TWI494082B - 多維麻醉深度信號監控方法 - Google Patents

多維麻醉深度信號監控方法 Download PDF

Info

Publication number
TWI494082B
TWI494082B TW101148046A TW101148046A TWI494082B TW I494082 B TWI494082 B TW I494082B TW 101148046 A TW101148046 A TW 101148046A TW 101148046 A TW101148046 A TW 101148046A TW I494082 B TWI494082 B TW I494082B
Authority
TW
Taiwan
Prior art keywords
signal
analysis
anesthesia
dimensional
physiological
Prior art date
Application number
TW101148046A
Other languages
English (en)
Other versions
TW201424685A (zh
Inventor
Shou Zen Fan
Jiann Shing Shieh
Kuo Kuang Jen
Ying Sun Huan
Jeng Fu Wu
Original Assignee
Nat Inst Chung Shan Science & Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Inst Chung Shan Science & Technology filed Critical Nat Inst Chung Shan Science & Technology
Priority to TW101148046A priority Critical patent/TWI494082B/zh
Publication of TW201424685A publication Critical patent/TW201424685A/zh
Application granted granted Critical
Publication of TWI494082B publication Critical patent/TWI494082B/zh

Links

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

多維麻醉深度信號監控方法
本發明係關於一種麻醉深度監控方法,尤指可同時監控病患之腦電信號信號、心電信號以及血氧濃度,並可擷取出意識層次、自主神經反應及疼痛反應等各項指標的一種多維麻醉深度信號監控方法。
臨床麻醉通常包括:意識消失(無痛)、對傷害性刺激引起的外來刺激反應有適度的抑制、肌肉鬆弛以滿足手術醫生的需求、使病患對術中刺激無記憶等;臨床麻醉於病患身體上的實際表現則包括:血壓下降、心率減慢、呼吸抑制等。嚴格來說,麻醉狀態是多種藥理效應的綜合,包 括意識消失、健忘、止痛、肌肉鬆弛、抑制軀體、心血管和內分泌對手術傷害性刺激的反應,故麻醉深度沒有簡單統一的定義,也難以用一種指標對麻醉深度進行量化。
所謂的麻醉深度,實質上是在意識消失後對手術等傷害性刺激引起的交感-內分泌反應,即外來刺激反應的抑制程度。麻醉深度的概念最初分為三期:陶醉、興奮(有或無意識)和較深的麻醉,其中第一期之後擴展為三級:第一級無記憶缺失和鎮痛;第二級完全記憶缺失、部分鎮痛;以及第三級完全無記憶和無痛,但對語言刺激有反應、基本無反射抑制。常用於麻醉深度判斷的體徵主要包括下列幾種:1.心血管系統:血壓和心率一般隨麻醉加深而下降;2.眼徵:麻醉深度適宜時瞳孔中等偏小,麻醉過淺或過深均使瞳孔擴大,吸入麻醉藥過量使瞳孔不規則,嗎啡類鎮痛藥使瞳孔縮小;深麻醉時瞳孔光反應消失、眼球固定、無眼淚;3.呼吸系統:呼吸量、呼吸形式和節律變化在未用肌肉鬆弛藥時能反映麻醉深度。但當用肌肉鬆弛藥後,已不能作為麻醉深度的判斷依據;4.骨骼肌肉反應:病患對手術傷害性刺激是否有體動反應是麻醉是否合適的重要體徵,而當用肌肉鬆弛藥後骨骼肌肉反應不能作為麻醉深度的判斷體徵; 5.皮膚體徵:皮膚顏色和溫度反映心血管功能和氧結合情況,淺麻醉時交感神經呈現興奮,出汗增多,並多見於氧化亞氮-麻醉性鎮痛藥麻醉,因麻醉性鎮痛藥有發汗作用;6.消化道體徵:淺麻醉時吞咽運動存在,唾液分泌和腸鳴音隨麻醉加深而行抑制,食道運動也隨著麻醉的加深而漸抑制。
MAC是Monitored Anesthetia Care的簡寫,意即麻醉監控。請參閱第一圖,係麻醉藥物濃度與病患生理狀態之關係圖,由第一圖可知,當使用麻醉藥物之濃度越高時,則病患之生理狀態則趨向深層麻醉(全身麻醉);於此,必須注意的是,於病患進入深層麻醉之前,病人會先失去意識,並接著失去維持呼吸的肺臟反射,因此,醫師與醫護人員要隨時以臨床徵候或腦波變化來監測麻醉深度,調整藥物濃度,並提供麻醉期間的監測與所有的必要照護,確實維護病患之安全。是以,麻醉監視發展的重點,著重於清醒程度,主要目的是加強麻醉劑或鎮定劑的安全性與效率,進而大幅降低用量過高/過低的危險,由於過度麻醉可能會有導致其他併發症的危險,同時將會延長病患在加護病房恢復的時間;而另一方面,麻醉不足則對病患的安全與舒適感有負面影響。
美國食品及藥物管理局(U.S.Food and Drug Administration, FDA)於1996年核准使用BIS(Bi-spectral index),BIS主要在反映大腦皮質的興奮或抑制狀態,是自發腦電位,BIS值的大小與鎮定、意識、記憶高度相關,能很好地監測麻醉深度中的鎮定成分,但對鎮痛成分監測不敏感。並且,BIS長久以來存在著以下問題:(1)尚無一個意識消失和恢復的絕對值;(2)臨床研究顯示,當病患意識恢復時,其腦電波圖(Electroencephalogram,EEG)會呈現高頻高振幅波,然而BIS則無相對應的變化,反而呈現遲滯現象;以及(3)BIS雖能提示意識消失和恢復的兩種狀態,但個體差異較大,且對於意識消失和恢復的敏感度較差。
有鑑於BIS具有諸多臨床上的缺失,因此另一種麻醉監控的方法遂被提出,即,聽覺誘發電位(Auditory Evoked Potential,AEP),其中,AEP(Auditory evoked potential)index係於2003年被提出,可反映皮層興奮或抑制狀態,及皮層下腦電活動,可用於監測手術傷害性刺激、鎮痛和體動等成分,AEP index監測主要以音頻訊號刺激(Auditory Evoked Potential)輔以EEG訊號,但\臨床使用上仍存在以下問題:(A)AEP index對使用環境要求較高;(B)由於誘發電位弱,易受干擾,尤其是電器的電波干擾,造成臨床使用的不便和限制;以及(C)AEP index監測需給予聽覺刺激,因此對於聽力障礙的 病患並不適用。
此外,當全身麻醉加深時,由於腦電波圖EEG與額肌電圖(Electromyogram,EMG)的變化係由不規則到規則,因此可用熵(entropy)來測定EEG和EMG的不規則性;其中,麻醉熵主要包含2個參數:快反應熵(fast-reacting entropy,RE)和狀態熵(state entropy,SE),麻醉熵的值高表示採集的EEG和EMG的電信號呈高度不規則性,病人處於清醒狀態。再者,舊觀念系認為只要麻醉醫師或麻醉護士在手術中持續監控患者的生命跡象,包括血壓、呼吸和心跳頻率,運動反應、出汗、流淚、眼球運動及瞳孔反射等,就能確保患者處於無意識狀態、穩定且不會感到疼痛,不過,研究結果顯示,這些跡象特異性不強,影響因素多,難以準確反映麻醉深度。
如此,經由上述,吾人可以得知BIS、AEP index和麻醉熵雖是臨床麻醉深度監測常用的指標,但仍存在諸多侷限,無法滿足所有臨床使用上所產生的狀況。有鑑於此,本案之發明人係極力地研究發明,而終於研發出一種多維麻醉深度信號監控方法。
本發明之主要目的,在於提供一種多維麻醉深度信號監控方法,係可同時擷取術中病患之腦波(EEG)、心電圖(ECG)及血氧濃度(SpO2),提供醫師與醫護人員在手術中同 時監視病患之麻醉深度之三種生理指標變化(包含意識層次、自主神經反應及疼痛反應),以幫助醫師與醫護人員能更精確在臨床上判斷病人的狀態,可確保病患獲得最佳的麻醉照護,並減少醫療事故與糾紛。
因此,為了達成本發明之主要目的,本案之發明人係提出一種多維麻醉深度信號監控方法,係包括:(1)生理訊號擷取步驟,用以自一手術患者身上擷取複數個生理訊號,並輸出複數個數位化生理訊號;(2)資料分析步驟,用以藉由複數個非線性分析的方式,分析該些數位化生理訊號,以獲得複數個生理訊號程度;(3)指數化步驟,將經過分析的該些生理訊號程度再經由專業醫療團隊經驗根據該手術患者之臨床狀況所作出的評估,進而優化該些生理訊號程度為複數個生理訊號指數;以及(4)綜合評估步驟,藉由一歸納容錯模型綜合評估該些生理訊號指數,以綜合評估多維麻醉深度。
為了能夠更清楚地描述本發明所提出之一種多維麻醉深度信號監控方法,以下將配合圖式,詳盡說明本發明之實施例。
請參閱第二圖,係本發明之一種多維麻醉深度信號監 控方法的流程架構圖。如第二圖所示,本發明之多維麻醉深度信號監控方法包括4個主要步驟:(S1)生理訊號擷取步驟、(S2)資料分析步驟、(S3)指數化步驟、以及(S4)綜合評估步驟。
首先,於(S1)之生理訊號擷取階段(步驟),係自一手術患者身上擷取複數個生理訊號,並輸出複數個數位化生理訊號。其中,該複數個生理訊號至少包括一腦電生理訊號10、一心電生理訊號11與一血氧生理訊號12,且該腦電生理訊號10、該心電生理訊號11與該血氧生理訊號12係分別由一腦電訊號擷取裝置、一心電訊號擷取裝置與一血氧訊號擷取裝置所測得;於本發明中,該血氧信號擷取裝置可為一外接式血氧機或一嵌入式血氧信號擷取卡,同樣地該心電信號擷取裝置可為一外接式心電儀或一嵌入式心電信號擷取卡,並且該腦電信號擷取裝置可為一外接式腦波儀或一嵌入式腦波信號擷取卡。或者,該腦電生理訊號、該心電生理訊號與該血氧生理訊號係同時由一多維生理訊號擷取裝置所測得,而該多維生理訊號擷取裝置可為一外接式多維生理訊號擷取儀或一嵌入式多維生理訊號擷取卡。
並且,完成(S1)之生理訊號擷取階段後,接著,(S2)之資料分析階段(步驟),係藉由複數個非線性分析的方式,分析該些數位化生理訊號,以獲得複數個生理訊號程 度,其中,該複數個生理訊號程度至少包括一意識清晰程度、一自主神經活性程度以及一壓力疼痛程度。於本發明中,該非線性分析的方式包括一經驗膜態分解21、一心率變異分析22、一心率間隙分析23、一脈波體積描記波形之振幅分析24、一意識清晰度分析26、一自主神經活性分析27、以及一壓力疼痛分析28。
更進一步地描述(S2)之資料分析階段之內容,如第二圖所示,該些數位化生理訊號之數位化腦電生理訊號係透過經驗膜態分解21(empirical mode decomposition,EMD)而被解析,進而進行其意識清晰度分析26,進而被解析成一意識清晰程度。於本發明中,該意識清晰度分析之方法可為腦電雙頻(Bispectral,BIS)法、聽覺誘發電位指數(Auditory Evoked Potential,AEP)法、近似熵(Approximate entropy,ApEn)法、樣本熵(sample entropy)法、多重熵(Multi-scale entropy,MSE)、或者頻譜熵(Spectral entropy)法。
繼續地,於(S2)之資料分析階段中,當該數位化心電生理訊號完成經驗膜態分解21與心率變異分析(HRV)22之後,如第二圖所示,係接著進行其自主神經活性分析27,進而被解析成一自主神經活性程度;其中,該自主神經活性分析之方法可為:R-R間隔變動係數(coefficient of variation of R-R intervals,CVRR)法、間期差值平方和的均方根(root mean square of successive difference,RMSSD)法、總力量(total power,TD) 法、極低頻範圍功率(very low-frequency power,VLFP)法、低頻範圍功率(low-frequency power,LFP)法、高頻範圍功率(high-frequency power,HFP)法、正規化極低頻範圍功率(normalized very lower-frequency power,nVLFP)法、低頻範圍功率(normalized low-frequency power,LFP)法、正規化低頻範圍功率(low-frequency power,nLFP)法、正規化高頻範圍功率(high-frequency power,nHFP)法、去趨勢振盪分解法(Detrended fluctuation analysis,DFA)、或者多模態分析法(Multi-modal analysis)。
承上述,同樣地,於(S2)之資料分析階段中,當該數位化血氧生理訊號完成經驗膜態分解21與心率間隙分析23(HBI)及脈波體積描記波形之振幅分析24(PPGA)之後,如第二圖所示,係接著進行其壓力疼痛分析28,進而被解析成一壓力疼痛程度;其中,壓力疼痛分析之計算方式如下:壓力指標(surgical stress index,SSI)=100-(α×PPGAnorm+β×HBInorm),其中PPGAnorm為正規化之一脈波訊號振幅,HBInorm為正規化之一心跳間期。
完成(S2)之資料分析階段(步驟)後,繼續地,於(S3)指數化階段(步驟)中,係將經過解析的該些生理訊號程度(即,意識清晰程度、自主神經活性程度與壓力疼痛程度)進行進一步解析,再經由專業醫療團隊經驗根據該手術患者之臨床狀況所作出的評估(即圖中所示專業醫療團隊作出之手術患者臨床狀況評估25),進而優化該些生理訊號 為複數個生理訊號指數;其中,該複數個生理訊號指數至少包括:一意識清晰度(Consciousness)指數31、一自主神經活性(Activity of ANS)指數32以及一壓力疼痛(Pain)指數33。
最後,於(S4)之綜合評估階段(步驟),係藉由一歸納容錯模型40,例如類神經模糊(Neuro-fuzzy)模型或者法則式(rule based模型),以綜合評估該些生理訊號指數;如此,藉由上述步驟(S1)~(S2)所進行之多維麻醉深度信號監控,係可確保病患獲得最佳的麻醉照護,並減少醫療事故與糾紛。
如此,上述之說明已完整且清楚地揭露本發明之多維麻醉深度信號監控方法;並且,經由上述,可得知本發明包含下列之優點:
1.本發明之間控方法可彌補現有以腦波做為判斷指標為主儀器的不足,因為有些麻藥的表徵並不能以腦波呈現,如Ketamine麻醉藥其作用在組織深層,以腦波訊號強度微伏(microvolt)來看,很難量測,此時如能藉由ECG訊號變化情形做為指標,將自主神經活性對比至DOA以判斷麻醉深度,當能克服此類情形。
2.現有麻醉監視儀器易受雜訊干擾,當有干擾時儀器即無訊號輸出,此時病人若因麻醉深度不夠,致因疼痛而於手術中醒來,將會影響手術安全,甚或病人術後不良回憶與後遺症。依芬蘭研究團隊長達10年的研究指出,可 以血氧濃度SPO2的觀測,進而獲得壓力指標SSI的變化情形,瞭解病人疼痛反應以輔助EEG訊號儀器。故,本發明之監控方法係同時包含三種以上的生理指標,可完整監控手術中病人麻醉深度變化,可確保病人獲得最佳之照護。
3.承上述第2點,本發明之之方法係同時擷取腦波(EEG)、心電訊號(ECG)、血氧濃度(SpO2),提供醫師與醫護人員在手術中同時監視病患之麻醉深度之三種生理指標變化,以幫助醫師與醫護人員能更精確在臨床上判斷病人的狀態,可確保病患獲得最佳的麻醉照護,並減少醫療事故與糾紛。
4.此外,本發明之多維麻醉深度信號監控方法亦可以廣泛的被用在不同的生理狀態評估,包括睡眠深度的監測、意識清醒度的評估以及麻醉深度的評估,進而針對不同之應用產出商品化的醫療級儀器設備及個人或居家生理監測與評估模組,例如:睡眠障礙監測、癲癇患者監測、阿基海默症患者監測、(汽機車、船舶、飛行器等)駕駛意識監控、居家患者隨身照護等。
於此,必須強調的是,上述之詳細說明係針對本發明可行實施例之具體說明,惟該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技藝精神所為之等效實施或變更,均應包含於本案之專利範圍中。
S1‧‧‧生理訊號擷取步驟
S2‧‧‧資料分析步驟
S3‧‧‧指數化步驟
S4‧‧‧綜合評估步驟
10‧‧‧腦電生理訊號
11‧‧‧心電生理訊號
12‧‧‧血氧生理訊號
21‧‧‧經驗膜態分解
22‧‧‧心率變異分析
23‧‧‧心率間隙分析
24‧‧‧脈波體積描記波形之振幅分析
25‧‧‧專業醫療團隊作出之手術患者臨床狀況評估
27‧‧‧自主神經活性分析
26‧‧‧意識清晰度分析
28‧‧‧壓力疼痛分析
31‧‧‧意識清晰度指數
32‧‧‧自主神經活性指數
33‧‧‧壓力疼痛指數
40‧‧‧歸納容錯模型
第一圖係麻醉藥物濃度與病患生理狀態之關係圖;以及
第二圖係本發明之一種多維麻醉深度信號監控方法的流程架構圖。
S1‧‧‧生理訊號擷取步驟
S2‧‧‧資料分析步驟
S3‧‧‧指數化步驟
S4‧‧‧綜合評估步驟
10‧‧‧腦電生理訊號
11‧‧‧心電生理訊號
12‧‧‧血氧生理訊號
21‧‧‧經驗膜態分解
22‧‧‧心率變異分析
23‧‧‧心率間隙分析
24‧‧‧脈波體積描記波形之振幅分析
25‧‧‧專業醫療團隊作出之手術患者臨床狀況評估
27‧‧‧自主神經活性分析
26‧‧‧意識清晰度分析
31‧‧‧意識清晰度指數
28‧‧‧壓力疼痛分析
32‧‧‧自主神經活性指數
33‧‧‧壓力疼痛指數
40‧‧‧歸納容錯模型

Claims (8)

  1. 一種多維麻醉深度信號監控方法,係包括:(1)生理訊號擷取步驟,用以自一手術患者身上擷取複數個生理訊號,並輸出複數個數位化生理訊號;(2)資料分析步驟,用以藉由複數個非線性分析方式,分析該些數位化生理訊號,以獲得複數個生理訊號程度,其中,該複數個非線性分析方式包括一經驗膜態分解、一心率變異分析、一心率間隙分析、一脈波體積描記波形之振幅分析、一意識清晰度分析、一自主神經活性分析、與一壓力疼痛分析,該壓力疼痛分析之計算方式如下:壓力指標(surgical stress index,SSI)=100-(α×PPGAnorm+β×HBInorm),其中PPGAnorm為正規化之一脈波訊號振幅,HBInorm為正規化之一心跳間期;(3)指數化步驟,將經過分析的該些生理訊號程度再經由專業醫療團隊經驗根據該手術患者之臨床狀況所作出的評估,進而優化該些生理訊號為複數個生理訊號指數;以及(4)綜合評估步驟,藉由一歸納容錯模型評估該些生理訊號指數,以綜合評估多維麻醉深度。
  2. 如申請專利範圍第1項所述之多維麻醉深度信號監控方法,其中,該複數個生理訊號至少包括一腦電生理訊號、一心電生理訊號與一血氧生理訊號,且該腦電生理訊號、該心電生理訊號與該血氧生理訊號係分別由一腦電訊號擷 取裝置、一心電訊號擷取裝置與一血氧訊號擷取裝置所測得。
  3. 如申請專利範圍第1項所述之多維麻醉深度信號監控方法,其中,該複數個生理訊號至少包括一腦電生理訊號、一心電生理訊號與一血氧生理訊號,且該腦電生理訊號、該心電生理訊號與該血氧生理訊號係同時由一多維生理訊號擷取裝置所測得。
  4. 如申請專利範圍第1項所述之多維麻醉深度信號監控方法,其中,該意識清晰度分析之方法可為下列任一種:腦電雙頻(Bispectral,BIS)法、聽覺誘發電位指數(Auditory Evoked Potential,AEP)法、近似熵(Approximate entropy,ApEn)法、樣本熵(sample entropy)法、多重熵(Multi-scale entropy,MSE)、與頻譜熵(Spectral entropy)法。
  5. 如申請專利範圍第1項所述之多維麻醉深度信號監控方法,其中,該自主神經活性分析之方法可為下列任一種:R-R間隔變動係數(coefficient of variation of R-R intervals,CVRR)法、間期差值平方和的均方根(root mean square of successive difference,RMSSD)法、總力量(total power,TD)法、極低頻範圍功率(very low-frequency power,VLFP)法、低頻範圍功率(low-frequency power,LFP)法、高頻範圍功率(high-frequency power,HFP)法、正規化極低頻範圍功率(normalized very lower-frequency power,nVLFP)法、低頻範圍功率(normalized low-frequency power,LFP)法、正規 化低頻範圍功率(low-frequency power,nLFP)法、正規化高頻範圍功率(high-frequency power,nHFP)法、去趨勢振盪分解法(Detrended fluctuation analysis,DFA)、與多模態分析法(Multi-modal analysis)。
  6. 如申請專利範圍第1項所述之多維麻醉深度信號監控方法,其中,該複數個生理訊號指數係至少包括:一意識清晰度指數、一自主神經活性指數以及一手術中壓力疼痛指數。
  7. 如申請專利範圍第1項所述之多維麻醉深度信號監控方法,其中,該歸納容錯模型可為下列任一種:類神經模糊(Neuro-fuzzy)模型與法則式(rule based)模型。
  8. 如申請專利範圍第2項所述之多維麻醉深度信號監控方法,其中,該血氧信號擷取裝置、該心電信號擷取裝置與該腦電信號擷取裝置可為下列任一種裝置型態:外接式量測儀與嵌入式擷取卡。
TW101148046A 2012-12-18 2012-12-18 多維麻醉深度信號監控方法 TWI494082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101148046A TWI494082B (zh) 2012-12-18 2012-12-18 多維麻醉深度信號監控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101148046A TWI494082B (zh) 2012-12-18 2012-12-18 多維麻醉深度信號監控方法

Publications (2)

Publication Number Publication Date
TW201424685A TW201424685A (zh) 2014-07-01
TWI494082B true TWI494082B (zh) 2015-08-01

Family

ID=51725028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101148046A TWI494082B (zh) 2012-12-18 2012-12-18 多維麻醉深度信號監控方法

Country Status (1)

Country Link
TW (1) TWI494082B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115868942A (zh) * 2023-03-09 2023-03-31 昌乐县人民医院 一种用于体温与麻醉苏醒的监测分析系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183605A1 (en) * 1996-10-11 2002-12-05 Devlin Philip H. Electrode array system for measuring electrophysiological signals
US20040220498A1 (en) * 2003-01-24 2004-11-04 Guann-Pyng Li Micro medical-lab-on-a-chip in a lollipop as a drug delivery device and/or a health monitoring device
US20070179552A1 (en) * 2006-01-30 2007-08-02 Dennis Charles L Intravascular medical device
TW200808265A (en) * 2006-08-10 2008-02-16 Unicom System Eng Corp Physiological signal recording device in surgery room
TW200822903A (en) * 2006-11-27 2008-06-01 Univ Yuan Ze Intelligent medical treatment enforcement system
WO2008077242A1 (en) * 2006-12-22 2008-07-03 Excel-Tech Ltd. Method, system and device for sleep stage determination using frontal electrodes
US20080214902A1 (en) * 2007-03-02 2008-09-04 Lee Hans C Apparatus and Method for Objectively Determining Human Response to Media
WO2009033181A1 (en) * 2007-09-07 2009-03-12 Emsense Corporation Integrated sensor headset
US20090227853A1 (en) * 2008-03-03 2009-09-10 Ravindra Wijesiriwardana Wearable optical pulse plethysmography sensors or pulse oximetry sensors based wearable heart rate monitoring systems
US20090240131A1 (en) * 2008-03-18 2009-09-24 National Taiwan University Intra-Body Communication (IBC) Device And A Method Of Implementing The IBC Device
US20100041965A1 (en) * 2008-08-14 2010-02-18 National Taiwan University Handheld Sleep Assistant Device and Method
CN101677775A (zh) * 2007-04-05 2010-03-24 纽约大学 用于疼痛检测和疼痛量化指数计算的系统和方法
TW201019898A (en) * 2008-11-17 2010-06-01 Univ Nat Yang Ming Method and apparatus for presenting heart rate variability by sound and/or light
WO2011017778A1 (en) * 2009-08-14 2011-02-17 David Burton Anaesthesia and consciousness depth monitoring system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183605A1 (en) * 1996-10-11 2002-12-05 Devlin Philip H. Electrode array system for measuring electrophysiological signals
US20040220498A1 (en) * 2003-01-24 2004-11-04 Guann-Pyng Li Micro medical-lab-on-a-chip in a lollipop as a drug delivery device and/or a health monitoring device
US20070179552A1 (en) * 2006-01-30 2007-08-02 Dennis Charles L Intravascular medical device
TW200808265A (en) * 2006-08-10 2008-02-16 Unicom System Eng Corp Physiological signal recording device in surgery room
TW200822903A (en) * 2006-11-27 2008-06-01 Univ Yuan Ze Intelligent medical treatment enforcement system
WO2008077242A1 (en) * 2006-12-22 2008-07-03 Excel-Tech Ltd. Method, system and device for sleep stage determination using frontal electrodes
US20080214902A1 (en) * 2007-03-02 2008-09-04 Lee Hans C Apparatus and Method for Objectively Determining Human Response to Media
CN101677775A (zh) * 2007-04-05 2010-03-24 纽约大学 用于疼痛检测和疼痛量化指数计算的系统和方法
WO2009033181A1 (en) * 2007-09-07 2009-03-12 Emsense Corporation Integrated sensor headset
US20090227853A1 (en) * 2008-03-03 2009-09-10 Ravindra Wijesiriwardana Wearable optical pulse plethysmography sensors or pulse oximetry sensors based wearable heart rate monitoring systems
US20090240131A1 (en) * 2008-03-18 2009-09-24 National Taiwan University Intra-Body Communication (IBC) Device And A Method Of Implementing The IBC Device
US20100041965A1 (en) * 2008-08-14 2010-02-18 National Taiwan University Handheld Sleep Assistant Device and Method
TW201019898A (en) * 2008-11-17 2010-06-01 Univ Nat Yang Ming Method and apparatus for presenting heart rate variability by sound and/or light
WO2011017778A1 (en) * 2009-08-14 2011-02-17 David Burton Anaesthesia and consciousness depth monitoring system

Also Published As

Publication number Publication date
TW201424685A (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
EP1495715B1 (en) A method and apparatus based on combination of three phsysiological parameters for assessment of analgesia during anesthesia or sedation
EP1618840B1 (en) Monitoring subcortical responsiveness of a patient
Jafari et al. Polysomnography
CA2448806C (en) Methods and apparatus for monitoring consciousness
Dash et al. Estimation of respiratory rate from ECG, photoplethysmogram, and piezoelectric pulse transducer signals: a comparative study of time–frequency methods
JP6387352B2 (ja) 脳系生体信号を検出するシステム
US7407485B2 (en) Monitoring pain-related responses of a patient
EP3232917B1 (en) Apparatus for the assessment of the level of pain and nociception during general anesthesia using electroencephalogram, plethysmographic impedance cardiography, heart rate variability and the concentration or biophase of the analgesics
CN111466906A (zh) 穿戴式睡眠监测仪及监测方法
Sinha et al. Monitoring devices for measuring the depth of anaesthesia–An overview
US20230233121A1 (en) A method and system for measuring a level of anxiety
US20230248294A1 (en) A method and system for measurement of a level of anxiety combined with and/or correlated with a level of a modified state of consciousness and/or a level of pain
JP2023532626A (ja) 痛みのレベルを監視するための方法およびシステム
KR101771835B1 (ko) 생체신호기반 수면 상호영향 분석방법
US20210100491A1 (en) System for use in improving cognitive function
TWI494082B (zh) 多維麻醉深度信號監控方法
TWM521449U (zh) 一種麻醉意識深度信號擷取裝置
TWM451978U (zh) 多維麻醉深度信號擷取裝置
JP2022520211A (ja) 非薬理的に誘発された修正された意識状態のレベルを監視するための方法およびシステム
Natteru et al. The Basics of Polysomnography
Cheriyan et al. Pervasive embedded real time monitoring of EEG & SpO2
EP3918986A1 (en) A method and system for monitoring a level of modified consciousness and a level of pain
Cerutti et al. My-Heart Project: Analysis of Sleep and Stress Profiles from Biomedical Signal.