TWI492409B - Manufacturing method of solar cell - Google Patents

Manufacturing method of solar cell Download PDF

Info

Publication number
TWI492409B
TWI492409B TW102109307A TW102109307A TWI492409B TW I492409 B TWI492409 B TW I492409B TW 102109307 A TW102109307 A TW 102109307A TW 102109307 A TW102109307 A TW 102109307A TW I492409 B TWI492409 B TW I492409B
Authority
TW
Taiwan
Prior art keywords
solar cell
graphene oxide
substrate
semiconductor layer
conductive semiconductor
Prior art date
Application number
TW102109307A
Other languages
Chinese (zh)
Other versions
TW201436269A (en
Inventor
Chu Hsuang Lin
Wen Tzu Hsu
Zong Sian Tsai
Chun Tien Yu
Original Assignee
Nat Univ Dong Hwa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Dong Hwa filed Critical Nat Univ Dong Hwa
Priority to TW102109307A priority Critical patent/TWI492409B/en
Publication of TW201436269A publication Critical patent/TW201436269A/en
Application granted granted Critical
Publication of TWI492409B publication Critical patent/TWI492409B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

太陽能電池的製造方法Solar cell manufacturing method

本發明有關於一種太陽能電池,且特別是有關於太陽能電池的製造方法。The present invention relates to a solar cell, and more particularly to a method of fabricating a solar cell.

常見的太陽能電池,通常是以半導體材料,例如是矽晶材料製作而成。當太陽光線入射太陽能電池,半導體材料會吸收光能並且於內部產生電子-電洞對,透過內建電場將電子-電洞對分離,從而能由太陽能電池獲得電力。Common solar cells are usually made of a semiconductor material, such as a twinned material. When the sun's rays enter the solar cell, the semiconductor material absorbs the light energy and internally generates an electron-hole pair, which separates the electron-hole pair through the built-in electric field, so that the solar cell can obtain power.

一般而言,矽晶材料表面存在許多缺陷,例如是懸鍵(dangling bond),而這些懸鍵會捕捉太陽能電池產生的電子電洞對,降低太陽能電池的光電轉換效率。對此,有些業界尋求藉由形成鈍化層以減少矽晶材料表面懸鍵捕捉電子電洞對的數量,據以降低表面複合率。In general, there are many defects on the surface of the twinned material, such as dangling bonds, which trap the pair of electron holes generated by the solar cell and reduce the photoelectric conversion efficiency of the solar cell. In this regard, some industries have sought to reduce the surface recombination rate by forming a passivation layer to reduce the number of electron hole pairs captured by the surface of the twinned material.

本發明實施例提供一種太陽能電池的製造方法,用以降低鈍化層以及抗反射層的製作成本。Embodiments of the present invention provide a method of fabricating a solar cell for reducing the fabrication cost of the passivation layer and the anti-reflection layer.

本發明實施例提供一種太陽能電池的製造方法,所述太陽能電池的製造方法包括提供基板,而基板包括第一導電型半導體層以及第二導電型半導體層,其中第一導電型半導體層與第二導電型半導體層導電性相反。形成氧化石墨烯層於基板上,且氧化石墨烯層與第二導電型半導體層接觸。形成第一電極以及第二電極於基板上,而第一電極與第一導電型半導體層接觸,第二電極與該第二導電型半導體層接觸。Embodiments of the present invention provide a method of fabricating a solar cell, the method of manufacturing the solar cell comprising providing a substrate, wherein the substrate comprises a first conductive semiconductor layer and a second conductive semiconductor layer, wherein the first conductive semiconductor layer and the second The conductive semiconductor layer has opposite conductivity. A graphene oxide layer is formed on the substrate, and the graphene oxide layer is in contact with the second conductive type semiconductor layer. The first electrode and the second electrode are formed on the substrate, and the first electrode is in contact with the first conductive semiconductor layer, and the second electrode is in contact with the second conductive semiconductor layer.

綜上所述,本發明實施例所提供太陽能電池的製造方法,形成氧化石墨烯層於基板上,且氧化石墨烯層與第二導電型半導體層接觸。氧化石墨烯層不僅可用以作為太陽能電池的鈍化層,以降低太陽能電池表面的電子-電洞複合率之外,氧化石墨烯層也可以作為太陽能電池的抗反射層,以降低太陽能電池入射光的反射率,從而能提高太陽能電池的所能吸收的入射光,進而提升太陽能電池的光電轉換效率。此外,氧化石墨烯層透過浸泡基板於氧化石墨烯懸浮溶液中而形成,因此,氧化石墨烯層的製程較為精簡,而且可以降低太陽能電池形成鈍化層以及抗反射層的製作成本。In summary, in the method for fabricating a solar cell according to an embodiment of the present invention, a graphene oxide layer is formed on a substrate, and the graphene oxide layer is in contact with the second conductive semiconductor layer. The graphene oxide layer can be used not only as a passivation layer of a solar cell, but also to reduce the electron-hole recombination rate of the surface of the solar cell. The graphene oxide layer can also serve as an anti-reflection layer of the solar cell to reduce the incident light of the solar cell. The reflectivity, thereby increasing the incident light that the solar cell can absorb, thereby improving the photoelectric conversion efficiency of the solar cell. In addition, the graphene oxide layer is formed by immersing the substrate in the graphene oxide suspension solution. Therefore, the process of the graphene oxide layer is relatively simple, and the manufacturing cost of forming the passivation layer and the anti-reflection layer of the solar cell can be reduced.

為了能更進一步瞭解本發明為達成既定目的所採取之技術、方法及功效,請參閱以下有關本發明之詳細說明、圖式,相信本發明之目的、特徵與特點,當可由此得以深入且具體之瞭解,然而所附圖式與附件僅提供參考與說明用,並非用來對本發明加以限制者。In order to further understand the technology, method and effect of the present invention in order to achieve the intended purpose, reference should be made to the detailed description and drawings of the present invention. The drawings and the annexed drawings are intended to be illustrative and not to limit the invention.

100‧‧‧太陽能電池100‧‧‧ solar cells

110‧‧‧基板110‧‧‧Substrate

112‧‧‧第一導電型半導體層112‧‧‧First Conductive Semiconductor Layer

114‧‧‧第二導電型半導體層114‧‧‧Second conductive semiconductor layer

120‧‧‧氧化石墨烯層120‧‧‧ Graphene oxide layer

130‧‧‧第一電極130‧‧‧First electrode

140‧‧‧第二電極140‧‧‧second electrode

L1~L4‧‧‧曲線L1~L4‧‧‧ Curve

S101~S105‧‧‧步驟流程S101~S105‧‧‧Step procedure

圖1是本發明實施例的太陽能電池的結構示意圖。1 is a schematic structural view of a solar cell according to an embodiment of the present invention.

圖2是本發明實施例的太陽能電池的製造方法的流程示意圖。2 is a flow chart showing a method of manufacturing a solar cell according to an embodiment of the present invention.

圖3是本發明實施例的太陽能電池的反射率-波長曲線圖。3 is a graph showing a reflectance-wavelength curve of a solar cell according to an embodiment of the present invention.

圖4為本發明實施例的太陽能電池的電壓-電容曲線圖。4 is a voltage-capacitance curve diagram of a solar cell according to an embodiment of the present invention.

圖1為本發明實施例的太陽能電池的結構示意圖,圖2為本發明實施例的太陽能電池的製造方法的流程示意圖。請配合參照圖1以及圖2。1 is a schematic structural view of a solar cell according to an embodiment of the present invention, and FIG. 2 is a schematic flow chart of a method for manufacturing a solar cell according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 2 together.

太陽能電池100包括基板110、氧化石墨烯層120、第一電極130以及第二電極140。氧化石墨烯層120位於基板110之上,而第一電極130以及第二電極140分別與基板110接觸。值得說明的是,太陽能電池100的製造方法主要是於基板110上形成氧化石墨烯層120,並且形成第一電極130以及第二電極140於基板110上。 據此,太陽能電池100大致上已經形成。The solar cell 100 includes a substrate 110, a graphene oxide layer 120, a first electrode 130, and a second electrode 140. The graphene oxide layer 120 is located above the substrate 110, and the first electrode 130 and the second electrode 140 are in contact with the substrate 110, respectively. It should be noted that the manufacturing method of the solar cell 100 mainly forms the graphene oxide layer 120 on the substrate 110 and forms the first electrode 130 and the second electrode 140 on the substrate 110. Accordingly, the solar cell 100 is substantially formed.

首先,於步驟S101中,提供基板110。基板110包括第一導電型半導體層112以及第二導電型半導體層114,其.中第一導電型半導體層112與第二導電型半導體層114的導電型(conductivity type)相反。值得說明的是,第一導電型半導體層112主要為摻雜有第五族元素的n型半導體層,第二導電型半導體層114主要為摻雜有第三族元素的p型半導體層。First, in step S101, the substrate 110 is provided. The substrate 110 includes a first conductive type semiconductor layer 112 and a second conductive type semiconductor layer 114, wherein the first conductive type semiconductor layer 112 is opposite to the conductivity type of the second conductive type semiconductor layer 114. It is to be noted that the first conductive semiconductor layer 112 is mainly an n-type semiconductor layer doped with a Group 5 element, and the second conductive semiconductor layer 114 is mainly a p-type semiconductor layer doped with a Group III element.

一般來說,基板110為一矽基材,其可以是單晶矽、多晶矽或者是非晶矽材料,更包括其他非矽太陽光吸收材料。於本發明實施例中,基板110為單晶矽,而第一導電型半導體層112與第二導電型半導體層114接觸,因此所述兩者之間可以形成p-n接面。不過,於其他發明實施例中,基板110可以是非晶矽材料,而且基板110可以更包括一本質半導體層或低摻雜半導體層(未繪示),其中第一導電型半導體層112與第二導電型半導體層114分別位於本質半導體層兩側。據此,太陽能電池100得以藉由光伏特效應(Photovoltaic effect),將吸收的光能轉換成電能。不過,本發明並不對基板110的材料加以限定。Generally, the substrate 110 is a tantalum substrate which may be a single crystal germanium, a polycrystalline germanium or an amorphous germanium material, and further includes other non-antimony solar light absorbing materials. In the embodiment of the present invention, the substrate 110 is a single crystal germanium, and the first conductive semiconductor layer 112 is in contact with the second conductive semiconductor layer 114, so that a p-n junction can be formed between the two. However, in other embodiments of the invention, the substrate 110 may be an amorphous germanium material, and the substrate 110 may further include an intrinsic semiconductor layer or a low doped semiconductor layer (not shown), wherein the first conductive semiconductor layer 112 and the second The conductive semiconductor layers 114 are respectively located on both sides of the intrinsic semiconductor layer. Accordingly, the solar cell 100 can convert the absorbed light energy into electrical energy by the photovoltaic effect. However, the present invention does not limit the material of the substrate 110.

此外,為了增加基板110表面的極性,可以對基板110進行表面處理。詳細來說,於步驟S102中,將基板110浸泡於SCl溶液中,而SCl溶液包括氫氧化銨(NH4OH)、過氧化氫(H2O2)以及去離子水(Deionized water,DI water),而氫氧化銨、雙氧水以及去離子水之間的比例範圍介於1:1:6至1:2:8之間。值得說明的是,由於SCl溶液具有OH官能基,而OH官能基為極性共價鍵。據此,浸泡SCl溶液後的基板110的表面具有極性。雖然於本發明實施例中對基板110進行表面處理,但是本發明並未限定於此。Further, in order to increase the polarity of the surface of the substrate 110, the substrate 110 may be subjected to surface treatment. In detail, in step S102, the substrate 110 is immersed in the SCl solution, and the SCl solution includes ammonium hydroxide (NH4OH), hydrogen peroxide (H2O2), and deionized water (DI water), and hydroxide. The ratio between ammonium, hydrogen peroxide, and deionized water ranges from 1:1:6 to 1:2:8. It is worth noting that since the SCl solution has an OH functional group and the OH functional group is a polar covalent bond. Accordingly, the surface of the substrate 110 after the SCl solution is immersed has a polarity. Although the substrate 110 is subjected to surface treatment in the embodiment of the present invention, the present invention is not limited thereto.

於步驟S103中,形成氧化石墨烯層120於基板110上,且氧化石墨烯層120與第二導電型半導體層114接觸。於本實施例中,將基板110浸泡於氧化石墨烯懸浮溶液,以形成氧化石墨烯層 120。具體而言,先將石墨進行氧化以形成氧化石墨,可以藉由將石墨加入硫酸(H2SO4)以及過錳酸鉀(KMnO4)中以獲得氧化石墨,並以過氧化氫氧化之。接著,將氧化石墨置入去離子水中以形成氧化石墨溶液。接著,藉由超音波振盪機以及離心機(centrifugation)對氧化石墨溶液進行第一超音波振盪處理以及第一離心處理,其中第一超音波振盪處理時間介於20至60分鐘,第一離心處理轉速介於500至15000每分鐘轉速(revolutions per minute,rpm),第一離心處理時間介於20至60分鐘。據此,氧化石墨溶液形成氧化石墨烯懸浮溶液。In step S103, the graphene oxide layer 120 is formed on the substrate 110, and the graphene oxide layer 120 is in contact with the second conductive semiconductor layer 114. In this embodiment, the substrate 110 is immersed in a graphene oxide suspension solution to form a graphene oxide layer. 120. Specifically, the graphite is first oxidized to form graphite oxide, which can be obtained by adding graphite to sulfuric acid (H 2 SO 4 ) and potassium permanganate (KMnO 4 ) to obtain graphite oxide, and oxidizing it by hydrogen peroxide. Next, the graphite oxide is placed in deionized water to form a graphite oxide solution. Next, the first ultrasonic wave oscillation process and the first centrifugation process are performed on the graphite oxide solution by an ultrasonic oscillator and a centrifugation, wherein the first ultrasonic wave oscillation processing time is between 20 and 60 minutes, and the first centrifugation process The rotational speed is between 500 and 15,000 revolutions per minute (rpm), and the first centrifugation time is between 20 and 60 minutes. Accordingly, the graphite oxide solution forms a graphene oxide suspension solution.

值得說明的是,氧化石墨烯碎片的尺寸取決於超音波振盪處理以及離心處理的時間或次數,可以藉由調整超音波振盪處理以及離心處理的時間或次數以改變氧化石墨烯碎片的尺寸。如此,為了減少氧化石墨烯碎片尺寸,可以對上述氧化石墨懸浮溶液進行第二超音波振盪處理,第二超音波震盪處理時間介於60至150分鐘,而後再進行第二離心處理每分鐘轉速介於500至15000(revolutions per minute,rpm),第二離心處理時間介於20至60分鐘。不過,本發明並不對超音波振盪處理以及離心處理的條件加以限制。It is worth noting that the size of the graphene oxide fragments depends on the time or the number of times of the ultrasonic oscillation treatment and the centrifugation treatment, and the size of the graphene oxide fragments can be changed by adjusting the time or the number of times of the ultrasonic oscillation treatment and the centrifugation treatment. Thus, in order to reduce the size of the graphene oxide fragments, the second ultrasonic wave oscillation treatment may be performed on the graphite oxide suspension solution, and the second ultrasonic vibration treatment time is between 60 and 150 minutes, and then the second centrifugal treatment is performed every minute. At 500 to 15000 (revolutions per minute, rpm), the second centrifugation time is between 20 and 60 minutes. However, the present invention does not limit the conditions of the ultrasonic oscillation processing and the centrifugal processing.

接下來,透過滴管擷取出部分氧化石墨烯懸浮溶液,將氧化石墨烯懸浮溶液滴在基板110的表面,或者是將基板110浸泡於氧化石墨烯懸浮溶液中,從而第二導電型半導體層114得以接觸氧化石墨烯懸浮溶液。而後,將配置有氧化石墨烯懸浮溶液的基板110風乾,風乾的方式可以是自然風乾或者是加熱烘乾,本發明並不加以限定。據此,氧化石墨烯碎片得以沉積於矽基板110上,而且氧化石墨烯層120與第二導電型半導體層114接觸,以形成氧化石墨烯層120。Next, the partial graphene oxide suspension solution is taken out through the dropper, the graphene oxide suspension solution is dropped on the surface of the substrate 110, or the substrate 110 is immersed in the graphene oxide suspension solution, so that the second conductive type semiconductor layer 114 It is accessible to the graphene oxide suspension solution. Then, the substrate 110 provided with the graphene oxide suspension solution is air-dried, and the air drying method may be natural air drying or heat drying, which is not limited in the present invention. According to this, the graphene oxide fragments are deposited on the tantalum substrate 110, and the graphene oxide layer 120 is in contact with the second conductive type semiconductor layer 114 to form the graphene oxide layer 120.

不過,於其它實施例中,氧化石墨烯層120亦可藉由化學氣相沉積(chemical vapor deposition),機械剝離(mechanical exfoliation),或磊晶成長(epitaxial growth)等方式形成,或先形成 石墨烯再進行氧化等功能性鍵結而形成。However, in other embodiments, the graphene oxide layer 120 may be formed by chemical vapor deposition, mechanical exfoliation, or epitaxial growth, or may be formed first. The graphene is further formed by functional bonding such as oxidation.

另外,值得說明的是,氧化石墨烯具有極性鍵,如此,當氧化石墨烯碎片沉積於經過表面處理的第二導電型半導體層114的表面上時,氧化石墨烯碎片得以分布較為均勻。Further, it is worth noting that the graphene oxide has a polar bond, and thus, when the graphene oxide fragments are deposited on the surface of the surface-treated second conductive type semiconductor layer 114, the graphene oxide fragments are more uniformly distributed.

於步驟S105中,形成第一電極130以第二電極140於基板110。如圖2所示,第一電極130配置於第一導電型半導體層112,且與第一導電型半導體層112接觸。第二電極140穿過氧化石墨烯層120的部分區域,並且與第二導電型半導體層114接觸。In step S105, the first electrode 130 is formed with the second electrode 140 on the substrate 110. As shown in FIG. 2 , the first electrode 130 is disposed on the first conductive semiconductor layer 112 and is in contact with the first conductive semiconductor layer 112 . The second electrode 140 passes through a partial region of the graphene oxide layer 120 and is in contact with the second conductive type semiconductor layer 114.

詳細而言,第一電極130與第二電極140可以是一導電材料,例如是銀、鋁等,透過沉積或者是塗佈等方式分別形成於基板110上。舉例來說,第二電極140可以是一銀膠,塗佈於氧化石墨烯層120上,透過熱處理,第二電極140可以穿過氧化石墨烯碎片之間的空隙而與第二導電型半導體層114接觸。另外,氧化石墨烯層120也可以是具有多個孔洞的圖案層,這些孔洞可以裸露出部分的第二導電型半導體層114,而第二電極140形成於氧化石墨烯層120且得以透過孔洞與第二導電型半導體層114接觸。此外,第一電極130與第二電極140的形成順序可以是同時形成,也可以是順序相反。不過,本發明並不對第一電極130與第二電極140的形成方法或是形成順序加以限定。In detail, the first electrode 130 and the second electrode 140 may be a conductive material, such as silver, aluminum, or the like, formed on the substrate 110 by deposition or coating. For example, the second electrode 140 may be a silver paste coated on the graphene oxide layer 120, and through the heat treatment, the second electrode 140 may pass through the gap between the graphene oxide fragments and the second conductive type semiconductor layer. 114 contact. In addition, the graphene oxide layer 120 may also be a pattern layer having a plurality of holes, which may expose a portion of the second conductive type semiconductor layer 114, and the second electrode 140 is formed on the graphene oxide layer 120 and is transparent to the hole and The second conductive type semiconductor layer 114 is in contact. In addition, the order in which the first electrode 130 and the second electrode 140 are formed may be formed simultaneously or in reverse order. However, the present invention does not limit the formation method or the order of formation of the first electrode 130 and the second electrode 140.

圖3為本發明實施例的太陽能電池的反射率-波長曲線圖,請參閱圖3。曲線L1代表形成有氧化石墨烯層120太陽能電池100的反射率-波長曲線,曲線L2代表未形成氧化石墨烯層120的太陽能電池的反射率-波長曲線。如圖3所示,曲線L1的反射率隨波長的增加而減少,其中隨波長的增加曲線L1的反射率比曲線L2的反射率低。如圖3所示,形成有氧化石墨烯層120太陽能電池100的曲線L1的抗反射表現相較於未形成有氧化石墨烯層120太陽能電池的曲線L2佳。因此,氧化石墨烯層120可以用來作為抗反射層 以降低太陽能電池100入射光的反射率,從而能提高太陽能電池100的所能吸收的入射光。3 is a graph showing a reflectance-wavelength curve of a solar cell according to an embodiment of the present invention, see FIG. 3. The curve L1 represents the reflectance-wavelength curve of the solar cell 100 in which the graphene oxide layer 120 is formed, and the curve L2 represents the reflectance-wavelength curve of the solar cell in which the graphene oxide layer 120 is not formed. As shown in FIG. 3, the reflectance of the curve L1 decreases as the wavelength increases, wherein the reflectance of the curve L1 is lower than the reflectance of the curve L2 as the wavelength increases. As shown in FIG. 3, the anti-reflection performance of the curve L1 in which the graphene oxide layer 120 solar cell 100 is formed is better than the curve L2 in which the graphene oxide layer 120 solar cell is not formed. Therefore, the graphene oxide layer 120 can be used as an antireflection layer In order to reduce the reflectance of the incident light of the solar cell 100, it is possible to increase the incident light that the solar cell 100 can absorb.

圖4為本發明實施例的配置氧化石墨烯層的金屬氧化物半導體電壓-電容曲線圖,請參閱圖4。曲線L3代表形成氧化石墨烯層120於原生氧化矽-矽結構上且製作鋁電極,以形成鋁-氧化石墨烯-原生氧化層-矽-鋁之金屬氧化物半導體結構的電壓-電容曲線。曲線L4代表於原生氧化矽-矽結構上且製作鋁電極,以形成鋁-原生氧化層-矽-鋁之金屬氧化物半導體的電壓-電容曲線。如圖4所示,形成有氧化石墨烯層120的金屬氧化物半導體結構的曲線L3的平帶電壓值相較於未形成有氧化石墨烯層120的金屬氧化物半導體結構的曲線L4的平帶電壓值大,亦即曲線L3相較於曲線L4右移。因此表示氧化石墨烯層120具有負的氧化層電荷,可使得太陽能電池100的基板110的表面被鈍化,此即表示氧化石墨烯層120可以用來作為太陽能電池100的鈍化層,從而氧化石墨烯層120可以降低太陽能電池100的表面的電子-電洞複合率。4 is a graph showing a voltage-capacitance curve of a metal oxide semiconductor of a graphene oxide layer according to an embodiment of the present invention, see FIG. Curve L3 represents a voltage-capacitance curve for forming a graphene oxide layer 120 on a native yttria-yttrium structure and fabricating an aluminum electrode to form an aluminum-graphene oxide-negative oxide layer-yttrium-aluminum metal oxide semiconductor structure. Curve L4 represents a voltage-capacitance curve of a native yttria-yttrium structure and an aluminum electrode to form an aluminum-primary oxide-yttrium-aluminum metal oxide semiconductor. As shown in FIG. 4, the flat band voltage value of the curve L3 of the metal oxide semiconductor structure in which the graphene oxide layer 120 is formed is compared with the flat band of the curve L4 of the metal oxide semiconductor structure in which the graphene oxide layer 120 is not formed. The voltage value is large, that is, the curve L3 is shifted to the right by the curve L4. Therefore, it is indicated that the graphene oxide layer 120 has a negative oxide layer charge, so that the surface of the substrate 110 of the solar cell 100 can be passivated, which means that the graphene oxide layer 120 can be used as a passivation layer of the solar cell 100, thereby oxidizing graphene. The layer 120 can reduce the electron-hole recombination rate of the surface of the solar cell 100.

此外,太陽能電池100的製造方法可以更包括步驟S104。請再次參閱圖2,於步驟S104中,以氧化石墨烯層120作為遮罩蝕刻基板110,以在第二導電型半導體層114表面形成粗糙結構。一般來說,蝕刻基板110的表面使其形成粗糙面,藉以降低入射光反射的比率,從而能減少反射光的損失。於本實施例中,以氫氧化鉀溶液作為蝕刻液,透過氧化石墨烯層120蝕刻基板110。經由蝕刻後的基板110表面起伏較大,形成粗糙結構。當入射光由從氧化石墨烯層120端入射時,氧化石墨烯層120可用以降低入射光的反射率。雖然太陽能電池100的製造方法可以透過氧化石墨烯層120蝕刻基板110,不過本發明並未限定於此。Further, the method of manufacturing the solar cell 100 may further include step S104. Referring to FIG. 2 again, in step S104, the graphene oxide layer 120 is used as a mask etching substrate 110 to form a roughness on the surface of the second conductive semiconductor layer 114. Generally, the surface of the substrate 110 is etched to form a rough surface, thereby reducing the ratio of incident light reflection, thereby reducing the loss of reflected light. In the present embodiment, the substrate 110 is etched through the graphene oxide layer 120 using a potassium hydroxide solution as an etching solution. The surface of the substrate 110 after etching is undulated to form a rough structure. When incident light is incident from the end of the graphene oxide layer 120, the graphene oxide layer 120 can be used to reduce the reflectance of incident light. Although the method of manufacturing the solar cell 100 can etch the substrate 110 through the graphene oxide layer 120, the present invention is not limited thereto.

綜上所述,本發明實施例所提供太陽能電池的製造方法,形成 氧化石墨烯層於基板上,且氧化石墨烯層與第二導電型半導體層接觸。氧化石墨烯層不僅可用以作為太陽能電池的鈍化層,以降低太陽能電池表面的電子-電洞複合率之外,氧化石墨烯層也可以作為太陽能電池的抗反射層,以降低太陽能電池入射光的反射率,從而能提高太陽能電池的所能吸收的入射光,進而提升太陽能電池的光電轉換效率。此外,氧化石墨烯層透過浸泡基板於氧化石墨烯懸浮溶液中而形成,因此,氧化石墨烯層的製程較為精簡,而且可以降低太陽能電池形成鈍化層以及抗反射層的製作成本。In summary, the method for manufacturing a solar cell according to an embodiment of the present invention is formed. The graphene oxide layer is on the substrate, and the graphene oxide layer is in contact with the second conductive type semiconductor layer. The graphene oxide layer can be used not only as a passivation layer of a solar cell, but also to reduce the electron-hole recombination rate of the surface of the solar cell. The graphene oxide layer can also serve as an anti-reflection layer of the solar cell to reduce the incident light of the solar cell. The reflectivity, thereby increasing the incident light that the solar cell can absorb, thereby improving the photoelectric conversion efficiency of the solar cell. In addition, the graphene oxide layer is formed by immersing the substrate in the graphene oxide suspension solution. Therefore, the process of the graphene oxide layer is relatively simple, and the manufacturing cost of forming the passivation layer and the anti-reflection layer of the solar cell can be reduced.

以上所述僅為本發明的實施例,其並非用以限定本發明的專利保護範圍。任何熟習相像技藝者,在不脫離本發明的精神與範圍內,所作的更動及潤飾的等效替換,仍為本發明的專利保護範圍內。The above is only an embodiment of the present invention, and is not intended to limit the scope of the invention. It is still within the scope of patent protection of the present invention to make any substitutions and modifications of the modifications made by those skilled in the art without departing from the spirit and scope of the invention.

100‧‧‧太陽能電池100‧‧‧ solar cells

110‧‧‧基板110‧‧‧Substrate

112‧‧‧第一導電型半導體層112‧‧‧First Conductive Semiconductor Layer

114‧‧‧第二導電型半導體層114‧‧‧Second conductive semiconductor layer

120‧‧‧氧化石墨烯層120‧‧‧ Graphene oxide layer

130‧‧‧第一電極130‧‧‧First electrode

140‧‧‧第二電極140‧‧‧second electrode

Claims (9)

一種太陽能電池的製造方法,包括:提供一基板,該基板包括一第一導電型半導體層以及一第二導電型半導體層,其中該第一導電型半導體層與該第二導電型半導體層導電性相反;形成一氧化石墨烯層於該基板上,且該氧化石墨烯層與該第二導電型半導體層接觸;以及形成一第一電極以及一第二電極於該基板上,而該第一電極與該第一導電型半導體層接觸,該第二電極與該第二導電型半導體層接觸。A method of manufacturing a solar cell, comprising: providing a substrate, the substrate comprising a first conductive semiconductor layer and a second conductive semiconductor layer, wherein the first conductive semiconductor layer and the second conductive semiconductor layer are electrically conductive Conversely, forming a graphene oxide layer on the substrate, and the graphene oxide layer is in contact with the second conductive semiconductor layer; and forming a first electrode and a second electrode on the substrate, and the first electrode In contact with the first conductive semiconductor layer, the second electrode is in contact with the second conductive semiconductor layer. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中該氧化石墨烯層藉由將基板浸泡於氧化石墨烯懸浮溶液而形成。The method for producing a solar cell according to claim 1, wherein the graphene oxide layer is formed by immersing the substrate in a graphene oxide suspension solution. 如申請專利範圍第2項所述之太陽能電池的製造方法,其中該氧化石墨烯懸浮溶液的製造方法包括:將一石墨形成一氧化石墨;將該氧化石墨置入一去離子水中以形成一氧化石墨溶液;藉由超音波振盪機以及離心機對該氧化石墨溶液進行一第一超音波振盪處理以及一第一離心處理,以形成一氧化石墨烯懸浮溶液。The method for manufacturing a solar cell according to claim 2, wherein the method for producing a graphene oxide suspension solution comprises: forming a graphite into graphite oxide; and placing the graphite oxide in a deionized water to form an oxidation. The graphite solution is subjected to a first ultrasonic wave oscillation treatment and a first centrifugation treatment by an ultrasonic oscillator and a centrifuge to form a graphene oxide suspension solution. 如申請專利範圍第3項所述之太陽能電池的製造方法,其中該第一超音波振盪處理時間介於20至60分鐘,該第一離心處理轉速介於500至15000每分鐘轉速(revolutions per minute,rpm),該第一離心處理時間介於20至60分鐘。The method for manufacturing a solar cell according to claim 3, wherein the first ultrasonic oscillation processing time is between 20 and 60 minutes, and the first centrifugal processing speed is between 500 and 15,000 per minute (revolutions per minute) , rpm), the first centrifugation time is between 20 and 60 minutes. 如申請專利範圍第4項所述之太陽能電池的製造方法,其中該氧化石墨懸浮溶液更進行一第二超音波振盪處理,該第二超音波震盪處理時間介於60至150分鐘,而後再進行一第二離心處理每分鐘轉速介於500至15000(revolutions per minute,rpm),該第二離心處理時間介於20至60分鐘。The method for manufacturing a solar cell according to claim 4, wherein the graphite oxide suspension solution is further subjected to a second ultrasonic oscillation treatment, wherein the second ultrasonic oscillation treatment time is between 60 and 150 minutes, and then performed. A second centrifugation process is between 500 and 15,000 revolutions per minute (rpm), and the second centrifugation time is between 20 and 60 minutes. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中於形成該氧化石墨烯層於該基板上之前,對該基板進行一表面處理。The method of manufacturing a solar cell according to claim 1, wherein the substrate is subjected to a surface treatment before forming the graphene oxide layer on the substrate. 如申請專利範圍第6項所述之太陽能電池的製造方法,其中該表面處理包括將該基板浸泡於一SCl溶液中。The method of manufacturing a solar cell according to claim 6, wherein the surface treatment comprises immersing the substrate in an SCl solution. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中以該氧化石墨烯層作為遮罩蝕刻該基板,以在該第二導電型半導體層表面形成一粗糙結構。The method for producing a solar cell according to claim 1, wherein the substrate is etched using the graphene oxide layer as a mask to form a rough structure on a surface of the second conductive semiconductor layer. 如申請專利範圍第1項所述之太陽能電池的製造方法,其中該氧化石墨烯層可藉由化學氣相沉積、機械剝離或磊晶成長(epitaxial growth)形成。The method for producing a solar cell according to claim 1, wherein the graphene oxide layer is formed by chemical vapor deposition, mechanical peeling, or epitaxial growth.
TW102109307A 2013-03-15 2013-03-15 Manufacturing method of solar cell TWI492409B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102109307A TWI492409B (en) 2013-03-15 2013-03-15 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102109307A TWI492409B (en) 2013-03-15 2013-03-15 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
TW201436269A TW201436269A (en) 2014-09-16
TWI492409B true TWI492409B (en) 2015-07-11

Family

ID=51943479

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102109307A TWI492409B (en) 2013-03-15 2013-03-15 Manufacturing method of solar cell

Country Status (1)

Country Link
TW (1) TWI492409B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201118136A (en) * 2009-11-26 2011-06-01 Dainippon Ink & Chemicals Photoelectric converter material and photoelectric converter
US20120000521A1 (en) * 2010-07-01 2012-01-05 Egypt Nanotechnology Center Graphene Solar Cell And Waveguide
US20120325296A1 (en) * 2011-06-24 2012-12-27 Samsung Electronics Co., Ltd. Graphene-on-substrate and transparent electrode and transistor including the graphene-on-substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201118136A (en) * 2009-11-26 2011-06-01 Dainippon Ink & Chemicals Photoelectric converter material and photoelectric converter
US20120000521A1 (en) * 2010-07-01 2012-01-05 Egypt Nanotechnology Center Graphene Solar Cell And Waveguide
US20120325296A1 (en) * 2011-06-24 2012-12-27 Samsung Electronics Co., Ltd. Graphene-on-substrate and transparent electrode and transistor including the graphene-on-substrate

Also Published As

Publication number Publication date
TW201436269A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
JP5570654B2 (en) Solar cell element and solar cell module
US8603851B2 (en) Solar cell and method of manufacturing the same by simultaneously forming first and second doping regions
JP2009135338A (en) Solar cell, and manufacturing method of solar cell
US20130125964A1 (en) Solar cell and manufacturing method thereof
US20160233368A1 (en) Solar cell
TW201515244A (en) Solar cell and solar cell module
TWI401810B (en) Solar cell
TWI549305B (en) Opto-electrical conversion structure, solar cell using the same, and manufacturing method thereof
JP2024039048A (en) Semiconductor substrate, solar battery, and photovoltaic power generation module
WO2013161145A1 (en) Backside bonded solar cell and method for manufacturing same
KR101622088B1 (en) Solar cell
US20140360584A1 (en) Manufacturing method of solar cell
US20150179843A1 (en) Photovoltaic device
TWI492409B (en) Manufacturing method of solar cell
WO2017010029A1 (en) Photoelectric conversion device
TWI443852B (en) Solar cell fabrication method
Si Ahmed et al. Fabrication of pyramid/nanowire binary structure on n-type silicon using chemical etching
KR101134131B1 (en) Surface processing method of silicon substrate for silicon solar cell
JP2011066213A (en) Photoelectric converter and method of manufacturing the same
TWI405347B (en) Cigs solar cell
JP6076814B2 (en) Manufacturing method of solar cell
TWI574425B (en) Solar cell and manufacturing method thereof
JP5858421B2 (en) Manufacturing method of solar cell
Sheriff et al. Impacts of Wafer Doping Type on Structural and Optical Properties of Black Silicon Fabricated by Metal-Assisted Chemical Etching
JP5516611B2 (en) Solar cell manufacturing method and solar cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees