TWI493878B - System of using a low-cost data weighted averaging algorithm to improve the linearity of a dac circuit with merged capacitor switching technique - Google Patents
System of using a low-cost data weighted averaging algorithm to improve the linearity of a dac circuit with merged capacitor switching technique Download PDFInfo
- Publication number
- TWI493878B TWI493878B TW101132038A TW101132038A TWI493878B TW I493878 B TWI493878 B TW I493878B TW 101132038 A TW101132038 A TW 101132038A TW 101132038 A TW101132038 A TW 101132038A TW I493878 B TWI493878 B TW I493878B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- signal
- bit
- binary code
- weighted average
- Prior art date
Links
Landscapes
- Analogue/Digital Conversion (AREA)
Description
本發明係關於資料加權平均(data weighted averaging,DWA)之技術領域,尤指一種改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統。The invention relates to the technical field of data weighted averaging (DWA), in particular to a data weighted average algorithm system for improving the linearity of a digital analog conversion circuit of a capacitance combining switching technique.
習知數位類比轉換器(DAC)電路使用電容合併的技術,來加倍電路中每一個單位電容的容值,以直接有效地改善因為製程上的誤差所造成之電容間彼此不匹配的問題。圖1(A)、圖1(B)係習知技術電容合併的示意圖。如圖1(A)、圖1(B)所示,其係將電容C1 、電容C2 合併為C0 ',將電容C3 、電容C4 合併為C1 ',將電容C5 、電容C6 合併為C2 '。合併前,電容C1 ~C6 可連接至一正參考電壓(+Vref )或一負參考電壓(-Vref )。如圖1B所示,合併後電容C0 '~C2 '則可能連接至該正參考電壓(+Vref )、一負參考電壓(-Vref )或一共模參考電壓(Vcm )。Conventional digital analog converter (DAC) circuits use a combination of capacitance techniques to double the capacitance of each unit capacitor in the circuit to directly and effectively improve the problem of capacitance mismatch between the capacitors due to process errors. Fig. 1(A) and Fig. 1(B) are schematic diagrams showing the combination of conventional techniques. As shown in FIG. 1(A) and FIG. 1(B), the capacitor C 1 and the capacitor C 2 are combined into C 0 ', and the capacitor C 3 and the capacitor C 4 are combined into C 1 ', and the capacitor C 5 , Capacitor C 6 is combined into C 2 '. Prior to combining, capacitors C 1 -C 6 can be connected to a positive reference voltage (+V ref ) or a negative reference voltage (-V ref ). As shown in FIG. 1B, the combined capacitor C 0 '~C 2 ' may be connected to the positive reference voltage (+V ref ), a negative reference voltage (-V ref ), or a common mode reference voltage (V cm ).
圖2係一習知之使用電容合併技術之數位類比轉換器(DAC)電路與傳統數位類比轉換器(DAC)電路的數位碼與相對應類比電壓的轉換對照比較圖。儘管目前數位類比轉換器(DAC)電路已使用此電容合併的技術來加倍電路中每一個單位電容的容值,在維持電路所需總電容值不變的條件下,該方法直接有效地改善因為製程上的誤差所造成之電容間彼此不匹配的問題,其改善程度在實現一個高解析 度的三角積分調變器上仍然相當有限。同時,並未有針對資料加權平均演算法資料加權平均(DWA)來改善此種使用電容合併技術之數位類比轉換器的線性度之相關技術。因此,本發明提出一種改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統。FIG. 2 is a comparison diagram of a conventional digital analog-to-digital converter (DAC) circuit using a capacitance combining technique and a digital analog-to-digital converter (DAC) circuit. Although the current analog-to-digital converter (DAC) circuit has used this capacitor combining technique to double the capacitance of each unit capacitor in the circuit, the method is directly and effectively improved because the total capacitance value required for the circuit is maintained. The problem that the capacitance caused by the error in the process does not match each other, and the degree of improvement is achieved by achieving a high resolution. The degree of delta-sigma modulator is still quite limited. At the same time, there is no correlation technique for data weighted average algorithm data weighted average (DWA) to improve the linearity of such a digital analog converter using capacitance combining techniques. Therefore, the present invention proposes a data weighted average algorithm system for improving the linearity of a digital analog conversion circuit of a capacitance combining switching technique.
本發明之主要目的係在提供一種改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統,可降低因為電容間彼此不匹配所造成之諧波失真的問題,亦可降低電路實現的複雜度之外,也能有效地縮小面積來達到降低積體電路的製造成本之功效。The main object of the present invention is to provide a data weighted average algorithm system for improving the linearity of a digital analog conversion circuit of a capacitor combining switching technique, which can reduce the problem of harmonic distortion caused by mismatch between capacitors, and can also reduce In addition to the complexity of the circuit implementation, the area can be effectively reduced to achieve the effect of reducing the manufacturing cost of the integrated circuit.
依據本發明之一特色,本發明提出一種改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統,用以設定連接至一共模參考電壓(Vcm )的多數個單位電容的組態(configuration),該資料加權平均演算法系統包括一2的補數校正電路、一指標產生器電路、一解碼器電路、一二進位碼至溫度碼轉換電路、一桶狀移位器(barrel shifter)電路、及一後端產生控制單位電容訊號之邏輯電路。該2的補數校正電路接收一N位元二進位碼輸入訊號,該2的補數校正電路校正該N位元二進位碼輸入訊號的部分二進位碼輸入訊號,以正確產生代表著連接至該共模參考電壓之多數個單位電容個數的二進位碼訊號。該指標產生器電路連接至該2的補數校正電路,依據該二進位碼訊號,以更新指 向下一次開始選擇該多數個單位電容的起始位址二進位碼訊號。該解碼器電路連接至該指標產生器電路,用以將指標產生器電路輸出之該起始位址二進位碼訊號轉換成2N-1 位元之分別指向多數個單位電容的指標訊號,以控制桶狀移位器電路指向下一次開始選擇的頭一個單位電容。該二進位碼至溫度碼轉換電路連接至該2的補數校正電路,該二進位碼至溫度碼轉換電路將該2的補數校正電路輸出之該二進位碼輸出訊號轉換成為溫度碼輸出訊號。該桶狀移位器電路連接至該解碼器電路及該二進位碼至溫度碼轉換電路,以產生選擇連接至共模參考電壓之單位電容的第一控制訊號。該後端產生控制單位電容訊號之邏輯電路連接至桶狀移位器電路,以產生連接至一正參考電壓與一負參考電壓之單位電容的第二及第三控制訊號。According to a feature of the present invention, the present invention provides a data weighted average algorithm system for improving the linearity of a digital analog conversion circuit of a capacitance combining switching technique for setting a plurality of unit capacitances connected to a common mode reference voltage (V cm ). Configuration, the data weighted average algorithm system includes a 2's complement correction circuit, an indicator generator circuit, a decoder circuit, a binary code to temperature code conversion circuit, and a barrel shifter (barrel shifter) circuit, and a back end to generate logic circuit for controlling unit capacitance signal. The 2's complement correction circuit receives an N-bit binary code input signal, and the 2's complement correction circuit corrects a partial binary code input signal of the N-bit binary code input signal to correctly generate a connection to The binary code signal of the number of unit capacitances of the common mode reference voltage. The indicator generator circuit is connected to the complement correction circuit of the 2, according to the binary code signal, to update the start address binary code signal that points to the next selection of the plurality of unit capacitors. The decoder circuit is connected to the indicator generator circuit for converting the start address binary code signal outputted by the indicator generator circuit into an index signal of 2 N-1 bits respectively pointing to a plurality of unit capacitors, The barrel shifter circuit is controlled to point to the first unit capacitance that is selected next time. The binary code to temperature code conversion circuit is connected to the 2's complement correction circuit, and the binary code to temperature code conversion circuit converts the binary code output signal output by the 2's complement correction circuit into a temperature code output signal . The barrel shifter circuit is coupled to the decoder circuit and the binary code to temperature code conversion circuit to generate a first control signal that selects a unit capacitance connected to the common mode reference voltage. The back end generates a logic circuit for controlling the unit capacitance signal to be connected to the barrel shifter circuit to generate second and third control signals connected to a unit capacitance of a positive reference voltage and a negative reference voltage.
圖3係本發明之改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統300的方塊圖,其用以設定連接至一共模參考電壓(Vcm )的多數個單位電容的組態(configuration)。該資料加權平均演算法系統300包括一2的補數校正電路310、一指標產生器電路320、一解碼器電路330、一二進位碼至溫度碼轉換電路340、一桶狀移位器(barrel shifter)電路350、及一後端產生控制單位電容訊號之邏輯電路360。3 is a block diagram of a data weighted average algorithm system 300 for linearity conversion of a digital analog conversion circuit of the improved capacitance combining switching technique of the present invention for setting a plurality of unit capacitances connected to a common mode reference voltage (V cm ). Configuration. The data weighted average algorithm system 300 includes a 2's complement correction circuit 310, an indicator generator circuit 320, a decoder circuit 330, a binary code to temperature code conversion circuit 340, and a barrel shifter (barrel The shifter circuit 350 and a back end generate a logic circuit 360 for controlling the unit capacitance signal.
該2的補數校正電路310接收一N位元二進位碼輸入訊號(B<3:0>)。為方便說明,於本實施例中,N為4。該2的補數校正電路校正該N位元二進位碼輸入訊號的部分二進位碼輸入訊號(B<2:0>),以正確產生代表著連接至該共模參考電壓(Vcm )之多數個單位電容個數的二進位碼訊號(BC <3:0>)。The 2's complement correction circuit 310 receives an N-bit binary code input signal (B<3:0>). For convenience of explanation, in the present embodiment, N is 4. The 2's complement correction circuit corrects a partial binary code input signal (B<2:0>) of the N-bit binary code input signal to correctly generate a connection to the common mode reference voltage ( Vcm ). A number of binary code signals (B C <3:0>) of the number of unit capacitors.
圖4係本發明之2的補數校正電路310運作的流程圖。如圖4所示,於步驟(A)中,該2的補數校正電路310輸入該N位元二進位碼輸入訊號(B<3:0>)。於步驟(B)中,該2的補數校正電路310判斷該N位元輸入訊號之最高位元,若該最高位元為1,則執行步驟(C),以將N位元輸入訊號轉換成其2的補數,若最高位元為0,則執行步驟(C),不對該N位元輸入訊號做任何變動。4 is a flow chart showing the operation of the complement correction circuit 310 of the second embodiment of the present invention. As shown in FIG. 4, in step (A), the 2's complement correction circuit 310 inputs the N-bit binary code input signal (B<3:0>). In the step (B), the 2's complement correction circuit 310 determines the highest bit of the N-bit input signal. If the highest bit is 1, the step (C) is performed to convert the N-bit input signal. If it is 2's complement, if the highest bit is 0, then step (C) is executed, and no change is made to the N-bit input signal.
圖5(A)及圖5(B)係該2的補數校正電路310的方塊圖。如圖5A所示,該2的補數校正電路310包含多個XOR邏輯閘52與半加器電路51。圖5B係該半加器電路的電路圖。如圖5(B)所示,該半加器電路51係由多個多個反相器(INV)53與反及閘(NAND)54所組成。5(A) and 5(B) are block diagrams of the 2's complement correction circuit 310. As shown in FIG. 5A, the 2's complement correction circuit 310 includes a plurality of XOR logic gates 52 and a half adder circuit 51. Fig. 5B is a circuit diagram of the half adder circuit. As shown in FIG. 5(B), the half adder circuit 51 is composed of a plurality of inverters (INV) 53 and a NAND gate 54.
該指標產生器電路320連接至該2的補數校正電路310,依據該二進位碼訊號(BC <2:0>),以更新指向下一次開始選擇該多數個單位電容的起始位址二進位碼訊號(Pb <2:0>)。The indicator generator circuit 320 is connected to the complement correction circuit 310 of the 2, according to the binary code signal (B C <2:0>), to update the start address of the majority of the unit capacitors to be selected next time. Binary code signal (P b <2:0>).
該指標產生器電路320係將其每一次之輸入訊號與上一次之指標訊號做相加,以產生更新之該起始位址訊號(Pb <2:0>)。The indicator generator circuit 320 adds each of its input signals to the last indicator signal to generate the updated start address signal (P b <2:0>).
圖6係本發明之指標產生器電路320的方塊圖。如圖6所示,該指標產生器電路320係由一個全加器610及一個D型正反器620所組成。圖7係本發明之全加器610的電路圖。圖8係本發明之D型正反器620的電路圖。6 is a block diagram of an indicator generator circuit 320 of the present invention. As shown in FIG. 6, the indicator generator circuit 320 is composed of a full adder 610 and a D-type flip-flop 620. Figure 7 is a circuit diagram of the full adder 610 of the present invention. Figure 8 is a circuit diagram of a D-type flip-flop 620 of the present invention.
該解碼器電路330連接至該指標產生器電路320,用以將指標產生器電路輸出之該起始位址二進位碼訊號(Pb <2:0>)轉換成2N-1 位元之分別指向多數個單位電容的指標訊號(P<7:0>),以控制桶狀移位器電路指向下一次開始選擇的頭一個單位電容。The decoder circuit 330 is coupled to the indicator generator circuit 320 for converting the start address binary code signal (P b <2:0>) output by the indicator generator circuit into 2 N-1 bits. Index signals (P<7:0>) pointing to the majority of the unit capacitors, respectively, to control the barrel shifter circuit to point to the first unit capacitor selected next time.
圖9係本發明之解碼器電路330的方塊圖。如圖9所示,該解碼器電路330係由多個反閘81(INV)及多個反及閘82(NAND)所組成。於實際實施該解碼器電路330時,該解碼器電路330可用一第一真值表替代。亦即,該解碼器電路330內建一第一真值表,該第一內建真值表可隨著其位元數的增減而有所變動,該第一內建真值的輸入端為N-1位元,輸出端為2N-1 位元。圖10係本發明之解碼器電路330的真值表之示意圖。9 is a block diagram of a decoder circuit 330 of the present invention. As shown in FIG. 9, the decoder circuit 330 is composed of a plurality of reverse gates 81 (INV) and a plurality of reverse gates 82 (NAND). When the decoder circuit 330 is actually implemented, the decoder circuit 330 can be replaced with a first truth table. That is, the decoder circuit 330 has a first truth table built in, the first built-in truth table may be changed as the number of bits thereof increases or decreases, and the input terminal of the first built-in true value It is N-1 bits and the output is 2 N-1 bits. 10 is a schematic diagram of a truth table of decoder circuit 330 of the present invention.
該二進位碼至溫度碼轉換電路340連接至該2的補數校正電路310,該二進位碼至溫度碼轉換電路340將該2的補數校正電路310輸出之該二進位碼輸出訊號(BC <3:0>)轉換成為溫度碼輸出訊號(T<7:0>)。The binary code to temperature code conversion circuit 340 is connected to the 2's complement correction circuit 310, and the binary code to temperature code conversion circuit 340 outputs the binary code output signal of the 2's complement correction circuit 310 (B) C <3:0>) is converted to a temperature code output signal (T<7:0>).
圖11係本發明之二進位碼至溫度碼轉換電路340的方塊圖。如圖11所示,該二進位碼至溫度碼轉換電路340係由多個反相器(Inverter)63、多個反或閘(NOR)61及兩個二位元二進位碼至三位元溫度碼子轉換器64所組成。圖12係本發明之二位元二進位碼至三位元溫度碼子轉換器64的方塊圖。Figure 11 is a block diagram of a binary carry code to temperature code conversion circuit 340 of the present invention. As shown in FIG. 11, the binary code to temperature code conversion circuit 340 is composed of a plurality of inverters 63, a plurality of inverse OR gates (61), and two binary binary code to three bits. The temperature code sub-converter 64 is composed of. Figure 12 is a block diagram of a binary binary code to three bit temperature code subconverter 64 of the present invention.
於實際實施該二進位碼至溫度碼轉換電路340時,該二進位碼至溫度碼轉換電路340可用一第二真值表替代。亦即,該二進位碼至溫度碼轉換電路340內建一第二真值表,該第二內建真值表可隨著其位元數的增減而有所變動,該第二內建真值的輸入端為N位元,輸出端為2N-1 位元。When the binary code is actually implemented to the temperature code conversion circuit 340, the binary code to temperature code conversion circuit 340 can be replaced with a second truth table. That is, the binary code to temperature code conversion circuit 340 has a second truth table built in, and the second built-in truth table can be changed according to the increase or decrease of the number of bits. The second built-in The input of the true value is N bits, and the output is 2 N-1 bits.
該桶狀移位器(barrel shifter)電路350連接至該解碼器電路330及該二進位碼至溫度碼轉換電路340,以產生選擇連接至共模參考電壓(Vcm )之單位電容的第一控制訊號(QCM <7:0>)。The barrel shifter circuit 350 is coupled to the decoder circuit 330 and the binary code to temperature code conversion circuit 340 to generate a first unit capacitance selected to be connected to a common mode reference voltage (V cm ). Control signal (Q CM <7:0>).
圖13係本發明之桶狀移位器電路350的電路圖。如圖13所示,桶狀移位器電路350包含了一2N-1 乘2N-1 場效電晶體(MOSFET)陣列與輸出緩衝器電路。在P<7:0>當中只有一位元會為高電位。當P<1>為高電位時,只有第二組場效電晶體(MOSFET)會導通,而當T<0>、T<1>、T<2>為高電位時,只有QCM <1>、QCM <2>、QCM <3>為高電位。其運作原理係熟於該技術者基於本發明電路所能理解,不再贅述。Figure 13 is a circuit diagram of a barrel shifter circuit 350 of the present invention. As shown in FIG. 13, barrel shifter circuit 350 includes a 2 N-1 by 2 N-1 field effect transistor (MOSFET) array and output buffer circuit. Only one bit in P<7:0> will be high. When P<1> is high, only the second group of field effect transistors (MOSFETs) will be turned on, and when T<0>, T<1>, and T<2> are high, only Q CM <1 >, Q CM <2>, Q CM <3> is high. The operation principle is familiar to those skilled in the art based on the circuit of the present invention, and will not be described again.
該後端產生控制單位電容訊號之邏輯電路360連接至桶狀移位器電路350,以產生連接至一正參考電壓(+Vref ) 與一負參考電壓(-Vref )之單位電容的第二控制訊號(QP <7:0>)及第三控制訊號(QN <7:0>)。The back end generates a logic circuit 360 for controlling the unit capacitance signal to be connected to the barrel shifter circuit 350 to generate a unit capacitance connected to a positive reference voltage (+V ref ) and a negative reference voltage (-V ref ). Two control signals (Q P <7:0>) and third control signals (Q N <7:0>).
該後端產生控制單位電容訊號之邏輯電路360係將該將桶狀移位器350輸出之單位電容的該控制訊號(QCM <7:0>)反向後與該N位元輸入訊號之最高位元,透過NAND閘進行NAND運算來產生代表選擇連接至該正參考電壓(+Vref )的單位電容之該第二控制訊號(QP <7:0>)。該後端產生控制單位電容訊號之邏輯電路360係將該將桶狀移位器輸出之單位電容的該控制訊號(QCM <7:0>)反向後與該N位元輸入訊號之反向最高位元,透過NAND閘進行NAND運算來產生代表選擇連接至該負參考電壓(-Vref )的單位電容之該第三控制訊號(QN <7:0>)。The back end generates a logic circuit 360 for controlling the unit capacitance signal to reverse the control signal (Q CM <7:0>) of the unit capacitance outputted by the barrel shifter 350 and the highest input signal of the N bit. The bit is NAND operated through the NAND gate to generate the second control signal (Q P <7:0>) representing a unit capacitance selected to be connected to the positive reference voltage (+V ref ). The logic circuit 360 for generating the control unit capacitance signal at the back end reverses the control signal (Q CM <7:0>) of the unit capacitance outputted by the barrel shifter and is opposite to the N-bit input signal. The highest bit, the NAND operation is performed through the NAND gate to generate the third control signal (Q N <7:0>) representing the unit capacitance selected to be connected to the negative reference voltage (-V ref ).
圖14係本發明之後端產生控制單位電容訊號之邏輯電路360的電路圖。如圖14所示,該第二控制訊號的最高位元(QP <7>)為該控制訊號的最高位元(QCM <7>)反向後,與該N位元輸入訊號之最高位元(B<3>),透過NAND閘進行NAND運算所產生。該第三控制訊號的最高位元(QN <7>)為該控制訊號的最高位元(QCM <7>)反向後,與該N位元輸入訊號之反向最高位元(!B<3>),透過AND閘進行AND運算所產生。Figure 14 is a circuit diagram of a logic circuit 360 that produces a control unit capacitance signal at the rear end of the present invention. As shown in FIG. 14, the highest bit of the second control signal (Q P <7>) is the highest bit of the control signal (Q CM <7>), and the highest bit of the N-bit input signal Yuan (B<3>), generated by NAND operation through NAND gate. The highest bit of the third control signal (Q N <7>) is the reverse bit of the N-bit input signal after the highest bit of the control signal (Q CM <7>) is inverted (!B <3>), generated by an AND operation through the AND gate.
該2的補數校正電路310、該指標產生器電路320、該解碼器電路330、該二進位碼至溫度碼轉換電路340、該桶狀移位器電路350、該後端產生控制單位電容訊號之邏輯電路360係以電路實現或製成積體電路(Integrated Circuit;IC)。The 2's complement correction circuit 310, the indicator generator circuit 320, the decoder circuit 330, the binary code to temperature code conversion circuit 340, the barrel shifter circuit 350, and the back end generate a control unit capacitance signal The logic circuit 360 is implemented in a circuit or as an integrated circuit (IC).
圖15係本發明之改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統的運作示意圖。如圖15所示,一指標(P)指到電容C0 。當該4位元二進位碼輸入訊號(B<3:0>)為0010b(remark:B是指binary的意思)時,選擇電容C0 、C1 連接至該共模參考電壓(Vcm ),其餘電容C2 ~C7 連接至該負參考電壓(-Vref 或Vrfn )。FIG. 15 is a schematic diagram showing the operation of the data weighted average algorithm system for improving the linearity of the digital analog conversion circuit using the capacitance combining switching technique of the present invention. As shown in Figure 15, an indicator (P) refers to the capacitance C 0 . When the 4-bit binary code input signal (B<3:0>) is 0010b (remark: B means binary), the selection capacitors C 0 and C 1 are connected to the common mode reference voltage (V cm ). The remaining capacitors C 2 -C 7 are connected to the negative reference voltage (-V ref or V rfn ).
該指標(P)指到電容C2 。當該4位元二進位碼輸入訊號(B<3:0>)為1001b時,選擇電容C2 ~C7、C0 連接至該共模參考電壓(Vcm ),其餘電容C1 連接至該正參考電壓(+Vref 或Vrfp )。其運作原理係熟於該技術者基於本發明之揭露所能理解,不再贅述。This indicator (P) refers to the capacitance C 2 . When the 4-bit binary code input signal (B<3:0>) is 1001b, the selection capacitors C 2 to C7 and C 0 are connected to the common mode reference voltage (V cm ), and the remaining capacitor C 1 is connected to the Positive reference voltage (+V ref or V rfp ). The operation principle of the present invention is understood by those skilled in the art based on the disclosure of the present invention and will not be described again.
圖16係習知技術的訊號對雜訊失真比(signal to noise-and-distortion ratio,SNDR)的模擬示意圖。圖17係本發明的訊號雜訊失真比(signal noise distortion ratio,SNDR)的模擬示意圖。在電路模擬時,在數位類比轉換器(DAC)電路中的八個電容元件利用亂數(random)的方式,分別給了每一個單位電容元件的容值1%的誤差,來模擬在實際CMOS製程上可能發生的誤差值。FIG. 16 is a schematic diagram of a signal to noise-and-distortion ratio (SNDR) simulation of the prior art. 17 is a schematic diagram showing the simulation of the signal noise distortion ratio (SNDR) of the present invention. In circuit simulation, eight capacitive components in a digital analog converter (DAC) circuit use a random number to give an error of 1% of the capacitance of each unit capacitive component to simulate the actual CMOS. The error value that can occur on the process.
比較圖16及圖17,由電路模擬結果可以明顯看到在整個系統之輸出頻譜上的最高諧波已經有效地降低,同時,雜訊水平(noise floor)也大幅降低。而在系統之訊號對雜訊失真比(SNDR)上,由未加入該發明技術之63.77dB提升至加入本發明之後的77.31 dB。也就是等同於在有效位元數(effective number of bits;ENOB)上,由未加入該發明技 術之10.3位元提升至加入本發明之後的12.55位元。由模擬結果可以看出,其對於三角積分器在解析度上面的提升是有著非常顯著的貢獻。Comparing Fig. 16 and Fig. 17, it can be clearly seen from the circuit simulation results that the highest harmonic on the output spectrum of the whole system has been effectively reduced, and the noise floor is also greatly reduced. On the signal-to-noise distortion ratio (SNDR) of the system, it is increased from 63.77 dB which is not added to the inventive technique to 77.31 dB after the addition of the present invention. That is equivalent to the effective number of bits (ENOB), which is not added to the invention. The 10.3 bit of the technique was upgraded to 12.55 bits after the addition of the present invention. It can be seen from the simulation results that it has a very significant contribution to the improvement of the resolution of the triangular integrator.
如圖2所示,可以發現到所有單位電容所接到的參考電壓在每一種情況下最多只會有兩種,或者說:若是選擇以接至該共模參考電壓(Vcm )的電容元件為基準,在每一次數位類比轉換器(DAC)電路做電壓轉換時,可相對應設計出一種能夠應用於此電容合併技術之數位類比轉換器(DAC)電路的資料加權平均演算法,使得此新提出之資料加權平均演算法也能夠繞著所有接至共模參考電壓(Vcm )的電容元件依序作選擇使用。As shown in Figure 2, it can be found that the reference voltage to which all the unit capacitors are connected can only be two at most in each case, or: if it is selected to be connected to the common mode reference voltage (V cm ) For the reference, when each voltage analog converter (DAC) circuit is voltage-converted, a data weighted average algorithm can be designed to be applied to the digital analog converter (DAC) circuit of the capacitor combining technology. The newly proposed data weighted average algorithm can also be used in turn around all capacitive elements connected to the common mode reference voltage (V cm ).
由上述說明可知,本發明係對一數位類比轉換器中連接至共模參考電壓(Vcm)的單位電容依序地來選擇使用,以達到改善該數位類比轉換器之線性度的目的。本發明除了能夠使三角積分調變器中數位類比轉換器(DAC)電路使用電容合併技術,來直接增加每個單位電容元件之容值,以直接降低製程上的誤差比率之外,又能夠透過本發明技術提出之改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統再更進一步地降低因為電容間不匹配問題所造成之諧波失真以提高三角積分調變器的解析度。As can be seen from the above description, the present invention selectively uses a unit capacitance connected to a common mode reference voltage (Vcm) in a digital analog converter for the purpose of improving the linearity of the digital analog converter. In addition to being able to use a capacitance combining technique in a digital analog converter (DAC) circuit in a delta-sigma modulator, the capacitance value of each unit capacitive component is directly increased to directly reduce the error ratio in the process, and The data weighted average algorithm system for improving the linearity of the digital analog conversion circuit using the capacitance combining switching technique proposed by the present invention further reduces the harmonic distortion caused by the mismatch between capacitors to improve the triangular integral modulator Resolution.
本發明之目的在於提出一種改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統,以改善電容合併技術之數位類比轉換器(DAC)電路 的線性度,可直接有效地改善因為數位類比轉換器(DAC)內單位電容間彼此不匹配所產生之諧波失真(harmonic distortion),並可大幅降低此資料加權平均演算法在硬體實現上所需之面積、實施成本與功率消耗。The object of the present invention is to provide a data weighted average algorithm system for improving the linearity of a digital analog conversion circuit using a capacitance combining switching technique to improve a digital analog converter (DAC) circuit of a capacitance combining technique. The linearity can directly and effectively improve the harmonic distortion caused by the mismatch between the unit capacitances in the digital analog converter (DAC), and can greatly reduce the weighted average algorithm of this data on the hardware implementation. Required area, implementation cost and power consumption.
由前述電路可知,本發明之一種改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統主要運作概念為:當三角積分調變器的數位輸出為4位元,因為此三角積分調變器中回授路徑上的數位類比轉換器(DAC)電路使用電容合併技術,因此也代表著此數位類比轉換器(DAC)電路中之單位電容總數則由原本的16個單位電容降低為8個單位電容。因此,當一數位輸出碼經過本發明之一種改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統之後,(1)當第一組數位碼輸出為2(0010b)的時候,數位類比轉換器(DAC)選擇了編號為C0 ~C1 的單位電容元件;(2)接下來第二組數位碼輸出為9(1001b)的時候,數位類比轉換器(DAC)則選擇了依序下來編號為C2 ~C7 的單位電容元件,並且再加上重頭繼續選擇了編號為C0 的單位電容元件;(3)當第三組數位碼輸出為13(1101b)的時候,數位類比轉換器(DAC)選擇了依序下來編號為C1 ~C3 的單位電容元件;(4)當第四組數位碼輸出為5(0101b)的時候,數位類比轉換器(DAC)則選擇了編號為C4 ~C7 的單位電容元件,並且再加上重頭繼續選擇了編號為C0 的單位電容元件。It can be seen from the foregoing circuit that the data weighted average algorithm system for improving the linearity of the digital analog conversion circuit using the capacitance combining switching technique has the main operation concept: when the digital output of the triangular integral modulator is 4 bits, because The digital analog converter (DAC) circuit on the feedback path in this delta-sigma modulator uses capacitor combining techniques, so it also represents the total number of unit capacitors in this digital analog converter (DAC) circuit from the original 16 units. The capacitance is reduced to 8 unit capacitors. Therefore, when a digital output code is subjected to a data weighted average algorithm system for improving the linearity of a digital analog conversion circuit using a capacitance combining switching technique according to the present invention, (1) when the first group digital code output is 2 (0010b) When the digital analog converter (DAC) selects the unit capacitance component numbered C 0 ~ C 1 ; (2) when the second group digital code output is 9 (1001b), the digital analog converter (DAC) Then select the unit capacitive component numbered C 2 ~ C 7 in order, and add the unit to continue to select the unit capacitance component numbered C 0 ; (3) when the third group digital code output is 13 (1101b) At the time, the digital analog converter (DAC) selects the unit capacitive components numbered C 1 ~ C 3 sequentially; (4) when the fourth group digital code output is 5 (0101b), the digital analog converter ( DAC) selects the unit capacitance component numbered C 4 ~ C 7 , and adds the heavy head to continue selecting the unit capacitance component numbered C 0 .
根據上述的運作方式可以發現:本發明之一種改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統在每一次數位類比轉換器(DAC)選擇單位電容元件的時候,都能夠避免去重複使用到上一次被選擇到的電容元件,如此一來使得數位類比轉換器(DAC)電路在運行一定程度時間之後,電路中的每一個單位電容元件都能夠在這段時間內達到最高的平均使用率,而達到降低因為電容間彼此不匹配所造成之諧波失真的問題。According to the above operation mode, it can be found that the data weighted average algorithm system for improving the linearity of the digital analog conversion circuit using the capacitance combining switching technique of the present invention selects the unit capacitance element every time bit analog converter (DAC). It is possible to avoid reusing the last selected capacitive element, so that after the digital analog converter (DAC) circuit is running for a certain period of time, each unit capacitive element in the circuit can be in this period of time. The highest average usage rate is achieved, and the problem of harmonic distortion due to mismatch between capacitors is achieved.
圖18係本發明與習知技術的比較之示意圖,如圖18所示,本發明之桶狀移位器電路350則從習知技術所需之16乘16的場效電晶體(MOSFET)陣列大小有效地降低為8乘8的場效電晶體(MOSFET)陣列大小。如此一來,除了降低電路實現的複雜度之外,也能有效地縮小面積來達到降低積體電路的製造成本之目的。同時,該指標產生器電路320、該解碼器電路330及該二進位碼至溫度碼轉換電路340可由習知的4-bit降為3-bit,因此可降低電路成本以及功率消耗。18 is a schematic diagram of a comparison of the present invention with the prior art. As shown in FIG. 18, the barrel shifter circuit 350 of the present invention is a 16 by 16 field effect transistor (MOSFET) array required by the prior art. The size is effectively reduced to an 8 by 8 field effect transistor (MOSFET) array size. In this way, in addition to reducing the complexity of the circuit implementation, the area can be effectively reduced to achieve the purpose of reducing the manufacturing cost of the integrated circuit. At the same time, the indicator generator circuit 320, the decoder circuit 330, and the binary code to temperature code conversion circuit 340 can be reduced to 3-bit by the conventional 4-bit, thereby reducing circuit cost and power consumption.
本發明之一種改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統與習知之資料加權平均演算法相比較,本技術可直接有效地改善因為數位類比轉換器內單位電容間彼此不匹配所產生之諧波失真(harmonic distortion),並可大幅降低此資料加權平均電路所需之面積、實施成本與功率消耗。The present invention can directly and effectively improve the unit capacitance of a digital analog converter by comparing a data weighted average algorithm system for linearity of a digital analog conversion circuit using a capacitance combining switching technique with a conventional data weighted average algorithm. The harmonic distortion generated by the mismatch between each other can greatly reduce the area, implementation cost and power consumption required for the weighted averaging circuit of this data.
由上述可知,本發明無論就目的、手段及功效,在在均顯示其迥異於習知技術之特徵,極具實用價值。惟應注意的是,上述諸多實施例僅係為了便於說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。From the above, it can be seen that the present invention is extremely useful in terms of its purpose, means, and efficacy, both of which are different from those of the prior art. It should be noted that the various embodiments described above are merely illustrative for ease of explanation, and the scope of the invention is intended to be limited by the scope of the claims.
300‧‧‧改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統300‧‧‧Data weighted average algorithm system for linearity of digital analog conversion circuit for improving capacitance combining switching technology
310‧‧‧2的補數校正電路310‧‧‧2 complement correction circuit
320‧‧‧指標產生器電路320‧‧‧ indicator generator circuit
330‧‧‧解碼器電路330‧‧‧Decoder circuit
350‧‧‧桶狀移位器電路350‧‧‧ barrel shifter circuit
340‧‧‧二進位碼至溫度碼轉換電路340‧‧‧ binary code to temperature code conversion circuit
360‧‧‧後端產生控制單位電容訊號之邏輯電路360‧‧‧The back end generates the logic circuit that controls the unit capacitance signal
步驟(A)~步驟(D)Step (A) ~ Step (D)
52‧‧‧XOR邏輯閘52‧‧‧XOR logic gate
51‧‧‧半加器電路51‧‧‧ Half adder circuit
53‧‧‧反相器(INV)53‧‧‧Inverter (INV)
54‧‧‧反及閘(NAND)54‧‧‧Anti-gate (NAND)
610‧‧‧全加器610‧‧‧Full adder
620‧‧‧D型正反器620‧‧‧D type flip-flop
73‧‧‧反相器(INV)73‧‧‧Inverter (INV)
81‧‧‧反相器(INV)81‧‧‧Inverter (INV)
82‧‧‧反及閘(NAND)82‧‧‧Anti-gate (NAND)
63‧‧‧反相器(INV)63‧‧‧Inverter (INV)
61‧‧‧反或閘(NOR)61‧‧‧Anti-or gate (NOR)
62‧‧‧反及閘(NAND)62‧‧‧Anti-gate (NAND)
64‧‧‧二位元二進位碼至三位元溫度碼子轉換器64‧‧‧2-digit binary code to three-digit temperature code converter
91‧‧‧反相器(INV)91‧‧‧Inverter (INV)
101、102‧‧‧反及閘(NAND)101, 102‧‧‧Anti-gate (NAND)
圖1(A)、圖1(B)係習知技術電容合併的示意圖。Fig. 1(A) and Fig. 1(B) are schematic diagrams showing the combination of conventional techniques.
圖2係一習知之使用電容合併技術之數位類比轉換器(DAC)電路與傳統數位類比轉換器(DAC)電路的數位碼與相對應類比電壓的轉換對照比較表。FIG. 2 is a comparison comparison table between a digital bit analog converter (DAC) circuit using a capacitor combining technique and a digital analog code converter (DAC) circuit and a corresponding analog voltage.
圖3係本發明之改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統的方塊圖。3 is a block diagram of a data weighted average algorithm system for linearity of a digital analog conversion circuit of the improved capacitance combining switching technique of the present invention.
圖4係本發明之2的補數校正電路運作的流程圖。Figure 4 is a flow chart showing the operation of the complement correction circuit of the second embodiment of the present invention.
圖5(A)及圖5(B)係本發明之2的補數校正電路的方塊圖。5(A) and 5(B) are block diagrams showing a complement correction circuit of the second aspect of the present invention.
圖6係本發明之指標產生器電路的方塊圖。Figure 6 is a block diagram of the indicator generator circuit of the present invention.
圖7係本發明之全加器的電路圖。Figure 7 is a circuit diagram of the full adder of the present invention.
圖8係本發明之D型正反器的電路圖。Figure 8 is a circuit diagram of a D-type flip-flop of the present invention.
圖9係本發明之解碼器電路的方塊圖。Figure 9 is a block diagram of a decoder circuit of the present invention.
圖10係本發明之解碼器電路的真值表之示意圖。Figure 10 is a schematic illustration of the truth table of the decoder circuit of the present invention.
圖11係本發明之二進位碼至溫度碼轉換電路的方塊圖。Figure 11 is a block diagram of a binary carry code to temperature code conversion circuit of the present invention.
圖12係本發明之二位元二進位碼至三位元溫度碼子轉換器的方塊圖。Figure 12 is a block diagram of a binary binary code to a three bit temperature code subconverter of the present invention.
圖13係本發明之桶狀移位器電路的電路圖。Figure 13 is a circuit diagram of a barrel shifter circuit of the present invention.
圖14係本發明之後端產生控制單位電容訊號之邏輯電路的電路圖。Figure 14 is a circuit diagram showing the logic circuit for generating a unit capacitance signal at the rear end of the present invention.
圖15係本發明之改善使用電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統的運作示意圖。FIG. 15 is a schematic diagram showing the operation of the data weighted average algorithm system for improving the linearity of the digital analog conversion circuit using the capacitance combining switching technique of the present invention.
圖16係習知技術的訊號對雜訊失真比的模擬示意圖。Figure 16 is a schematic diagram showing the simulation of the signal-to-noise distortion ratio of the prior art.
圖17係本發明的訊號雜訊失真比的模擬示意圖。Figure 17 is a schematic diagram showing the simulation of the signal noise distortion ratio of the present invention.
圖18係本發明與習知技術的比較之示意圖。Figure 18 is a schematic illustration of a comparison of the present invention with prior art techniques.
300‧‧‧改善電容合併切換技術的數位類比轉換電路線性度之資料加權平均演算法系統300‧‧‧Data weighted average algorithm system for linearity of digital analog conversion circuit for improving capacitance combining switching technology
310‧‧‧2的補數校正電路310‧‧‧2 complement correction circuit
320‧‧‧指標產生器電路320‧‧‧ indicator generator circuit
330‧‧‧解碼器電路330‧‧‧Decoder circuit
350‧‧‧桶狀移位器電路350‧‧‧ barrel shifter circuit
340‧‧‧二進位碼至溫度碼轉換電路340‧‧‧ binary code to temperature code conversion circuit
360‧‧‧後端產生控制單位電容訊號之邏輯電路360‧‧‧The back end generates the logic circuit that controls the unit capacitance signal
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101132038A TWI493878B (en) | 2012-09-03 | 2012-09-03 | System of using a low-cost data weighted averaging algorithm to improve the linearity of a dac circuit with merged capacitor switching technique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101132038A TWI493878B (en) | 2012-09-03 | 2012-09-03 | System of using a low-cost data weighted averaging algorithm to improve the linearity of a dac circuit with merged capacitor switching technique |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201412024A TW201412024A (en) | 2014-03-16 |
TWI493878B true TWI493878B (en) | 2015-07-21 |
Family
ID=50820981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101132038A TWI493878B (en) | 2012-09-03 | 2012-09-03 | System of using a low-cost data weighted averaging algorithm to improve the linearity of a dac circuit with merged capacitor switching technique |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI493878B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020063648A1 (en) * | 2000-10-06 | 2002-05-30 | Stmicroelectronics S.R.I. | Method for dynamic matching of the elements of an integrated multibit digital-to-analog converter with balanced output for audio applications |
US6469648B2 (en) * | 2000-03-16 | 2002-10-22 | Texas Instruments Incorporated | Digital-to analog-converting method and digital-to analog converter employing common weight generating elements |
US7916058B1 (en) * | 2009-10-05 | 2011-03-29 | Texas Instruments Incorporated | Digital-to-analog converter (DAC) with reference-rotated DAC elements |
-
2012
- 2012-09-03 TW TW101132038A patent/TWI493878B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6469648B2 (en) * | 2000-03-16 | 2002-10-22 | Texas Instruments Incorporated | Digital-to analog-converting method and digital-to analog converter employing common weight generating elements |
US20020063648A1 (en) * | 2000-10-06 | 2002-05-30 | Stmicroelectronics S.R.I. | Method for dynamic matching of the elements of an integrated multibit digital-to-analog converter with balanced output for audio applications |
US7916058B1 (en) * | 2009-10-05 | 2011-03-29 | Texas Instruments Incorporated | Digital-to-analog converter (DAC) with reference-rotated DAC elements |
Non-Patent Citations (1)
Title |
---|
H. T. Ziboon and H.M. Azzawi, "DWA TECHNIQUE TO IMPROVE DAC OF SIGMA-DELTA FRACTIONAL-N FREQUENCY SYNTHESIZER FOR WIMAX", June 2009 * |
Also Published As
Publication number | Publication date |
---|---|
TW201412024A (en) | 2014-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8599059B1 (en) | Successive approximation register analog-digital converter and method for operating the same | |
CN102386923B (en) | Asynchronous successive approximation analog-to-digital converter and conversion method | |
CN107493104B (en) | Successive approximation register analog-to-digital converter and analog-to-digital signal conversion method thereof | |
TWI454064B (en) | Successive approximation analog-to-digital converter having auxiliary prediction circuit and method thereof | |
KR101670440B1 (en) | Low power, high speed successive approximated register analog to digital converter and method for converting using the same | |
JP2016040907A (en) | Compensated current cell to scale switching glitches in digital to analog converters | |
KR101844555B1 (en) | Successive approximation register analog-to-digital converter combined with flash analog-to-digital converter | |
US7425913B2 (en) | Bit-adjacency capacitor-switched DAC, method, driver and display device | |
US20090085784A1 (en) | Integrated Circuit Comprising a Plurality of Digital-to-Analog Converters, Sigma-Delta Modulator Circuit, and Method of Calibrating a Plurality of Multibit Digital-to-Analog Converters | |
US10566990B2 (en) | Segmented resistor string type digital to analog converter and control system thereof | |
JP6114390B2 (en) | Analog to digital converter | |
US20120139771A1 (en) | Differential successive approximation analog to digital converter | |
TW201715849A (en) | Successive approximation register (SAR) analog- to-digital converter (ADC) circuit and method thereof | |
US10630304B1 (en) | Sub-ranging analog-to-digital converter | |
TW201524133A (en) | Successive approximation register anolog-to-digital converter | |
WO2013165976A2 (en) | Segmented digital-to-analog converter having weighted current sources | |
US8749412B1 (en) | Anti-noise successive approximation analog to digital conversion method | |
CN116318161B (en) | Multi-step type monoclinic analog-to-digital conversion circuit for image sensor and control method | |
TWI493878B (en) | System of using a low-cost data weighted averaging algorithm to improve the linearity of a dac circuit with merged capacitor switching technique | |
JP2014236373A (en) | A/d conversion device | |
TW201618472A (en) | Successive approximation analog-to-digital converter and conversion method | |
JP2016019091A (en) | Test circuit of da converter and test circuit of ad converter | |
CN109639276B (en) | Double-time-interleaved current-steering DAC with DRRZ correction function | |
KR101986699B1 (en) | Successive approximation register analog digital converter and operating method thereof | |
Nagabhushana et al. | A novel time and voltage based SAR ADC design with self-learning technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |