TWI494984B - Semiconductor process - Google Patents

Semiconductor process Download PDF

Info

Publication number
TWI494984B
TWI494984B TW099123937A TW99123937A TWI494984B TW I494984 B TWI494984 B TW I494984B TW 099123937 A TW099123937 A TW 099123937A TW 99123937 A TW99123937 A TW 99123937A TW I494984 B TWI494984 B TW I494984B
Authority
TW
Taiwan
Prior art keywords
substrate
semiconductor
etching
etching process
recess
Prior art date
Application number
TW099123937A
Other languages
Chinese (zh)
Other versions
TW201205663A (en
Inventor
chun yuan Wu
Chiu Hsien Yeh
Chin Cheng Chien
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW099123937A priority Critical patent/TWI494984B/en
Publication of TW201205663A publication Critical patent/TW201205663A/en
Application granted granted Critical
Publication of TWI494984B publication Critical patent/TWI494984B/en

Links

Description

半導體製程Semiconductor process

本發明係有關於一種半導體製程,且特別係有關於一種利用含有H2 O2 的蝕刻劑蝕刻出凹槽的半導體製程。The present invention relates to a semiconductor process, and more particularly to a semiconductor process for etching a recess using an etchant containing H 2 O 2 .

隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。As semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster.

第1-2圖係為習知應用於應變矽技術的半導體製程的剖面示意圖。如第1圖所示,一半導體結構10的製程包含提供一基材12,於基材12上形成一閘極結構14,其中閘極結構14可具有一閘極介電層14a、一閘極電極14b、一側壁子14c以及一蓋層14d。接著,進行一離子佈植製程,以在側壁子14c兩側的一特定區域16形成源/汲極區域。之後,於特定區域16進行一乾蝕刻製程,以形成一預定深度的凹槽(如第1圖)。繼之,以氨水(NH4 OH)為蝕刻劑,再於特定區域16進行一濕蝕刻製程,而形成一具有V型結構的凹槽(如第2圖)。其後,進行一磊晶製程,以形成一磊晶層填滿於凹槽中(未繪示)。Figures 1-2 are schematic cross-sectional views of conventional semiconductor processes for use in strain enthalpy techniques. As shown in FIG. 1, a semiconductor structure 10 includes a substrate 12, and a gate structure 14 is formed on the substrate 12. The gate structure 14 can have a gate dielectric layer 14a and a gate. The electrode 14b, a side wall 14c and a cover layer 14d. Next, an ion implantation process is performed to form source/drain regions in a specific region 16 on both sides of the sidewalls 14c. Thereafter, a dry etching process is performed on the specific region 16 to form a recess of a predetermined depth (as shown in FIG. 1). Subsequently, ammonia (NH 4 OH) is used as an etchant, and a wet etching process is performed on the specific region 16 to form a groove having a V-shaped structure (as shown in FIG. 2). Thereafter, an epitaxial process is performed to form an epitaxial layer filled in the recess (not shown).

值得注意的是,以NH4 OH為蝕刻劑所蝕刻出的凹槽,其底端呈現類似一V形的結構,而此V形結構將使得製造出的半導體元件產生漏電流的問題,因而降低半導體元件的電性品質。然而,隨著產業的發展,在半導體元件的尺寸漸趨縮小的同時,上述蝕刻出的凹槽結構,對於電性品質的影響將更趨嚴重。It is worth noting that the groove etched with NH 4 OH as an etchant has a bottom-like structure similar to a V-shape, and this V-shaped structure causes a problem of leakage current in the fabricated semiconductor element, thereby reducing The electrical quality of the semiconductor component. However, with the development of the industry, as the size of the semiconductor component is gradually reduced, the effect of the above-described etched groove structure on the electrical quality will become more serious.

本發明提出一種半導體製程,其利用一含有H2 O2 的蝕刻劑,蝕刻出一具有平底狀的凹槽來解決上述問題。The present invention provides a semiconductor process that solves the above problems by etching a recess having a flat bottom using an etchant containing H 2 O 2 .

本發明亦提出一種半導體製程,其利用一含有NH4 OH/H2 O2 的蝕刻劑,蝕刻出一具有良好電性品質的半導體元件。The present invention also provides a semiconductor process that etches a semiconductor component having good electrical quality using an etchant containing NH 4 OH/H 2 O 2 .

本發明提供一種半導體製程,包含有提供一基材,其上定義有一特定區域,以及進行一蝕刻製程,其利用一含有H2 O2 的蝕刻劑,蝕刻特定區域以形成一凹槽。The present invention provides a semiconductor process comprising providing a substrate having a specific region defined thereon and performing an etching process for etching a specific region to form a recess using an etchant containing H 2 O 2 .

在本發明之一實施例中,蝕刻製程包含一溼蝕刻製程,此溼蝕刻製程之蝕刻劑另包含有NH4 OH。In an embodiment of the invention, the etching process includes a wet etching process, and the etchant of the wet etching process further comprises NH 4 OH.

在一較佳實施例中H2 O2 的體積百分比小於NH4 OH的體積百分比的百分之一。此外,在另一較佳的實施例中,NH4 OH/H2 O2 的蝕刻劑之pH值大體上大於10,而NH4 OH/H2 O2 的蝕刻劑之溫度大體上介於25~80℃。In a preferred embodiment, the volume percentage of H 2 O 2 is less than one percent of the volume percentage of NH 4 OH. Further, in another preferred embodiment, the pH of the etchant of NH 4 OH/H 2 O 2 is substantially greater than 10, and the temperature of the etchant of NH 4 OH/H 2 O 2 is substantially between 25. ~80 °C.

依據本發明一較佳實施例,蝕刻製程另包含一乾蝕刻製程,實施於上述溼蝕刻製程之前。此外,本發明之半導體製程可另包含一磊晶製程,用以於凹槽中形成一磊晶層,其中磊晶層又可包含一矽鍺磊晶層或一矽碳磊晶層,而凹槽可包含一平底的凹槽。在一實施例中,本發明之半導體製程包含一清洗步驟,實施於蝕刻製程之前,用以移除基材表面的一氧化層。在其他實施例中,本發明之半導體製程包含一清洗製程,用以清洗凹槽,其中清洗製程可包含一含有NH4 OH/H2 O2 的清洗液,且此清洗液的H2 O2 的體積百分比大於或等於NH4 OH的體積百分比。In accordance with a preferred embodiment of the present invention, the etch process further includes a dry etch process prior to the wet etch process described above. In addition, the semiconductor process of the present invention may further comprise an epitaxial process for forming an epitaxial layer in the recess, wherein the epitaxial layer may further comprise a germanium epitaxial layer or a germanium carbon epitaxial layer, and the recessed layer The trough can include a flat bottom groove. In one embodiment, the semiconductor process of the present invention includes a cleaning step for removing an oxide layer on the surface of the substrate prior to the etching process. In other embodiments, the semiconductor process of the present invention includes a cleaning process for cleaning the recesses, wherein the cleaning process can include a cleaning solution containing NH 4 OH/H 2 O 2 and the cleaning solution of H 2 O 2 The volume percentage is greater than or equal to the volume percentage of NH 4 OH.

在本發明之一實施例中,閘極結構包含一閘極介電層以及一閘極電極,而特定區域可包含源/汲極區域。基材可為一矽基底,且含有NH4 OH/H2 O2 的蝕刻劑蝕刻矽基底之(100)及(110)面的蝕刻速率大於蝕刻矽基底之(111)面的蝕刻速率。In one embodiment of the invention, the gate structure includes a gate dielectric layer and a gate electrode, and the specific region may include a source/drain region. The substrate can be a tantalum substrate, and the etchant containing NH 4 OH/H 2 O 2 etches the (100) and (110) planes of the tantalum substrate at an etch rate greater than the (111) plane of the etched tantalum substrate.

本發明亦提供一種半導體製程,包含有提供一基材;形成一閘極結構於基材上,其中閘極結構的邊緣定義位於基材上的一特定區域;進行一蝕刻製程,以一含有NH4 OH/H2 O2 的蝕刻劑,蝕除特定區域以形成一凹槽;以及形成一磊晶層以填入凹槽。The invention also provides a semiconductor process comprising: providing a substrate; forming a gate structure on the substrate, wherein the edge of the gate structure defines a specific region on the substrate; performing an etching process to contain an NH An etchant of 4 OH/H 2 O 2 etches away a specific region to form a recess; and forms an epitaxial layer to fill the recess.

在一較佳實施例中溼蝕刻製程之H2 O2 的體積百分比小於NH4 OH的體積百分比的百分之一。此外,在另一較佳的實施例中,NH4 OH/H2 O2 的蝕刻劑具有pH大體上大於,而NH4 OH/H2 O2 的蝕刻劑之溫度大體上介於25~80℃。In a preferred embodiment, the volume fraction of H 2 O 2 in the wet etch process is less than one percent of the volume percent of NH 4 OH. Further, in another preferred embodiment, the etchant of NH 4 OH/H 2 O 2 has a pH substantially greater than that of the etchant of NH 4 OH/H 2 O 2 is generally between 25 and 80. °C.

依據本發明一較佳實施例,蝕刻製程另包含一乾蝕刻製程,實施於上述溼蝕刻製程之前。此外,本發明之半導體製程可另包含一磊晶製程,用以於凹槽中形成一磊晶層,其中磊晶層又可包含一矽鍺(SiGe)磊晶層或一矽碳(SiC)磊晶層,而凹槽為一平底的凹槽。在一實施例中,本發明之半導體製程包含一清洗步驟,實施於蝕刻製程之前,用以移除基材表面的一氧化層。在其他實施例中,本發明之半導體製程包含一清洗製程,用以清洗凹槽,其中清洗製程可包含一含有NH4 OH/H2 O2 的清洗液,且此清洗液的H2 O2 的體積百分比大於或等於NH4 OH的體積百分比。In accordance with a preferred embodiment of the present invention, the etch process further includes a dry etch process prior to the wet etch process described above. In addition, the semiconductor process of the present invention may further comprise an epitaxial process for forming an epitaxial layer in the recess, wherein the epitaxial layer may further comprise a germanium (SiGe) epitaxial layer or a germanium carbon (SiC). The epitaxial layer, and the groove is a flat bottom groove. In one embodiment, the semiconductor process of the present invention includes a cleaning step for removing an oxide layer on the surface of the substrate prior to the etching process. In other embodiments, the semiconductor process of the present invention includes a cleaning process for cleaning the recesses, wherein the cleaning process can include a cleaning solution containing NH 4 OH/H 2 O 2 and the cleaning solution of H 2 O 2 The volume percentage is greater than or equal to the volume percentage of NH 4 OH.

在本發明之一實施例中,閘極結構包含一閘極介電層以及一閘極電極,而特定區域可包含源/汲極區域。基材可為一矽基底,且含有NH4 OH/H2 O2 的蝕刻劑蝕刻矽基底之(100)及(110)面的蝕刻速率大於蝕刻矽基底之(111)面的蝕刻速率。In one embodiment of the invention, the gate structure includes a gate dielectric layer and a gate electrode, and the specific region may include a source/drain region. The substrate can be a tantalum substrate, and the etchant containing NH 4 OH/H 2 O 2 etches the (100) and (110) planes of the tantalum substrate at an etch rate greater than the (111) plane of the etched tantalum substrate.

基於上述,本發明係提出一半導體製程,其利用一含有H2 O2 的蝕刻劑,特別是含有NH4 OH/H2 O2 的蝕刻劑,來蝕刻出一凹槽。尤其,此半導體製程可減緩對於基材向下的蝕刻速率,而可蝕刻出一含有平底狀的凹槽,進而避免習知的蝕刻劑所蝕刻出具有V形結構底部的凹槽形狀,造成漏電流的問題,因而提升裝置的電性品質。Based on the above, the present invention proposes a semiconductor process for etching a recess using an etchant containing H 2 O 2 , particularly an etchant containing NH 4 OH/H 2 O 2 . In particular, the semiconductor process can slow down the etching rate of the substrate, and can etch a groove containing a flat bottom, thereby preventing the conventional etchant from etching the shape of the groove having the bottom of the V-shaped structure, resulting in leakage. The problem of current, thus improving the electrical quality of the device.

第3-6圖係為依據本發明一較佳實施例所繪示的半導體製程的剖面示意圖。3-6 are schematic cross-sectional views showing a semiconductor process in accordance with a preferred embodiment of the present invention.

請參閱第3圖,首先,提供一基材110,基材110可為一具有摻質或未具有摻質的單晶矽材。接著,於基材110中形成所需的井摻雜區,以及所需之絕緣層,以使後續於基材110上形成的半導體元件,例如電晶體或其他電子裝置等,與其鄰近的其他類似的半導體元件(未繪示)相絕緣。絕緣層可例如為一溝渠絕緣結構,其製造方法可以先蝕刻出一凹槽,再於凹槽中沉積氧化層而得,在此不多加贅述。在一實施例中,溝渠絕緣結構為一淺溝隔離區(STI),但本發明並不以此為限。Referring to FIG. 3, first, a substrate 110 is provided. The substrate 110 can be a single crystal coffin with or without dopants. Next, a desired well doped region is formed in the substrate 110, and a desired insulating layer, such that a semiconductor element, such as a transistor or other electronic device, subsequently formed on the substrate 110, is similar to the other adjacent thereto. The semiconductor component (not shown) is insulated. The insulating layer can be, for example, a trench insulating structure. The manufacturing method can be performed by etching a recess and depositing an oxide layer in the recess, which will not be described here. In an embodiment, the trench isolation structure is a shallow trench isolation region (STI), but the invention is not limited thereto.

接著,形成閘極結構120於基材110上。閘極結構120主要包含一閘極介電層122以及一閘極電極124,而製作閘極結構120的方法可先以熱處理或沉積製程,全面性於基材110上形成一閘極介電層122,接著再依序沉積一閘極電極124以及一覆蓋層(cap layer)126於閘極介電層122上,然後再利用一圖案化光阻層(patterned photoresist)(圖未示)進行圖案轉移製程,但本發明並不以此為限。其中,閘極介電層122可以為二氧化矽、氮化矽、氮氧化矽、金屬氧化物等高介電係數材質,而閘極電極124可為重摻雜多晶矽,或是包含鈦、鉭、氮化鈦、氮化鉭或鎢等金屬合金的金屬閘極,而覆蓋層126可為氮化矽等。Next, a gate structure 120 is formed on the substrate 110. The gate structure 120 mainly includes a gate dielectric layer 122 and a gate electrode 124. The gate structure 120 can be formed by a heat treatment or a deposition process to form a gate dielectric layer on the substrate 110. 122. Then, a gate electrode 124 and a cap layer 126 are sequentially deposited on the gate dielectric layer 122, and then patterned by using a patterned photoresist (not shown). Transfer process, but the invention is not limited thereto. The gate dielectric layer 122 may be a high dielectric constant material such as hafnium oxide, tantalum nitride, hafnium oxynitride, or metal oxide, and the gate electrode 124 may be heavily doped polysilicon or include titanium or tantalum. The metal gate of a metal alloy such as titanium nitride, tantalum nitride or tungsten, and the cover layer 126 may be tantalum nitride or the like.

此外,閘極結構120可另包含側壁子130,形成於閘極結構120的兩側。如此,其邊緣可定義出位於基材110上的一特定區域140。在本實施例中,特定區域140為源/汲極區域(以下以源/汲極區域140表示特定區域140,但本發明之特定區域140亦可定義於其他需要蝕刻為凹槽的區域),而側壁子130例如為氮化矽層,其可與覆蓋層126共同作為後續進行離子佈植與蝕刻製程時的硬遮罩,用以形成源/汲極區域140。更進一步而言,本實施例之側壁子130可包含內層側壁子132及外層側壁子134等多層結構。In addition, the gate structure 120 may further include sidewall spacers 130 formed on both sides of the gate structure 120. As such, its edges may define a particular region 140 on the substrate 110. In the present embodiment, the specific region 140 is a source/drain region (hereinafter, the source/drain region 140 represents the specific region 140, but the specific region 140 of the present invention may also be defined in other regions that need to be etched into grooves), The sidewall spacer 130 is, for example, a tantalum nitride layer, which can be used together with the cap layer 126 as a hard mask for subsequent ion implantation and etching processes to form the source/drain region 140. Furthermore, the sidewall 130 of the present embodiment may include a multilayer structure such as an inner sidewall spacer 132 and an outer sidewall spacer 134.

如此,在形成側壁子132於閘極結構120之後,可先進行一離子佈植製程,以在閘極結構120的相對兩側之基材110中,形成一輕摻雜源/汲極區域150。接著,再於側壁子132的兩側形成側壁子134。繼之,以閘極結構120與側壁子134為硬遮罩進行另一離子佈植,形成源/汲極區域140。上述為本實施例之閘極結構120以及源/汲極區域140的製程方法,但如習知相關技藝者與通常知識者所熟知,閘極結構120、側壁子130、輕摻雜源/汲極區域150以及源/汲極區域140亦可由其他方式或不同之先後順序形成,本發明並不以此為限。例如本發明若應用於後閘極製程(gate last process),則此時閘極結構120中的閘極電極124僅為一金屬閘極。Thus, after the sidewalls 132 are formed on the gate structure 120, an ion implantation process may be performed to form a lightly doped source/drain region 150 in the substrate 110 on opposite sides of the gate structure 120. . Next, sidewall spacers 134 are formed on both sides of the sidewall spacers 132. Next, another ion implantation is performed with the gate structure 120 and the sidewall spacers 134 as hard masks to form the source/drain regions 140. The above-described method for fabricating the gate structure 120 and the source/drain region 140 of the present embodiment is well known to those skilled in the art, and the gate structure 120, the sidewall spacers 130, and the lightly doped source/germanium are known. The pole region 150 and the source/drain region 140 may also be formed in other manners or in different order, and the invention is not limited thereto. For example, if the present invention is applied to a gate last process, then the gate electrode 124 in the gate structure 120 is only a metal gate.

接著,請參閱第5圖,於形成源/汲極區域140後,進行一蝕刻製程,此蝕刻製程至少包含一濕蝕刻製程,其係以一含有H2 O2 的蝕刻劑,蝕除源/汲極區域140以形成一凹槽160。值得注意的是,以含有H2 O2 的蝕刻劑所蝕刻出的凹槽160為一平底狀的凹槽。相較於習知技術中,以NH4 OH蝕刻劑所蝕刻出的凹槽,可使其具有尖角底端的V型結構平坦化,進而避免產生半導體元件的漏電流的情形。換言之,含有H2 O2 的蝕刻劑,可減緩蝕刻劑對於基材110向下蝕刻的蝕刻速率。在一較佳的實施態樣下,蝕刻劑為含有NH4 OH/H2 O2 的水溶液,而加入H2 O2 於NH4 OH中的體積小於NH4 OH體積的百分之一。此外,NH4 OH/H2 O2 的蝕刻劑之pH值大體上大於10,且NH4 OH/H2 O2 的蝕刻劑的操作溫度為室溫即可,若在較佳操作下溫度可大體介於25~80℃之間。舉例而言,若以基材110為一矽基底,以含有,NH4 OH/H2 O2 的蝕刻劑蝕刻矽基底,蝕刻劑對矽基底(100)及(110)面的蝕刻速率將大於蝕刻矽基底之(111)面的蝕刻速率,因而可蝕刻出一具有平底的凹槽160。Next, referring to FIG. 5, after forming the source/drain region 140, an etching process is performed. The etching process includes at least one wet etching process, which is an etchant containing H 2 O 2 to etch the source/ The drain region 140 forms a recess 160. It is to be noted that the groove 160 etched by the etchant containing H 2 O 2 is a flat-bottomed groove. Compared with the prior art, the groove etched by the NH 4 OH etchant can flatten the V-shaped structure having the bottom end of the sharp corner, thereby avoiding the occurrence of leakage current of the semiconductor element. In other words, the etchant containing H 2 O 2 can slow down the etch rate of the etchant to the substrate 110 down. In a preferred embodiment, the etchant is an aqueous solution containing NH 4 OH/H 2 O 2 , and the volume of H 2 O 2 added to NH 4 OH is less than one percent of the volume of NH 4 OH. In addition, the pH of the etchant of NH 4 OH/H 2 O 2 is substantially greater than 10, and the operating temperature of the etchant of NH 4 OH/H 2 O 2 is room temperature, if the temperature is better under the preferred operation. It is roughly between 25 and 80 °C. For example, if the substrate 110 is a germanium substrate and the germanium substrate is etched with an etchant containing NH 4 OH/H 2 O 2 , the etching rate of the etchant on the tantalum substrate (100) and (110) plane will be greater than The etch rate of the (111) face of the ruthenium substrate is etched so that a groove 160 having a flat bottom can be etched.

此外,請參閱第4-5圖,此蝕刻製程較佳更包含一乾蝕刻製程(如第4圖)與一濕蝕刻製程(如第5圖),亦即在實施蝕刻劑蝕除源/汲極區域140之前,可先進行乾蝕刻製程S,例如為電漿蝕刻。在一較佳的製程操作中,因乾蝕刻製程S的蝕刻速率較快,是以可先以乾蝕刻製程S蝕刻基材110至一預定深度(深度尺寸視實際需求而訂)之後,再進行一以含有NH4 OH/H2 O2 為蝕刻劑的濕蝕刻製程,繼續蝕刻出具有平底狀的凹槽160。如此,不僅可加快蝕刻製程的速率,更可節省濕蝕刻的蝕刻劑之用量及成本。In addition, referring to FIG. 4-5, the etching process preferably further includes a dry etching process (such as FIG. 4) and a wet etching process (such as FIG. 5), that is, performing etching agent removal source/drainage. Prior to region 140, a dry etch process S may be performed, such as plasma etching. In a preferred process operation, since the etching rate of the dry etching process S is faster, the substrate 110 may be first etched by a dry etching process S to a predetermined depth (the depth dimension is set according to actual needs). A groove 160 having a flat bottom shape is continuously etched by a wet etching process containing NH 4 OH/H 2 O 2 as an etchant. In this way, not only the rate of the etching process can be accelerated, but also the amount and cost of the wet etching etchant can be saved.

接續,請參閱第6圖,於蝕刻出凹槽160後,進行一磊晶製程,以形成一磊晶層170填入凹槽160中,其中磊晶層170例如為一矽鍺磊晶層或一矽碳磊晶層。Next, referring to FIG. 6 , after the recess 160 is etched, an epitaxial process is performed to form an epitaxial layer 170 filled in the recess 160 , wherein the epitaxial layer 170 is, for example, an epitaxial layer or A carbon epitaxial layer.

另外,本發明在進行凹槽的蝕刻製程之前,可另包含一清洗步驟,其中此清洗步驟例如以稀釋氫氟酸(DHF)與去離子水做清洗劑,用以在進行蝕刻製程之前,先移除基材110表面的一原生氧化層(native oxide)等。In addition, the present invention may further comprise a cleaning step before performing the etching process of the recess, wherein the cleaning step is performed, for example, by diluting hydrofluoric acid (DHF) and deionized water as a cleaning agent, before performing the etching process. A native oxide or the like on the surface of the substrate 110 is removed.

而且,本發明於形成凹槽160之後,以及形成一磊晶層之前,亦可進行一清洗製程,用以清洗凹槽160,而去除附著於凹槽160,甚至是基材110表面的微粒子,例如蝕刻後的殘留物。此清洗製程係利用標準濕式清潔步驟1(standard clean,SC-1),含有NH4 OH/H2 O2 /H2 O(體積比為:1:1:5至1:2:7),清潔溫度為75~85℃,其主要是利用H2 O2 將基材與凹槽的矽表層氧化並生成氧化層,再利用NH4 OH之弱鹼性來將生成之氧化層水解溶除,進而可使吸附於氧化層上的微粒子脫除。而且在鹼性水溶液中,微粒子與晶圓表面同時帶負電荷,藉由「電雙層(double layer)排斥力」清除微粒子。因此標準濕式清潔步驟1中的比例組成,H2 O2 的體積百分比須大於或等於NH4 OH的體積百分比。此外,標準濕式清潔步驟1高達75~85℃的清洗溶液溫度,更可增加吸附微粒子的動能而脫離晶圓表面。Moreover, after forming the recess 160 and forming an epitaxial layer, the present invention may also perform a cleaning process for cleaning the recess 160 to remove the microparticles attached to the recess 160 or even the surface of the substrate 110. For example, the residue after etching. This cleaning process utilizes standard clean cleaning step 1 (standard clean, SC-1) with NH 4 OH/H 2 O 2 /H 2 O (volume ratio: 1:1:5 to 1:2:7) The cleaning temperature is 75~85 °C, which mainly uses H 2 O 2 to oxidize the surface layer of the substrate and the groove to form an oxide layer, and then utilizes the weak alkalinity of NH 4 OH to dissolve the formed oxide layer by hydrolysis. Further, the fine particles adsorbed on the oxide layer can be removed. Moreover, in an alkaline aqueous solution, the microparticles are negatively charged at the same time as the surface of the wafer, and the microparticles are removed by the "double layer repulsive force". Therefore, the proportion of the standard wet cleaning step 1 composition, the volume percentage of H 2 O 2 must be greater than or equal to the volume percentage of NH 4 OH. In addition, the standard wet cleaning step 1 can be as high as 75~85 °C cleaning solution temperature, which can increase the kinetic energy of the adsorbed particles and leave the wafer surface.

呈上所述,第3~6圖所示之實施例係為利用一含有NH4 OH/H2 O2 的蝕刻劑,以在源/汲極區域蝕刻出一含有平底狀的凹槽160,進而改善半導體元件的漏電流的問題;但本發明亦可使用於形成其他結構的基材110上,用以蝕刻出一凹槽,且特別的是,本發明特別適用於須要蝕刻出一平底狀凹槽的結構。As described above, the embodiment shown in FIGS. 3 to 6 utilizes an etchant containing NH 4 OH/H 2 O 2 to etch a flat-bottomed groove 160 in the source/drain region. Further, the problem of leakage current of the semiconductor element is improved; however, the present invention can also be used to form a substrate 110 of another structure for etching a groove, and in particular, the present invention is particularly suitable for etching a flat bottom. The structure of the groove.

綜上所述,本發明係提出一半導體製程,其利用一含有H2 O2 的蝕刻劑,特別是含有NH4 OH/H2 O2 的蝕刻劑,來蝕刻出一凹槽。尤其,此半導體製程可減緩對於基材向下的蝕刻速率,例如矽基底(100)及(110)面的蝕刻速率大於蝕刻矽基底之(111)面的蝕刻速率,而可蝕刻出一含有平底狀的凹槽,進而避免習知的蝕刻劑所蝕刻出的凹槽形狀,造成漏電流的問題,因而提升裝置的電性品質。In summary, the present invention proposes a semiconductor process that etches a recess using an etchant containing H 2 O 2 , particularly an etchant containing NH 4 OH/H 2 O 2 . In particular, the semiconductor process can slow down the etch rate for the substrate, for example, the etch rate of the ruthenium substrate (100) and (110) plane is greater than the etch rate of the (111) plane of the etch ruthenium substrate, and a flat bottom can be etched. The groove shape avoids the shape of the groove etched by the conventional etchant, causing a problem of leakage current, thereby improving the electrical quality of the device.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100...半導體結構100. . . Semiconductor structure

110...基材110. . . Substrate

120...閘極結構120. . . Gate structure

122...閘極介電層122. . . Gate dielectric layer

124...閘極電極124. . . Gate electrode

130...側壁子130. . . Side wall

132...內層側壁子132. . . Inner side wall

134...外層側壁子134. . . Outer side wall

140...特定區域(源/汲極區域)140. . . Specific area (source/bungee area)

150...輕摻雜源/汲極區域150. . . Lightly doped source/drain region

160...凹槽160. . . Groove

170...磊晶層170. . . Epitaxial layer

S...乾蝕刻製程S. . . Dry etching process

第1-2圖係為習知應用於應變矽技術的半導體製程的剖面示意圖。Figures 1-2 are schematic cross-sectional views of conventional semiconductor processes for use in strain enthalpy techniques.

第3-6圖係為依據本發明一較佳實施例所繪示的應用於應變矽技術的半導體製程的剖面示意圖。3-6 are schematic cross-sectional views of a semiconductor process applied to a strain enthalpy technique in accordance with a preferred embodiment of the present invention.

100...半導體結構100. . . Semiconductor structure

110...基材110. . . Substrate

120...閘極結構120. . . Gate structure

122...閘極介電層122. . . Gate dielectric layer

124...閘極電極124. . . Gate electrode

130...側壁子130. . . Side wall

132...內層側壁子132. . . Inner side wall

134...外層側壁子134. . . Outer side wall

160...凹槽160. . . Groove

Claims (17)

一種半導體製程,包含有:提供一基材,其中該基材包含一矽基底,以及其上定義有一特定區域;以及進行一蝕刻製程,利用一含有H2 O2 的蝕刻劑,蝕刻該特定區域以形成一凹槽,其中該蝕刻製程包含一溼蝕刻製程,且該溼蝕刻製程蝕刻該矽基底之(100)及(110)面的蝕刻速率大於蝕刻該矽基底之(111)面的蝕刻速率。A semiconductor process comprising: providing a substrate, wherein the substrate comprises a substrate, and a specific region is defined thereon; and performing an etching process to etch the specific region by using an etchant containing H 2 O 2 Forming a recess, wherein the etching process includes a wet etching process, and etching the etch rate of the (100) and (110) faces of the germanium substrate by the wet etching process is greater than etching rate of the (111) face of the germanium substrate . 如申請專利範圍第1項所述之半導體製程,其中該蝕刻劑另包含有NH4 OH,且於該蝕刻劑中,H2 O2 的體積百分比小於NH4 OH的體積百分比的百分之一。The semiconductor process of claim 1, wherein the etchant further comprises NH 4 OH, and in the etchant, the volume percentage of H 2 O 2 is less than one percent by volume of NH 4 OH . 如申請專利範圍第2項所述之半導體製程,其中該蝕刻劑的pH值大體上大於10,該溼蝕刻製程的溫度範圍大體上介於25~80℃。 The semiconductor process of claim 2, wherein the etchant has a pH substantially greater than 10 and the wet etch process has a temperature range generally between 25 and 80 °C. 如申請專利範圍第1項所述之半導體製程,其中該蝕刻製程另包含一乾蝕刻製程,實施於該溼蝕刻製程之前。 The semiconductor process of claim 1, wherein the etching process further comprises a dry etching process prior to the wet etching process. 如申請專利範圍第1項所述之半導體製程,其中該特定區域包含源/汲極區域。 The semiconductor process of claim 1, wherein the specific region comprises a source/drain region. 如申請專利範圍第1項所述之半導體製程,另包含一磊晶製程,用以於該凹槽中形成一磊晶層。 The semiconductor process of claim 1, further comprising an epitaxial process for forming an epitaxial layer in the recess. 如申請專利範圍第1項所述之半導體製程,其中該凹槽包含一平底的凹槽。 The semiconductor process of claim 1, wherein the recess comprises a flat bottom recess. 如申請專利範圍第1項所述之半導體製程,另包含一清洗步驟,實施於該蝕刻製程之前,用以移除該基材表面的一氧化層。 The semiconductor process of claim 1, further comprising a cleaning step performed to remove an oxide layer on the surface of the substrate prior to the etching process. 如申請專利範圍第1項所述之半導體製程,另包含一清洗製程,用以清洗該凹槽,其中該清洗製程之清洗液包含NH4 OH/H2 O2 ,且H2 O2 的體積百分比大於或等於NH4 OH的體積百分比。The semiconductor process of claim 1, further comprising a cleaning process for cleaning the recess, wherein the cleaning process of the cleaning process comprises NH 4 OH/H 2 O 2 and the volume of H 2 O 2 The percentage is greater than or equal to the volume percentage of NH 4 OH. 一種半導體製程,包含有:提供一基材,其中該基材係為一矽基底;形成一閘極結構於該基材上,其中該閘極結構的邊緣定義位於該基材上的一源/汲極區域;進行一蝕刻製程,以一含有NH4 OH/H2 O2 的蝕刻劑,蝕除該源/汲極區域以形成一具有平底的凹槽,其中該蝕刻製程包含一溼蝕刻製程,且該溼蝕刻製程蝕刻該矽基底之(100)及(110)面的蝕刻速率大於蝕刻該矽基底之(111)面的蝕刻速率;以及形成一磊晶層以填入該凹槽。A semiconductor process comprising: providing a substrate, wherein the substrate is a germanium substrate; forming a gate structure on the substrate, wherein an edge of the gate structure defines a source on the substrate/ a draining region; performing an etching process to etch the source/drain region by an etchant containing NH 4 OH/H 2 O 2 to form a recess having a flat bottom, wherein the etching process includes a wet etching process And etching the etch rate of the (100) and (110) planes of the germanium substrate by the wet etching process is greater than etching the (111) plane of the germanium substrate; and forming an epitaxial layer to fill the recess. 如申請專利範圍第10項所述之半導體製程,其中於該蝕刻劑中,H2 O2 的體積百分比小於NH4 OH的體積百分比的百分之一。The semiconductor process of claim 10, wherein in the etchant, the volume percentage of H 2 O 2 is less than one percent of the volume percentage of NH 4 OH. 如申請專利範圍第11項所述之半導體製程,其中該蝕刻劑的pH值大體上大於10,該溼蝕刻製程的溫度範圍大體上介於25~80℃。 The semiconductor process of claim 11, wherein the etchant has a pH substantially greater than 10 and the wet etch process has a temperature range generally between 25 and 80 °C. 如申請專利範圍第11項所述之半導體製程,其中該蝕刻製程另包含一乾蝕刻製程,實施於該溼蝕刻製程之前。 The semiconductor process of claim 11, wherein the etching process further comprises a dry etching process prior to the wet etching process. 如申請專利範圍第10項所述之半導體製程,另包含對該源/汲極區域進行至少一離子佈植製程,實施於該蝕刻製程之前。 The semiconductor process of claim 10, further comprising performing at least one ion implantation process on the source/drain region prior to the etching process. 如申請專利範圍第10項所述之半導體製程,其中該磊晶層包含一矽鍺磊晶層或一矽碳磊晶層。 The semiconductor process of claim 10, wherein the epitaxial layer comprises a tantalum epitaxial layer or a tantalum carbon epitaxial layer. 如申請專利範圍第10項所述之半導體製程,另包含一清洗步驟,實施於該蝕刻製程之前,用以移除該基材表面的一氧化層。 The semiconductor process of claim 10, further comprising a cleaning step performed to remove an oxide layer on the surface of the substrate prior to the etching process. 如申請專利範圍第10項所述之半導體製程,另包含一清洗製程,用以清洗該凹槽,其中該清洗製程之清洗液包含NH4 OH/H2 O2 ,且H2 O2 的體積百分比大於或等於NH4 OH的體積百分比。The semiconductor process of claim 10, further comprising a cleaning process for cleaning the recess, wherein the cleaning process of the cleaning process comprises NH 4 OH/H 2 O 2 and the volume of H 2 O 2 The percentage is greater than or equal to the volume percentage of NH 4 OH.
TW099123937A 2010-07-21 2010-07-21 Semiconductor process TWI494984B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099123937A TWI494984B (en) 2010-07-21 2010-07-21 Semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099123937A TWI494984B (en) 2010-07-21 2010-07-21 Semiconductor process

Publications (2)

Publication Number Publication Date
TW201205663A TW201205663A (en) 2012-02-01
TWI494984B true TWI494984B (en) 2015-08-01

Family

ID=46761739

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099123937A TWI494984B (en) 2010-07-21 2010-07-21 Semiconductor process

Country Status (1)

Country Link
TW (1) TWI494984B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168194A (en) * 1995-01-13 1997-12-17 大金工业株式会社 Method of cleaning substrates
US20050095795A1 (en) * 2003-07-07 2005-05-05 Yong-Hoon Son MOS transistors having recesses with elevated source/drain regions and methods of fabricating such transistors
CN1631673A (en) * 2003-12-23 2005-06-29 明基电通股份有限公司 Fluid jetting device and its manufacturing method
CN101195917A (en) * 2006-12-08 2008-06-11 中芯国际集成电路制造(上海)有限公司 Method for etching copper or copper alloy
US20100105184A1 (en) * 2008-10-27 2010-04-29 Fujitsu Microelectronics Limited Method of manufacturing a semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1168194A (en) * 1995-01-13 1997-12-17 大金工业株式会社 Method of cleaning substrates
US20050095795A1 (en) * 2003-07-07 2005-05-05 Yong-Hoon Son MOS transistors having recesses with elevated source/drain regions and methods of fabricating such transistors
CN1631673A (en) * 2003-12-23 2005-06-29 明基电通股份有限公司 Fluid jetting device and its manufacturing method
CN101195917A (en) * 2006-12-08 2008-06-11 中芯国际集成电路制造(上海)有限公司 Method for etching copper or copper alloy
US20100105184A1 (en) * 2008-10-27 2010-04-29 Fujitsu Microelectronics Limited Method of manufacturing a semiconductor device

Also Published As

Publication number Publication date
TW201205663A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US11908862B2 (en) FinFET and fabrication method thereof
US10269927B2 (en) Semiconductor structures and fabrication methods thereof
US8329547B2 (en) Semiconductor process for etching a recess into a substrate by using an etchant that contains hydrogen peroxide
US20120086053A1 (en) Transistor having notched fin structure and method of making the same
US20140273412A1 (en) Methods for Wet Clean of Oxide Layers over Epitaxial Layers
CN105810729B (en) Fin formula field effect transistor and its manufacturing method
KR20140128206A (en) Mos devices with strain buffer layer and methods of forming the same
CN104347421A (en) Method for forming finned field-effect transistor (FET)
CN106847893A (en) The forming method of fin formula field effect transistor
WO2015089951A1 (en) Method for preparing quasi soi source/drain field effect transistor device
CN105280498A (en) Method for forming semiconductor structure
CN106298919B (en) Semiconductor devices, fin formula field effect transistor and forming method thereof
CN108122976A (en) Semiconductor structure and forming method thereof and sram
JP2007281280A (en) Semiconductor device, and its manufacturing method
CN109872953B (en) Semiconductor device and method of forming the same
US9748111B2 (en) Method of fabricating semiconductor structure using planarization process and cleaning process
CN108807179B (en) Semiconductor structure and forming method thereof
CN106486365B (en) The forming method of semiconductor devices
CN105826364B (en) Transistor and forming method thereof
CN108573862B (en) Semiconductor structure and forming method thereof
CN109285811A (en) Semiconductor structure and forming method thereof
TWI494984B (en) Semiconductor process
CN103839792B (en) Method, semi-conductor device manufacturing method
CN108933104B (en) Semiconductor structure and forming method thereof
CN106409765A (en) Semiconductor structure and forming method thereof