TWI494579B - Time measurement module and method for semiconductor automatic test equipment - Google Patents
Time measurement module and method for semiconductor automatic test equipment Download PDFInfo
- Publication number
- TWI494579B TWI494579B TW102110175A TW102110175A TWI494579B TW I494579 B TWI494579 B TW I494579B TW 102110175 A TW102110175 A TW 102110175A TW 102110175 A TW102110175 A TW 102110175A TW I494579 B TWI494579 B TW I494579B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- clock
- time
- counting
- tested
- Prior art date
Links
Landscapes
- Tests Of Electronic Circuits (AREA)
- Measurement Of Unknown Time Intervals (AREA)
Description
本發明係有關於一種時間量測模組及方法,其尤指一種半導體自動測試設備之時間量測模組及方法。 The present invention relates to a time measurement module and method, and more particularly to a time measurement module and method for a semiconductor automatic test equipment.
在現今半導體領域中,積體電路元件必須經過多種電氣測試,以確定其功能特性。其中一項電氣測試就是測量元件的時序,要進行這項測試,必須使用時間測量單元(Time Measurement Unit,TMU)。由於半導體產業中測試的複雜度日益增加,且積體電路(integrated circuit,IC)設計工程師希望保證他們所設計的積體電路在速度和響應上能滿足設計要求,因此大多數自動測試設備在出售時,均內含了時間量測單元。無論測試設備是用於測試類比積體電路、數位積體電路或混合訊號積體電路,都必須使用時間量測單元。 In today's semiconductor industry, integrated circuit components must undergo a variety of electrical tests to determine their functional characteristics. One of the electrical tests is to measure the timing of the components. To perform this test, you must use a Time Measurement Unit (TMU). Due to the increasing complexity of testing in the semiconductor industry, and integrated circuit (IC) design engineers want to ensure that their integrated circuits meet the design requirements in terms of speed and response, most automated test equipment is on sale. At the time, both time measurement units are included. The time measurement unit must be used regardless of whether the test equipment is used to test an analog integrated circuit, a digital integrated circuit, or a mixed signal integrated circuit.
時間量測單元在半導體自動測試設備(ATE)中是常見的量測單元,負責測量兩個事件(event)發生之間的間隔時間或計算事件發生的個數,通常用於量測信號的頻率/週期、傳輸延遲、建立/保持時間(setup/hold time)、上升時間(rise time)、下降時間(fall time)及工作週期(duty cycle)…等等。 The time measurement unit is a common measurement unit in the semiconductor automatic test equipment (ATE). It is responsible for measuring the interval between the occurrence of two events or calculating the number of occurrences of events, usually used to measure the frequency of signals. /cycle, transmission delay, setup/hold time, rise time, fall time, duty cycle, etc.
而在半導體測試設備中通常會擁有多個通道(channels)的時間量測單元,用來比較不同測試通道之間相互關係的時間差異, 因為需要比較不同測試通道間的差異,各測試通道必需取得相同的計數值,資料在比對時才有意義,也因此在不同測試通道之間,時間量測單元的同步架構就是個重要的議題。 In semiconductor test equipment, there are usually multiple time measurement units for comparing the time differences between different test channels. Because it is necessary to compare the differences between different test channels, each test channel must obtain the same count value. The data is meaningful when compared. Therefore, the synchronization architecture of the time measurement unit is an important issue between different test channels.
本發明之一目的,係提供一種半導體自動測試設備之時間量測模組及方法,其藉由在每一時間量測單元中設置同步電路,以同步每一時間量測單元時序的基準。 It is an object of the present invention to provide a time measurement module and method for a semiconductor automatic test device that synchronizes the reference of the timing of each time measurement unit by setting a synchronization circuit in each time measurement unit.
本發明之一目的,係提供一種半導體自動測試設備之時間量測模組及方法,其藉由在量測待測物前同步重置該些時間量測單元,以同步每一時間量測單元時序的基準。 An object of the present invention is to provide a time measuring module and method for a semiconductor automatic testing device, which can synchronize each time measuring unit by synchronously resetting the time measuring units before measuring the object to be tested. The benchmark for timing.
為了達到上述所指稱之各目的與功效,本發明係揭示了一種半導體自動測試設備之時間量測模組,時間量測模組包含複數時間量測單元,該些時間量測單元接收一參考時脈與一重置訊號,而該些時間量測單元分別包含:一同步電路,用以依據參考時脈與重置訊號產生一工作時脈與一致能訊號;一參考計數器,電性連接於同步電路,參考計數器用以依據致能訊號開始計數,並依據工作時脈產生一參考計數訊號;以及一量測電路,電性連接於同步電路與參考計數器,量測電路用以接收一外部待測訊號,並依據參考計數訊號處理外部待測訊號之時序。 In order to achieve the above-mentioned various purposes and effects, the present invention discloses a time measurement module for a semiconductor automatic test equipment. The time measurement module includes a plurality of time measurement units, and the time measurement units receive a reference. And a reset signal, wherein the time measuring units respectively comprise: a synchronization circuit for generating a working clock and a uniform energy signal according to the reference clock and the reset signal; and a reference counter electrically connected to the synchronization a circuit, the reference counter is configured to start counting according to the enable signal, and generate a reference counting signal according to the working clock; and a measuring circuit electrically connected to the synchronous circuit and the reference counter, wherein the measuring circuit is configured to receive an external test The signal, and the timing of the external signal to be tested is processed according to the reference counting signal.
本發明更揭示了一種半導體自動測試設備之時間量測方法,其步驟包含:提供一參考時脈與一重置訊號至複數時間量測單元;依據該參考時脈與該重置訊號同步產生一工作時脈與一致能訊號;以及依據該致能訊號開始計數,並依據該工作時脈產生一參 考計數訊號;以及擷取一外部待測訊號,並依據該參考計數訊號處理該外部待測訊號之時序。 The invention further discloses a time measuring method for a semiconductor automatic testing device, the method comprising: providing a reference clock and a reset signal to a plurality of time measuring units; generating a signal according to the reference clock and the reset signal according to the reference clock Working clock and consistent energy signal; and starting counting according to the enabling signal, and generating a parameter according to the working clock The test signal is counted; and an external signal to be tested is captured, and the timing of the external signal to be tested is processed according to the reference count signal.
10‧‧‧半導體自動測試設備 10‧‧‧Semiconductor automatic test equipment
101‧‧‧系統控制單元 101‧‧‧System Control Unit
1011‧‧‧時序控制單元 1011‧‧‧Sequence Control Unit
1013‧‧‧資料處理單元 1013‧‧‧ Data Processing Unit
1015‧‧‧資料傳輸介面 1015‧‧‧Data transmission interface
20‧‧‧主機 20‧‧‧Host
30‧‧‧待測物 30‧‧‧Test object
CH1‧‧‧測試通道 CH 1 ‧‧‧ test channel
CH2‧‧‧測試通道 CH 2 ‧‧‧ test channel
CHn‧‧‧測試通道 CH n ‧‧‧ test channel
CAP_1‧‧‧擷取單元 CAP_1‧‧‧ capture unit
CAP_n‧‧‧擷取單元 CAP_n‧‧‧ capture unit
CCU_1‧‧‧通道控制單元 CCU_1‧‧‧Channel Control Unit
CCU_2‧‧‧通道控制單元 CCU_2‧‧‧Channel Control Unit
CCU_n‧‧‧通道控制單元 CCU_n‧‧‧Channel Control Unit
CD_1‧‧‧擷取訊號 CD_1‧‧‧Signal
CD_n‧‧‧擷取訊號 CD_n‧‧‧ capture signal
CE‧‧‧致能訊號 CE‧‧‧Enable signal
CE_1‧‧‧致能訊號 CE_1‧‧‧Enable signal
CE_n‧‧‧致能訊號 CE_n‧‧‧Enable signal
DS_1‧‧‧外部待測訊號 DS_1‧‧‧External signal to be tested
DS_n‧‧‧外部待測訊號 DS_n‧‧‧External signal to be tested
DT‧‧‧延遲時間 DT‧‧‧Delayed time
IOP_1‧‧‧輸入輸出介面 IOP_1‧‧‧Input and output interface
IOP_2‧‧‧輸入輸出介面 IOP_2‧‧‧Input and output interface
IOP_n‧‧‧輸入輸出介面 IOP_n‧‧‧Input and output interface
LOG_1‧‧‧邏輯單元 LOG_1‧‧‧ logical unit
LOG_n‧‧‧邏輯單元 LOG_n‧‧‧ logical unit
MC_1‧‧‧量測電路 MC_1‧‧‧Measurement circuit
MC_n‧‧‧量測電路 MC_n‧‧‧Measurement circuit
PLL‧‧‧鎖相迴路 PLL‧‧‧ phase-locked loop
PLL_1‧‧‧鎖相迴路 PLL_1‧‧‧ phase-locked loop
PLL_n‧‧‧鎖相迴路 PLL_n‧‧‧ phase-locked loop
PLC‧‧‧致能計數器 PLC‧‧‧Enable Counter
PLC_1‧‧‧致能計數器 PLC_1‧‧‧Enable Counter
PLC_n‧‧‧致能計數器 PLC_n‧‧‧Enable Counter
PLT_1‧‧‧鎖相時間 PLT_1‧‧‧Lock time
PLT_n‧‧‧鎖相時間 PLT_n‧‧‧Lock time
RC_1‧‧‧參考計數器 RC_1‧‧‧ reference counter
RC_n‧‧‧參考計數器 RC_n‧‧‧ reference counter
RFS_1‧‧‧參考計數訊號 RFS_1‧‧‧ reference counting signal
RFS_n‧‧‧參考計數訊號 RFS_n‧‧‧ reference counting signal
RFC‧‧‧參考時脈 RFC‧‧‧ reference clock
RFR‧‧‧重置訊號 RFR‧‧‧Reset signal
SC‧‧‧擷取時脈 SC‧‧‧Get the clock
SC_1‧‧‧擷取時脈 SC_1‧‧‧Select the clock
SC_n‧‧‧擷取時脈 SC_n‧‧‧Get the clock
SYC‧‧‧同步電路 SYC‧‧‧Synchronous Circuit
SYC_1‧‧‧同步電路 SYC_1‧‧‧Synchronous circuit
SYC_n‧‧‧同步電路 SYC_n‧‧‧Synchronous circuit
TMU_1‧‧‧時間量測單元 TMU_1‧‧‧ time measuring unit
TMU_2‧‧‧時間量測單元 TMU_2‧‧‧ time measuring unit
TMU_n‧‧‧時間量測單元 TMU_n‧‧‧ time measuring unit
WC‧‧‧工作時脈 WC‧‧‧ working hours
WC_1‧‧‧工作時脈 WC_1‧‧‧Working hours
WC_n‧‧‧工作時脈 WC_n‧‧‧Working hours
第1圖:其係為本發明之半導體自動測試設備之方塊圖;第2圖:其係為本發明之第一實施例之時間量測單元之方塊圖;第3圖:其係為本發明之第一實施例之時間量測單元之時序圖;第4圖:其係為本發明之第一實施例之時間量測單元擷取外部待測訊號之時序圖;第5圖:其係為本發明之第一實施例之時間量測模組之方塊圖;第6圖:其係為本發明之第一實施例之時間量測模組之時序圖;第7圖:其係為本發明之第二實施例之時間量測模組之方塊圖;以及第8圖:其係為本發明之半導體自動測試設備之時間量測方法之流程圖。 1 is a block diagram of a semiconductor automatic test apparatus of the present invention; FIG. 2 is a block diagram of a time measuring unit according to a first embodiment of the present invention; FIG. 3 is a view of the present invention A timing diagram of the time measuring unit of the first embodiment; FIG. 4 is a timing diagram of the time measuring unit of the first embodiment of the present invention for extracting an external signal to be tested; FIG. 5 is a timing diagram of A block diagram of a time measurement module according to a first embodiment of the present invention; FIG. 6 is a timing chart of a time measurement module according to a first embodiment of the present invention; FIG. 7 is a view of the present invention A block diagram of a time measurement module of the second embodiment; and FIG. 8 is a flow chart of a time measurement method of the semiconductor automatic test equipment of the present invention.
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:請參閱第1圖,其係為本發明之半導體自動測試設備之方塊圖。如圖所示,本發明之半導體自動測試設備10包含一系統控制單元101與複數測試通道CH1、CH2-CHn。系統控制單元101包含一時序控制單元1011、一資料處理單元1013與一資料傳輸介面1015,而該些測試通道CH1、CH2~CHn分別包含一通道控制單元CCU_1、CCU_2-CCU_n、一時間量測單元TMU_1、TMU_2-TMU_n與一輸入輸 出介面IOP_1、IOP_2-IOP_n。系統控制單元101透過資料傳輸介面1015而連接一主機20,系統控制單元101之時序控制單元1011用以依據主機20所下的指令而控制該些通道控制單元CCU_1、CCU-2-CCU_n,以分別使該些通道控制單元CCU_1、CCU_2-CCU_n提供用以致能該些時間量測單元TMU_1、TMU_2-TMU_n的參考時脈與重置訊號,以使該些時間量測單元TMU_1、TMU_2-TMU_n透過該些輸入輸出介面IOP_1、IOP_2-IOP_n分別量測待測物30產生之複數外部待測訊號DS_1、DS_2-DS_n的時序。資料處理單元1013則用以處理該些測試通道CH1、CH2-CHn所量測到之資料後,透過資料傳輸介面1015傳送至主機20。 For a better understanding and understanding of the features and advantages of the present invention, the preferred embodiments and the detailed description are as follows: Please refer to Figure 1, which is the present invention. A block diagram of a semiconductor automatic test equipment. As shown, the semiconductor automatic test equipment 10 of the present invention includes a system control unit 101 and a plurality of test channels CH 1 , CH 2 -CH n . The system control unit 101 includes a timing control unit 1011, a data processing unit 1013, and a data transmission interface 1015. The test channels CH 1 , CH 2 to CH n respectively include a channel control unit CCU_1, CCU_2-CCU_n, and a time. The measuring unit TMU_1, TMU_2-TMU_n and an input/output interface IOP_1, IOP_2-IOP_n. The system control unit 101 is connected to a host 20 through a data transmission interface 1015. The sequence control unit 1011 of the system control unit 101 controls the channel control units CCU_1 and CCU-2-CCU_n according to instructions from the host 20 to respectively The channel control units CCU_1, CCU_2-CCU_n are provided to enable reference clocks and reset signals of the time measuring units TMU_1, TMU_2-TMU_n, so that the time measuring units TMU_1, TMU_2-TMU_n pass through the The input and output interfaces IOP_1 and IOP_2-IOP_n respectively measure the timings of the plurality of external signals to be tested DS_1, DS_2-DS_n generated by the object to be tested 30. The data processing unit 1013 is configured to process the data measured by the test channels CH 1 and CH 2 -CH n and then transmit the data to the host 20 through the data transmission interface 1015.
基於上述,該些時間量測單元TMU_1、TMU_2-TMU_n用以量測待測物30產生之該些外部待測訊號DS_1、DS_2-DS_n的時序,例如測量兩個事件發生之間的間隔時間或計算事件發生的個數,如待測物30的頻率/週期、傳輸延遲、建立/保持時間、上升時間、下降時間及工作週期等,並將所量測到之時序傳送至主機20,主機20則比較不同測試通道間的時序,以得知不同測試通道間的差異。因此,不同測試通道的時間量測單元TMU_1、TMU_2-TMU_n在時序的基準上必須要同步,否則所量測到不同測試通道間的差異則會不準確。 Based on the above, the time measuring units TMU_1 and TMU_2-TMU_n are used to measure the timings of the external signals to be tested DS_1, DS_2-DS_n generated by the object to be tested 30, for example, to measure the interval between occurrences of two events or Calculate the number of occurrences of the event, such as the frequency/cycle of the object to be tested 30, the transmission delay, the setup/hold time, the rise time, the fall time, and the duty cycle, etc., and transmit the measured timing to the host 20, the host 20 Then compare the timing between different test channels to know the difference between different test channels. Therefore, the time measurement units TMU_1 and TMU_2-TMU_n of different test channels must be synchronized on the timing reference, otherwise the difference between the different test channels measured will be inaccurate.
請一併參閱第2圖,其係為本發明之第一實施例之時間量測單元之方塊圖。由於時間量測模組之該些時間量測單元TMU_1、TMU_2-TMU_n的架構、原理相同,所以在此僅以時間量測單元TMU_1做說明。如圖所示,時間量測單元TMU_1包含一同步電路SYC_1、一參考計數器RC_1以及一量測電路MC_1。同步電路SYC_1 接收通道控制單元CCU_1輸出之一參考時脈RFC與一重置訊號RFR,並依據參考時脈RFC與重置訊號RFR產生一工作時脈WC_1、一致能訊號CE_1與一擷取時脈SC_1。參考計數器RC_1電性連接於同步電路SYC_1,並用以依據致能訊號CE_1而開始對工作時脈WC_1進行計數,以產生一參考計數訊號RFS_1,參考計數訊號RFS_1對應工作時脈WC_1。量測電路MC_1電性連接於同步電路SYC_1與參考計數器RC_1,量測電路MC_1依據工作時脈WC_1運作,並用以接收經由輸入輸出介面IOP_1輸出之外部待測訊號DS_1,以依據參考計數訊號RFS_1記錄外部待測訊號DS_1之時序。 Please refer to FIG. 2, which is a block diagram of a time measuring unit according to a first embodiment of the present invention. Since the structures and principles of the time measuring units TMU_1 and TMU_2-TMU_n of the time measuring module are the same, only the time measuring unit TMU_1 will be described here. As shown, the time measuring unit TMU_1 includes a synchronization circuit SYC_1, a reference counter RC_1, and a measurement circuit MC_1. Synchronization circuit SYC_1 The receive channel control unit CCU_1 outputs a reference clock RFC and a reset signal RFR, and generates a working clock WC_1, a coincidence signal CE_1 and a capture clock SC_1 according to the reference clock RFC and the reset signal RFR. The reference counter RC_1 is electrically connected to the synchronizing circuit SYC_1, and is configured to start counting the working clock WC_1 according to the enabling signal CE_1 to generate a reference counting signal RFS_1, and the reference counting signal RFS_1 corresponds to the working clock WC_1. The measuring circuit MC_1 is electrically connected to the synchronous circuit SYC_1 and the reference counter RC_1, and the measuring circuit MC_1 operates according to the working clock WC_1, and is configured to receive the external signal to be tested DS_1 outputted through the input/output interface IOP_1 for recording according to the reference counting signal RFS_1. Timing of external signal to be tested DS_1.
此外,同步電路SYC_1包含一鎖相迴路PLL_1與一致能計數器PLC_1。鎖相迴路PLL_1用以依據參考時脈RFC之相位產生工作時脈WC_1,且鎖相迴路PLL_1更依據參考時脈RFC而產生擷取時脈SC_1,其中擷取時脈SC_1之頻率大於工作時脈WC_1之頻率。致能計數器PLC_1用以依據重置訊號RFR開始進行計數參考時脈RFC,並計數一延遲時間後產生致能訊號CE_1。下面會針對致能計數器PLC_1為何計數一延遲時間後產生致能訊號CE_1進行說明,於此就不先說明。 In addition, the synchronization circuit SYC_1 includes a phase locked loop PLL_1 and a uniform energy counter PLC_1. The phase-locked loop PLL_1 is configured to generate the working clock WC_1 according to the phase of the reference clock RFC, and the phase-locked loop PLL_1 generates the capture clock SC_1 according to the reference clock RFC, wherein the frequency of the capture clock SC_1 is greater than the working clock. The frequency of WC_1. The enable counter PLC_1 is configured to start counting the reference clock RFC according to the reset signal RFR, and generate a enable signal CE_1 after counting a delay time. The following describes the reason why the enable counter PLC_1 counts a delay time and generates the enable signal CE_1, which will not be described here.
量測電路MC_1包含一擷取單元CAP_1與一邏輯單元LOG_1。擷取單元CAP_1依據工作時脈WC_1運作,並用以依據擷取時脈SC_1擷取外部待測訊號DS_1,而產生一擷取訊號CD_1。邏輯單元LOG_1電性連接於擷取單元CAP_1與參考計數器RC_1,並依據工作時脈WC_1運作,且以參考計數訊號RFS_1為時序的基準記錄擷取訊號CD_1的時序,並將記錄之資料經由資料傳輸介面1015傳送至主機20。 The measurement circuit MC_1 includes a capture unit CAP_1 and a logic unit LOG_1. The capture unit CAP_1 operates according to the working clock WC_1, and is configured to extract an external signal DS_1 according to the capture clock SC_1 to generate a capture signal CD_1. The logic unit LOG_1 is electrically connected to the capture unit CAP_1 and the reference counter RC_1, and operates according to the working clock WC_1, and records the timing of capturing the signal CD_1 with the reference counting signal RFS_1 as a timing sequence, and transmits the recorded data via the data. The interface 1015 is transmitted to the host 20.
請一併參閱第3圖,其係為本發明之第一實施例之時間量測單元之時序圖。如圖所示,於起始時間時致能計數器PLC_1、鎖相迴路PLL_1、參考計數器RC_1、邏輯單元LOG_1與擷取單元CAP_1皆依據重置訊號RFR而進行重置。重置完後,致能計數器PLC_1開始對參考時脈RFC進行計數,並經一延遲時間DT後產生致能訊號CE_1。同時鎖相迴路PLL_1對參考時脈RFC進行鎖相,並經過一鎖相時間PLT_1後產生工作時脈WC_1。當參考計數器RC_1接收到致能訊號CE_1與工作時脈WC_1後,依據致能訊號CE_1而開始對工作時脈WC_1進行計數,以產生參考計數訊號RFS_1。 Please refer to FIG. 3, which is a timing diagram of the time measuring unit of the first embodiment of the present invention. As shown in the figure, the enable counter PLC_1, the phase locked loop PLL_1, the reference counter RC_1, the logic unit LOG_1 and the capture unit CAP_1 are reset according to the reset signal RFR at the start time. After the resetting, the enable counter PLC_1 starts counting the reference clock RFC, and generates the enable signal CE_1 after a delay time DT. At the same time, the phase-locked loop PLL_1 phase-locks the reference clock RFC and generates a working clock WC_1 after a phase-locked time PLT_1. After receiving the enable signal CE_1 and the working clock WC_1, the reference counter RC_1 starts counting the working clock WC_1 according to the enable signal CE_1 to generate the reference counting signal RFS_1.
此外,請一併參閱第4圖,其係為本發明之第一實施例之時間量測單元擷取外部待測訊號之時序圖。如圖所示,經重置訊號RFR重置後,鎖相迴路PLL_1更依據參考時脈RFC產生頻率高於工作時脈WC_1之擷取時脈SC_1,當擷取單元CAP_1接收到工作時脈WC_1與擷取時脈SC_1後,擷取單元CAP_1開始運作,並依據擷取時脈SC_1擷取外部待測訊號DS_1,當外部待測訊號DS_1有上升或下降變化時,則擷取單元CAP_1依據擷取時脈SC_1而產生對應發生變化時間之擷取訊號CD_1。而當邏輯單元LOG_1接收到工作時脈WC_1與參考計數訊號RFS_1時,邏輯單元LOG_1開始運作,並以參考計數訊號RFS_1作為時序的基準,記錄外部待測訊號DS_1發生變化的時序,並將所記錄之資料傳送至主機20。 In addition, please refer to FIG. 4, which is a timing diagram of the time measurement unit of the first embodiment of the present invention for extracting an external signal to be tested. As shown in the figure, after the reset signal RFR is reset, the phase-locked loop PLL_1 generates a clock pulse SC_1 according to the reference clock RFC generation frequency higher than the working clock WC_1. When the capture unit CAP_1 receives the working clock WC_1 After capturing the clock SC_1, the capture unit CAP_1 starts to operate, and the external signal to be tested DS_1 is captured according to the capture clock SC_1. When the external signal to be tested DS_1 changes or decreases, the capture unit CAP_1 is based on The clock signal SC_1 corresponding to the change time is generated by taking the clock SC_1. When the logic unit LOG_1 receives the working clock WC_1 and the reference counting signal RFS_1, the logic unit LOG_1 starts to operate, and uses the reference counting signal RFS_1 as a timing reference to record the timing of the change of the external signal to be tested DS_1, and records the recording. The data is transferred to the host 20.
請一併參閱第5、6圖,第5圖為本發明之第一實施例之時間量測模組之方塊圖,第6圖為本發明之第一實施例之時間量測模組之時序圖。如圖所示,在此僅以時間量測單元TMU_1與TMU_n作代表說明各通道時間量測單元TMU_1-TMU_n的同步方式,而由於 時間量測單元TMU_n之架構與時間量測單元TMU_1相同,所以在此不再贅述。 Please refer to FIG. 5 and FIG. 6 together. FIG. 5 is a block diagram of a time measurement module according to a first embodiment of the present invention, and FIG. 6 is a timing diagram of a time measurement module according to the first embodiment of the present invention. Figure. As shown in the figure, only the time measuring units TMU_1 and TMU_n are used to represent the synchronization mode of each channel time measuring unit TMU_1-TMU_n, The architecture of the time measuring unit TMU_n is the same as that of the time measuring unit TMU_1, so it will not be described here.
如圖所示,該些時間量測單元TMU_1-TMU_n透過各測試通道之該些通道控制單元CCU_1-CCU_n接收相同之參考時脈RFC與重置訊號RFR,但由於每一鎖相迴路PLL_1-PLL_n之鎖相時間PLT_1-PLT_n會有差異,所以該些鎖相迴路PLL_1-PLL_n接收到參考時脈RFC後產生工作時脈WC_1-WC_n之時間亦會不同,因此本發明將每一致能計數器PLC_1-PLC_n皆設定為計數相同之延遲時間DT,並將此延遲時間DT設定等於或大於該些鎖相迴路PLL_1-PLL_n中最長的鎖相時間。 As shown, the time measurement units TMU_1-TMU_n receive the same reference clock RFC and reset signal RFR through the channel control units CCU_1-CCU_n of each test channel, but since each phase-locked loop PLL_1-PLL_n The phase lock time PLT_1-PLT_n will be different, so the time when the phase-locked loop PLL_1-PLL_n generates the working clock WC_1-WC_n after receiving the reference clock RFC will also be different, so the present invention will each uniform energy counter PLC_1- PLC_n is set to count the same delay time DT, and the delay time DT is set equal to or greater than the longest phase lock time of the phase locked loops PLL_1-PLL_n.
換句話說,本發明之該些致能計數器PLC_1-PLC_n必定會在該些鎖相迴路PLL_1-PLL_n皆產生工作時脈WC_1-WC_n與擷取時脈SC_n後,才產生致能訊號CE_1-CE_n,使該些參考計數器RC_1-RC_n分別同時依據工作時脈WC_1-WC_n產生相同時序之參考計數訊號RFS_1-RFS_n,並使擷取單元CAP_1-CAP_n分別同時依據工作時脈WC_1-WC_n與擷取時脈SC_1-SC_n擷取外部待測訊號DS_1-DS_n,且輸出擷取訊號CD_1-CD_n至邏輯單元LOG_1-LOG_n,則邏輯單元LOG_1-LOG_n分別同時依據相同時序之參考計數訊號RFS_1-RFS_n作為時序的基準記錄外部待測序號DS_1-DS_n發生變化的時間,並將所記錄之資料傳送至主機20,以達到該些時間量測單元TMU_1-TMU_n皆同步之目的。 In other words, the enable counters PLC_1-PLC_n of the present invention must generate the enable signals CE_1-CE_n after the phase-locked loops PLL_1-PLL_n generate the working clocks WC_1-WC_n and the capture clocks SC_n. Therefore, the reference counters RC_1-RC_n respectively generate the reference timing signals RFS_1-RFS_n of the same timing according to the working clocks WC_1-WC_n, and the capturing units CAP_1-CAP_n are respectively based on the working clocks WC_1-WC_n and the capturing time. The pulse SC_1-SC_n captures the external signal to be tested DS_1-DS_n, and outputs the capture signal CD_1-CD_n to the logic unit LOG_1-LOG_n, then the logic unit LOG_1-LOG_n simultaneously uses the reference timing signal RFS_1-RFS_n of the same timing as the timing. The reference records the time when the external sequence to be sequenced DS_1-DS_n changes, and transmits the recorded data to the host 20 to achieve the purpose of synchronizing the time measuring units TMU_1-TMU_n.
此外,請參閱第7圖,其係為本發明之第二實施例之時間量測模組之方塊圖。本實施例與第一實施例之差異在於,將該些時間量測單元TMU_1-TMU_n中的該些同步電路SYC_1-SYC_n移除,且 該些時間量測單元TMU_1-TMU_n共用同一個同步電路,而其餘電路架構、原理皆相同於第一實施例,因此不再贅述。 In addition, please refer to FIG. 7, which is a block diagram of a time measurement module according to a second embodiment of the present invention. The difference between this embodiment and the first embodiment is that the synchronization circuits SYC_1-SYC_n in the time measuring units TMU_1-TMU_n are removed, and The time measuring units TMU_1-TMU_n share the same synchronization circuit, and the remaining circuit architectures and principles are the same as in the first embodiment, and therefore will not be described again.
如圖所示,本實施例之時間量測模組包含一同步電路SYC,同步電路SYC包含一鎖相迴路PLL與一致能計數器PLC。鎖相迴路PLL用於提供一擷取時脈SC至該些擷取單元CAP_1-CAP_n,與提供一工作時脈WC至該些參考計數器RC_1-RC_n、該些邏輯單元LOG_1-LOG_n與該些擷取單元CAP_1-CAP_n。致能計數器PLC用於提供一致能訊號CE至該些參考計數器RC_1-RC_n。 As shown in the figure, the time measurement module of this embodiment includes a synchronization circuit SYC, and the synchronization circuit SYC includes a phase locked loop PLL and a consistent energy counter PLC. The phase-locked loop PLL is configured to provide a capture clock SC to the capture units CAP_1-CAP_n, and provide a working clock WC to the reference counters RC_1-RC_n, the logic units LOG_1-LOG_n and the Take the unit CAP_1-CAP_n. The enable counter PLC is used to provide a consistent energy signal CE to the reference counters RC_1-RC_n.
基於上述,由於該些時間量測單元TMU_1-TMU_n共用同一個同步電路SYC,並接收同一個工作時脈WC、擷取時脈SC與致能訊號CE,因此亦可達到同步的功效,而電路的工作原理相同於第一實施例,所以不再贅述。 Based on the above, since the time measuring units TMU_1-TMU_n share the same synchronous circuit SYC and receive the same working clock WC, the capture clock SC and the enable signal CE, the synchronization effect can also be achieved, and the circuit The working principle is the same as that of the first embodiment, so it will not be described again.
請一併參閱第8圖,其係為本發明之半導體自動測試設備之時間量測方法之流程圖。如圖所示,首先,執行步驟S10,提供參考訊號RFC與重置訊號RFR至複數時間量測單元TMU_1-TMU_n。接著執行步驟S20,該些同步電路SYC_1-SYC_n依據重置訊號RFR開始對參考訊號RFC進行計數一延遲時間DT後,產生致能訊號CE_1-CE_n,並鎖定參考訊號RFC之相位以產生工作時脈WC_1-WC_n與擷取時脈SC_1-SC_n。 Please refer to FIG. 8 , which is a flow chart of a method for measuring the time of the semiconductor automatic test equipment of the present invention. As shown in the figure, first, step S10 is performed to provide a reference signal RFC and a reset signal RFR to the complex time measuring units TMU_1-TMU_n. Then, in step S20, the synchronization circuits SYC_1-SYC_n start counting the reference signal RFC according to the reset signal RFR for a delay time DT, generate the enable signal CE_1-CE_n, and lock the phase of the reference signal RFC to generate the working time. The pulses WC_1-WC_n and the acquisition clocks SC_1-SC_n.
接著執行步驟S30,該些參考計數器RC_1-RC_n依據致能訊號CE_1-CE_n開始對工作時脈WC_1-WC_n進行計數,以產生對應工作時脈WC_1-WC_n之參考計數訊號RFS_1-RFS_n。接著執行步驟S40,量測電路MC_1-MC_n依據工作時脈WC_1-WC_n而運作,並依據擷 取時脈SC_1-SC_n擷取外部待測訊號DS_1-DS_n,而產生擷取訊號CD_1-CD_n,且以參考計數訊號RFS_1-RFS_n作為時序的基準記錄擷取訊號CD_1-CD_n之時序,並將所記錄之資料傳送至主機20,換句話說,量測電路MC_1-MC_n依據工作時脈WC_1-WC_n運作,並以依據參考計數訊號RFS_1-RFS_n記錄外部待測訊號DS_1-DS_n之時序。 Then, in step S30, the reference counters RC_1-RC_n start counting the working clocks WC_1-WC_n according to the enable signals CE_1-CE_n to generate reference counting signals RFS_1-RFS_n corresponding to the working clocks WC_1-WC_n. Then, in step S40, the measurement circuits MC_1-MC_n operate according to the working clocks WC_1-WC_n, and according to 撷 The clocks SC_1-SC_n are taken from the external signals to be tested DS_1-DS_n, and the captured signals CD_1-CD_n are generated, and the timings of the signals CD_1-CD_n are recorded by using the reference counting signals RFS_1-RFS_n as timing references, and The recorded data is transmitted to the host 20, in other words, the measurement circuits MC_1-MC_n operate according to the operating clocks WC_1-WC_n, and the timings of the external signals to be tested DS_1-DS_n are recorded in accordance with the reference counting signals RFS_1-RFS_n.
基於上述,本發明藉由在量測待測物前同步傳送重置訊號RFR至該些時間量測單元TMU_1-TMU_n,以重置該些時間量測單元TMU_1-TMU_n,並該些同步電路SYC_1-SYC_n依據重置訊號RFR同時對參考訊號RFC進行計數,以同步每一時間量測單元(TMU_1-TMU_n)之時序的基準。 Based on the above, the present invention resets the time measuring units TMU_1-TMU_n by synchronously transmitting the reset signal RFR to the time measuring units TMU_1-TMU_n before measuring the object to be tested, and the synchronization circuits SYC_1 - SYC_n simultaneously counts the reference signal RFC according to the reset signal RFR to synchronize the reference of the timing of each time measurement unit (TMU_1 - TMU_n).
綜上所述,本發明之半導體自動測試設備之時間量測模組包含複數時間量測單元,該些時間量測單元分別包含一同步電路、一參考計數器與一量測電路,其量測方法係藉由在量測待測物前同步重置該些時間量測單元,並藉由該些同步電路以同時致能該些參考計數器,使該些時間量測單元時序的基準皆相同,以達到同步該些時間量測單元之目的。 In summary, the time measurement module of the semiconductor automatic test equipment of the present invention includes a plurality of time measurement units, each of which includes a synchronization circuit, a reference counter and a measurement circuit, and the measurement method thereof By synchronously resetting the time measuring units before measuring the object to be tested, and by using the synchronization circuits to simultaneously enable the reference counters, the timings of the time measuring units are all the same, The purpose of synchronizing the time measuring units is achieved.
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and the variations, modifications, and modifications of the shapes, structures, features, and spirits described in the claims of the present invention. All should be included in the scope of the patent application of the present invention.
本發明係實為一具有新穎性、進步性及可供產業利用者,應符合我國專利法所規定之專利申請要件無疑,爰依法提出發明專 利申請,祈 鈞局早日賜准專利,至感為禱。 The invention is a novel, progressive and available for industrial use, and should meet the requirements of the patent application stipulated in the Patent Law of China. With the application of the application, the praying office will grant the patent as soon as possible.
CAP_1‧‧‧擷取單元 CAP_1‧‧‧ capture unit
CAP_n‧‧‧擷取單元 CAP_n‧‧‧ capture unit
CD_1‧‧‧擷取訊號 CD_1‧‧‧Signal
CD_n‧‧‧擷取訊號 CD_n‧‧‧ capture signal
CE_1‧‧‧致能訊號 CE_1‧‧‧Enable signal
CE_n‧‧‧致能訊號 CE_n‧‧‧Enable signal
DS_1‧‧‧外部待測訊號 DS_1‧‧‧External signal to be tested
DS_n‧‧‧外部待測訊號 DS_n‧‧‧External signal to be tested
LOG_1‧‧‧邏輯單元 LOG_1‧‧‧ logical unit
LOG_n‧‧‧邏輯單元 LOG_n‧‧‧ logical unit
MC_1‧‧‧量測電路 MC_1‧‧‧Measurement circuit
MC_n‧‧‧量測電路 MC_n‧‧‧Measurement circuit
PLL_1‧‧‧鎖相迴路 PLL_1‧‧‧ phase-locked loop
PLL_n‧‧‧鎖相迴路 PLL_n‧‧‧ phase-locked loop
PLC_1‧‧‧致能計數器 PLC_1‧‧‧Enable Counter
PLC_n‧‧‧致能計數器 PLC_n‧‧‧Enable Counter
RC_1‧‧‧參考計數器 RC_1‧‧‧ reference counter
RC_n‧‧‧參考計數器 RC_n‧‧‧ reference counter
RFS_1‧‧‧參考計數訊號 RFS_1‧‧‧ reference counting signal
RFS_n‧‧‧參考計數訊號 RFS_n‧‧‧ reference counting signal
RFC‧‧‧參考時脈 RFC‧‧‧ reference clock
RFR‧‧‧重置訊號 RFR‧‧‧Reset signal
SC_1‧‧‧擷取時脈 SC_1‧‧‧Select the clock
SC_n‧‧‧擷取時脈 SC_n‧‧‧Get the clock
SYC_1‧‧‧同步電路 SYC_1‧‧‧Synchronous circuit
SYC_n‧‧‧同步電路 SYC_n‧‧‧Synchronous circuit
TMU_1‧‧‧時間量測單元 TMU_1‧‧‧ time measuring unit
TMU_n‧‧‧時間量測單元 TMU_n‧‧‧ time measuring unit
WC_1‧‧‧工作時脈 WC_1‧‧‧Working hours
WC_n‧‧‧工作時脈 WC_n‧‧‧Working hours
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102110175A TWI494579B (en) | 2013-03-22 | 2013-03-22 | Time measurement module and method for semiconductor automatic test equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102110175A TWI494579B (en) | 2013-03-22 | 2013-03-22 | Time measurement module and method for semiconductor automatic test equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201437656A TW201437656A (en) | 2014-10-01 |
TWI494579B true TWI494579B (en) | 2015-08-01 |
Family
ID=52113340
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102110175A TWI494579B (en) | 2013-03-22 | 2013-03-22 | Time measurement module and method for semiconductor automatic test equipment |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI494579B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105652173B (en) * | 2014-11-10 | 2018-08-21 | 致茂电子(苏州)有限公司 | Correcting plate and its timing corrections method |
TWI586979B (en) * | 2015-12-23 | 2017-06-11 | 致茂電子股份有限公司 | Grouped time measuring module and grouped measuring method of automatic testing equipment |
CN112130053B (en) * | 2020-08-11 | 2024-05-14 | 上海华虹集成电路有限责任公司 | Method for synchronously testing chip functions on ATE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200502770A (en) * | 2003-07-02 | 2005-01-16 | Via Tech Inc | Circuit and method for aligning data transmitting timing of a plurality of lanes |
US20080203717A1 (en) * | 2007-02-03 | 2008-08-28 | Automotive Group Ise Innomotive Systems Europe Gmbh | Rollover protection system for motor vehicles with an actively deployable rollover body |
WO2011153107A1 (en) * | 2010-06-04 | 2011-12-08 | Xilinx, Inc. | Input/output bank architecture for an integrated circuit |
-
2013
- 2013-03-22 TW TW102110175A patent/TWI494579B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200502770A (en) * | 2003-07-02 | 2005-01-16 | Via Tech Inc | Circuit and method for aligning data transmitting timing of a plurality of lanes |
US20080203717A1 (en) * | 2007-02-03 | 2008-08-28 | Automotive Group Ise Innomotive Systems Europe Gmbh | Rollover protection system for motor vehicles with an actively deployable rollover body |
WO2011153107A1 (en) * | 2010-06-04 | 2011-12-08 | Xilinx, Inc. | Input/output bank architecture for an integrated circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201437656A (en) | 2014-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6993695B2 (en) | Method and apparatus for testing digital devices using transition timestamps | |
US20090089623A1 (en) | Event timing analyzer for a system of instruments and method of analyzing event timing in a system of intruments | |
US9264049B2 (en) | Synchronous on-chip clock controllers | |
Lipinski et al. | Performance results of the first White Rabbit installation for CNGS time transfer | |
CN105549379A (en) | Synchronous measurement apparatus based on high precision time reference triggering and method thereof | |
US6668346B1 (en) | Digital process monitor | |
US9116561B2 (en) | Time reference systems for CPU-based and optionally FPGA-based subsystems | |
CN104535918B (en) | A kind of cross clock domain lock unit internal constant test circuit and method | |
CN102928677A (en) | Nano pulse signal acquiring method | |
TWI494579B (en) | Time measurement module and method for semiconductor automatic test equipment | |
CN106773635A (en) | A kind of time service precision detecting system and implementation method | |
TWI586979B (en) | Grouped time measuring module and grouped measuring method of automatic testing equipment | |
US8144828B2 (en) | Counter/timer functionality in data acquisition systems | |
TW201303532A (en) | Method and system for measuring time | |
CN104076263B (en) | The measuring time value module of semiconductor ATE and method | |
CN110062223A (en) | A kind of method and its circuit system of high-precise synchronization test camera frame signal | |
US8942300B1 (en) | Integrated digitizer system with streaming interface | |
CN216595393U (en) | Time delay testing device | |
US20130346022A1 (en) | Physical quantity measuring apparatus and physical quantity measuring method | |
US9170603B2 (en) | Time-correlation of data | |
CN111123227B (en) | System and method for synchronizing data time of radio frequency simulation equipment | |
US20160028387A1 (en) | Measuring delay between signal edges of different signals using an undersampling clock | |
WO2015193230A1 (en) | Systems and methods for monitoring hardware observation points within a system on a chip (soc) | |
CN115378538B (en) | Multi-trigger management system applied to full-trajectory test of light weapon target lane | |
Viciana et al. | Enhancing Power System Analytics: Real-World Applications and Improvements of the OpenZmeterGPS for Synchronized Measurements |