequentially selects the bit lines BL3 and BL4. Therefore, the circuit 44 applies the step voltage VST to the unit cell by the bit lines BL3 and BL4. Crystals M1, 3 and M1, 4 are used as stylized voltages. Thereafter, similar steps are performed in other memory cell transistors in the memory array 42, so the details of the operation will not be described again. Referring to Figure 8, due to the step voltage VST The amplitude is reduced in a two-step manner during the stylized operation, thus improving the stylized disturbance between the cells.

參照圖8,在本實施例中,該步階電壓VST的振幅在程式化運作期間會以兩步階的方式下降。然而,本發明不應以此為限。舉例而言,該步階電壓VST的波形可以用多個步階的方式逐步下降,或是用多個步階的方式逐步上升。圖9顯示施加至不同位元線的該步階電壓VST之一可能波形圖。參照圖9,該步階電壓VST的波形是以兩步階的方式上升。Referring to Fig. 8, in the present embodiment, the amplitude of the step voltage VST is decreased in a two-step manner during the stylization operation. However, the invention should not be limited thereto. For example, the waveform of the step voltage VST can be stepped down in multiple steps or stepped up in multiple steps. Figure 9 shows a possible waveform diagram of the step voltage VST applied to different bit lines. Referring to Fig. 9, the waveform of the step voltage VST rises in a two-step manner.

參照圖8和圖9,施加至相鄰位元線的程式化電壓VBL1,VBL2,VBL3和VBL4彼此間的脈波未重疊。然而,為了減少記憶體晶胞的總程式化時間,施加至相鄰位元線的程式化電壓VBL1,VBL2,VBL3和VBL4彼此間的脈波可以重疊。參照圖10和圖11,施加至相鄰位元線的程式化電壓VBL1,VBL2,VBL3和VBL4為依序產生且彼此間的脈波重疊。在上述實施例中,該等程式化電壓VBL1,VBL2,VBL3和VBL4的脈波重疊量P為脈波寬度W的一半。然而,本發明不應以此為限。該些程式化電壓的重疊量可任意調整。由於該等晶胞電晶體M1,1至M1,4係依序進行程式化運作,且該等晶胞電晶體M1,1至M1,4的程式化運作時間間隔可彼此重疊,本發明的程式化方法可大幅降低總程式化時間。Referring to FIGS. 8 and 9, the pulse waves applied to the adjacent bit lines by the stylized voltages VBL1, VBL2, VBL3, and VBL4 do not overlap each other. However, in order to reduce the total program time of the memory cell, the pulse waves applied to the adjacent bit lines of the stylized voltages VBL1, VBL2, VBL3, and VBL4 may overlap each other. Referring to FIGS. 10 and 11, the stylized voltages VBL1, VBL2, VBL3, and VBL4 applied to adjacent bit lines are sequentially generated and overlap with each other. In the above embodiment, the pulse wave overlap amount P of the stylized voltages VBL1, VBL2, VBL3, and VBL4 is half of the pulse width W. However, the invention should not be limited thereto. The amount of overlap of the stylized voltages can be arbitrarily adjusted. Since the unit cell transistors M1,1 to M1,4 are sequentially programmed, and the stylized operation time intervals of the unit cell transistors M1,1 to M1,4 can overlap each other, the program of the present invention The method can greatly reduce the total stylization time.

本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種 種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為隨後之申請專利範圍所涵蓋。The technical content and technical features of the present invention have been disclosed above, but those skilled in the art may still categorize based on the teachings and disclosures of the present invention. Alternatives and modifications may be made without departing from the spirit of the invention. Therefore, the scope of the invention should be construed as not limited by the scope of the invention, and the invention is intended to be

40‧‧‧記憶體元件40‧‧‧ memory components

42‧‧‧記憶體陣列42‧‧‧Memory array

44‧‧‧行解碼和位準轉換電路44‧‧‧ row decoding and level conversion circuits

46‧‧‧列解碼和位準轉換電路46‧‧‧ column decoding and level conversion circuit

48‧‧‧輸入驅動單元48‧‧‧Input drive unit

50‧‧‧步階電壓產生器50‧‧‧step voltage generator

BL1-BLn‧‧‧位元線BL1-BLn‧‧‧ bit line

WL1-WLm‧‧‧字元線WL1-WLm‧‧‧ character line

Claims (10)

一種非揮發性半導體記憶體元件,包含:一記憶體陣列,包含複數個記憶體晶胞和電性連接至該等記憶體晶胞的複數條位元線;一步階電壓產生器,用以產生至少以兩步階方式變化的一步階電壓;以及一解碼和位準轉換電路,用以選擇該等位元線中的其中一條,以將該步階電壓作為程式化電壓而施加至所選擇的位元線上。A non-volatile semiconductor memory device comprising: a memory array comprising a plurality of memory cells and a plurality of bit lines electrically connected to the memory cells; a step-by-step voltage generator for generating a step-by-step voltage that changes in at least two steps; and a decoding and level conversion circuit for selecting one of the bit lines to apply the step voltage as a programmed voltage to the selected one Bit line. 根據請求項1之非揮發性半導體記憶體元件,其中該步階電壓產生器用以產生至少以兩步階方式上升的該步階電壓。The non-volatile semiconductor memory device of claim 1, wherein the step voltage generator is configured to generate the step voltage that rises in at least two steps. 根據請求項1之非揮發性半導體記憶體元件,其中該步階電壓產生器用以產生至少以兩步階方式下降的該步階電壓。A non-volatile semiconductor memory device according to claim 1, wherein the step voltage generator is configured to generate the step voltage that is lowered in at least two steps. 根據請求項1之非揮發性半導體記憶體元件,其中該解碼和位準轉換電路依序地選擇該等位元線中的其中一條,且施加至相鄰位元線的該等程式化電壓電壓彼此重疊。The non-volatile semiconductor memory device of claim 1, wherein the decoding and level conversion circuit sequentially selects one of the bit lines and applies the stylized voltage voltages to adjacent bit lines Overlapping each other. 根據請求項1之非揮發性半導體記憶體元件,其中該解碼和位準轉換電路依序地選擇該等位元線中的其中一條,且施加至相鄰位元線的該等程式化電壓不會重疊。The non-volatile semiconductor memory device of claim 1, wherein the decoding and level conversion circuit sequentially selects one of the bit lines, and the stylized voltages applied to the adjacent bit lines are not Will overlap. 根據請求項1之非揮發性半導體記憶體元件,其中該步階電壓產生器包含:一反相器,用以反相一位準切換信號以輸出一反相信號; 一第一電晶體,具有一源極以接收一第一電壓源和一閘極以接收該反相信號;一第二電晶體,具有一源極以接收一第二電壓源、一閘極以接收該位準切換信號和一汲極以電性連接至該第一電晶體的一汲極;一位準移位器,用以接收來自該第一電晶體的該汲極之電壓作為電源供應電壓,以產生一位準移位信號;以及一第三電晶體,具有一汲極以接收該第一電壓源、一閘極以接收該位準移位信號和一源極以產生該步階電壓;其中,該步階電壓產生器響應於該位準切換信號而產生該步階電壓。The non-volatile semiconductor memory device of claim 1, wherein the step voltage generator comprises: an inverter for inverting a bit-aligned switching signal to output an inverted signal; a first transistor having a source for receiving a first voltage source and a gate for receiving the inverted signal; a second transistor having a source for receiving a second voltage source and a gate Receiving the level switching signal and a drain electrically connected to a drain of the first transistor; a quasi-shifter for receiving the voltage of the drain from the first transistor as a power supply a voltage to generate a quasi-shift signal; and a third transistor having a drain to receive the first voltage source, a gate to receive the level shift signal and a source to generate the step a voltage; wherein the step voltage generator generates the step voltage in response to the level switching signal. 根據請求項6之非揮發性半導體記憶體元件,其中該第二電壓源的位準高於該第一電壓源的位準,該解碼和位準轉換電路依序地選擇該等位元線中的其中一條,且施加至相鄰位元線的該等程式化電壓電壓彼此重疊。According to the non-volatile semiconductor memory device of claim 6, wherein the level of the second voltage source is higher than the level of the first voltage source, the decoding and level conversion circuit sequentially selects the bit lines One of the ones, and the stylized voltage voltages applied to adjacent bit lines overlap each other. 根據請求項6之非揮發性半導體記憶體元件,其中該第二電壓源的位準高於該第一電壓源的位準,該解碼和位準轉換電路依序地選擇該等位元線中的其中一條,且施加至相鄰位元線的該等程式化電壓電壓不會重疊。According to the non-volatile semiconductor memory device of claim 6, wherein the level of the second voltage source is higher than the level of the first voltage source, the decoding and level conversion circuit sequentially selects the bit lines One of the stylized voltages applied to adjacent bit lines does not overlap. 根據請求項6之非揮發性半導體記憶體元件,其中該第一電壓源的位準高於該第二電壓源的位準,該解碼和位準轉換電路依序地選擇該等位元線中的其中一條,且施加至相鄰位元線的該等程式化電壓電壓彼此重疊。According to the non-volatile semiconductor memory device of claim 6, wherein the level of the first voltage source is higher than the level of the second voltage source, the decoding and level conversion circuit sequentially selects the bit lines One of the ones, and the stylized voltage voltages applied to adjacent bit lines overlap each other. 根據請求項6之非揮發性半導體記憶體元件,其中該第一電壓源的位準高於該第二電壓源的位準,該解碼和位準轉 換電路依序地選擇該等位元線中的其中一條,且施加至相鄰位元線的該等程式化電壓電壓不會重疊。The non-volatile semiconductor memory device of claim 6, wherein the level of the first voltage source is higher than the level of the second voltage source, the decoding and the level shift The switching circuit sequentially selects one of the bit lines, and the programmed voltage voltages applied to the adjacent bit lines do not overlap.
TW102128484A 2013-08-07 2013-08-07 Nonvolatile semiconductor memory device TWI511143B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102128484A TWI511143B (en) 2013-08-07 2013-08-07 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102128484A TWI511143B (en) 2013-08-07 2013-08-07 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
TW201506937A TW201506937A (en) 2015-02-16
TWI511143B true TWI511143B (en) 2015-12-01

Family

ID=53019468

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102128484A TWI511143B (en) 2013-08-07 2013-08-07 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
TW (1) TWI511143B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218569A (en) * 1991-02-08 1993-06-08 Banks Gerald J Electrically alterable non-volatile memory with n-bits per memory cell
US7139192B1 (en) * 2002-12-06 2006-11-21 Samsung Electronics Co., Ltd. Programming of multi-level memory cells on a continuous word line
US20070025155A1 (en) * 2005-07-26 2007-02-01 Sang-Won Hwang Method and apparatus for controlling slope of word line voltage in nonvolatile memory device
US20110292724A1 (en) * 2010-05-31 2011-12-01 Samsung Electronics Co., Ltd. Nonvolatile memory device, system and programming method with dynamic verification mode selection
US20130028018A1 (en) * 2011-07-25 2013-01-31 Samsung Electronics Co., Ltd. Method of programming a nonvolatile memory device
US8400212B1 (en) * 2011-09-22 2013-03-19 Sandisk Technologies Inc. High voltage charge pump regulation system with fine step adjustment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218569A (en) * 1991-02-08 1993-06-08 Banks Gerald J Electrically alterable non-volatile memory with n-bits per memory cell
US7139192B1 (en) * 2002-12-06 2006-11-21 Samsung Electronics Co., Ltd. Programming of multi-level memory cells on a continuous word line
US20070025155A1 (en) * 2005-07-26 2007-02-01 Sang-Won Hwang Method and apparatus for controlling slope of word line voltage in nonvolatile memory device
US20110292724A1 (en) * 2010-05-31 2011-12-01 Samsung Electronics Co., Ltd. Nonvolatile memory device, system and programming method with dynamic verification mode selection
US20130028018A1 (en) * 2011-07-25 2013-01-31 Samsung Electronics Co., Ltd. Method of programming a nonvolatile memory device
US8400212B1 (en) * 2011-09-22 2013-03-19 Sandisk Technologies Inc. High voltage charge pump regulation system with fine step adjustment

Also Published As

Publication number Publication date
TW201506937A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US10381096B2 (en) Semiconductor memory device
US7619933B2 (en) Reducing effects of program disturb in a memory device
KR101001449B1 (en) Read method of non-volatile device
KR100909627B1 (en) Flash memory devices
TWI642065B (en) Semiconductor memory device
KR100661953B1 (en) Nonvolatile semiconductor memory device and driving method thereof
JP6728401B2 (en) Improved flash memory cell and associated decoder
KR100395771B1 (en) Nonvolatile semiconductor memory device and programming method thereof
JP2019053796A (en) Semiconductor memory device
US20130163345A1 (en) Semiconductor memory device and method of operating the same
JP2010287283A (en) Nonvolatile semiconductor memory
US9779830B2 (en) Non-volatile semiconductor memory device and erase method thereof
KR20210070219A (en) Apparatus and methods for seeding operations concurrently with data line set operations
JP2009272026A (en) Nonvolatile semiconductor memory device
KR20130081074A (en) 2-transistor flash memory and programming method of 2-transistor flash memory
US9870828B2 (en) Non-volatile semiconductor memory and erasing method thereof
JP2009205728A (en) Nand type nonvolatile semiconductor memory
JP2013235631A (en) Semiconductor memory device and driving method thereof
KR20120119325A (en) Semiconductor memory device
JP2011171582A (en) Nonvolatile semiconductor memory device
US9013925B2 (en) Nonvolatile semiconductor memory device
KR20100013950A (en) Flash memory device and method for programming thereof
TWI511143B (en) Nonvolatile semiconductor memory device
JP2009212292A (en) Nonvolatile semiconductor memory device and its writing method
JP2009266351A (en) Semiconductor memory device and method of controlling the same