TWI495087B - Resistance memeory device - Google Patents

Resistance memeory device Download PDF

Info

Publication number
TWI495087B
TWI495087B TW101143488A TW101143488A TWI495087B TW I495087 B TWI495087 B TW I495087B TW 101143488 A TW101143488 A TW 101143488A TW 101143488 A TW101143488 A TW 101143488A TW I495087 B TWI495087 B TW I495087B
Authority
TW
Taiwan
Prior art keywords
opening
layer
resistive memory
dielectric layer
bottom electrode
Prior art date
Application number
TW101143488A
Other languages
Chinese (zh)
Other versions
TW201421649A (en
Inventor
Wen Yueh Jang
Ming Chung Chiang
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW101143488A priority Critical patent/TWI495087B/en
Publication of TW201421649A publication Critical patent/TW201421649A/en
Application granted granted Critical
Publication of TWI495087B publication Critical patent/TWI495087B/en

Links

Description

電阻式記憶元件Resistive memory element

本發明是有關於一種半導體元件,且特別是有關於一種電阻式記憶元件。This invention relates to a semiconductor component, and more particularly to a resistive memory component.

非揮發性記憶體具有存入的資料在斷電後也不會消失之優點,因此是許多電器產品維持正常操作所必備的記憶元件。目前,電阻式隨機存取記憶體(resistive random access memory,RRAM)是業界積極發展的一種非揮發性記憶體,其具有寫入操作電壓低、寫入抹除時間短、記憶時間長、非破壞性讀取、多狀態記憶、結構簡單以及所需面積小等優點,在未來個人電腦和電子設備上極具應用潛力。Non-volatile memory has the advantage that the stored data will not disappear after power-off, so it is a necessary memory element for many electrical products to maintain normal operation. At present, resistive random access memory (RRAM) is a kind of non-volatile memory actively developed in the industry. It has low write operation voltage, short write erase time, long memory time, and non-destructive memory. Sexual reading, multi-state memory, simple structure and small required area have great potential for application in personal computers and electronic devices in the future.

然而,在大量生產RRAM之前,仍有許多挑戰亟待克服。其中一個挑戰是RRAM之操作電流-電壓(I-V)特性的變異,所述變異是來自頂電極與底電極之間的多個可能的導電細絲(filament)形成路徑。較大的電極會產生較多可能的導電細絲形成路徑,其會增加RRAM之操作I-V特性的變異。為了使這些變異減到最少,最直接的作法就是縮小電極。然而,由於微影解析度的限制,很難進一步地縮小電極。However, there are still many challenges to overcome before mass production of RRAM. One of the challenges is the variation in the operating current-voltage (I-V) characteristics of the RRAM, which is the path from which a plurality of possible conductive filaments are formed between the top and bottom electrodes. Larger electrodes create more likely conductive filament formation paths that increase the variation in the operational I-V characteristics of the RRAM. In order to minimize these variations, the most straightforward approach is to shrink the electrodes. However, it is difficult to further reduce the electrode due to the limitation of the lithography resolution.

另一方面,傳統RRAM的製造方法至少需要兩個圖案化步驟。首先,進行第一個圖案化步驟,於介電層中形成 導體插塞。接著,進行第二個圖案化步驟,於導體插塞上形成由底電極、可變電阻層以及頂電極所構成的可變電阻記憶胞。兩個不同的圖案化步驟具有各自的關鍵尺寸(critical dimension;CD)變異。此外,需要考慮兩個圖案化步驟之間的對準誤差。上述兩個原因將增加電阻式記憶胞的尺寸。On the other hand, the conventional RRAM manufacturing method requires at least two patterning steps. First, a first patterning step is performed to form in the dielectric layer. Conductor plug. Next, a second patterning step is performed to form a variable resistance memory cell composed of a bottom electrode, a variable resistance layer, and a top electrode on the conductor plug. Two different patterning steps have their own critical dimension (CD) variations. In addition, the alignment error between the two patterning steps needs to be considered. The above two reasons will increase the size of the resistive memory cell.

有鑑於此,本發明提供一種電阻式記憶元件,可減少其I-V特性的變異並縮小其記憶胞尺寸。In view of the above, the present invention provides a resistive memory element that reduces variations in its I-V characteristics and reduces its memory cell size.

本發明提供一種電阻式記憶元件,其包括介電層、導體層、底電極、頂電極及可變電阻層。介電層配置於基底上。介電層具有由下部開口與上部開口所構成的第一開口。導體層填滿下部開口。底電極配置於上部開口的底面與至少部分側壁上。頂電極配置於上部開口中。可變電阻層配置於底電極與頂電極之間。The invention provides a resistive memory element comprising a dielectric layer, a conductor layer, a bottom electrode, a top electrode and a variable resistance layer. The dielectric layer is disposed on the substrate. The dielectric layer has a first opening formed by a lower opening and an upper opening. The conductor layer fills the lower opening. The bottom electrode is disposed on the bottom surface of the upper opening and at least a portion of the sidewall. The top electrode is disposed in the upper opening. The variable resistance layer is disposed between the bottom electrode and the top electrode.

在本發明之一實施例中,上述之下部開口與上部開口的側壁切齊。In an embodiment of the invention, the lower opening is aligned with the side wall of the upper opening.

在本發明之一實施例中,上述之底電極裸露出上部開口之側壁的上部分。In an embodiment of the invention, the bottom electrode is exposed to the upper portion of the sidewall of the upper opening.

在本發明之一實施例中,上述之底電極於上部開口之側壁上的厚度小於底電極於上部開口之底面上的厚度。In an embodiment of the invention, the thickness of the bottom electrode on the sidewall of the upper opening is smaller than the thickness of the bottom electrode on the bottom surface of the upper opening.

在本發明之一實施例中,上述之介電層更具有第二開口,導體層更填滿第二開口。In an embodiment of the invention, the dielectric layer further has a second opening, and the conductor layer fills the second opening.

在本發明之一實施例中,上述之第一開口及第二開口貫穿介電層。In an embodiment of the invention, the first opening and the second opening penetrate through the dielectric layer.

在本發明之一實施例中,上述之電阻式記憶元件更包括金屬層,所述金屬層配置於介電層上並與頂電極及第二開口中的導體層電性連接。In an embodiment of the invention, the resistive memory device further includes a metal layer disposed on the dielectric layer and electrically connected to the conductive layer in the top electrode and the second opening.

在本發明之一實施例中,上述之底電極配置於上部開口的底面與整個側壁上。In an embodiment of the invention, the bottom electrode is disposed on a bottom surface and an entire sidewall of the upper opening.

在本發明之一實施例中,上述之底電極於上部開口之側壁上的厚度實質上等於底電極於上部開口之底面上的厚度。In an embodiment of the invention, the thickness of the bottom electrode on the sidewall of the upper opening is substantially equal to the thickness of the bottom electrode on the bottom surface of the upper opening.

在本發明之一實施例中,上述之可變電阻層更延伸配置於第一開口周圍的介電層上。In an embodiment of the invention, the variable resistance layer is further disposed on the dielectric layer around the first opening.

在本發明之一實施例中,上述之介電層更具有第二開口,導體層更填滿第二開口。In an embodiment of the invention, the dielectric layer further has a second opening, and the conductor layer fills the second opening.

在本發明之一實施例中,上述之第一開口及第二開口貫穿介電層。In an embodiment of the invention, the first opening and the second opening penetrate through the dielectric layer.

在本發明之一實施例中,上述之可變電阻層裸露出第二開口中的導體層。In an embodiment of the invention, the variable resistance layer is exposed to the conductor layer in the second opening.

在本發明之一實施例中,上述之電阻式記憶元件更包括金屬層,所述金屬層配置於介電層上並與頂電極及第二開口中的導體層電性連接。In an embodiment of the invention, the resistive memory device further includes a metal layer disposed on the dielectric layer and electrically connected to the conductive layer in the top electrode and the second opening.

在本發明之一實施例中,上述之導體層與介電層下方的另一導體層電性連接。In an embodiment of the invention, the conductor layer is electrically connected to another conductor layer under the dielectric layer.

在本發明之一實施例中,上述之另一導體層包括摻雜 區、多晶矽層或金屬層。In an embodiment of the invention, the other conductor layer comprises doping Zone, polysilicon layer or metal layer.

基於上述,本發明的電阻式記憶元件是藉由自對準製程而形成之,因此可避免習知的對準誤差問題,輕易達成小元件尺寸的需求。此外。由於本發明之電阻式記憶元件具有較小的頂電極,因此可減少可能的導電細絲形成路徑,降低RRAM之操作I-V特性的變異。Based on the above, the resistive memory element of the present invention is formed by a self-aligned process, thereby avoiding the problem of conventional alignment errors and easily achieving the requirement of small component sizes. Also. Since the resistive memory element of the present invention has a smaller top electrode, it is possible to reduce the possible conductive filament formation path and reduce variations in the operational I-V characteristics of the RRAM.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

第一實施例First embodiment

圖1A至1E為依據本發明第一實施例所繪示之電阻式記憶元件之製造方法的剖面示意圖。1A to 1E are schematic cross-sectional views showing a method of fabricating a resistive memory device according to a first embodiment of the present invention.

請參照圖1A,於基底100上形成介電層102。基底100可為半導體基底,例如矽基底。介電層102的材料包括氧化矽、氮化矽或氮氧化矽,且其形成方法包括進行化學氣相沉積法(CVD)。此外,介電層102具有貫穿介電層102的第一開口104及第二開口106。第一開口104由下部開口103及上部開口105所構成,且下部開口103與上部開口105的側壁切齊。形成第一開口104及第二開口106的方法包括進行微影蝕刻之圖案化步驟。Referring to FIG. 1A, a dielectric layer 102 is formed on the substrate 100. Substrate 100 can be a semiconductor substrate, such as a germanium substrate. The material of the dielectric layer 102 includes hafnium oxide, tantalum nitride or hafnium oxynitride, and the method of forming the same includes performing chemical vapor deposition (CVD). In addition, the dielectric layer 102 has a first opening 104 and a second opening 106 that extend through the dielectric layer 102 . The first opening 104 is constituted by the lower opening 103 and the upper opening 105, and the lower opening 103 is aligned with the side wall of the upper opening 105. The method of forming the first opening 104 and the second opening 106 includes performing a patterning step of lithography etching.

接著,於第一開口104及第二開口106中填入導體層108。導體層108的材料包括鎢。特別注意的是,導體層108填滿第二開口106以及第一開口104的下部開口103。 導體層108的形成方法包括於基底100上形成導體材料層(未繪示),且導體材料層填滿第一開口104及第二開口106。接著,進行圖案化步驟,移除第一開口104之上部開口105中的導體材料層。Next, the conductor layer 108 is filled in the first opening 104 and the second opening 106. The material of the conductor layer 108 includes tungsten. It is particularly noted that the conductor layer 108 fills the second opening 106 and the lower opening 103 of the first opening 104. The method of forming the conductor layer 108 includes forming a conductive material layer (not shown) on the substrate 100, and the conductive material layer fills the first opening 104 and the second opening 106. Next, a patterning step is performed to remove the layer of conductor material in the upper opening 105 of the first opening 104.

此外,導體層108可與介電層102下方的另一導體層電性連接。在一實施例中,所述另一導體層可以為基底100中的摻雜區101,如圖1A所示。在另一實施例中,所述另一導體層也可以為基底100上的多晶矽閘極或金屬層(未繪示)。In addition, the conductor layer 108 can be electrically connected to another conductor layer under the dielectric layer 102. In an embodiment, the other conductor layer may be a doped region 101 in the substrate 100, as shown in FIG. 1A. In another embodiment, the other conductor layer may also be a polysilicon gate or metal layer (not shown) on the substrate 100.

請參照圖1B,於基底100上形成底電極材料層110。底電極材料層110的材料包括氮化鈦,且其形成方法包括進行物理氣相沉積法(PVD)。由於物理氣相沉積法的階梯覆蓋效應,底電極材料層110於上部開口105之側壁上的厚度會小於底電極材料層110於上部開口105之底面上的厚度。接著,於介電層102上形成犧牲層111,且犧牲層111填入上部開口105中。犧牲層111的材料例如是光阻或氧化矽。Referring to FIG. 1B, a bottom electrode material layer 110 is formed on the substrate 100. The material of the bottom electrode material layer 110 includes titanium nitride, and a method of forming the same includes performing physical vapor deposition (PVD). Due to the step coverage effect of the physical vapor deposition method, the thickness of the bottom electrode material layer 110 on the sidewalls of the upper opening 105 may be less than the thickness of the bottom electrode material layer 110 on the bottom surface of the upper opening 105. Next, a sacrificial layer 111 is formed on the dielectric layer 102, and the sacrificial layer 111 is filled in the upper opening 105. The material of the sacrificial layer 111 is, for example, a photoresist or yttrium oxide.

請參照圖1C,移除部分犧牲層111,直到裸露出底電極材料層110的上表面。移除部分犧牲層111的方法包括進行化學機械研磨法(CMP)。然後,移除部分底電極材料層110以形成底電極110a。底電極110a裸露出介電層102的上表面及上部開口105之側壁的上部分。移除部分底電極材料層110的方法包括進行濕蝕刻法。之後,移除剩餘的犧牲層111。Referring to FIG. 1C, a portion of the sacrificial layer 111 is removed until the upper surface of the bottom electrode material layer 110 is exposed. A method of removing a portion of the sacrificial layer 111 includes performing a chemical mechanical polishing (CMP). Then, a portion of the bottom electrode material layer 110 is removed to form the bottom electrode 110a. The bottom electrode 110a exposes the upper surface of the dielectric layer 102 and the upper portion of the sidewall of the upper opening 105. A method of removing a portion of the bottom electrode material layer 110 includes performing a wet etching process. Thereafter, the remaining sacrificial layer 111 is removed.

請參照圖1D,於基底100上形成可變電阻材料層112及頂電極材料層114,且可變電阻材料層112及頂電極材料層114填入上部開口105中。可變電阻材料層112的材料包括過渡金屬氧化物(例如HfO2 或ZrO2 ),且其形成方法包括進行原子層沉積法(ALD)。頂電極材料層114的材料包括氮化鈦(例如Ti/TiN),且其形成方法包括進行原子層沉積法、物理氣相沉積法或化學氣相沉積法。Referring to FIG. 1D, a variable resistance material layer 112 and a top electrode material layer 114 are formed on the substrate 100, and the variable resistance material layer 112 and the top electrode material layer 114 are filled in the upper opening 105. The material of the variable resistance material layer 112 includes a transition metal oxide such as HfO 2 or ZrO 2 , and a method of forming the same includes performing an atomic layer deposition method (ALD). The material of the top electrode material layer 114 includes titanium nitride (for example, Ti/TiN), and the formation method thereof includes performing atomic layer deposition, physical vapor deposition, or chemical vapor deposition.

請參照圖1E,移除上部開口105外的可變電阻材料層112及頂電極材料層114,以形成可變電阻層112a及頂電極114a。底電極110a、可變電阻層112a及頂電極114a構成本發明的可變電阻記憶胞116。移除上部開口105外的可變電阻材料層112及頂電極材料層114的方法包括進行化學機械研磨法。特別說明的是,由於此移除步驟是利用化學機械研磨法而非習知的回蝕刻法,所以可避免回蝕刻法之電荷累積而造成的天線效應(antenna effect)。接著,於介電層102上形成金屬層118,且金屬層118與頂電極114a及第二開口106中的導體層108電性連接。金屬層118的材料包括鋁銅合金,且其形成方法包括進行化學氣相沉積法。至此,完成第一實施例的電阻式記憶元件10。Referring to FIG. 1E, the variable resistance material layer 112 and the top electrode material layer 114 outside the upper opening 105 are removed to form the variable resistance layer 112a and the top electrode 114a. The bottom electrode 110a, the variable resistance layer 112a, and the top electrode 114a constitute the variable resistance memory cell 116 of the present invention. The method of removing the variable resistance material layer 112 and the top electrode material layer 114 outside the upper opening 105 includes performing a chemical mechanical polishing method. In particular, since this removal step utilizes a chemical mechanical polishing method instead of the conventional etch back method, the antenna effect caused by the charge accumulation of the etch back method can be avoided. Next, a metal layer 118 is formed on the dielectric layer 102, and the metal layer 118 is electrically connected to the top electrode 114a and the conductor layer 108 of the second opening 106. The material of the metal layer 118 includes an aluminum-copper alloy, and the method of forming the same includes performing a chemical vapor deposition method. So far, the resistive memory element 10 of the first embodiment is completed.

在第一實施例之中,藉由沉積、蝕刻/研磨製程來形成包括底電極110a、可變電阻層112a及頂電極114a之可變電阻記憶胞116,亦即,可變電阻記憶胞116是利用自對準製程來形成之,不需使用微影製程。如此一來,與習知方法相比,本發明的方法可省去一個形成可變電阻記憶胞 116的圖案化步驟。此外,所形成之頂電極114a具有較小面積,因此可減少可能的導電細絲形成路徑,降低RRAM之操作I-V特性的變異。In the first embodiment, the variable resistance memory cell 116 including the bottom electrode 110a, the variable resistance layer 112a, and the top electrode 114a is formed by a deposition, etching/polishing process, that is, the variable resistance memory cell 116 is It is formed by a self-aligned process without using a lithography process. In this way, the method of the present invention can eliminate the formation of a variable resistance memory cell as compared with the conventional method. The patterning step of 116. In addition, the formed top electrode 114a has a small area, thereby reducing the possible conductive filament formation path and reducing variations in the operational I-V characteristics of the RRAM.

以下,將參照圖1E說明本發明的電阻式記憶元件10。電阻式記憶元件10包括介電層102、導體層108、底電極110a、可變電阻層112a及頂電極114a。介電層102配置於基底100上。介電層102具有由下部開口103與上部開口105所構成的第一開口104,且下部開口103與上部開口105的側壁切齊。導體層108填滿下部開口103,且導體層108與介電層102下方的另一導體層(例如摻雜區101)電性連接。底電極110a配置於上部開口105的底面與至少部分側壁上。在此實施例中,底電極110a裸露出上部開口105之側壁的上部分。頂電極114a配置於上部開口105中。可變電阻層112a配置於底電極110a與頂電極114a之間。Hereinafter, the resistive memory element 10 of the present invention will be described with reference to FIG. 1E. The resistive memory element 10 includes a dielectric layer 102, a conductor layer 108, a bottom electrode 110a, a variable resistance layer 112a, and a top electrode 114a. The dielectric layer 102 is disposed on the substrate 100. The dielectric layer 102 has a first opening 104 formed by a lower opening 103 and an upper opening 105, and the lower opening 103 is aligned with a sidewall of the upper opening 105. The conductor layer 108 fills the lower opening 103, and the conductor layer 108 is electrically connected to another conductor layer (for example, the doping region 101) under the dielectric layer 102. The bottom electrode 110a is disposed on a bottom surface and at least a portion of the sidewall of the upper opening 105. In this embodiment, the bottom electrode 110a exposes the upper portion of the sidewall of the upper opening 105. The top electrode 114a is disposed in the upper opening 105. The variable resistance layer 112a is disposed between the bottom electrode 110a and the top electrode 114a.

特別要說明的是,在此實施例中,底電極110a裸露出上部開口105之側壁的上部分。此配置可避免底電極110a與頂電極114a於上部開口105的頂端太過接近而造成的短路問題。此外,由於底電極110a於上部開口105之側壁上的厚度小於底電極110a於上部開口105之底面上的厚度,所以可變電阻記憶胞116的操作區域A侷限於底電極110a與頂電極114a之最短路徑區塊,如圖1E所示。In particular, in this embodiment, the bottom electrode 110a exposes the upper portion of the sidewall of the upper opening 105. This configuration can avoid the short circuit problem caused by the bottom electrode 110a and the top electrode 114a being too close to the top end of the upper opening 105. In addition, since the thickness of the bottom electrode 110a on the sidewall of the upper opening 105 is smaller than the thickness of the bottom electrode 110a on the bottom surface of the upper opening 105, the operating region A of the variable resistance memory cell 116 is limited to the bottom electrode 110a and the top electrode 114a. The shortest path block, as shown in Figure 1E.

此外,在第一實施例中,介電層102更具有第二開口106,且導體層108更填滿第二開口106。另外,電阻式記 憶元件10更包括金屬層118,金屬層118配置於介電層102上並與頂電極114a及第二開口106中的導體層108電性連接。Moreover, in the first embodiment, the dielectric layer 102 further has a second opening 106, and the conductor layer 108 fills the second opening 106 more. In addition, resistance type The component 10 further includes a metal layer 118 disposed on the dielectric layer 102 and electrically connected to the conductor layer 108 of the top electrode 114a and the second opening 106.

第二實施例Second embodiment

圖2A至2E為依據本發明第二實施例所繪示之電阻式記憶元件之製造方法的剖面示意圖。2A to 2E are schematic cross-sectional views showing a method of fabricating a resistive memory device according to a second embodiment of the present invention.

請參照圖2A,於基底200上形成介電層202。介電層202具有貫穿介電層202的第一開口204及第二開口206。第一開口204由下部開口203及上部開口205所構成,且下部開口203與上部開口205的側壁切齊。接著,於第一開口204及第二開口206中填入導體層208。導體層208填滿第二開口206以及第一開口204的下部開口203。此外,導體層208可與介電層202下方的另一導體層(例如摻雜區201)電性連接。Referring to FIG. 2A, a dielectric layer 202 is formed on the substrate 200. The dielectric layer 202 has a first opening 204 and a second opening 206 that extend through the dielectric layer 202. The first opening 204 is constituted by the lower opening 203 and the upper opening 205, and the lower opening 203 is aligned with the side wall of the upper opening 205. Next, the conductor layer 208 is filled in the first opening 204 and the second opening 206. The conductor layer 208 fills the second opening 206 and the lower opening 203 of the first opening 204. In addition, the conductor layer 208 can be electrically connected to another conductor layer (eg, the doping region 201) under the dielectric layer 202.

請參照圖2B,於上部開口205的底面與整個側壁上形成底電極210。形成底電極210的方法包括於基底200上以順應性地形成底電極材料層(未繪示)。底電極材料層210的材料包括氮化鈦,且其形成方法包括進行化學氣相沉積法(CVD)。在此實施例中,底電極材料層於上部開口105之側壁上的厚度實質上等於底電極材料層於上部開口105之底面上的厚度。之後,移除上部開口205外的底電極材料層。Referring to FIG. 2B, a bottom electrode 210 is formed on the bottom surface of the upper opening 205 and the entire sidewall. A method of forming the bottom electrode 210 includes conformingly forming a bottom electrode material layer (not shown) on the substrate 200. The material of the bottom electrode material layer 210 includes titanium nitride, and the method of forming the same includes performing chemical vapor deposition (CVD). In this embodiment, the thickness of the bottom electrode material layer on the sidewalls of the upper opening 105 is substantially equal to the thickness of the bottom electrode material layer on the bottom surface of the upper opening 105. Thereafter, the bottom electrode material layer outside the upper opening 205 is removed.

請參照圖2C,於基底200上形成可變電阻材料層212及頂電極材料層214,且可變電阻材料層212及頂電極材 料層214填入上部開口205中。可變電阻材料層212的材料包括過渡金屬氧化物(例如HfO2 或ZrO2 ),且其形成方法包括進行原子層沉積法。頂電極材料層214的材料包括氮化鈦(例如Ti/TiN),且其形成方法包括進行原子層沉積法、物理氣相沉積法或化學氣相沉積法。Referring to FIG. 2C, a variable resistance material layer 212 and a top electrode material layer 214 are formed on the substrate 200, and the variable resistance material layer 212 and the top electrode material layer 214 are filled in the upper opening 205. The material of the variable resistance material layer 212 includes a transition metal oxide (for example, HfO 2 or ZrO 2 ), and a method of forming the same includes performing an atomic layer deposition method. The material of the top electrode material layer 214 includes titanium nitride (for example, Ti/TiN), and the formation method thereof includes performing atomic layer deposition, physical vapor deposition, or chemical vapor deposition.

請參照圖2D,移除上部開口205外的頂電極材料層214,以形成頂電極214a。移除上部開口205外的頂電極材料層214的方法包括以可變電阻材料層112為研磨終止層進行化學機械研磨法(CMP)。特別要說明的是,由於此移除步驟是利用化學機械研磨法而非習知的回蝕刻法,所以可避免回蝕刻法之電荷累積而造成的天線效應(antenna effect)。Referring to FIG. 2D, the top electrode material layer 214 outside the upper opening 205 is removed to form the top electrode 214a. The method of removing the top electrode material layer 214 outside the upper opening 205 includes performing a chemical mechanical polishing (CMP) with the variable resistance material layer 112 as a polishing stop layer. In particular, since this removal step utilizes a chemical mechanical polishing method instead of the conventional etch back method, the antenna effect caused by the charge accumulation of the etch back method can be avoided.

之後,移除部分可變電阻材料層212,以形成裸露出第二開口206的可變電阻層212a。具體言之,可變電阻層212a沿上部開口205的內壁延伸配置於上部開口205周圍的介電層202上。移除部分可變電阻材料層212的方法包括進行微影蝕刻之圖案化製程。底電極210、可變電阻層212a及頂電極214a構成本發明的可變電阻記憶胞216。Thereafter, a portion of the variable resistance material layer 212 is removed to form a variable resistance layer 212a that exposes the second opening 206. Specifically, the variable resistance layer 212a extends along the inner wall of the upper opening 205 and is disposed on the dielectric layer 202 around the upper opening 205. The method of removing a portion of the variable resistance material layer 212 includes a patterning process for photolithography etching. The bottom electrode 210, the variable resistance layer 212a, and the top electrode 214a constitute the variable resistance memory cell 216 of the present invention.

請參照2E,於介電層202上形成金屬層218,且金屬層218與頂電極214a及第二開口206中的導體層208電性連接。金屬層218的材料包括鋁銅合金,且其形成方法包括進行化學氣相沉積法或物理氣相沉積法。至此,完成第二實施例的電阻式記憶元件20。Referring to FIG. 2E, a metal layer 218 is formed on the dielectric layer 202, and the metal layer 218 is electrically connected to the top electrode 214a and the conductor layer 208 of the second opening 206. The material of the metal layer 218 includes an aluminum-copper alloy, and the method of forming the same includes performing a chemical vapor deposition method or a physical vapor deposition method. So far, the resistive memory element 20 of the second embodiment has been completed.

在第二實施例之中,藉由沉積、蝕刻/研磨製程來形成 包括底電極210、可變電阻層212a及頂電極214a之可變電阻記憶胞216,亦即,可變電阻記憶胞216是利用自對準製程來形成之,不需使用微影製程。此外,所形成之頂電極214a具有較小面積,因此可減少可能的導電細絲形成路徑,降低RRAM之操作I-V特性的變異。In the second embodiment, the deposition, etching/polishing process is used to form The variable resistance memory cell 216 including the bottom electrode 210, the variable resistance layer 212a, and the top electrode 214a, that is, the variable resistance memory cell 216 is formed by a self-aligned process, without using a lithography process. In addition, the formed top electrode 214a has a small area, thereby reducing the possible conductive filament formation path and reducing variations in the operational I-V characteristics of the RRAM.

以下,將參照圖2E說明本發明的電阻式記憶元件。電阻式記憶元件20包括介電層202、導體層208、底電極210、可變電阻層212a及頂電極214a。介電層202配置於基底200上。介電層202具有由下部開口203與上部開口205所構成的第一開口204,且下部開口203與上部開口205的側壁切齊。導體層208填滿下部開口203,且導體層208與介電層202下方的另一導體層(例如摻雜區201)電性連接。底電極210配置於上部開口205的底面與整個側壁上。頂電極214a配置於上部開口205中。可變電阻層212a配置於底電極210與頂電極214a之間。Hereinafter, the resistive memory element of the present invention will be described with reference to Fig. 2E. The resistive memory element 20 includes a dielectric layer 202, a conductor layer 208, a bottom electrode 210, a variable resistance layer 212a, and a top electrode 214a. The dielectric layer 202 is disposed on the substrate 200. The dielectric layer 202 has a first opening 204 formed by a lower opening 203 and an upper opening 205, and the lower opening 203 is aligned with a sidewall of the upper opening 205. The conductor layer 208 fills the lower opening 203, and the conductor layer 208 is electrically connected to another conductor layer (for example, the doping region 201) under the dielectric layer 202. The bottom electrode 210 is disposed on the bottom surface and the entire sidewall of the upper opening 205. The top electrode 214a is disposed in the upper opening 205. The variable resistance layer 212a is disposed between the bottom electrode 210 and the top electrode 214a.

此外,在第二實施例中,介電層202更具有第二開口206,且導體層208更填滿第二開口206。另外,電阻式記憶元件20更包括金屬層218,金屬層218配置於介電層202上並與頂電極214a及所述第二開口206中的導體層208電性連接。Moreover, in the second embodiment, the dielectric layer 202 further has a second opening 206, and the conductor layer 208 fills the second opening 206 more. In addition, the resistive memory device 20 further includes a metal layer 218 disposed on the dielectric layer 202 and electrically connected to the top electrode 214a and the conductor layer 208 of the second opening 206.

綜上所述,本發明的電阻式記憶元件是藉由自對準製程而形成之,因此可避免習知的對準誤差問題,輕易達成小元件尺寸的需求。此外。由於本發明之電阻式記憶元件具有較小的頂電極,因此可減少可能的導電細絲形成路 徑,降低RRAM之操作I-V特性的變異。In summary, the resistive memory device of the present invention is formed by a self-aligned process, thereby avoiding the problem of conventional alignment errors and easily achieving the requirements of small component sizes. Also. Since the resistive memory element of the present invention has a small top electrode, the possible conductive filament formation path can be reduced The path reduces the variation of the I-V characteristics of the RRAM operation.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10、20‧‧‧電阻式記憶元件10, 20‧‧‧Resistive memory components

100、200‧‧‧基底100, 200‧‧‧ base

101、201‧‧‧摻雜區101, 201‧‧‧Doped area

102、202‧‧‧介電層102, 202‧‧‧ dielectric layer

103、203‧‧‧下部開口103, 203‧‧‧ lower opening

104、204‧‧‧第一開口104, 204‧‧‧ first opening

105、205‧‧‧上部開口105, 205‧‧‧ upper opening

106、206‧‧‧第二開口106, 206‧‧‧ second opening

108、208‧‧‧導體層108, 208‧‧‧ conductor layer

110a、210‧‧‧底電極110a, 210‧‧‧ bottom electrode

112a、212a‧‧‧可變電阻層112a, 212a‧‧‧variable resistance layer

114a、214a‧‧‧頂電極114a, 214a‧‧‧ top electrode

118、218‧‧‧金屬層118, 218‧‧‧ metal layer

111‧‧‧犧牲層111‧‧‧ Sacrifice layer

110‧‧‧底電極材料層110‧‧‧ bottom electrode material layer

112、212‧‧‧可變電阻材料層112, 212‧‧‧Variable resistance material layer

114、214‧‧‧頂電極材料層114, 214‧‧‧ top electrode material layer

116、216‧‧‧可變電阻記憶胞116, 216‧‧‧variable resistance memory cells

A‧‧‧操作區域A‧‧‧ operating area

圖1A至1E為依據本發明第一實施例所繪示之電阻式記憶元件之製造方法的剖面示意圖。1A to 1E are schematic cross-sectional views showing a method of fabricating a resistive memory device according to a first embodiment of the present invention.

圖2A至2E為依據本發明第二實施例所繪示之電阻式記憶元件之製造方法的剖面示意圖。2A to 2E are schematic cross-sectional views showing a method of fabricating a resistive memory device according to a second embodiment of the present invention.

10‧‧‧電阻式記憶元件10‧‧‧Resistive memory components

100‧‧‧基底100‧‧‧Base

101‧‧‧摻雜區101‧‧‧Doped area

102‧‧‧介電層102‧‧‧ dielectric layer

103‧‧‧下部開口103‧‧‧lower opening

104‧‧‧第一開口104‧‧‧First opening

105‧‧‧上部開口105‧‧‧ upper opening

106‧‧‧第二開口106‧‧‧second opening

108‧‧‧導體層108‧‧‧Conductor layer

110a‧‧‧底電極110a‧‧‧ bottom electrode

112a‧‧‧可變電阻層112a‧‧‧Variable Resistance Layer

114a‧‧‧頂電極114a‧‧‧ top electrode

116‧‧‧可變電阻記憶胞116‧‧‧Variable Resistor Memory Cell

118‧‧‧金屬層118‧‧‧metal layer

A‧‧‧操作區域A‧‧‧ operating area

Claims (16)

一種電阻式記憶元件,包括:介電層,配置於基底上,所述介電層具有由下部開口與上部開口所構成的第一開口;導體層,填滿所述下部開口;底電極,配置於所述上部開口的底面與至少部分側壁上;頂電極,配置於所述上部開口中,且並未與所述上部開口的側壁接觸;以及可變電阻層,配置於所述底電極與所述頂電極之間。 A resistive memory device comprising: a dielectric layer disposed on a substrate, the dielectric layer having a first opening formed by a lower opening and an upper opening; a conductor layer filling the lower opening; a bottom electrode, configured And a top electrode disposed in the upper opening and not in contact with the sidewall of the upper opening; and a variable resistance layer disposed on the bottom electrode and the bottom surface Between the top electrodes. 如申請專利範圍第1項所述之電阻式記憶元件,其中所述下部開口與所述上部開口的側壁切齊。 The resistive memory element of claim 1, wherein the lower opening is aligned with a sidewall of the upper opening. 如申請專利範圍第1項所述之電阻式記憶元件,其中所述底電極裸露出所述上部開口之側壁的上部分。 The resistive memory element of claim 1, wherein the bottom electrode exposes an upper portion of a sidewall of the upper opening. 如申請專利範圍第3項所述之電阻式記憶元件,其中所述底電極於所述上部開口之側壁上的厚度小於所述底電極於所述上部開口之底面上的厚度。 The resistive memory device of claim 3, wherein a thickness of the bottom electrode on a sidewall of the upper opening is smaller than a thickness of the bottom electrode on a bottom surface of the upper opening. 如申請專利範圍第1項所述之電阻式記憶元件,其中所述介電層更具有第二開口,所述導體層更填滿所述第二開口。 The resistive memory device of claim 1, wherein the dielectric layer further has a second opening, and the conductor layer further fills the second opening. 如申請專利範圍第5項所述之電阻式記憶元件,其中所述第一開口及所述第二開口貫穿所述介電層。 The resistive memory device of claim 5, wherein the first opening and the second opening extend through the dielectric layer. 如申請專利範圍第5項所述之電阻式記憶元件,更包括金屬層,所述金屬層配置於所述介電層上並與所述頂 電極及所述第二開口中的所述導體層電性連接。 The resistive memory device of claim 5, further comprising a metal layer disposed on the dielectric layer and facing the top The electrode and the conductor layer in the second opening are electrically connected. 如申請專利範圍第1項所述之電阻式記憶元件,其中所述底電極配置於所述上部開口的底面與整個側壁上。 The resistive memory element of claim 1, wherein the bottom electrode is disposed on a bottom surface and an entire sidewall of the upper opening. 如申請專利範圍第8項所述之電阻式記憶元件,其中所述底電極於所述上部開口之側壁上的厚度實質上等於所述底電極於所述上部開口之底面上的厚度。 The resistive memory device of claim 8, wherein the thickness of the bottom electrode on the sidewall of the upper opening is substantially equal to the thickness of the bottom electrode on the bottom surface of the upper opening. 如申請專利範圍第9項所述之電阻式記憶元件,其中所述可變電阻層更延伸配置於所述第一開口周圍的所述介電層上。 The resistive memory element of claim 9, wherein the variable resistance layer is further disposed on the dielectric layer around the first opening. 如申請專利範圍第10項所述之電阻式記憶元件,其中所述介電層更具有第二開口,所述導體層更填滿所述第二開口。 The resistive memory device of claim 10, wherein the dielectric layer further has a second opening, the conductor layer filling the second opening. 如申請專利範圍第10項所述之電阻式記憶元件,其中所述第一開口及所述第二開口貫穿所述介電層。 The resistive memory device of claim 10, wherein the first opening and the second opening extend through the dielectric layer. 如申請專利範圍第11項所述之電阻式記憶元件,其中所述可變電阻層裸露出所述第二開口中的所述導體層。 The resistive memory element of claim 11, wherein the variable resistance layer exposes the conductor layer in the second opening. 如申請專利範圍第11項所述之電阻式記憶元件,更包括金屬層,所述金屬層配置於所述介電層上並與所述頂電極及所述第二開口中的所述導體層電性連接。 The resistive memory device of claim 11, further comprising a metal layer disposed on the dielectric layer and the conductor layer in the top electrode and the second opening Electrical connection. 如申請專利範圍第1項所述之電阻式記憶元件,其中所述導體層與所述介電層下方的另一導體層電性連接。 The resistive memory device of claim 1, wherein the conductor layer is electrically connected to another conductor layer under the dielectric layer. 如申請專利範圍第15項所述之電阻式記憶元件,其中所述另一導體層包括摻雜區、多晶矽層或金屬層。 The resistive memory element of claim 15, wherein the another conductor layer comprises a doped region, a polysilicon layer or a metal layer.
TW101143488A 2012-11-21 2012-11-21 Resistance memeory device TWI495087B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101143488A TWI495087B (en) 2012-11-21 2012-11-21 Resistance memeory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101143488A TWI495087B (en) 2012-11-21 2012-11-21 Resistance memeory device

Publications (2)

Publication Number Publication Date
TW201421649A TW201421649A (en) 2014-06-01
TWI495087B true TWI495087B (en) 2015-08-01

Family

ID=51393537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101143488A TWI495087B (en) 2012-11-21 2012-11-21 Resistance memeory device

Country Status (1)

Country Link
TW (1) TWI495087B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215852A1 (en) * 2006-03-15 2007-09-20 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20080272355A1 (en) * 2007-05-04 2008-11-06 Samsung Electronics Co., Ltd. Phase change memory device and method for forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070215852A1 (en) * 2006-03-15 2007-09-20 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20080272355A1 (en) * 2007-05-04 2008-11-06 Samsung Electronics Co., Ltd. Phase change memory device and method for forming the same

Also Published As

Publication number Publication date
TW201421649A (en) 2014-06-01

Similar Documents

Publication Publication Date Title
US10903274B2 (en) Interconnect landing method for RRAM technology
US11239279B2 (en) Resistive switching random access memory with asymmetric source and drain
US10109793B2 (en) Bottom electrode for RRAM structure
US9865653B2 (en) High density resistive random access memory (RRAM)
CN106252505B (en) RRAM device and method
CN110957343B (en) Integrated chip and method for forming integrated chip
US9985203B2 (en) Resistive random access memory (RRAM) with improved forming voltage characteristics and method for making
TW201539730A (en) RRAM cell structure with conductive etch-stop layer
KR102244316B1 (en) Rram structure
US9203020B2 (en) Resistance memory device
TWI741571B (en) Memory device, programmable metallization cell and manufacturing method thereof
TWI495087B (en) Resistance memeory device
TWI521576B (en) Resistive random-access memory and method for fabricating the same
CN103943775B (en) Resistive memory element
TWI505446B (en) Semiconductor device and method of fabricating the same
US10164183B2 (en) Semiconductor device and manufacturing method thereof
TWI572074B (en) Resistive random access memory and method for manufacturing the same
TWI499008B (en) Resistive random access memory device and fabrications thereof
US11818966B2 (en) Resistive random access memory and manufacturing method thereof
CN114583047A (en) Memory device and method of manufacturing the same
CN113675231A (en) Memory device and method of forming a memory device