TWI487306B - 同軸電纜乙太被動式光纖網路省電模式的系統和方法 - Google Patents

同軸電纜乙太被動式光纖網路省電模式的系統和方法 Download PDF

Info

Publication number
TWI487306B
TWI487306B TW102103997A TW102103997A TWI487306B TW I487306 B TWI487306 B TW I487306B TW 102103997 A TW102103997 A TW 102103997A TW 102103997 A TW102103997 A TW 102103997A TW I487306 B TWI487306 B TW I487306B
Authority
TW
Taiwan
Prior art keywords
module
coaxial cable
coaxial
epoc
network
Prior art date
Application number
TW102103997A
Other languages
English (en)
Other versions
TW201336250A (zh
Inventor
Edward Wayne Boyd
Sanjay Goswami
Andrew Boyce
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of TW201336250A publication Critical patent/TW201336250A/zh
Application granted granted Critical
Publication of TWI487306B publication Critical patent/TWI487306B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25758Optical arrangements for wireless networks between a central unit and a single remote unit by means of an optical fibre
    • H04B10/25759Details of the reception of RF signal or the optical conversion before the optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Description

同軸電纜乙太被動式光纖網路省電模式的系統和方法
本公開大體上涉及乙太網,特別有關於一種同軸電纜乙太被動式光纖網路(EPOC)同軸網路單元(CNU)。
被動式光纖網路(PON)為單個共用的光纖,其使用廉價的分路器將單個光纖分為提供給單個使用者的單獨絞合線。乙太網PON(EPON)為基於乙太網標準的PON。EPON在使用者住處以及交換局兩者為基於乙太網的IP設備提供簡單且易於管理的連接。與其他千兆位元乙太網介質一樣,EPON非常適合於承載分組流量(packetized traffic)。同軸電纜乙太被動式光纖網路(EPOC,Ethernet Passive Optical Network Over Coax)是能夠在同軸網路上實現EPON連接的網路。
(1)一種同軸電纜乙太被動式光纖網路(EPOC)同軸網路單元(CNU),包括:乙太被動式光纖網路(EPON)媒體存取控制(MAC)模組,被配置為接收控制訊息,所述控制訊息包含進入睡眠模式的指令;流量檢測模組,被配置為回應於所述控制訊息確定所述同軸電纜乙太被動式光纖網路同軸網路單元處的使用者流量的流量特徵;以及功率管理器模組,被配置為根據所確定的所述流量特徵確定功率分佈並且根據所述功率分佈控制所述同軸電纜乙太被動式光 纖網路同軸網路單元的一個或多個模組。
(2)根據(1)所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示以下各項中的一項或多項:存在上行資料流程量、不存在上行資料流程量、存在下行資料流程量、不存在下行資料流程量、存在主動連接多播組、以及上行頻寬容量使用率。
(3)根據(2)所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:射頻(RF)模組,被配置為將所述同軸電纜乙太被動式光纖網路同軸網路單元耦接至同軸電纜,包括:RF發送(TX)電路,被配置為將第一RF訊號發送在所述同軸電纜上;和RF接收(RX)電路,被配置為從所述同軸電纜接收第二RF訊號;數位/類比轉換器(DAC),耦接至所述RF發送電路;以及類比/數位轉換器(ADC),耦接至所述RF接收電路。
(4)根據(3)所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示不存在上行資料流程量,並且其中,所述功率管理器模組被配置為將所述RF發送電路和所述數位/類比轉換器電源切斷長達所述睡眠模式定義的持續時間。
(5)根據(3)所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示不存在下行資料流程量,並且其中,所述功率管理器模組被配置為將所述RF接收電路和所述類比/數位轉換器電源切斷長達所述睡眠模式定義的持續時間。
(6)根據(3)所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述功率管理器模組被配置為將所述RF發送電路、所述數位/類比轉換器、所述RF接收電路和所述類比/數 位轉換器電源切斷長達所述睡眠模式定義的持續時間。
(7)根據(3)所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:EPOC PHY模組,耦接在所述乙太被動式光纖網路媒體存取控制模組和所述射頻模組之間,其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述功率管理器模組被配置為控制所述EPOC PHY從而減小以下各項中的一項或多項:(a)用於進行上行傳輸的頻率子載波的數量;(b)用於進行上行傳輸的頻率子載波的頻率;(c)用於進行上行傳輸的調製階數;以及(d)用於進行上行傳輸的符號速率。
(8)根據(3)所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:EPOC PHY模組,耦接在所述乙太被動式光纖網路媒體存取控制模組和所述射頻模組之間,以及其中,所述射頻模組進一步包括導頻恢復模組,所述導頻恢復模組被配置為從所述第二RF訊號中提取導頻音並且將所述導頻音提供給所述EPOC PHY模組。
(9)根據(1)所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:實體層(PHY)模組,被配置為將所述同軸電纜乙太被動式光纖網路同軸網路單元耦接至使用者網路介面(UNI),其中,所述流量檢測模組被配置為透過監測所述實體層模組內的位元流,確定所述使用者流量的流量特徵。
(10)根據(1)所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述控制訊息包括操作、管理、和維護(OAM)訊息。
(11)一種用於在同軸電纜乙太被動式光纖網路(EPOC)同 軸網路單元(CNU)內節省電力的方法,包括:接收控制訊息,所述控制訊息包含進入睡眠模式的指令;回應於所述控制訊息,確定所述同軸電纜乙太被動式光纖網路同軸網路單元處使用者流量的流量特徵;根據所確定的所述流量特徵確定功率分佈;以及根據所述功率分佈控制所述同軸電纜乙太被動式光纖網路同軸網路單元的一個或多個模組。
(12)根據(11)所述的方法,其中,所述流量特徵表示以下各項中的一項或多項:存在上行資料流程量、不存在上行資料流程量、存在下行資料流程量、不存在下行資料流程量、存在主動連接多播組、以及上行頻寬容量使用率。
(13)根據(12)所述的方法,其中,所述流量特徵表示不存在上行資料流程量,並且其中,所述控制包括將所述同軸電纜乙太被動式光纖網路同軸網路單元的射頻(RF)發送(TX)電路和數位/類比轉換器(DAC)電源切斷長達所述睡眠模式定義的持續時間。
(14)根據(12)所述的方法,其中,所述流量特徵表示不存在下行資料流程量,並且其中,所述控制包括將所述同軸電纜乙太被動式光纖網路同軸網路單元的射頻(RF)接收(RX)電路和類比/數位轉換器(ADC)電源切斷長達所述睡眠模式定義的持續時間。
(15)根據(12)所述的方法,其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述控制包括將所述同軸電纜乙太被動式光纖網路同軸網路單元的射頻(RF)發送(TX)電路、數位/類比轉換器(DAC)、RF接收(RX)電路和類比/數位轉換器(ADC)電源切斷長達所述睡眠模式定義的持續時間。
(16)根據(12)所述的方法,其中,所述流量特徵表示上 行頻寬容量使用率低於預定的臨界值,並且其中,所述控制包括執行以下各項中的一項或多項:(a)減少用於進行上行傳輸的頻率子載波的數量;(b)降低用於進行上行傳輸的頻率子載波的頻率;以及(c)降低用於進行上行傳輸的調製階數。
(17)根據(11)所述的方法,其中,確定流量特徵包括:根據可配置的標準,檢查資料包,以便根據一個或多個資料包選擇類型確定所述流量特徵。
(18)一種用於在同軸電纜乙太被動式光纖網路(EPOC)同軸網路單元(CNU)中節省電力的方法,包括:監測所述同軸電纜乙太被動式光纖網路同軸網路單元中的上行資料流程量;比較所述上行資料流程量的資料速率和可用上行頻寬容量;根據所述上行資料流程量的資料速率和所述可用上行頻寬容量的所述比較,選擇所述同軸電纜乙太被動式光纖網路同軸網路單元的功率分佈;以及控制所述同軸電纜乙太被動式光纖網路同軸網路單元進入所述功率分佈。
(19)根據(18)所述的方法,其中,所述上行資料流程量的資料速率低於所述可用上行頻寬容量的預定臨界值,並且其中,控制所述同軸電纜乙太被動式光纖網路同軸網路單元包括:控制所述同軸電纜乙太被動式光纖網路同軸網路單元的實體層(PHY)模組以便減小所述同軸電纜乙太被動式光纖網路同軸網路單元用於進行上行傳輸的頻率子載波的數量。
(20)根據(18)所述的方法,其中,所述上行資料流程量的資料速率低於所述可用上行頻寬容量的預定臨界值,並且其中,控制所述同軸電纜乙太被動式光纖網路同軸網路單元包括:控制所述同軸電纜乙太被動式光纖網路同軸網路單元的實體層(PHY)模組以便減小所述同軸電纜乙太被動式光纖網路同軸 網路單元用於進行上行傳輸的頻率子載波的頻率。
(21)根據(18)所述的方法,其中,所述上行資料流程量的資料速率低於所述可用上行頻寬容量的預定臨界值,並且其中,控制所述同軸電纜乙太被動式光纖網路同軸網路單元包括:控制所述同軸電纜乙太被動式光纖網路同軸網路單元的實體層(PHY)模組以便減小所述同軸電纜乙太被動式光纖網路同軸網路單元用於進行上行傳輸的調製階數。
100‧‧‧網路架構
102‧‧‧光線路終端(OLT)
104、108a、108b、108c‧‧‧光纖(線路)
106‧‧‧被動式分路器
110‧‧‧(通訊)節點
112、112a、112b、112c‧‧‧同軸媒體轉換器(CMC)/EPOC CMC
114‧‧‧同軸電纜
116‧‧‧放大器
118‧‧‧同軸分路器/第二分路器
122、122a、122b、122c‧‧‧同軸網路單元(CNU)/EPOC CNU
124、124a、124b、124c‧‧‧多個使用者媒體裝置
200‧‧‧網路架構
202‧‧‧家庭
204‧‧‧多租戶建築
206‧‧‧光網路單元(ONU)
300‧‧‧實現方式
302‧‧‧光纖電纜
304、304a、304b、304c‧‧‧同軸網路(電纜)
308‧‧‧光收發器
310‧‧‧串列器和解串器(SERDES)(模組)
312‧‧‧EPOC PHY(模組)
314‧‧‧CMC介面(現場可程式設計閘陣列)(FPGA)
316‧‧‧子頻帶分頻多工(SDM)FPGA
318‧‧‧控制器模組
320‧‧‧數位/類比轉換器(DAC)
322‧‧‧類比/數位轉換器(ADC)
326‧‧‧射頻(RF)模組
328‧‧‧EPOC PHY模組
330‧‧‧CNU介面FPGA
332‧‧‧EPOC MAC(模組)
334‧‧‧PHY(模組)
336‧‧‧RF發送(TX)電路/RF TX
338‧‧‧RF接收(RX)電路/RF RX
400‧‧‧場景
402、404、406‧‧‧(多個單播)佇列
408‧‧‧(多個多播)佇列
410‧‧‧廣播佇列
500‧‧‧CNU
502‧‧‧功率管理器模組
504‧‧‧流量檢測模組
506‧‧‧雙向介面
508‧‧‧介面
510、512、514、516、518‧‧‧控制訊號
600‧‧‧CNU RF模組
602‧‧‧雙工器
604‧‧‧輸入端子
606‧‧‧導頻恢復模組
608‧‧‧導頻音
700‧‧‧處理(流程圖)
702~708‧‧‧步驟
800‧‧‧處理(流程圖)
802~810‧‧‧步驟
圖1示出了示例性混合乙太被動式光纖網路(EPON)-同軸電纜乙太被動式光纖網路(EPOC)網路架構;圖2示出了另一個示例性混合EPON-EPOC網路架構;圖3示出了根據本公開的一個實施方式的混合EPON-EPOC網路的一個示例性EPOC部分;圖4示出了根據本公開的一個實施方式的EPOC省電模式;圖5示出了根據本公開一個實施方式的具有睡眠模式的示例性EPOC同軸網路單元(CNU);圖6示出了根據本公開的一個實施方式的示例性CNU RF模組;圖7示出了根據本公開的一個實施方式在EPOC CNU內省電的方法的處理流程圖;圖8示出了根據本公開的一個實施方式在EPOC CNU內省電的方法的另一個處理流程圖。
將參考附圖來描述本公開。通常,部件首先出現的示圖通常由相應的參考數字中最左邊的數字表示。
圖1示出了根據本公開的一個實施方式的示例性混合乙太被動式光纖網路(EPON)-同軸電纜乙太被動式光纖網路(EPOC)網路架構100。如圖1中所示,示例性網路架構100包括光線路終端(OLT)102、可選的被動式分路器106、包括同軸媒體轉換器 (CMC)的通訊節點110、可選的放大器116、可選的同軸分路器118、同軸網路單元(CNU)122、以及多個使用者媒體裝置124。
OLT 102位於網路的交換局(CO)並且與光纖線路104耦接。OLT 102可實現DOCSIS(有線電纜資料業務介面規範)仲介層(DML),其允許OLT 102向網路元件(例如,CMC、CMU、光網路單元(ONU))提供DOCSIS供應和管理。此外,OLT 102實現EPON媒體存取控制(MAC)層(例如,IEEE 802.3ah)。
可選地,被動式分路器106可用於將光纖線路104分成多個光纖線路108。這就允許按照點對多點拓撲,由相同的OLT 102為不同地理區域的多個使用者提供服務。
通訊節點110用作網路的EPON側和EPOC側之間的轉換器(或交換機/轉發器)。因此,節點110自網路的EPON側耦接到光纖線路108a,並且自網路的EPOC側耦接到同軸電纜114。在一個實施方式中,通訊節點110包括同軸媒體轉換器(CMC)112,其允許從EPON到EPOC(反之亦然)進行重複和轉換。
CMC 112執行從EPON到EPOC(反之亦然)的實體層(PHY)轉換。在一個實施方式中,CMC 112包括第一介面(圖1中未顯示),該介面與光纖線路108耦接,被配置為從OLT 102中接收第一光訊號並且生成具有第一實體層(PHY)編碼的第一位元流。在一個實施方式中,第一PHY編碼為EPON PHY編碼。CMC 112也包括PHY轉換模組(圖1中未顯示),該模組與第一介面耦接,被配置為執行第一位元流的PHY層轉換,以便生成具有第二PHY編碼的第二位元流。在一個實施方式中,第二PHY編碼為EPOC PHY編碼。而且,CMC 112包括第二介面(圖1中未顯示),該介面與PHY轉換模組以及同軸電纜114耦接,被配置為從第二位元流中生成第一射頻(RF)訊號並且在同軸電纜114上傳輸該第一RF訊號。
在EPOC到EPON轉換中(即,在進行上行通訊時),CMC 112 的第二介面被配置為從CNU 122接收第二RF訊號並從中生成具有第二PHY編碼(例如,EPOC PHY編碼)的第三位元流。CMC 112的PHY轉換模組被配置為執行第三位元流的PHY層轉換,以便生成具有第一PHY編碼(例如,EPON PHY編碼)的第四位元流。隨後,CMC 112的第一介面被配置為從第四位元流中生成第二光訊號並且在光纖線路108上將第二光訊號發送給OLT 102。
可選地,放大器116和第二分路器118可位於通訊節點110和CNU 122之間的路徑。在由第二分路器118分離之前,放大器116對同軸電纜114上的射頻訊號進行放大。第二分路器118將同軸電纜114分成多個同軸電纜120,從而允許相同或不同的地理附近區域內的數個使用者的同軸電纜服務。
CNU 122通常位於網路的使用者終端。在一個實施方式中,CNU 122實現EPON MAC層,從而端接與OLT 102的端對端EPON MAC鏈路。因此,CMC 112能夠在OLT 102和CNU 122之間實現端對端供應、管理和服務品質(QoS)功能。CNU 122也提供範圍在10 Mbps和10 Gbps之間的多個乙太網介面,以便將使用者媒體裝置124連接至網路。此外,CNU 122實現了對於包括VOIP(網路電話)、MoCA(同軸電纜多媒體聯盟)、HPNA(家庭電話線網路聯盟)、Wi-Fi(Wi-Fi聯盟)等各種服務的閘道集成。在實體層,CMC 112可進行從同軸到另一個介質的實體層轉換,同時保持EPON MAC層。
根據實施方式,可在OLT 102和CNU 122之間的路徑內的任何位置進行EPON-EPOC轉換,以便根據所需服務或網路可用的基礎設施來提供各種服務配置。例如,CMC 112可集成在OLT 102內、放大器116內、或位於OLT 102和CNU 122之間的光網路單元(ONU)(圖1中未顯示)內,而非集成在節點110內。
圖2示出了根據本公開的一個實施方式的另一個示例性混合EPON-EPOC網路架構200。尤其地,示例性網路架構200同時實 現FTTH(光纖到戶)和多租戶建築EPOC服務配置。
示例性網路架構200包括與參考上面示例性網路架構100所描述的相似元件,包括位於CO集線器內的OLT 102、被動式分路器106、CMC 112、以及一個或多個CNU 122。OLT102、被動式分路器106、CMC 112、以及CNU 122按照與上面參考圖1所描述的方式相同的方式進行操作。
CMC 112例如位於多租戶建築204的地下室。同樣,網路的EPON側盡可能遠地延伸到使用者,網路的EPOC側僅僅在CMC 112和位於多租戶建築204的個人公寓內的CNU單元122之間提供較短的同軸連接。
此外,示例性網路架構200包括光網路單元(ONU)206。ONU 206透過包括光纖線路104和108c的全光纖鏈路與OLT 102耦接。ONU 206實現對於家庭202的FTTH服務,允許光纖線路108c到達家庭202生活空間的邊界(例如,家庭202外壁上的盒體)。
因此,示例性網路架構200使操作人員能夠使用同一個OLT為ONU和CNU兩者提供服務。這包括利用針對光纖和同軸使用者兩者的單個介面進行的端對端供應、管理和QoS。此外,示例性網路架構200允許消除常規兩層管理架構,該兩層管理架構在終端使用者側使用媒體單元(media cell)管理使用者並且使用OLT管理媒體單元。
圖3示出了混合EPON-EPOC網路的EPOC部分的示例性實現方式300。示例性實現方式300可為圖1中所描述的示例性EPON-EPOC網路100的EPOC部分的一個實施方式,或者可為上面圖2中所描述的示例性EPON-EPOC網路200的EPOC部分的一個實施方式。如圖3中所示,EPOC部分包括經由同軸網路304連接的EPOC CMC 112和EPOC CNU 122。
EPOC CMC 112包括光收發器308、串列器和解串器(SERDES)模組310、EPOC PHY模組312(在一個實施方式中, 包括CMC介面現場可程式設計閘陣列(FPGA)314和子頻帶分頻多工(SDM)FPGA 316)、控制器模組318、類比/數位轉換器(ADC)322、數位/類比轉換器(DAC)320、以及射頻(RF)模組326(包括RF發送(TX)電路336和RF接收(RX)電路338)。
光收發器308可包括數位光接收器,該數位光接收器被配置為在與CMC 112耦接的光纖電纜302上接收光訊號並且從中產生電資料訊號。光纖電纜302可為連接CMC 112和OLT(例如,OLT 102)的EPON網路的一部分。光收發器308也可包括數位光學雷射器,以便從電資料訊號中產生光訊號並且透過光纖電纜302發送該光訊號。
SERDES模組310在光收發器308和EPOC PHY 312之間進行並行到串列和串列到並行的資料轉換。從光收發器308中接收的電資料從串列轉換成並行,以便進一步由EPOC PHY 312進行處理。同樣,來自EPOC PHY 312的電資料從平行轉換成串列,以便由光收發器308進行傳輸。
EPOC PHY模組312(可選地與CMC 112的其他模組一起)形成雙向PHY轉換模組。在下行方向(即,要傳輸至EPOC CNU 122的流量),EPOC PHY 312執行從EPON PHY到同軸PHY的PHY水準轉換以及下行流量的光譜整形。例如,CMC介面FPGA 314可執行線路編碼功能、前向糾錯(FEC)功能、以及成幀功能,以便將EPON PHY編碼的資料轉換成同軸PHY編碼的資料。SDM FPGA 316可執行SDM功能,包括確定用於進行下行傳輸的子載波、確定子載波的寬度和頻率、選擇用於進行下行傳輸的調製階數、以及將下行流量分成多個資料流程,每個資料流程用於傳輸到子載波中的各個子載波上。在上行方向(即,從EPOC CNU 122接收的流量),EPOC PHY 312執行流量組裝以及從同軸PHY到EPON PHY的PHY級別轉換。例如,SDM FPGA 316可對多個子載波上接收的流進行組裝,以便生成單個流。然後,CMC介面FPGA 314可執行線路編碼功能、FEC功能、以及成幀功能,以便將同軸PHY編碼的資料轉換成EPON PHY編碼的資料。在2010年9月9日提交的美國申請第12/878,643號,可找出示範性實現方式和CMC 112操作的詳細描述,包括EPOC PHY 312所執行的功能,其全部內容透過引用結合於此。
根據本文中的教導,本領域的技術人員會理解的是,上述SDM可包括在多個載波上發送/接收資料的任何一種傳輸技術,例如包括多載波技術,例如,正交分頻多工(OFDM)、小波OFDM、離散小波多音複用(DWMT),或者利用通道綁定的單載波技術,例如,多個綁定的正交幅度調製(QAM)通道。
控制器模組318提供EPOC PHY 312(包括CMC介面FPGA 314和SDM FPGA 316)的軟體配置、管理、以及控制。此外,控制器模組318向服務於CMC 112的OLT註冊該CMC 112。在一個實施方式中,控制器模組318為ONU晶片,其包括EPON MAC模組。
DAC 320和ADC 322位於EPOC PHY 312和RF模組326之間的資料路徑內,並且在EPOC PHY 312和RF模組326之間分別提供數位/類比和類比/數位資料轉換。在一個實施方式中,RF模組326對SDM FPGA 316所形成的多個子載波執行脈衝幅度調製(PAM)編碼。
RF模組326允許CMC 112透過同軸網路304發送/接收RF訊號。在其他實施方式中,RF模組326可位於CMC 112的外部。RF模組326設置同軸電纜114上的操作頻率和RF功率電平。RF TX電路336包括RF發送器和相關的電路(例如,混合器、頻率合成器、壓控振盪器(VCO)、鎖相環(PLL)、功率放大器(PA)、類比濾波器、匹配網路、RF功率電平檢測、自動增益控制(AGC)等等)。RF RX電路338包括RF接收器和相關的電路(例如,混合器、頻率合成器、VCO、PLL、低雜訊放大器(LNA)、自動增 益控制(AGC)、模擬濾波器等等)。
EPOC CNU 122包括RF模組326(包括RF TX電路336和RF RX電路338)、DAC 320、ADC 322、EPOC PHY模組328(包括SDM FPGA 316和CNU介面FPGA 330)、EPOC MAC模組332、以及PHY模組334。
RF模組326、DAC 320、ADC 322、以及SDM FPGA 316可類似於上述關於EPOC CMC 112的描述。因此,省略處理下行流量(即,從CMC 112中接收的流量)和上行流量(即,要被發送給CMC 112的流量)時所進行的操作,根據本文中的教導,對本領域中的技術人員而言,這應顯而易見。
CNU介面FPGA 330在SDM FPGA 316和EPON MAC 332之間提供介面。同樣,CNU介面FPGA 330可執行同軸PHY水準解碼功能,包括線路解碼和FEC解碼。EPON MAC模組332實現EPON MAC層,包括能夠接收和處理EPON操作、管理和維護(OAM)訊息,這些訊息可由OLT發送並且由CMC 112轉發給CNU 122。此外,EPON MAC 332與PHY模組334介面,該PHY模組334可實現乙太網PHY層。PHY模組334能夠實現在使用者網路介面(UNI)306(例如,乙太網電纜)上至所連接的使用者設備的物理傳輸。
圖4示出了根據本公開的一個實施方式的EPOC省電模式。在包括OLT 400、EPOC CMC 112、以及三個EPOC CNU 122a至122c的混合EPON-EPOC網路內,相對於示例性場景400,示出了EPOC省電模式。OLT 400和CMC 112經由光纖電纜302連接,該光纖電纜可為EPON網路的一部分。CMC 112分別經由同軸電纜304a至304c連接至EPOC CNU 122a至122c。例如,可實現圖3中如上所述的EPOC CMC 112。實現圖3中如上所述的EPOC CNU 122a至122c。
OLT 400包括多個單播佇列(包括佇列402、404、以及406)、 多個多播佇列(包括佇列408)和廣播佇列410。單播佇列指定給目的地為特定的ONU/CNU的單播流量。例如,佇列402、404、以及406分別儲存目的地為CNU 122a、122b、以及122c的單播流量。多播佇列指定用於多播流量,該流量傳輸給選擇多播組。多播組包括多個ONU和/或CNU,其用戶已經同意接收多播流量。廣播佇列410指定用於廣播流量,該流量通常發送給網路中的每個ONU/CNU。此外,OLT 400包括調度器/整形器,其從不同的佇列中接收流量並且調度透過光纖線路302的流量傳輸。
為了進行說明,假設經由CMC 112將上行流量發送給OLT 400並且從OLT 400接收下行流量,CNU 122a是活動的。目的地為CNU 122a的單播流量儲存在OLT 400的單播佇列402內。假設CNU 122b僅從OLT 400中接收下行多播流量。CNU 122b正接收的下行多播流量儲存在OLT 400的多播佇列408內。假設CNU 122c以較低的頻寬使用率進行操作。例如,CNU 122c的流量可包括路由或網路管理流量,而不包括或包括較少的用戶流量。
如圖4中所示,EPOC省電模式包括喚醒時間和電源切斷時間。在實施方式中,喚醒時間和電源切斷時間是可程式設計的,並且可針對特定的CNU定期重複,只要流量狀態對於該特定的CNU保持相同。在喚醒時間中,所有這三個CNU 122a至122c完全上電,包括其所有的發送和接收電路(例如,DAC 320、ADC 322、RF TX電路336、以及RF RX電路338)。在OLT 400內,所有的單播佇列402、404、以及406繼續將其單播流量轉發給調度器/整形器,以便傳輸給各個CNU。
在電源切斷時間,一個或多個CNU 122a至122c可進入睡眠模式。睡眠模式可以逐CNU變化,並且可由OLT 400和/或由CNU本身觸發。在一個實施方式中,OLT 400確定CNU 122a至122c中的哪個應當進入睡眠模式。例如,OLT 400可分析來自各CNU的一個或多個上行流量和下行流量,以便確定CNU的上行流量是 否滿足睡眠模式條件(例如,沒有上行用戶流量、較低的上行頻寬使用率,等等)。
如果CNU滿足睡眠模式條件,OLT 400確定針對該CNU合適的睡眠模式並且經由控制訊息指示該CNU進入睡眠模式。控制訊息可為EPON OAM訊息,指示CNU進入睡眠模式長達預定的持續時間。在另一個實施方式中,同一個睡眠模式用於所有適合於睡眠的CNU。在另一個實施方式中,根據在CMC 112和/或OLT 400處觀察的來自CNU的流量,CMC 112可調節下行資料速率和/或頻譜。例如,鑒於(其觀察到的或OLT 400觀察到的)下行流量負荷較低,CMC 112可降低下行通道的資料速率(次額定,sub-rating)。可替換地或附加地,CMC 112可減小調製階數、傳輸功率、或減小下行頻譜的量,以便節省電力。同樣,如果CMC 112確定上行流量較低,那麼可降低上行資料速率(例如,從10 G減小到1 G)。較低的轉換速率以及減小上行雷射的傳輸功率的能力也節省了電力。
例如,在場景400中,OLT 400可確定僅接收多播流量的CNU 122b和具有較低的頻寬使用率的CNU 122c適合於進入睡眠模式。因此,OLT 400可指示CNU 122b和122c進入睡眠模式。在一個實施方式中,CNU 122b的睡眠模式包括電源切斷DAC 320和RF TX電路336達預定的持續時間。CNU 122c的睡眠模式包括電源切斷DAC 320和RF TX電路336以及ADC 322和RF RX電路338達預定的電源切斷時間。
在電源切斷時間內,OLT 400假設CNU 112b和112c已經進入睡眠模式,因此停止將目的地為CNU 122b和122c的單播流量轉發給調度器/整形器用於傳輸給CNU 112b和112c。相反,OLT 400在單播佇列404和406內緩衝單播流量,直到下一個喚醒時間週期。同樣,發送給由OLT 400提供服務的所有ONU/CNU的廣播流量在廣播佇列410內排隊,直到下一個喚醒時間週期。然而, 在該電源切斷時間內,繼續發送多播流量。在另一個實施方式中,CMC 112也停止轉發目的地為已經進入睡眠模式的CNU 122b和122c的單播流量。
在另一個實施方式中,OLT 400確定CNU 122a至122c中的哪個應當進入睡眠模式並且僅僅透過規定電源切斷時間和喚醒時間,指示適合於睡眠的CNU進入睡眠模式。適合於睡眠的CNU從OLT 400接收睡眠模式指令,因此對是否進入規定的睡眠模式以及在睡眠模式的電源切斷時間內電源切斷哪些元件做出自治決定。例如,在接收到睡眠模式指令時,CNU 122b可決定其是否可電源切斷其RF RX電路。在示例場景400中,由於CNU 122b正接收多播流量,所以CNU 122b決定僅僅電源切斷其DAC 320和RF TX電路336,並且保持其ADC 322和RF RX電路338上電。DAC 320和EPOC PHY 328之間的任何SERDES通道也可被斷電。此外,RF TX電路336外面的任何調製邏輯也可斷電。
可替換地或附加地,透過分析每個CNU自身的上行和下行流量並且確定流量特徵,可按照每個CNU來單獨執行睡眠模式的適當性。根據流量特徵,如果滿足睡眠模式條件,那麼每個CNU選擇一個合適的睡眠模式並且進入所選的睡眠模式。在一個實施方式中,CNU通知CMC 112,其打算進入所選的睡眠模式。然後,CMC 112可緩衝目的地為該CNU的下行流量長達電源切斷時間持續時間。可替換地,CNU通知OLT 400,其緩衝目的地為CNU的單播流量。在使用者側,PHY模組334、EPON MAC 332以及EPOC PHY 328保持上電,以便從UNI 306中接收任何上行用戶流量。在EPON MAC 332或EPOC PHY 328內緩衝上行用戶流量,(例如)直到下一個喚醒時間。
圖5示出了根據本公開的一個實施方式具有睡眠模式特徵的示例性EPOC CNU 500。示例性CNU 500用於進行闡述,並不具有限制性。如圖5中所示,示例性CNU 500包括與上述圖3中的 EPOC CNU 122相似的元件。此外,CNU 500包括功率管理器模組502和流量檢測模組504。
在一個實施方式中,EPON MAC模組332被配置為接收控制訊息,該訊息包含進入睡眠模式的指令。控制訊息可包括來自OLT的EPON OAM訊息。睡眠模式可規定電源切斷時間和喚醒時間週期。此外,睡眠模式可規定在電源切斷時間要電源切斷的特定CNU元件。回應於控制訊息,EPON MAC 332可經由控制訊號510將睡眠模式指令傳送給功率管理器模組502。可替換地、或附加地,EPON MAC 332將睡眠模式指令傳送給流量檢測模組504。
在一個實施方式中,當接收到控制訊號510時,功率管理器模組502與流量檢測模組504通訊,並且指示流量檢測模組504分析CNU 500處的流量並確定預定的流量特徵。在一個實施方式中,功率管理器模組502和流量檢測模組504被配置為經由雙向介面508進行通訊。在另一個實施方式中,功率管理器模組502被配置為按照控制訊號510內所包含的睡眠模式指令行動,無需依靠流量檢測模組504。
流量檢測模組504經由雙向介面506與PHY模組334連接。PHY模組334被配置為將CNU 500耦接至UNI 306。同樣,流量檢測模組504可被配置為監測PHY模組334內的位元流。透過監測PHY模組334內的位元流,流量檢測模組504可確定透過CNU 500的上行和下行使用者流量的流量特徵。然後,流量檢測模組504經由介面508將所確定的流量特徵傳送給功率管理器模組502。流量特徵可例如包括但不限於:存在上行資料流程量、不存在上行資料流程量、存在下行資料流程量、不存在下行資料流程量、存在/不存在主動連接多播組(active joined multicast group)、以及上行頻寬容量使用率(例如,平均上行資料速率和上行頻寬容量的比率)中的一個或多個。在一個實施方式中,流量檢測包括資料包檢查,以便根據選擇的資料包類型,確定流量活性。例 如,根據資料包,而非根據管理/控制幀,可確定流量活性。根據實施方式,用於確定資料包活性的資料包類型是可配置的。
功率管理器模組502被配置為根據從流量檢測模組504接收的流量特徵,確定功率分佈(power profile)。除了控制訊息內規定的喚醒時間和電源切斷時間以外,功率分佈也可規定在睡眠模式的電源切斷時間內CNU 500的一個或多個模組電源切斷。然後,功率管理器模組502根據所確定的功率分佈,控制CNU 500,該功率分佈可包括將CNU 500的一個或多個模組電源切斷。根據不同的實例場景,功率管理器模組502可根據流量特徵確定功率分佈。例如,非限制性地,功率管理器模組502可執行以下示範性實例場景。
當流量特徵表示在CNU 500處不存在上行資料流程量時,功率管理器模組502可被配置為電源切斷CNU 500的RF TX電路336和DAC 320長達睡眠模式所定義的持續時間。在一個實施方式中,功率管理器模組502分別使用控制訊號514和516控制RF TX電路336和DAC 320。也可使用針對RF TX電路336和RF RX電路338的各自單獨控制,以便彼此獨立地控制RF TX電路336和RF RX電路338。
當流量特徵表示不存在下行資料流程量時,功率管理器模組502可被配置為電源切斷RF RX電路338和ADC 322長達睡眠模式所限定的持續時間。在一個實施方式中,功率管理器模組502分別使用控制訊號514和518控制RF RX電路338和ADC 322。
當流量特徵表示上行頻寬容量使用率低於預定的臨界值時,功率管理器模組502可被配置為電源切斷RF TX電路336、DAC 320、RF RX電路338和ADC 322中的一個或多個長達睡眠模式所限定的持續時間。在另一個實施方式中,其中,流量特徵表示上行頻寬容量使用率低於預定的臨界值,功率管理器模組502可被配置為使用控制訊號512(例如,經由SDM FPGA 316)控制 EPOC PHY 328從而減小以下各項中的一個或多個:(a)用於進行上行傳輸的頻率子載波的數量;(b)用於進行上行傳輸的頻率子載波的頻率;(c)用於進行上行傳輸的調製階數;以及(d)發送器的符號速率。這些步驟單獨地或共同地減少了CNU 500用於進行上行傳輸所使用的傳輸功率。
在另一個實施方式中,CNU 500可獨立地確定是否進入睡眠模式,無需OLT控制訊息指示這樣做。在這個實施方式中,流量檢測模組504和功率管理器模組502可依然進行如上所述的操作,以便根據CNU 500處的使用者流量,酌情選擇和進入睡眠模式。
要注意的是,在各種情況下,優選地,將CMC 112一直保持通電。這是因為CMC 112為數個CNU提供服務,其中的某些CNU可能繼續活動。此外,CMC 112需要保持向OLT註冊其所服務的CNU。而且,在實施方式中,CMC 112為進入睡眠模式的CNU提供保持模式(hold over mode)。保持模式允許進入睡眠模式的CNU即使電源切斷其RF TX/RX電路也保持與CMC 112同步。同樣,CNU喚醒時,可立即開始將流量發送給CMC 112或從其接收流量,無需等待其定時恢復電路(例如,PLL)鎖定CMC時鐘,該鎖定通常需要較長的時間。
如上面圖4中所示,在睡眠模式的電源切斷時間內,OLT 400停止將單播流量發送給確定適合於睡眠模式的CNU。隨著廣播流量也停止,進入睡眠模式的CNU沒有到達其的流量。在保持模式中,CMC 112繼續以規定的頻譜頻率將導頻音發送給進入睡眠模式的CNU。下面會進一步進行描述的CNU可被配置為獨立於其RF TX/RX電路,提取導頻音,從而在睡眠模式期間保持與CMC 112同步。
圖6示出了根據本公開的一個實施方式的示例性CNU RF模組600。示例性CNU RF模組600用於進行闡述,而非進行限制。 如圖6中所示,RF模組600包括RF TX電路336、RF RX電路338、雙工器602、以及導頻恢復模組606。RF TX電路336和RF RX電路可類似於以上圖3中所描述的。在發送和接收的時隙內,雙工器602被配置為分別將RF TX電路336和RF RX電路338與同軸電纜耦接。
導頻恢復模組606與RF RX電路338的輸入端子604耦接。同樣,導頻恢復模組606可被配置為接收與RF RX電路338相同的下行RF訊號。同樣,即使在睡眠模式中電源切斷RF RX電路338,使用導頻恢復模組606,可在CNU和CMC之間保持同步。
在一個實施方式中,導頻恢復模組606被配置為僅僅從下行頻譜中提取位於已知頻率的導頻音608。導頻音提供來自CMC的參考時鐘訊號。在一個實施方式中,透過過濾已知頻率的下行頻率,可從下行頻譜中提取導頻音608,無需對所過濾的訊號進行採樣。因此,若有必要,可將ADC 322電源切斷。
導頻恢復模組606將導頻音608提供給CNU的EPOC PHY 328。EPOC PHY 328將導頻音608用作其定時恢復模組(例如,PLL)要鎖定的參考時鐘。同樣,即使電源切斷RF TX電路336和RF RX電路338兩者並且沒有資料流程量到達CNU,EPOC PHY 328仍與CMC處對應其的EPOC PHY 312保持同步。
圖7為根據本公開的一個實施方式在EPOC CNU內省電的方法的處理流程圖700。如圖7中所示,處理700開始於步驟702,其包括接收控制訊息,該訊息包含進入睡眠模式的指令。在一個實施方式中,控制訊息包括OLT所發送的EPON OAM訊息。在一個實施方式中,控制訊息由CNU的EPON MAC模組接收。在另一個實施方式中,透過RF PHY通道,從CMC發送控制訊息。 一旦在CNU處接收,那麼CNU就立即開始丟棄下行頻譜。因此,能夠在CNU處快速打開/關閉下行通道。在一個實施方式中,根據下行LLID,CMC可逐個資料包地使用這個控制訊息。
然後,處理700繼續至步驟704,其包括回應於控制訊息,確定EPOC CNU處使用者流量的流量特徵。在一個實施方式中,由CNU的流量檢測模組執行步驟704。流量特徵可例如包括但不限於:存在上行資料流程量、不存在上行資料流程量、存在下行資料流程量、不存在下行資料流程量、存在/不存在主動連接多播組、以及上行頻寬容量使用率中的一個或多個。
然後,處理700繼續至步驟706,其包括根據所確定的流量特徵,確定功率分佈。在一個實施方式中,由CNU的功率管理器模組執行步驟706。功率分佈確定電源切斷時間和喚醒時間,並且規定在電源切斷時間內要電源切斷的CNU的一個或多個模組。
最後,處理700在步驟708處終止,其包括根據功率分佈,控制EPOC CNU的一個或多個模組。在一個實施方式中,由CNU的功率管理器模組執行步驟708,並且該步驟包括根據所確定的功率分佈,電源切斷一個或多個模組。在一個實施方式中,流量特徵表示不存在上行數量流量,並且步驟708進一步包括電源切斷EPOC CNU的射頻RF TX電路和DAC長達睡眠模式所限定的電源切斷時間。在另一個實施方式中,流量特徵表示不存在下行數量流量,並且步驟708進一步包括電源切斷EPOC CNU的RF RX電路和ADC長達睡眠模式所限定的電源切斷時間。
在又一個實施方式中,流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且步驟708進一步包括EPOC CNU電源切斷RF TX電路、DAC、RF RX電路和ADC中的一個或多個長達睡眠模式所限定的電源切斷時間。可替換地,在上行頻寬容量使用率低於預定的臨界值時,步驟708進一步包括執行以下各項中的一個或多個:(a)減小用於進行上行傳輸的頻率子載波的數量;(b)減小用於進行上行傳輸的頻率子載波的頻率;(c)減小用於進行上行傳輸的調製階數;以及(d)減小發送器的符號速率。
圖8為根據本公開的一個實施方式在EPOC CNU內省電的另 一種方法的處理流程圖800。可獨立於上面圖7中所述的處理700,由EPOC CNU執行處理800。因此,可同時或在不同的時間執行處理700和800。
如圖8中所示,處理800開始於步驟802,其包括監測EPOC CNU的上行資料流程量。在一個實施方式中,由CNU的流量檢測模組執行步驟802。流量檢測模組可透過使CNU和UNI介面的、EPOC CNU的PHY模組監測位元流。
然後,處理800繼續至步驟804,其包括將上行資料流程量的資料速率和可用上行頻寬容量進行比較。在一個實施方式中,也由EPOC CNU的流量檢測模組執行步驟804。透過這種比較,如果在步驟806中檢測到較低的頻寬使用狀況(例如,上行資料流程量的資料速率低於可用的上行頻寬容量的預定臨界值),那麼處理800繼續至步驟808。否則,處理800返回步驟802。
步驟808包括透過比較上行資料流程量的資料速率和可用的上行頻寬容量,選擇EPOC CNU的功率分佈。在一個實施方式中,由EPOC CNU的功率管理器模組執行步驟808。在一個實施方式中,根據上行資料流程量的資料速率和可用的上行頻寬容量的比率,可選擇不同的功率分佈。功率分佈可包括一個或多個傳輸重新配置,以便減少用於進行上行傳輸的電力量。
最後,處理800在步驟810處終止,其包括控制EPOC CNU進入所選的功率分佈。在一個實施方式中,由EPOC CNU的功率管理器模組執行步驟810。在一個實施方式中,步驟810可包括以下各項中的一個或多個:(a)控制EPOC CNU的EPOC PHY模組,以便減小用於由EPOC CNU進行上行傳輸的頻率子載波的數量;(b)控制EPOC PHY模組,以便減小用於由EPOC CNU進行上行傳輸的頻率子載波的頻率(由於更低頻率上的衰減更小,所以相比於較高頻率,在更低頻率上傳輸所需的功率通常較低,這可減少功率消耗);(c)控制EPOC PHY模組,以便減小由EPOC CNU 用於進行上行傳輸的調製階數;以及(d)控制EPOC PHY,以便減小發送器的符號速率(symbol rate)。
要注意的是,在實施方式中,EPOC CNU可執行處理800,並且選擇進入睡眠模式,無需通知OLT。例如,EPOC CNU可選擇減小其上行資料速率,以便節省電力,而無需通知OLT。透過混合EPON-EPOC網路的EPOC部分次額定EPON MAC流量的系統和方法,實現了該靈活性,而端對端EPON MAC鏈路並未意識到該次額定。在2011年6月17日提交的美國專利申請第13/163,283中,可找出這些次額定系統和方法的詳細描述,其全部內容透過引用結合於此。
上面已經在功能性構件的幫助下,描述了實施方式,這些功能性構件闡述實施其特定的功能和關係。為了便於進行描述,在本文中已經任意地限定這些功能性構件的界限。只要適當地執行其特定的功能和關係,就可限定替換的界限。
具體實施方式的以上描述非常完整地顯示出本公開的一般性,所以在不背離本公開的一般概念的情況下,透過應用本領域的技術人員的知識,人們可容易地修改和/或調整這種具體實施方式,用於各種應用,無需進行過度的實驗。因此,根據本文中提出的教導和指示,這種調整和修改要在所公開的實施方式的等同物的意義和範圍內。要理解的是,本文中的措辭或術語用於進行描述,而非用於進行限制,所以根據這些教導和指示,本說明書的措辭或術語要由技術人員解釋。
本公開的實施方式的廣度和範圍不應受到任何上述示範性實施方式的限制,而應僅僅由以下申請專利範圍和其等同物限定。
112、112a、112b、112c‧‧‧同軸媒體轉換器(CMC)/EPOC CMC
302‧‧‧光纖電纜
304a、304b、304c‧‧‧同軸網路(電纜)
320‧‧‧數位/類比轉換器(DAC)
322‧‧‧類比/數位轉換器(ADC)
328‧‧‧EPOC PHY模組
332‧‧‧EPOC MAC(模組)
334‧‧‧PHY(模組)
336‧‧‧RF發送(TX)電路/RF TX
338‧‧‧RF接收(RX)電路/RF RX
400‧‧‧場景
402、404、406‧‧‧(多個單播)佇列
408‧‧‧(多個多播)佇列
410‧‧‧廣播佇列

Claims (10)

  1. 一種同軸電纜乙太被動式光纖網路(EPOC)同軸網路單元(CNU),包括:乙太被動式光纖網路(EPON)媒體存取控制(MAC)模組,被配置為接收控制訊息,所述控制訊息包含進入睡眠模式的指令;射頻(RF)模組,被配置為將所述同軸電纜乙太被動式光纖網路同軸網路單元耦接至同軸電纜;EPOC PHY模組,耦接在所述乙太被動式光纖網路媒體存取控制模組和所述射頻模組之間;流量檢測模組,被配置為回應於所述控制訊息確定所述同軸電纜乙太被動式光纖網路同軸網路單元處的使用者流量的流量特徵;以及功率管理器模組,被配置為根據所確定的所述流量特徵確定功率分佈並且根據所述功率分佈控制所述同軸電纜乙太被動式光纖網路同軸網路單元的一個或多個模組,以進入所述睡眠模式;其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述功率管理器模組被配置為控制所述EPOC PHY從而減小以下各項中的一項或多項:用於進行上行傳輸的頻率子載波的頻率;用於進行上行傳輸的調製階數;以及用於進行上行傳輸的符號速率。
  2. 如請求項1所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示以下各項中的一項或多項:存在上行資料流程量、不存在上行資料流程量、存在下行資料流程量、不存在下行資料流程量、存在主動連接多播組、以及上行頻寬容量使用率。
  3. 如請求項2所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中所述射頻(RF)模組包括:RF發送(TX)電路,被配置為將第一RF訊號發送在所述同軸電纜上;和RF接收(RX)電路,被配置為從所述同軸電纜接收第二RF訊號;數位/類比轉換器(DAC),耦接至所述RF發送電路;以及類比/數位轉換器(ADC),耦接至所述RF接收電路。
  4. 如請求項3所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示不存在下行資料流程量,並且其中,所述功率管理器模組被配置為將所述RF接收電路和所述類比/數位轉換器電源切斷長達所述睡眠模式定義的持續時間。
  5. 如請求項3所述的同軸電纜乙太被動式光纖網路同軸網路單元,其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述功率管理器模組被配置為將所述RF發送電路、所述數位/類比轉換器、所述RF接收電路和所述類比/數位轉換器電源切斷長達所述睡眠模式定義的持續時間。
  6. 如請求項3所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:EPOC PHY模組,耦接在所述乙太被動式光纖網路媒體存取控制模組和所述射頻模組之間,其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述功率管理器模組被配置為控制所述EPOC PHY從而減小用於進行上行傳輸的頻率子載波的數量。
  7. 如請求項3所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:EPOC PHY模組,耦接在所述乙太被動式光纖網路媒體存取控制模組和所述射頻模組之間,以及其中,所述射頻模組進一步包括導頻恢復模組,所述導頻恢復模組被配置為從所述第二RF訊號中提取導頻音並且將所述導頻音提供給所述EPOC PHY模組。
  8. 如請求項1所述的同軸電纜乙太被動式光纖網路同軸網路單元,進一步包括:實體層(PHY)模組,被配置為將所述同軸電纜乙太被動式光纖網路同軸網路單元耦接至使用者網路介面(UNI),其中,所述流量檢測模組被配置為透過監測所述實體層模組內的位元流,確定所述使用者流量的流量特徵。
  9. 一種用於在同軸電纜乙太被動式光纖網路(EPOC)同軸網路單元(CNU)內節省電力的方法,包括:接收控制訊息,所述控制訊息包含進入睡眠模式的指令;回應於所述控制訊息,確定所述同軸電纜乙太被動式光纖網路同軸網路單元處使用者流量的流量特徵;根據所確定的所述流量特徵確定功率分佈;以及根據所述功率分佈控制所述同軸電纜乙太被動式光纖網路同軸網路單元的一個或多個模組,以進入所述睡眠模式;其中,所述流量特徵表示上行頻寬容量使用率低於預定的臨界值,並且其中,所述功率管理器模組被配置為控制所述EPOC PHY從而減小以下各項中的一項或多項:用於進行上行傳輸的頻率子載波的頻率;用於進行上行傳輸的調製階數;以及用於進行上行傳輸的符號速率。
  10. 一種用於在同軸電纜乙太被動式光纖網路(EPOC)同軸網路單元(CNU)中節省電力的方法,包括: 監測所述同軸電纜乙太被動式光纖網路同軸網路單元中的上行資料流程量;比較所述上行資料流程量的資料速率和可用上行頻寬容量;根據所述上行資料流程量的資料速率和所述可用上行頻寬容量的所述比較,選擇所述同軸電纜乙太被動式光纖網路同軸網路單元的功率分佈;以及控制所述同軸電纜乙太被動式光纖網路同軸網路單元進入所述功率分佈;其中,所述上行資料流程量的資料速率係低於所述可用上行頻寬容量之預定的臨界值,並且其中,控制所述同軸電纜乙太被動式光纖網路同軸網路單元包括有控制所述同軸電纜乙太被動式光纖網路同軸網路單元之PHY模組,以減小用於進行上行傳輸的頻率子載波的頻率。
TW102103997A 2012-02-03 2013-02-01 同軸電纜乙太被動式光纖網路省電模式的系統和方法 TWI487306B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261594787P 2012-02-03 2012-02-03
US13/436,100 US9113237B2 (en) 2012-02-03 2012-03-30 Systems and methods for ethernet passive optical network over coaxial (EPOC) power saving modes

Publications (2)

Publication Number Publication Date
TW201336250A TW201336250A (zh) 2013-09-01
TWI487306B true TWI487306B (zh) 2015-06-01

Family

ID=47665859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102103997A TWI487306B (zh) 2012-02-03 2013-02-01 同軸電纜乙太被動式光纖網路省電模式的系統和方法

Country Status (6)

Country Link
US (1) US9113237B2 (zh)
EP (1) EP2624589B1 (zh)
KR (1) KR101466187B1 (zh)
CN (1) CN103248433B (zh)
HK (1) HK1185462A1 (zh)
TW (1) TWI487306B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327554B1 (ko) * 2010-12-23 2013-11-20 한국전자통신연구원 광망종단 장치 및 그것의 전력 절감 방법
MX2014010679A (es) 2012-03-08 2015-04-10 Entropic Communications Inc Metodo y aparato para unificar una red de acceso epon y una red de acceso basada en coaxiales.
MX2014011255A (es) 2012-03-21 2015-04-08 Entropic Communications Inc Metodo y aparato para implementar banderas de trafico en grandes grupos de servicio.
US8873565B2 (en) * 2012-04-16 2014-10-28 Futurewei Technologies, Inc. Method and apparatus of delivering upstream data in ethernet passive optical network over coaxial network
US9356700B2 (en) * 2012-07-06 2016-05-31 Broadcom Corporation EPON/EPOC time division duplex (TDD) mode
US9363017B2 (en) * 2012-07-06 2016-06-07 Qualcomm Incorporated Methods and systems of specifying coaxial resource allocation across a MAC/PHY interface
WO2014031992A2 (en) * 2012-08-24 2014-02-27 Broadcom Corporation Channel bonding for ethernet passive optical network over coax (epoc) networks
US9473328B2 (en) * 2013-04-26 2016-10-18 Qualcomm Incorporated Wideband signal generation for channel estimation in time-division-duplexing communication systems
US9432120B2 (en) * 2014-04-18 2016-08-30 Broadcom Corporation Probabilistic bandwidth control in a passive optical network (PON)
KR102106315B1 (ko) * 2014-06-19 2020-05-06 한국전자통신연구원 다계층 네트워크에서 링크 관리 방법 및 장치
WO2016000205A1 (zh) 2014-07-01 2016-01-07 华为技术有限公司 数据传输控制方法、无源光网络设备及装置、无源光网络
US9876857B2 (en) * 2014-08-27 2018-01-23 Hyundai Motor Company Operation method of communication node in network
KR101626009B1 (ko) * 2014-12-09 2016-06-01 주식회사 슈피리어셈아이컨덕터 고해상도 아날로그 영상 신호의 전송 방법과 이를 이용한 고해상도 아날로그 영상 신호 전송 장치, 고해상도 아날로그 영상 신호 수신 장치 및 고해상도 아날로그 영상 전송 시스템
US9432117B2 (en) * 2014-12-29 2016-08-30 Industrial Technology Research Institute Visible light communication apparatus and method of visible light communication
WO2016164883A1 (en) * 2015-04-10 2016-10-13 Transition Networks, Inc. Switching network interface controller add-in card configured to operate during sleep modes of a host computing device
CN105245413B (zh) * 2015-09-24 2018-07-13 成都广达新网科技股份有限公司 一种eoc设备局端获取终端控制消息响应的方法
KR101910161B1 (ko) 2016-07-14 2018-10-19 주식회사 케이티 액세스 네트워크에서 인터넷 서비스를 제공하기 위한 전송 제어 방법 및 장치
CN107623546A (zh) * 2016-07-15 2018-01-23 海思光电子有限公司 一种光传输组件
GB2578269A (en) * 2018-03-28 2020-05-06 British Telecomm Network
US10873366B2 (en) * 2018-04-16 2020-12-22 Intel Corporation Virtual distribution point architecture
JP7052646B2 (ja) * 2018-08-29 2022-04-12 日本電信電話株式会社 模擬信号光生成装置及び模擬信号光生成方法
CN110401885A (zh) * 2019-08-19 2019-11-01 深圳市双翼科技股份有限公司 一种pon通讯中的光功率控制系统
TWI730836B (zh) * 2020-07-06 2021-06-11 瑞昱半導體股份有限公司 光纖網路方法和相關裝置
CN113938214A (zh) * 2020-07-13 2022-01-14 瑞昱半导体股份有限公司 光纤网络方法和相关装置
US20230040541A1 (en) * 2021-08-05 2023-02-09 Charter Communications Operating, Llc Power Saving For Multi-Wavelength Passive Optical Network (PON)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050050452A1 (en) * 2003-08-27 2005-03-03 Weitzel Wade D. Systems and methods for generating an electronically publishable document
US20090060530A1 (en) * 2007-08-30 2009-03-05 Calix, Inc. Optical network interface devices and methods
US20090290632A1 (en) * 2008-05-21 2009-11-26 Samplify Systems, Inc. Compression of signals in base transceiver systems
US20100111523A1 (en) * 2008-11-05 2010-05-06 Teknovus, Inc. Epon with power-saving features
US20100118753A1 (en) * 2008-04-17 2010-05-13 Pmc Sierra Ltd. Power saving in ieee 802-style networks

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654563B1 (en) * 1999-02-17 2003-11-25 At&T Corp. Fiber/wired communication system
US6584330B1 (en) * 2000-07-18 2003-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive power management for a node of a cellular telecommunications network
US8036710B2 (en) * 2004-05-07 2011-10-11 Qualcomm, Incorporated Power-efficient multi-antenna wireless device
WO2006023015A1 (en) 2004-08-05 2006-03-02 Optical Solutions, Inc. Optical network terminal with low power hibernation
GB2439685B (en) * 2005-03-24 2010-04-28 Siport Inc Low power digital media broadcast receiver with time division
US9323311B2 (en) * 2006-06-22 2016-04-26 Broadcom Corporation Method and system for packet based signaling between A Mac and A PHY to manage energy efficient network devices and/or protocols
CN101282315B (zh) 2007-04-06 2010-10-27 杭州华三通信技术有限公司 共享传输介质分配方法、系统及终端
US7782930B2 (en) * 2007-07-20 2010-08-24 Texas Instruments Incorporated Optimized short initialization after low power mode for digital subscriber line (DSL) communications
JP4903276B2 (ja) 2009-01-25 2012-03-28 ピーエムシー−シエラ,インク Ieee802標準のネットワークにおけるパワー・セービング
CN101882960B (zh) 2009-05-05 2014-07-23 上海傲蓝通信技术有限公司 一种点对多点的双向化光纤同轴混合全业务宽带接入系统
CN102474677B (zh) 2009-09-09 2016-06-08 美国博通公司 基于同轴电缆的以太网无源光网络(epoc)
US8548327B2 (en) * 2009-12-15 2013-10-01 Broadcom Corporation Dynamic management of polling rates in an ethernet passive optical network (EPON)
US20120188885A1 (en) * 2011-01-20 2012-07-26 Mehmet Tazebay Method and system for self-adapting dynamic power reduction mechanism for physical layer devices in packet data networks
US8848523B2 (en) 2011-04-05 2014-09-30 Broadcom Corporation Method for sub-rating an ethernet passive optical network (EPON) medium access control (MAC) based communication link
US8781326B2 (en) * 2011-04-11 2014-07-15 Nec Laboratories America, Inc. Energy efficient OFDM transceiver
US8842991B2 (en) * 2011-06-28 2014-09-23 Futurewei Technologies, Inc. Method of providing end-to end connection in a unified optical and coaxial network
US9363016B2 (en) * 2011-12-02 2016-06-07 Futurewei Technologies, Inc. Apparatus and method for reducing traffic on a unified optical and coaxial network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050050452A1 (en) * 2003-08-27 2005-03-03 Weitzel Wade D. Systems and methods for generating an electronically publishable document
US20090060530A1 (en) * 2007-08-30 2009-03-05 Calix, Inc. Optical network interface devices and methods
US20100118753A1 (en) * 2008-04-17 2010-05-13 Pmc Sierra Ltd. Power saving in ieee 802-style networks
US20090290632A1 (en) * 2008-05-21 2009-11-26 Samplify Systems, Inc. Compression of signals in base transceiver systems
US20100111523A1 (en) * 2008-11-05 2010-05-06 Teknovus, Inc. Epon with power-saving features

Also Published As

Publication number Publication date
TW201336250A (zh) 2013-09-01
CN103248433A (zh) 2013-08-14
KR101466187B1 (ko) 2014-11-27
US9113237B2 (en) 2015-08-18
EP2624589A3 (en) 2016-05-04
US20130202293A1 (en) 2013-08-08
KR20130090383A (ko) 2013-08-13
CN103248433B (zh) 2016-08-24
HK1185462A1 (zh) 2014-02-14
EP2624589B1 (en) 2017-09-06
EP2624589A2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
TWI487306B (zh) 同軸電纜乙太被動式光纖網路省電模式的系統和方法
EP2719192B1 (en) A method of providing end-to-end connection in a unified optical and coaxial network
US8744261B2 (en) EPON with power-saving features
TWI558144B (zh) 對乙太網無源光網路介質訪問控制流量進行分速率的方法以及物理層晶片
US20130202286A1 (en) Ethernet Passive Optical Network Over Coaxial (EPOC) Protection Switching
TWI538421B (zh) 用於在基於同軸電纜的乙太網無源光網路(epoc)的網路中執行物理層自動協商和鏈接的方法,及其網路
EP2624588A2 (en) Ethernet passive optical network over coaxial physical layer and tuning
Vetter et al. Energy-efficiency improvements for optical access
US20150229432A1 (en) Full-duplex ethernet communications over coaxial links using time-division duplexing
US9860617B2 (en) Upstream frame configuration for ethernet passive optical network protocol over coax (EPoC) networks
US9906299B2 (en) Upstream frame configuration for ethernet passive optical network protocol over coax (EPoC) networks
Zhao et al. Research on energy efficiency based on differentiated QoS in fiber-wireless broadband access network
Han et al. Green Broadband Access Networks

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees