TWI498560B - 用於檢測大腸直腸癌之基因標記與檢測方法 - Google Patents
用於檢測大腸直腸癌之基因標記與檢測方法 Download PDFInfo
- Publication number
- TWI498560B TWI498560B TW102113645A TW102113645A TWI498560B TW I498560 B TWI498560 B TW I498560B TW 102113645 A TW102113645 A TW 102113645A TW 102113645 A TW102113645 A TW 102113645A TW I498560 B TWI498560 B TW I498560B
- Authority
- TW
- Taiwan
- Prior art keywords
- gene
- colorectal cancer
- expression
- cancer
- amount
- Prior art date
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Description
本發明係關於一種用於檢測癌症的生物標記,尤其是關於一種用於檢測大腸直腸癌之基因標記與檢測方法。
大腸癌是全球最常見之癌症之一,它與肺癌、前列腺癌以及乳癌同樣被視為人體生命健康的最大殺手。在過去的20年間,儘管因為治療與診斷技術的長足進步,使罹患大腸癌患者之存活率提高一倍,但其仍屬西方世界裡最常見且致死率相當高的腫瘤之一,在我國它也已成為所有癌症致死率的第三位。
大腸癌是一種源自於分子階層上一連串複雜改變所產生的異生型疾病。大腸直腸癌之致癌原因並非單一,其可能是經由多種因素,例如遺傳、基因突變、致癌物質、飲食習慣等交互作用而形成。大多數的大腸直腸癌並沒相關的家族病史,其中僅有約15%的大腸直腸癌具有顯性的家族遺傳病史。它的病程通常是由正常的大腸黏膜細胞增生形成一良性腺瘤,然後變為非典型增生細胞,之後伴隨一長時間的基因表現改變,最終形成一具潛在侵入性的癌症。
近年來在分子生物學及遺傳學上研究發現,大腸直腸癌之產
生與基因表現之變化有相當關係。在大部分家族性結直腸瘜肉綜合症(Familial Adenomatous Polyposis,FAP)病人體細胞的5q染色體上,通常可以發現結腸腺瘤樣瘜肉基因(Adenomatous polyposis coli,APC)的突變,而且其癌細胞內APC的兩個對偶基因均有突變或喪失功能的情形。此外,在散發性(sporadic CRC)大腸直腸腺瘤(Adenomatous polyp)上也常見到APC基因的突變,因此,APC基因的突變被認為可能與大腸直腸腫瘤形成之啟始有關。然而,無論其屬何種類大腸直腸癌,其由正常粘膜細胞到腺瘤性瘜肉以致於癌變甚至於轉移,事實上可能起因於數種已知或更多未知致癌基因(oncogene)的突變或調控失常,導致其表現量增加,或是抑癌基因(tumor suppressor gene)的表現量下降或不表現。依目前之研究,對於致癌機轉產生影響或相關的基因仍然沒有一完整的圖廓。因此,相關基因之找尋與確認,仍是大腸直腸癌未來關於檢測或治療研究之一重要方向。
於各種新穎的基因分析技術中,微陣列(microarray)分析已被用來研究與疾病或癌症相關的基因。藉由微陣列快速、高通量、專一度高的特性,同時檢測數萬個基因,可以觀察並比較大腸癌病程中,癌化發生、腫瘤惡化與轉移階段中基因表現量的變化。此外,微陣列分析也可應用於診斷、預後預測、治療預測或分子特徵分析上,確認癌症的發生是受何種基因所影響或與其具有相關性。
儘管微陣列分析的功能愈來愈強大,但對於疾病,特別是癌症,依然缺乏臨床上有用並可以確認的生物標記。將微陣列分析結果直接轉換成臨床上可用之資訊仍有其困難之處,原因在於:(1)檢體取樣、製備處理、微陣列晶片平台與分析方法間的差異性,使得從個案所獲得的資料
不易比較,而無法獲得重疊或一致性的結果;(2)可用病人樣本數量少,以至於無法進行大規模的比較研究;(3)對於數據分析結果難以選擇或判斷何者真正具有臨床上的實用性與可信性。
本發明之目的在於提供一種用於檢測大腸直腸癌之基因標記,藉由該些基因標記表現量的變化,作為檢測大腸直腸癌的篩選指標。
本發明之次一目的在於提供一種檢測大腸癌之方法,藉由基因標記相對於正常大腸直腸黏膜細胞中的表現量差異,判斷患者是否罹患有大腸直腸癌。
本發明之再一目的在於提供一種用於檢測大腸直腸癌轉移之基因標記,藉由該基因標記的表現量,可進一步判斷患者有遠處轉移或預後不良的可能。
為達到前述之目的,並克服以往樣本數不足以及分析方法的缺點,使能建立一準確之分析方法,進而篩選出與大腸直腸癌具顯著性相關之基因標記,本發明將使用微陣列預測分析(Prediction Analysis of Microarray,以下簡稱PAM)、類神經網路(Artificial Neural Network,以下簡稱ANN)、分類與回歸樹(Classification and Regression Trees,以下簡稱CART)、C5.0等方法進行二階段式篩選,分析出與大腸直腸癌最相關的基因,其包括屬抑癌基因的CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43以及屬致癌基因的SPP1與TCN1。
因此,本發明提供一種用於檢測大腸直腸癌之基因標記,包括:CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43、SPP1或TCN1,檢測
時可以由前述之任一種基因或數種基因之組合作為檢測大腸直腸癌之基因標記。較佳係檢測AQP8、GUCA2B與SSP1,再由CA7、SPIB、IL6R、CWH43、TCN1中選擇一個或數個同時進行檢測。
在一實施例中,前述基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、TCN1於癌細胞中之表現量係上升。其中,該基因標記之表現量係指由該基因所轉錄之mRNA或轉譯之胜肽的數量。
本發明進一步提供一種用於檢測大腸直腸癌轉移的基因標記,包括:AQP8、GUCA2B、SSP1與MMP7,以及至少一選自由CA7、SPIB、IL6R、CWH43、TCN1所組成的群組。
在一實施例中,前述該基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、MMP7、TCN1於癌細胞中之表現量係上升。其中,該基因標記之表現量係指由該基因所轉錄之mRNA或轉譯之胜肽的數量。
此外,本發明同時提供一種檢測大腸直腸癌的方法,其步驟包括:(a)提供一檢體樣本;(b)測定該檢體樣本中AQP8、GUCA2B與SSP1,以及至少一選自由CA7、SPIB、IL6R、CWH43、TCN1所組成的群組的基因標記之表現量;(c)將步驟(b)中基因之該表現量與正常大腸直腸黏膜細胞中之表現量相比較;當基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、TCN1於癌細胞中之表現量係上升時,判定為罹患有大腸直腸癌。其中,該檢體樣本可為周邊血液或其他體液;而該基因標記之表現量係指該基因所轉錄之mRNA或轉譯之胜肽的數
量。
在一實施例中,本發明前述所提供一種檢測大腸直腸癌的方法,其中步驟(b)中所檢測SPP1的表現量係上升時,可判定為患者有遠處轉移或預後不良的可能。
在另一實施例中,本發明前述所提供一種檢測大腸直腸癌的方法,其中步驟(b)中進一步包括檢測MMP7的表現量,當MMP7於癌細胞中之表現量係上升,或/與SPP1於癌細胞中之表現量亦上升時,可判定為患者有遠處轉移或預後不良的可能。
藉由本發明實施例中結合四種不同研究方法的分析結果所篩選出之基因中,顯著基因與功能路徑分析結果皆與大腸直腸癌相關,而分類的驗證準確率高達將近100%,因此,該些基因標記可應用於大腸直腸癌之檢測,甚至可進一步用於預測轉移以及預後,對於大腸直腸癌之篩選、發展歷程,乃至於治療,都有顯著的助益。
以下將配合圖式進一步說明本發明的實施方式,下述所列舉的實施例係用以闡明本發明,並非用以限定本發明之範圍,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
第一圖係利用55個基因作為輸入的自變項,用於分類正常大腸直腸黏膜與腫瘤組織的模型測試準確率分布圖。
第二圖係以PAM、ANN、CART、C5.0四種分析方法在不同設定下,各基因對於分類正常與大腸直腸癌個案之序位分數百分位堆疊
圖。其中,序位分數百分位:各基因在某個重要性排序方法中,其相對重要性數值。CV:變異係數,每個基因在圖列的六種重要性排序方法的序位分數百分位的變異情形。標記以「△」者,代表此方法的基因重要性排序依據為各基因在1,000次分析中顯著的總次數值;「_重要性」,代表此方法的排序依據為各基因在1,000次分析中,位置平均落於決策樹的層數;ANN #的排序為依據基因相對重要性數值。
本發明實施例中關於基因篩選之微陣列基因資料係取自美國國家生物技術信息中心(National Center for Biotechnology Information,NCBI)的基因表現量資料庫(Gene Expression Omnibus,GEO)。利用「colon cancer」、「human[organism]」與「Expression profiling by array[DataSet Type]」三個關鍵字進行交集搜尋,搜尋出191筆GSE資料集。之後,進一步以篩選條件:(1)樣本需為人類的大腸直腸正常黏膜、局部腫瘤或肝轉移腫瘤的冷凍組織切片;(2)基因晶片的平台限定為單光Affymetrix全基因體晶片;(3)資料的呈現方式為基因表現量;以及排除條件:(1)細胞株或in vitro之實驗數據;(2)沒有基因表現量原始檔案(CEL檔)的資料集;(3)有重覆的子資料集,等條件進行篩選;經篩選排除之後剩下16個資料集,其中,研究組織數共計1,274個,正常黏膜組織88個、大腸直腸腫瘤組織共計1,186個(含53個腺瘤、521個腺癌、533個局部腫瘤及79個轉移之肝臟的腫瘤為肝臟組織)。此外,所納入的3種艾菲爾矩陣(Affymetrix)晶片型號分別為HG-U133A、HG-U133A_2及HG-U133_Plus_2,其皆屬於全基因體微陣列基因晶片(genome-wide microarray),轉換後的基因數分別為14,713、14,704
及33,727個。
將前述1,274個研究組織,針對性別、年齡、組織位置與種族,分別與正常大腸直腸黏膜進行單變項邏輯式迴歸分析,其結果如表一所示:
由於資料係取自資料庫,除了性別、種族、年齡及組織位置
資料較完整外,其他的臨床變項與人口學變項遺漏情形嚴重,所以僅針對上述4個變項做基本分佈檢定。去除遺漏值後,正常與大腸直腸腫瘤組織兩組在男女的分佈沒有差異;但在種族分佈以美國的腫瘤個案比例最多,歐洲與澳洲次之,最少的為亞洲漢人;年齡方面>60歲的大腸直腸癌比例較高;組織取得位置在兩組間並沒有差異(請參見表一)。
前述16個資料集,先以GC Robust Multi-array Average(GCRMA)方法,利用Bioconductor所提供的R語言免費軟體,完成去晶片背景值校正(background correction)處理。之後,將探針組的表現量轉成基因表現量,因為探針表現量呈偏態,故取探針組表現量的中位數代表基因的表現量。前述三種艾菲爾矩陣(Affymetrix)晶片,在合併16個資料集後,共得到14,698個基因表現量。
首先將所有個案依據病理組織類型分成以下五組:正常(normal;以下簡稱nm)、腺瘤(adenoma;以下簡稱ad)、腺癌(adenocarcinoma;以下簡稱ac)、局部腫瘤(未知其型態,carcinoma;以下簡稱cn)以及肝轉移癌(liver metastasis;以下簡稱mt)。ad、ac、cn及mt皆會分別與nm做兩兩基因表現量比較,找出在不同腫瘤階段表現量變異的基因。每次分析會進行100次的重複抽樣(boostrapping),將100次PAM分析中的顯著基因,取聯集做為初步候選基因篩選結果,即可避免訓練組與測試組的抽樣偏差,而導致篩選出的候選基因其外推性不佳的問題。此外,為了避免模型過度訓練,每組比較組隨機取四分之三做為PAM模型訓練組,剩下的四分之一作
為模型測試組。PAM基因篩選的閾值(threshold)條件為:顯著基因數<100,且達到最小分類錯誤數。
經過100次重複抽樣分析後,ad/nm、ac/nm、cn/nm、mt/nm組的顯著基因數分別為12、20、25及25個,共計55個不同的顯著基因(請參見表二)。四個比對組其100次的重複抽樣分析結果中,不論是模型或是測試準確率變異情形皆很小,且兩者平均準確率皆可達0.95以上(請參見表三),每次所篩選的基因數皆小於18個,且每次分析的FDR值皆近似於0,代表顯著基因結果出現假陽性結果的機率近似於0。
本發明實施例之模型分析方法,首先利用具有去雜訊、控制
錯誤發現率(false discovery rate,FDR),且能從眾多基因中挑選出最佳基因組的微陣列預測分析(PAM),從14,698基因中初步篩選出鑑別大腸直腸腫瘤與正常黏膜組織的55個候選基因後,再利用類神經網路(ANN)、分類與回歸樹(CART)、C5.0及PAM,做分類模型的建立、基因重要性的排序及第二次的基因篩選。同時使用CART與C5.0兩種決策樹,係做為基因重要性排序的組內對照,若兩種方法的結果相似,表示該研究分析結果可信度高。每種模型訓練會進行1000次的重複抽樣,取四分之三為模型訓練組,四分之一為模型測試組,以下為四種分析方法的介紹:
(1)PAM
PAM為微陣列基因表現量的分析方法之一,使用的演算法為縮小重心分類法(nearest shrunken centroids),是nearest centroids的演化版,具有去雜訊的功能。使用PAM方法重新分析先前已發表文章的微陣列資料,所得的癌症或疾病分類結果皆較原始方法來的好,且所需的基因數更少,於是本發明實施例採用PAM做初步的候選基因篩選以及第二次基因篩選與模型建構方法。
(2)ANN
類神經網路的發展是仿造人類大腦組織資訊的處理與學習,其必須透過不斷反覆訓練與學習,調整節與節的連結關係,使輸出值越接近目標值。ANN的優點有:(1)適用於高維(highly dimensional)且非常態資料;(2)可以接受遺漏值,並處理資訊的雜訊;(3)建構的模型具有外推性。
(3)C5.0及CART
決策樹係針對資料利用歸納的方式產生樹狀結構的模式,每
一個節點即為一個判斷式,決策樹的樹枝刪修可以解決過度訓練的問題。一般情況下,決策樹愈小,其預測能力愈強。本發明實施例所使用的兩種決策樹分別為CART與C5.0;CART其決策樹的建立與分枝是依據堅尼係數(gini index),在每一個分枝都選擇最佳的自變項做二分類切割,因此一個自變項(field)很可能在不同的結點被多次使用,CART的優點為不需要太長的訓練時間。另一方面,C5.0是由C4.5與ID3逐漸演化而來,與CART的方法很類似,差別在於其決策樹的建立與分枝是利用信息增益(information gain),且屬於多元的數分類法。
基因重要性的排序方法
將55個基因表現量放入前述ANN、CART、C5.0及PAM模型分析後,會得到各基因對於分類大腸直腸腫瘤與正常黏膜組織的貢獻程度高低,也就是基因重要性。ANN會列出輸入的基因變項對於分類大腸直腸腫瘤與正常黏膜組織的相對重要性值(relative importance,RI),此數值越大表示該基因貢獻程度越高,將此數值序位化,最小值給1分、次低值給2分,以此類推,當RI同值時給相同的序位分數(ranked score,RS),最後以RS的最大值除各基因的RS即得到分數百分位(RS%)。
CART的基因重要性排序方式為,計算每個基因在1,000次重複抽樣分析中,被挑選作為決策樹節點的次數(Node),次數越多表示此基因越重要性,再依基因顯著次數(Sig)排序,次數最少的給1分、次少的給2分,以此類推,當Sig相同時給予相同的RS,最後以RS的最大值除各基因的RS即得到RS%。
PAM的其中一種基因重要性計算方法同CART,而PAM與
C5.0除了以Sig計算重要性外,還會分別依重心(centroids,Cen)值與基因出現於決策樹的節點位置來計算基因重要性,前者Cen的詳細的計算方式為:將ad/nm、ac/nm、cn/nm及mt/nm四組的1,000次重複抽樣PAM分析結果的重心平均值各別取絕對值後加總,依數值由小排列大,最小值給1分、次小值給2分,以此類推,當重心值相同時給予相同的RS,最後以RS的最大值除各基因的RS即得到RS%;後者節點位置計算方式為:基因位於越接近決策樹根部(即最初分裂點的位置)的節點,則RS越高,越往樹枝末端RS越低,以此類推,RS%計算方式同CART。序位分數的百分位化是為了讓四種分析方法間的基因重要性排序可以相互比較。
以PAM、ANN、CART、C5.0四種分析方法在不同設定下,各基因對於分類正常與大腸直腸癌個案之序位分數百分位如第二圖所示。其中,序位分數百分位指各基因在某個重要性排序方法中,其相對重要性數值。CV指變異係數,每個基因在圖列的六種重要性排序方法的序位分數百分位的變異情形。標記以「△」者,代表此方法的基因重要性排序依據為各基因在1,000次分析中顯著的總次數值;「_重要性」,代表此方法的排序依據為各基因在1,000次分析中,位置平均落於決策樹的層數,數值越大其序位分數百分位越高;ANN #的排序為依據基因相對重要性數值。
1,000次的重複抽樣的分析結果中,每次測試的準確率亦可達0.91以上,其中以ANN與C5.0_winnow的表現最好,模型表現穩定度最好的為ANN(請同時參見第一圖與表四),每次分析所需的基因變項數最少的為CART,其所需基因數為2(中位數),所有模型每次分析挑選出的基因數量皆為11個以下(請參見表五),顯示僅需要11個以下的基因即可以有效分類
大腸直腸癌與正常個案。
綜整四種模型分析方法並計算RS%總和,RS%總和大致上與CV值成反比,當基因重要性越高時,在各方法間的排序越趨於一致。因為四種方法平均僅需要8個以下的基因(請參見表五),就可以達到很好的分類準確率,所以取RS%總和的前8大重要基因,依序為CA7、SPIB、
GUCA2B、AQP8、IL6R、SPP1、TCN1及CWH43(請參見第二圖)。這8個基因除了TCN1在邏輯式迴歸單獨控制了年齡之後,與大腸直腸癌的關係變不顯著外,其他7個基因在個別控制性別、種族、組織部位或年齡後,仍為顯著,且CA7、SPIB及CWH43在同時控制這4個干擾因子後仍為顯著(請參見表六);除了SPP1與MSI/MSS沒有相關外,其他基因在單變項邏輯式迴歸中皆呈現顯著關係,OR值為0.49-1.12;8個基因中僅有SPP1與癌症分期有顯著相關,當SPP1基因表現量越高癌症分期就越嚴重(請參見表七)。
這8個基因在GO biological process被註解與輸送有關的有AQP8、SPIB、SPP1及TCN1,而CA7與GUCA2B則分別被註解與生物調節及訊號傳遞有關,IL6R被註解與免疫系統過程有關,而CWH43則沒有相關註解;被GO molecular function註解與明膠酶活性有關的為CA7、IL6R及SPP1,AQP8、SPIB及TCN1被註解與結合功能有關,而GUCA2B被註解與調節酵素活性有關,而CWH43沒有相關註解。
所有模型的依變項為正常與大腸直腸癌之個案,基因表現量值為經過GCRMA與quantile normalization後的log2值。#:單變項邏輯式迴歸。&:控制性別,參考組為女性。*控制種族,以歐洲人為參考組。+:控制組織位置,參考組為proximal。%:控制年齡,參考組為<=60歲。@:控制性別、種族、組織位置與年齡,參考組同上述。*<0.05、**<0.01、***<0.001。
分析方法為多變量邏輯式迴歸(保留截距),依變項分別為為MSI/MSS、Stage 1-4及Grade 1-3,自變項為log2基因表現量。a:參考組為
MSS(n=280)、b:參考組為Stage1(n=86)、c:參考組為Grade1(n=21)。
基因顯著次數與基因重要性的關係
C5.0_winnow△與C5.0_winnow_重要性排序所得的55個基因重要性,彼此間的一致性很好,Spearman’s相關係數為0.73,且p<0.01(請參見表八);而PAM△與PAM_centroid對55個基因的重要序排序完全相同,Spearman’s相關係數為1;而CART與ANN因為演算法的限制,只適用一種重要性排序方法,所以無法做比較基因顯著次數與基因重要性的關係比較。表八中顯示C50_winnow與PAM對於分類大腸直腸腫瘤與正常黏膜組織的重複抽樣的分析結果中,基因顯著次數的多寡,整體上可以做為基因重要性排序參考依據,基因的顯著基因次數越多,表示該基因對於分類依變項的重要性越高。
& Spearman’s相關係數。* p<0.05,** p<0.01。方法名稱後若註解「△」,代表此方法的基因重要性排序依據為,各基因在1,000次分析中顯著的總次數值,次數越高其序位分數百分位越高。ANN #的排序為依據基因相對重要性數值。方法名稱後若註解「_重要性」,代表此方法的排序依據為,各基因在1,000次分析中,位置平均落於決策樹的層數,數值越大其序位分數百分位越高。
方法間基因重要性排序一致性
CART與C5.0同屬決策樹的方法,在本發明實施例裡是用來作為組內對照,理論上同類方法間其重要性排序應該要相似,若不相似則表示本研究的候選基因排序方法有問題,如相似則表示本研究的基因重要性排序方法沒有問題,方能進行組間的比較。本發明實施例之結果中(請參見表四),兩種決策樹C5.0與CART對55個基因重要性排序相近(Spearman’s相關檢定,p<0.01),且Spearman’s相關達到中高相關(Spearman’s相關係數0.62-0.75)。ANN雖然與CART及C5.0的基因重要性排序的Spearman’s相關已達顯著相關(p<0.01),但相關係數不高(0.42-0.48)整體而言除了決策樹分類法(C5.0及CART)以外,不同方法間其對基因重要性的排序一致性並不佳,顯示不同的方法其對基因的挑選仍有差異,但是越重要的基因在各方法間的排序變異性越低。
在PAM及C5.0分析方法中,會使用兩種方法來進行55個基因的重要性排序。C5.0與PAM各在兩種基因重要性排序一致性高,Spearman’s相關檢定結果p均小於0.05,顯示出C5.0及PAM在多次的重複抽樣分析中,基因顯著次數越多則代表此基因越重要。
整合PAM、CART、C50及ANN的分析結果發現,平均只要3-8個基因就可以有效的分類大腸直腸癌與正常組織個案(請參見表五),測試驗證的準確率平均為0.98-0.99,近乎100%,綜合上述四種方法的結果,排序出對分類大腸直腸癌與正常黏膜組織的前8大重要基因為CA7、SPIB、GUCA2B、AQP8、IL6R、SPP1、TCN1及CWH43,除了TCN1在控制了年齡之後與大腸直腸癌的關係變不顯著外,其他7個基因在個別控制性別、種族、組織部位或年齡後,仍為顯著;而與臨床變項的關係中,除了SPP1與MSI/MSS沒有相關外,其他7個基因都有相關,但這8個基因中也只有SPP1與癌症分期有顯著相關,當SPP1基因表現量越高癌症分期就越嚴重。因此,藉由本發明,可檢測CA7、SPIB、GUCA2B、AQP8、IL6R、SPP1、TCN1及CWH43其中任一或二個以上組合的基因表現,來判斷患者是否罹患大腸直腸癌。若同時與SPP1檢測,更可預測大腸直腸癌之分期。
前述8個基因的GO molecular function為明膠酶活性、結合及酵素調節。其中的明膠酶活性,文獻指出明膠酶與腫瘤的惡化與轉移有關,在惡化與轉移的腫瘤組織其表現量為上升,此現象與細胞外基質(extracellular matrix,ECM)的分解過程有關,而基質金屬蛋白酵素(Matrix metalloproteinases,MMPs)為主要的ECM分解酶,本發明實施例中的顯著基因MMP7(matrilysin)即屬於其中的一種酶,其與遠端轉移(如:肝轉移)、較惡的預後及復發有關,80%的大腸直腸癌個案在MMP7亦呈現過度表現,因此可做為遠端轉移、預後及復發有關之基因指標。以下為對分類大腸直腸癌與正常組織個案的8重要基因介紹:
(1)CA7(carbonic anhydrase VII)
CA7在本發明實施例中的所有分析工具裡,被一致認為是分類正常與大腸直腸癌重要的顯著基因,有很高的重要性序位分數百分位,在大腸直腸癌表現為向下調控(相對表現量=-5.39)。CA7屬於含鋅金屬酵素的一種,會促進CO2的水解,CA同工酶群裡的CA2、CA9及CA12與腫瘤發生有關,且CA9在無遺傳性非瘜肉症大腸直腸癌(hereditary nonpolyposis colorectal carcinoma,HNPCC)個案裡為過度表現,但是並沒有相關研究說明CA7與大腸直腸癌的關係,且本發明實施例中其他相關顯著基因CA1與CA4,亦沒有相關的研究報告。
(2)SPIB(Spi-B轉錄因子)
SPIB基因會轉錄轉譯出Spi-B轉錄因子(transcription factors)蛋白,同SPI1屬於ETS轉錄因子群的一員,ETS蛋白在細胞發育、細胞分化、細胞增生、細胞凋零及組織重塑扮演重要角色,且ETS轉錄因子被認為可能與腫瘤的進展、惡化、侵略、轉移及血管增生(neo-angiogenesis)有關。本發明中SPIB的基因表現在大腸直腸癌組織的表現量為下降(相對表現量=-4.24)。目前仍然沒有相關的研究說明SPIB與大腸直腸癌發生的可能機轉。
(3)GUCA2B(guanylate cyclase activator 2B;uroguanylin)
uroguanylin是由十二指腸以及小腸近端的腸嗜鉻細胞(enterochromaffin cells)所分泌。Uroguanylin(GUCA2B)及guanylin(GUCA2A)在結構及生化功能上皆很相近,被認一起負責訊息的傳遞,在消化期間調控腸道的液體與電解質的運輸及分泌,若此功能被抑制或擾亂則會促使腫瘤細胞的形成。本發明實施例中SPIB的相對表現量為-6.62。
(4)AQP8(Aquaporin 8)
水通道蛋白(aquaporins,AQPs)為一貫穿性膜蛋白,負責細胞的水分運輸,與胃腸道的水分吸收與排放有關,在腫瘤細胞的轉移與增生扮演重要的角色。本發明實施例中AQP8的相對表現量為-6.56。
(5)IL6R(interleukin 6 receptor)
IL6R會附著在細胞膜上,或是以水溶性的IL-6 receptor(sIL-6R)存在,以強化IL6的傳遞,本發明實施例中的結果顯示IL6R在大腸直腸癌的基因表現量較正常大腸組織低(相對表現量=-3.46)。IL6大腸直腸癌的細胞株具有刺激細胞增生的功能,在大腸直腸癌腫瘤組織的表現量低與病程惡化有關,為一獨立的預後預測因子。一般情形下,大腸癌的病患會有較高的血清IL6濃度,且高濃度的IL6與癌症分期、腫瘤大小、轉移情形及存活時間的惡化有相關。
(6)SPP1(secreted phosphoprotein 1;osteopontin)
SPP1在本發明實施例中的大腸直腸腫瘤表現為向上調控(相對表現量=9.69),此基因會產生骨橋蛋白(osteopontin)的整合蛋白脂結合蛋白(integrin-binding protein),研究顯示此蛋白可以作為乳癌、肺癌及前列腺癌的癌化標記,且亦被發現在惡化的大腸癌、乳癌、前列腺癌及肺癌個案血液中,相較於正常個案其骨橋蛋白值顯著上升。當癌症分期越嚴重其表現量有顯著上升的趨勢,被認為可用來作為大腸直腸癌的惡化標記以及轉移的指標。
(7)TCN1(transcobalamin 1)
TCN1為Wnt/beta-catenin pathway中的一個調節因子,會促進
β連環蛋白(beta-catenin)目標基因的表現,而促使癌症進展與惡化,在胃癌研究裡顯示TCN1與癌症分期、較差的細胞分化、淋巴結轉移及較差的預後有顯著相關,而在本發明實施例中,TCN1的相對表現量為8.66。
(8)CWH43(cell wall biogenesis 43 C-terminal homolog)
有研究顯示CWH43其功能與Saccharomyces cerevisiae的細胞壁完整性有關,但是目前並沒有此基因與人類癌症的相關研究。CWH43於本發明實施例中,在大腸直腸腫瘤組織的表現為向下調控(相對表現量=-4.59)。
藉由前述所篩選出與大腸直腸癌有顯著且重要之基因標記,可利用於大腸直腸癌的檢測。因此,本發明同時提供一種檢測大腸直腸癌的方法,其步驟包括:(a)提供一檢體樣本,該檢體為周邊血液,其亦可為其他體液;(b)測定該檢體樣本中CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43、SPP1或TCN1基因標記之表現量;(c)將步驟(b)中基因之該表現量與正常大腸直腸黏膜細胞中之表現量相比較;當基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、TCN1於癌細胞中之表現量係上升時,判定為罹患有大腸直腸癌。
其中該基因標記之表現量係指由該基因所轉錄之mRNA或轉譯之胜肽。因此,測定該檢體樣本中所述基因標記時,除利用傳統分生技術對mRNA,以北方墨點法、反轉錄酶聚合酶連鎖反應、即時聚合酶連鎖反應等方式加以測量外,亦可利用免疫螢光反應、酵素連結免疫吸附法、酵素免疫分析法、放射免疫分析法或西方墨點法測量該基因所表現的胜肽
數量,以計算出該些基因標記之表現量。除此之外,亦可如本發明利用微陣列,以DNA晶片進行檢測。
此外,為進一步檢測患者是否有遠處轉移或預後不良的可能,於前述步驟(b)中可進一步檢測MMP7的表現量,檢測癌細胞中之MMP7表現量是否上升。若表現量上升,可判定患者有遠處轉移或預後不良的可能。此外,亦可同時參照癌細胞中之SPP1表現量,若其亦/或呈現上升的情形,則可判定患者有遠處轉移或預後不良的可能。前述檢體樣本之處理以及基因標記之檢測,對於所屬相同技術領域熟悉該技藝之人士而言,當可利用習知技術加以完成,並不以所述為限。
Claims (12)
- 一種用於檢測大腸直腸癌的基因標記,包括:AQP8、GUCA2B與SSP1,以及至少一選自由CA7、SPIB、IL6R、CWH43、TCN1所組成的群組。
- 如申請專利範圍第1項所述之用於檢測大腸直腸癌的基因標記,其中該基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、TCN1於癌細胞中之表現量係上升。
- 如申請專利範圍第2項所述之用於檢測大腸直腸癌的基因標記,其中該基因標記之表現量係指該基因所轉錄之mRNA或轉譯之胜肽的數量。
- 如申請專利範圍第3項所述之用於檢測大腸直腸癌的基因標記,其中該基因標記係AQP8、GUCA2B、SSP1與CA7。
- 一種用於檢測大腸直腸癌轉移的基因標記,包括如申請專利範圍第1項所述之基因標記,並進一步包括:MMP7。
- 如申請專利範圍第5項所述之用於檢測大腸直腸癌轉移的基因標記,其中該基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、MMP7、TCN1於癌細胞中之表現量係上升。
- 如申請專利範圍第6項所述之用於檢測大腸直腸癌的基因標記,其中該基因標記之表現量係指該基因所轉錄之mRNA或轉譯之胜肽的數量。
- 一種檢測大腸直腸癌的方法,其步驟包括:(a)提供一檢體樣本;(b)測定該檢體樣本中如申請專利範圍第1項所述基因標記之表現量;(c)將步驟(b)中基因之該表現量與正常大腸直腸黏膜細胞中之表現量相比較;當基因標記CA7、SPIB、GUCA2B、AQP8、IL6R、CWH43於癌細胞中之表現量係下降,而SPP1、TCN1於癌細胞中之表現量係上升時,判定為罹患有大腸直腸癌。
- 如申請專利範圍第8項所述之檢測大腸直腸癌的方法,其中該檢體樣本係周邊血液。
- 如申請專利範圍第8項所述之檢測大腸直腸癌的方法,其中該基因標記之表現量係指該基因所轉錄之mRNA或轉譯之胜肽的數量。
- 如申請專利範圍第8或10項所述之檢測大腸直腸癌的方法,其中基因標記SPP1於癌細胞中之表現量上升時,判定為患者有遠處轉移或預後不良的可能。
- 如申請專利範圍第8或10項所述之檢測大腸直腸癌的方法,其中步驟(b)中進一步檢測MMP7的表現量,當MMP7於癌細胞中之表現量係上升,或/與SPP1於癌細胞中之表現量亦上升時,判定為患者有遠處轉移或預後不良的可能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102113645A TWI498560B (zh) | 2013-04-17 | 2013-04-17 | 用於檢測大腸直腸癌之基因標記與檢測方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102113645A TWI498560B (zh) | 2013-04-17 | 2013-04-17 | 用於檢測大腸直腸癌之基因標記與檢測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201441616A TW201441616A (zh) | 2014-11-01 |
TWI498560B true TWI498560B (zh) | 2015-09-01 |
Family
ID=52422870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102113645A TWI498560B (zh) | 2013-04-17 | 2013-04-17 | 用於檢測大腸直腸癌之基因標記與檢測方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI498560B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012031008A2 (en) * | 2010-08-31 | 2012-03-08 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
-
2013
- 2013-04-17 TW TW102113645A patent/TWI498560B/zh not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012031008A2 (en) * | 2010-08-31 | 2012-03-08 | The General Hospital Corporation | Cancer-related biological materials in microvesicles |
Non-Patent Citations (1)
Title |
---|
Bosch LJ, Carvalho B, Fijneman RJ, Jimenez CR, Pinedo HM, van Engeland M, Meijer GA., "Molecular tests for colorectal cancer screening." Clinical Colorectal Cancer, 2011, Vol. 10, No. 1, pages 8-23 Wei Wang, Qing Li, Tao Yang, Guang Bai, Dongsheng Li, Qiang Li and Hongzhi Sun, "Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance" World Journal of Surgical Oncology, 2012, 10:242 Juan Madoz-Gu´ rpide, Paula Lo´ pez-Serra, Jorge Luis Martínez-Torrecuadrada, Lydia Sa´ nchez, Luis Lombardía, and J. Ignacio Casal, "Proteomics-based Validation of Genomic Data" Molecular & Cellular Proteomics, 2006, 5:1471-1483 * |
Also Published As
Publication number | Publication date |
---|---|
TW201441616A (zh) | 2014-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12060617B2 (en) | Marker genes for prostate cancer classification | |
Riester et al. | Combination of a novel gene expression signature with a clinical nomogram improves the prediction of survival in high-risk bladder cancer | |
DK2382331T3 (en) | CANCER biomarkers | |
Zhang et al. | Identifying circulating miRNA biomarkers for early diagnosis and monitoring of lung cancer | |
JP2020503850A (ja) | 腫瘍抑制foxo活性を酸化ストレスから区別する方法 | |
Liu et al. | Circular RNA profiling identified as a biomarker for predicting the efficacy of Gefitinib therapy for non-small cell lung cancer | |
US20170211155A1 (en) | Method for predicting risk of metastasis | |
JP2007049991A (ja) | 乳癌の骨への再発の予測 | |
MX2013013746A (es) | Biomarcadores para cancer de pulmon. | |
US20090192045A1 (en) | Molecular staging of stage ii and iii colon cancer and prognosis | |
US20110224908A1 (en) | Gene signature for diagnosis and prognosis of breast cancer and ovarian cancer | |
WO2010063121A1 (en) | Methods for biomarker identification and biomarker for non-small cell lung cancer | |
WO2022103287A1 (en) | Panel of mirna biomarkers for diagnosis of ovarian cancer, method for in vitro diagnosis of ovarian cancer, uses of panel of mirna biomarkers for in vitro diagnosis of ovarian cancer and test for in vitro diagnosis of ovarian cancer | |
Guo et al. | Screening and identification of specific markers for bladder transitional cell carcinoma from urine urothelial cells with suppressive subtractive hybridization and cDNA microarray | |
CN117925835A (zh) | 一种结直肠癌肝转移标记物模型及其在预后及免疫治疗响应预测的应用 | |
CN117887824A (zh) | 一种联合外周血循环dna和rna的肿瘤早期诊断方法 | |
TWI498560B (zh) | 用於檢測大腸直腸癌之基因標記與檢測方法 | |
Kawaguchi et al. | Identification and validation of a gene expression signature that predicts outcome in malignant glioma patients | |
CA2844132A1 (en) | Hypoxia-related gene signatures for cancer classification | |
Jiao et al. | Bioinformatics analysis and identification of hub genes associated with female acute myocardial infarction patients by using weighted gene co-expression networks | |
Peng et al. | Comprehensive landscape of m6A regulator-related gene patterns and tumor microenvironment infiltration characterization in gastric cancer | |
US20240093306A1 (en) | Micro rna liver cancer markers and uses thereof | |
Zhou et al. | BAMBI: Integrative biostatistical and artificial-intelligence method discover coding and non-coding RNA genes as biomarkers | |
US20230348990A1 (en) | Prognostic and treatment response predictive method | |
CN113930511A (zh) | Golt1b在乳腺癌的预后中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |