TWI484596B - Dynamic random access memory and method for fabricating the same - Google Patents

Dynamic random access memory and method for fabricating the same Download PDF

Info

Publication number
TWI484596B
TWI484596B TW100120494A TW100120494A TWI484596B TW I484596 B TWI484596 B TW I484596B TW 100120494 A TW100120494 A TW 100120494A TW 100120494 A TW100120494 A TW 100120494A TW I484596 B TWI484596 B TW I484596B
Authority
TW
Taiwan
Prior art keywords
trench
bit line
insulator
random access
access memory
Prior art date
Application number
TW100120494A
Other languages
Chinese (zh)
Other versions
TW201250934A (en
Inventor
Tse Mian Kuo
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW100120494A priority Critical patent/TWI484596B/en
Publication of TW201250934A publication Critical patent/TW201250934A/en
Application granted granted Critical
Publication of TWI484596B publication Critical patent/TWI484596B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

動態隨機存取記憶體及其製造方法 Dynamic random access memory and manufacturing method thereof

本發明係有關於一種動態隨機存取記憶體及其製造方法,特別是有關於一種動態隨機存取記憶體晶胞的埋藏位元線及其製造方法。 The present invention relates to a dynamic random access memory and a method of fabricating the same, and more particularly to a buried bit line of a dynamic random access memory cell and a method of fabricating the same.

目前將電容堆疊在電晶體之上的堆疊式(stacked)動態隨機存取記憶體(Dynamic Random Access Memory,以下簡稱DRAM)可達到高記憶體密度的目標。然而,堆疊式DRAM的埋藏位元線(buried bit line,BL)會由於製程尺寸不斷微縮而使得不同的埋藏位元線之間的位元線-位元線寄生電容(BL-BL capacitance)問題日趨嚴重。此外,在堆疊式DRAM中,不同DRAM晶胞會共用一個長條形的埋藏位元線以及埋藏位元線接觸(buried bit line contact,CB),這種共用的埋藏位元線接觸會因為本身較大的面積而產生埋藏位元線接觸漏電(CB leakage)問題。 At present, a stacked random random access memory (DRAM) with a capacitor stacked on a transistor can achieve a high memory density target. However, the buried bit line (BL) of the stacked DRAM will cause the bit line-bit capacitance (BL-BL capacitance) problem between different buried bit lines due to the shrinking process size. Increasingly serious. In addition, in a stacked DRAM, different DRAM cells share a long buried buried bit line and a buried bit line contact (CB). This shared buried bit line contact is due to itself. The larger area creates a problem of buried bit line contact leakage (CB leakage).

因此,亟需一種具有新穎結構的動態隨機存取記憶體及其製造方法,以解決上述問題。 Therefore, there is a need for a dynamic random access memory having a novel structure and a method of fabricating the same to solve the above problems.

有鑑於此,本發明之一實施例係提供一種動態隨機存取記憶體,包括一埋藏位元線,設置於一基板內沿一第一方向延伸的一第一溝槽中,上述埋藏位元線包括複數個位元線接觸物,沿上述第一方向間隔設置於上述第一溝槽的一側壁上;一第一絕緣物,設置於上述基板內沿一第二方向延伸的一第二溝槽的一底面上,其中上述 第一絕緣物的一對側壁分別鄰接不同的上述些位元線接觸物;一對埋藏字元線,分別設置於上述第二溝槽的一對側壁上,且分別覆蓋部分上述第一絕緣物。 In view of the above, an embodiment of the present invention provides a dynamic random access memory, including a buried bit line disposed in a first trench extending in a first direction in a substrate, the buried bit The line includes a plurality of bit line contacts disposed on a sidewall of the first trench along the first direction; a first insulator disposed in the substrate and extending in a second direction in a second trench On a bottom surface of the trough, wherein the above a pair of sidewalls of the first insulator respectively adjacent to the different bit line contacts; a pair of buried word lines are respectively disposed on a pair of sidewalls of the second trench, and respectively covering a portion of the first insulator .

本發明之另一實施例係提供一種動態隨機存取記憶體的製造方法,包括提供一基板;於上述基板中沿一第一方向形成一第一溝槽;於上述第一溝槽中形成一埋藏位元線,其包括一位元線接觸條狀物,沿上述第一方向設置於上述第一溝槽的一側壁上;於上述基板中沿一第二方向形成一第二溝槽,其中形成上述第二溝槽的期間係截斷上述位元線接觸條狀物,以形成複數個上述位元線接觸物,分別從上述第二溝槽的一對側壁暴露出來;於上述第二溝槽的一底面上形成一第一絕緣物,其中上述絕緣物的一對側壁分別鄰接不同的上述些位元線接觸物;於上述第二溝槽的一對側壁上形成一對埋藏字元線,分別覆蓋部分上述第一絕緣物。 Another embodiment of the present invention provides a method for fabricating a dynamic random access memory, including providing a substrate, forming a first trench along a first direction in the substrate, and forming a first trench in the first trench a buried bit line including a one-dimensional contact strip disposed on a sidewall of the first trench along the first direction; and a second trench formed in a second direction in the substrate, wherein Forming, during the forming of the second trench, the bit line contact strips are cut to form a plurality of the bit line contacts, respectively exposed from a pair of sidewalls of the second trench; and the second trench Forming a first insulator on a bottom surface, wherein a pair of sidewalls of the insulator respectively adjoin different bit line contacts; forming a pair of buried word lines on a pair of sidewalls of the second trench; A portion of the first insulator is covered separately.

第1圖係顯示本發明一實施例之動態隨機存取記憶體晶胞(以下簡稱DRAM)500的透視圖,為方便顯示埋藏位元線(buried bit line,BL)和埋藏字元線(buried word line,BW)的配置,在此不予顯示用以隔絕不同埋藏字元線的絕緣物,以及埋藏位元線與埋藏字元線之間的結構,然非限制本實施例。如第1圖所示之DRAM 500的晶胞尺寸為4F2(其中F為最小半節距(half pitch),或稱單元尺寸)。如第1圖所示,上述DRAM 500係設置於一基板200中,其包括至少一埋藏位元線(buried bit line,BL)250、 至少一第一絕緣物228和至少一對埋藏字元線(buried word line,BW)244。如第1圖所示,埋藏位元線250係設置於基板200內沿一第一方向410延伸的一第一溝槽412中,上述埋藏位元線250係包括複數個位元線接觸物208a,沿第一方向410間隔設置於第一溝槽412的單一側壁(single side)414a上。第一絕緣物228係設置於基板200內沿不同於第一方向410的一第二方向420延伸的一第二溝槽422的一底面上,其中第一絕緣物228的一對側壁229分別鄰接不同的位元線接觸物208a。如第1圖所示,DRAM 500的一對埋藏字元線244係分別設置於第二溝槽422的一對側壁230上,且分別覆蓋部分第一絕緣物228。 1 is a perspective view showing a dynamic random access memory cell (hereinafter referred to as DRAM) 500 according to an embodiment of the present invention, for convenience of displaying a buried bit line (BL) and a buried word line (buried). The configuration of the word line, BW) does not show the insulation for isolating the different buried word lines, and the structure between the buried bit line and the buried word line, but the present embodiment is not limited. The cell size of the DRAM 500 as shown in Fig. 1 is 4F 2 (where F is the minimum half pitch, or cell size). As shown in FIG. 1, the DRAM 500 is disposed in a substrate 200, and includes at least one buried bit line (BL) 250, at least one first insulator 228, and at least one pair of buried word lines. (buried word line, BW) 244. As shown in FIG. 1, the buried bit line 250 is disposed in a first trench 412 extending in a first direction 410 in the substrate 200. The buried bit line 250 includes a plurality of bit line contacts 208a. The first side 410 is spaced apart from the first side 414a of the first trench 412. The first insulator 228 is disposed on a bottom surface of the second trench 422 extending in a second direction 420 different from the first direction 410 in the substrate 200, wherein the pair of sidewalls 229 of the first insulator 228 are respectively adjacent to each other. Different bit line contacts 208a. As shown in FIG. 1, a pair of buried word lines 244 of DRAM 500 are respectively disposed on a pair of sidewalls 230 of the second trench 422, and cover a portion of the first insulator 228, respectively.

如第1圖所示的實施例中,DRAM 500的埋藏位元線250的位元線接觸物208a、埋藏字元線244、相鄰於位元線接觸物208a的基板部分314、位於兩相鄰埋藏字元線244之間的基板部分316以及位於基板部分316上的另一基板部分318可構成一垂直電晶體,其中位元線接觸物208a係做為垂直電晶體的汲極接觸物,埋藏字元線244係做為垂直電晶體的閘極,而垂直堆疊的基板部分314、基板部分316和基板部分318係做為垂直電晶體的汲極區、通道區和源極區。另外,DRAM 500更包括一電容312,電性接觸垂直電晶體的源極區(基板部分318)。 In the embodiment shown in FIG. 1, the bit line contact 208a of the buried bit line 250 of the DRAM 500, the buried word line 244, the substrate portion 314 adjacent to the bit line contact 208a, and the two phases are located. The substrate portion 316 between the adjacent buried word lines 244 and the other substrate portion 318 on the substrate portion 316 may constitute a vertical transistor, wherein the bit line contact 208a acts as a drain contact of the vertical transistor. The buried word line 244 is used as the gate of the vertical transistor, and the vertically stacked substrate portion 314, the substrate portion 316, and the substrate portion 318 serve as the drain region, the channel region, and the source region of the vertical transistor. In addition, the DRAM 500 further includes a capacitor 312 electrically contacting the source region of the vertical transistor (substrate portion 318).

第2a、2b至8a、8b圖係顯示本發明一實施例之動態隨機存取記憶體的製造方法的剖面示意圖,其中第 2a~8a圖為沿第1圖的A-A’切線的剖面圖,而第2b~8b圖為沿第1圖的B-B’切線的剖面圖。如第2a、2b圖所示,首先,提供一基板200。在本發明一實施例中,基板200可為矽基板。在其他實施例中,可利用鍺化矽(SiGe)、塊狀半導體(bulk semiconductor)、應變半導體(strained semiconductor)、化合物半導體(compound semiconductor)、絶緣層上覆矽(silicon on insulator,SOI),或其他常用之半導體基板做為基板200。基板200可植入p型或n型摻質,以針對設計需要改變其導電類型。之後,可利用化學氣相沉積法(CVD)於基板200上覆蓋一第零絕緣墊100,其做為後續形成於基板200中的第一溝槽的蝕刻硬遮罩。在本發明一實施例中,第零絕緣墊100可為氮化矽。 2a, 2b to 8a, 8b are schematic cross-sectional views showing a method of manufacturing a dynamic random access memory according to an embodiment of the present invention, wherein 2a-8a are cross-sectional views taken along line A-A' of Fig. 1, and Figs. 2b-8b are cross-sectional views taken along line B-B' of Fig. 1. As shown in Figures 2a and 2b, first, a substrate 200 is provided. In an embodiment of the invention, the substrate 200 can be a germanium substrate. In other embodiments, silicon germanium (SiGe), bulk semiconductor, strained semiconductor, compound semiconductor, silicon on insulator (SOI), Or other commonly used semiconductor substrates are used as the substrate 200. The substrate 200 can be implanted with a p-type or n-type dopant to change its conductivity type for design needs. Thereafter, a zeroth insulating pad 100 may be overlaid on the substrate 200 by chemical vapor deposition (CVD) as an etched hard mask for the subsequent first trench formed in the substrate 200. In an embodiment of the invention, the zeroth insulating pad 100 may be tantalum nitride.

接著,請參考第2a、2b圖,可利用微影及蝕刻製程,圖案化第零絕緣墊100,並定義出第一溝槽412的形成位置。然後,可進行一蝕刻製程,以圖案化的第零絕緣墊100做為蝕刻硬遮罩,於基板200中沿如第1圖所示的第一方向410形成第一溝槽412。然後,於第一溝槽412中形成一埋藏位元線250,其包括一位元線接觸條狀物208,沿第一方向410設置於第一溝槽412下部的一側壁414a上,一第一絕緣墊202,順應性覆蓋第一溝槽412下部的側壁414a、415a和一底面416,且鄰接位元線接觸條狀物208,以及一第一導電物207,填充第一溝槽412下部,且覆蓋第一絕緣墊202和位元線接觸條狀物208。在本發明一實施例中,第一導電物207包括一第一阻障 墊層204和一第一金屬條狀物206,其中第一阻障墊層204係形成於第一溝槽412中,且覆蓋第一絕緣墊202和位元線接觸條狀物208,而第一金屬條狀物206係填充填充第一溝槽412下部,且覆蓋第一阻障墊層204。在本發明一實施例中,第一絕緣墊202可包括一氧化物、一氮化物或其組合,第一阻障墊層可包括一疊層結構,其材質包括鈦、氮化鈦或其組合,而位元線接觸條狀物208可包括矽化物(例如TiSix)。在本發明一實施例中,可藉由將位元線接觸條狀物208的摻質擴散至基板200的方式,於基板200中形成鄰接位元線接觸條狀物208側壁的擴散區210。在本發明一實施例中,擴散區210位於如第1圖所示的基板部分314(汲極區),其可做為埋藏位元線與垂直電晶體之汲極的擴散接面(diffusion junction),而第一導電物207係藉由位元線接觸條狀物208和擴散區210電性連接至垂直電晶體的汲極。 Next, referring to FIGS. 2a and 2b, the zeroth insulating pad 100 can be patterned by a lithography and etching process, and the formation position of the first trench 412 can be defined. Then, an etching process may be performed to form the first trench 412 in the substrate 200 along the first direction 410 as shown in FIG. 1 by using the patterned zeroth insulating pad 100 as an etch hard mask. Then, a buried bit line 250 is formed in the first trench 412, and includes a bit line contact strip 208 disposed in a first direction 410 on a sidewall 414a of the lower portion of the first trench 412. An insulating pad 202 compliantly covers the sidewalls 414a, 415a and a bottom surface 416 of the lower portion of the first trench 412, and adjacent to the bit line contact strip 208, and a first conductive material 207 filling the lower portion of the first trench 412 And covering the first insulating pad 202 and the bit line contact strip 208. In an embodiment of the invention, the first conductive material 207 includes a first barrier layer 204 and a first metal strip 206, wherein the first barrier layer 204 is formed in the first trench 412. The first insulating strip 202 and the bit line contact strip 208 are covered, and the first metal strip 206 is filled to fill the lower portion of the first trench 412 and covers the first barrier layer 204. In an embodiment of the invention, the first insulating pad 202 may comprise an oxide, a nitride or a combination thereof, and the first barrier layer may comprise a laminated structure, the material of which comprises titanium, titanium nitride or a combination thereof And the bit line contact strip 208 can include a telluride (eg, TiSi x ). In an embodiment of the invention, the diffusion region 210 adjacent the sidewall of the bit line contact strip 208 can be formed in the substrate 200 by diffusing the dopant of the bit line contact strip 208 to the substrate 200. In an embodiment of the invention, the diffusion region 210 is located in the substrate portion 314 (drain region) as shown in FIG. 1 and can be used as a diffusion junction between the buried bit line and the drain of the vertical transistor. And the first conductive material 207 is electrically connected to the drain of the vertical transistor by the bit line contact strip 208 and the diffusion region 210.

請再參考第2a、2b圖,形成埋藏位元線250之後,可利用化學氣相沉積法(CVD)或物理氣相沉積法(PVD),順應性形成一第二絕緣墊212,覆蓋第一溝槽412上部的側壁414b、415b,埋藏位元線250和第零絕緣墊100的頂面201。接著,可利用例如高密度電漿化學氣相沉積法(HDP-CVD)之沉積方式以及後續的回蝕刻(etching back)步驟,以於第一溝槽412中形成第二絕緣物214,其覆蓋部分第二絕緣墊212。在本發明一實施例中,第二絕緣物214和第二絕緣墊212為不同的材質,舉例來說,當第二絕緣物214為氧化物時,第二絕緣墊 212為氮化物。接著,可再利用例如旋塗法(spin-on)之沉積方式以及後續的回蝕刻步驟,於第二絕緣物214上形成一介電質216,其頂面係低於基板200的頂面201。在本發明一實施例中,介電質216在第一溝槽412中的高度位置係與後續於另一溝槽形成的一對埋藏字元線相同,以利於後續取代介電質216位置形成的導電物可連接到埋藏字元線。然後,可再利用高密度電漿化學氣相沉積法(HDP-CVD),全面性形成一第三絕緣層218,填充第一溝槽412且覆蓋基板200,其中第三絕緣層218的一頂面實質上為一平坦表面。在本發明一實施例中,第二絕緣墊212、第二絕緣物214和第三絕緣層218的材質可包括一氧化物、一氮化物或其組合,其中第二絕緣物214和第三絕緣層218可為相同的材質,第二絕緣物214和第三絕緣層218的材質皆與第二絕緣墊212的材質不同。例如第二絕緣物214和第三絕緣層218皆為氧化物,而第二絕緣墊212為氮化物。 Referring to FIGS. 2a and 2b, after the buried bit line 250 is formed, a second insulating pad 212 may be formed by chemical vapor deposition (CVD) or physical vapor deposition (PVD) to cover the first The sidewalls 414b, 415b of the upper portion of the trench 412 embed the bit line 250 and the top surface 201 of the zeroth insulating pad 100. Next, a second insulating 214 may be formed in the first trench 412 by a deposition method such as high density plasma chemical vapor deposition (HDP-CVD) and a subsequent etching back step. Part of the second insulating pad 212. In an embodiment of the invention, the second insulator 214 and the second insulating pad 212 are made of different materials. For example, when the second insulator 214 is an oxide, the second insulating pad 212 is a nitride. Then, a dielectric 216 can be formed on the second insulator 214 by using, for example, a spin-on deposition method and a subsequent etch back step, the top surface of which is lower than the top surface 201 of the substrate 200. . In an embodiment of the invention, the height position of the dielectric 216 in the first trench 412 is the same as a pair of buried word lines formed subsequent to the other trench to facilitate subsequent formation of the dielectric 216. The conductive material can be connected to the buried word line. Then, a third insulating layer 218 can be formed by high-density plasma chemical vapor deposition (HDP-CVD), filling the first trench 412 and covering the substrate 200, wherein a top of the third insulating layer 218 The face is essentially a flat surface. In an embodiment of the present invention, the material of the second insulating pad 212, the second insulating layer 214, and the third insulating layer 218 may include an oxide, a nitride, or a combination thereof, wherein the second insulating layer 214 and the third insulating layer The layer 218 can be the same material, and the materials of the second insulator 214 and the third insulating layer 218 are different from the material of the second insulating pad 212. For example, the second insulator 214 and the third insulating layer 218 are both oxides, and the second insulating pad 212 is nitride.

接著說明第二溝槽422的形成方式,如第1圖所示,第一溝槽412和第二溝槽422係設計為彼此交叉設置。請再參考第2a、2b圖,可利用化學氣相沉積法(CVD),於第三絕緣層218上依序形成一碳硬遮罩層220和一氮化物硬遮罩層222。之後,可利用塗佈(coating)方式,全面性形成一光阻,再利用一埋藏字元線光罩進行一微影製程,以沿第二方向420形成複數個光阻圖案224。在本發明一實施例中,碳硬遮罩層220、氮化物硬遮罩層222係做為形成具高深寬比的第二溝槽422的蝕刻製程的硬 遮罩,用以避免蝕刻製程期間對基板200表面造成的損傷。 Next, the manner in which the second trench 422 is formed will be described. As shown in FIG. 1, the first trench 412 and the second trench 422 are designed to be disposed to cross each other. Referring to FIGS. 2a and 2b, a carbon hard mask layer 220 and a nitride hard mask layer 222 may be sequentially formed on the third insulating layer 218 by chemical vapor deposition (CVD). Thereafter, a photoresist can be formed by a coating method, and a lithography process is performed using a buried word line mask to form a plurality of photoresist patterns 224 along the second direction 420. In an embodiment of the invention, the carbon hard mask layer 220 and the nitride hard mask layer 222 are used as an etching process for forming the second trench 422 having a high aspect ratio. A mask is used to avoid damage to the surface of the substrate 200 during the etching process.

接著,請參考第3a、3b圖,進行例如乾蝕刻之一非等向性蝕刻步驟,移除未被光阻圖案224覆蓋的氮化物硬遮罩層222以形成氮化物硬遮罩圖案(圖未顯示),此時光阻圖案224會於製程期間被移除。之後,以氮化物硬遮罩圖案(圖未顯示)為遮罩,進行例如乾蝕刻之一非等向性蝕刻步驟,移除未被氮化物硬遮罩圖案(圖未顯示)覆蓋的碳硬遮罩層220以形成碳硬遮罩圖案220a,此時氮化物硬遮罩圖案會於製程期間被移除。然後,以碳硬遮罩圖案220a為遮罩,進行例如乾蝕刻之一非等向性蝕刻步驟,移除未被碳硬遮罩圖案220a覆蓋的第三絕緣層218、基板200(如第3b圖所示)。由於第一溝槽412和第二溝槽422係設計為彼此交叉設置,所以在形成第二溝槽422的蝕刻製程期間,也會移除位於第一溝槽412中且未被碳硬遮罩圖案220a覆蓋的第三絕緣層218、介電質216,直到停止在第二絕緣物214,而在第一溝槽412外的基板200會同時被蝕刻到位元線接觸條狀物208為止,以於基板200中沿第二方向420形成第二溝槽422,其中形成第二溝槽422的期間係截斷位元線接觸條狀物208,以形成複數個如第1圖所示的位元線接觸物208a。如第1、3a、3b圖所示,第一溝槽412和第二溝槽422彼此交叉設置,且第二溝槽422的底面423會設計位於第一溝槽412的底面416的上方,但不高於位元線接觸條狀物208的底面,以確保位元線接觸條狀物208會在形成第二溝槽422 的製程期間被截斷。 Next, referring to FIGS. 3a and 3b, an anisotropic etching step such as dry etching is performed to remove the nitride hard mask layer 222 not covered by the photoresist pattern 224 to form a nitride hard mask pattern (Fig. Not shown), the photoresist pattern 224 is removed during the process. Thereafter, a nitride hard mask pattern (not shown) is used as a mask, and an anisotropic etching step such as dry etching is performed to remove the carbon hardened by the nitride hard mask pattern (not shown). The mask layer 220 is formed to form a carbon hard mask pattern 220a, at which time the nitride hard mask pattern is removed during the process. Then, using the carbon hard mask pattern 220a as a mask, an anisotropic etching step such as dry etching is performed to remove the third insulating layer 218 and the substrate 200 not covered by the carbon hard mask pattern 220a (eg, 3b) Figure shows). Since the first trench 412 and the second trench 422 are designed to be disposed to cross each other, during the etching process for forming the second trench 422, the first trench 412 is also removed and is not hardened by carbon. The third insulating layer 218 and the dielectric 216 covered by the pattern 220a are stopped until the second insulator 214 is stopped, and the substrate 200 outside the first trench 412 is simultaneously etched to the bit line contact strip 208 to Forming a second trench 422 in the second direction 420 in the substrate 200, wherein the period of forming the second trench 422 is to cut the bit line contact strip 208 to form a plurality of bit lines as shown in FIG. Contact 208a. As shown in the first, third, and third embodiments, the first trench 412 and the second trench 422 are disposed to intersect each other, and the bottom surface 423 of the second trench 422 is designed to be located above the bottom surface 416 of the first trench 412, but No more than the bottom line contacts the bottom surface of the strip 208 to ensure that the bit line contact strip 208 will form the second trench 422 The process was cut off during the process.

接著,請參考第4a、4b圖,可利用乾蝕刻方式,移除碳硬遮罩圖案220a。 Next, referring to Figures 4a and 4b, the carbon hard mask pattern 220a can be removed by dry etching.

接著,請參考第5a、5b圖,可利用稀釋氫氟酸(DHF)進行一清潔製程,以移除位於第二溝槽422的側壁230上的例如原生氧化物(native oxide),並同時移除第一溝槽412中的介電質216,以形成由第二絕緣墊212、第二絕緣物214和第三絕緣層218包圍的一空穴226。此清潔製程中稀釋氫氟酸對介電質216具有高蝕刻率。之後,可利用例如化學氣相沉積法(CVD)之沉積方式以及後續的回蝕刻(etching back)步驟,以於第二溝槽422的一底面423上形成一第一絕緣物228。請再參考第1圖,第一絕緣物228的一對側壁229分別鄰接不同的位元線接觸物208,且如第1、5a圖所示,第一絕緣物228的底面246不高於位元線接觸物208a的底面211,且第一絕緣物228的頂面247不低於位元線接觸物208a的頂面209,以確保沿第一方向410相鄰的位元線接觸物208a可以藉由第一絕緣物228彼此隔絕。 Next, referring to Figures 5a and 5b, a cleaning process can be performed by diluting hydrofluoric acid (DHF) to remove, for example, a native oxide on the sidewall 230 of the second trench 422, and simultaneously shifting Dielectric 216 in first trench 412 is removed to form a void 226 surrounded by second insulating pad 212, second insulator 214, and third insulating layer 218. Diluting hydrofluoric acid in this cleaning process has a high etch rate for dielectric 216. Thereafter, a first insulator 228 may be formed on a bottom surface 423 of the second trench 422 by a deposition method such as chemical vapor deposition (CVD) and a subsequent etching back step. Referring again to FIG. 1, a pair of sidewalls 229 of the first insulator 228 abut the different bit line contacts 208, respectively, and as shown in FIGS. 1 and 5a, the bottom surface 246 of the first insulator 228 is not higher than the bit. The bottom surface 211 of the contact 208a, and the top surface 247 of the first insulator 228 is not lower than the top surface 209 of the bit line contact 208a to ensure that the bit line contact 208a adjacent in the first direction 410 can The first insulator 228 is isolated from each other.

接著,請再參考第5a、5b圖,利用例如熱氧化法(thermal oxidation),於第二溝槽422的一對側壁230上形成分別形成一對熱氧化層232。 Next, referring to FIGS. 5a and 5b, a pair of thermal oxide layers 232 are respectively formed on the pair of sidewalls 230 of the second trench 422 by, for example, thermal oxidation.

接著,請再參考第6a、6b圖,可利用化學氣相沉積法(CVD)或原子層沉積法(ALD),順應性形成一第二阻障墊層234,從第三絕緣層218的一頂面延伸覆蓋第二溝槽422的側壁230、第一絕緣物228和第5a圖所示的空穴 226的側壁。然後,可利用化學氣相沉積法(CVD),全面性形成一金屬材料236,覆蓋第二阻障墊層234,並填充第二溝槽422和空穴226。之後,可進行例如化學機械研磨法(CMP)之平坦化製程,以平坦化金屬材料236的表面。 Next, referring to FIGS. 6a and 6b, a second barrier layer 234 may be formed by chemical vapor deposition (CVD) or atomic layer deposition (ALD), from the third insulating layer 218. The top surface extends over the sidewalls 230 of the second trench 422, the first insulator 228, and the holes shown in FIG. 5a. Side wall of 226. Then, a metal material 236 may be formed by chemical vapor deposition (CVD) to cover the second barrier layer 234 and fill the second trench 422 and the holes 226. Thereafter, a planarization process such as chemical mechanical polishing (CMP) may be performed to planarize the surface of the metal material 236.

接著,請參考第7a、7b圖,可利用回蝕刻(etching back)步驟,移除位於第三絕緣層218的頂面上及部分位於第二溝槽422內的部分金屬材料236和第二阻障墊層234到特定深度(例如使第二溝槽422中的金屬材料236和第二阻障墊層234的頂面低於基板200表面)。然後,利用化學氣相沉積法(CVD)順應性形成一第一絕緣硬遮罩層110。在本發明一實施例中,第一絕緣硬遮罩層110的材質可為一氧化矽。 Next, referring to FIGS. 7a and 7b, an etching back step may be used to remove a portion of the metal material 236 and the second resistor located on the top surface of the third insulating layer 218 and partially located in the second trench 422. The barrier layer 234 is to a specific depth (eg, the top surface of the metal material 236 and the second barrier pad layer 234 in the second trench 422 is lower than the surface of the substrate 200). Then, a first insulating hard mask layer 110 is formed by chemical vapor deposition (CVD) compliance. In an embodiment of the invention, the first insulating hard mask layer 110 may be made of tantalum oxide.

接著,請參考第8a、8b圖,利用第一絕緣硬遮罩層110為一蝕刻硬遮罩,進行例如乾蝕刻之一非等向性蝕刻製程,以截斷位於第二溝槽422中的金屬材料236和第二阻障墊層234,以於第二溝槽422的一對側壁230上形成一對埋藏字元線244,每一個埋藏字元線244由第二阻障墊層234a和第二金屬條狀物236a構成。經過乾蝕刻製程之後,第一絕緣物228會從埋藏字元線244之間的空隙暴露出來。如第8a圖所示,形成埋藏字元線244的同時係於第一溝槽412中形成一第二導電物244a,沿如第1圖所示的第一方向410內嵌於如第5a圖所示的空穴226中。如第1、8a圖所示,第二導電物244a的兩端分別連接位於通道區(基板部分)318兩側的一對埋藏字元線 244,且第二導電物244a與其下的埋藏位元線250藉由第二絕緣物214和第二絕緣墊212彼此隔絕。在本發明一實施例中,第二導電物244a由從第二溝槽422的一對側壁230延伸內嵌於如第5a圖所示的空穴226中的部分第二阻障墊層234b和部分二金屬條狀物236b構成,其中第二導電物244a的第二阻障墊層234b係包圍第二金屬條狀物236b。注意第二阻障墊層234a、234b為同一第二阻障墊層的不同部分,而第二金屬條狀物236a、236b為同一第二金屬條狀物的不同部分。之後,可全面性形成一絕緣材料240,覆蓋第三絕緣層218的頂面及填入第二溝槽422。然後,再進行後續製程,以形成如第1圖所示之本發明一實施例的動態隨機存取記憶體500。 Next, referring to FIGS. 8a and 8b, using the first insulating hard mask layer 110 as an etch hard mask, an anisotropic etching process such as dry etching is performed to cut off the metal located in the second trench 422. A material 236 and a second barrier layer 234 are formed on the pair of sidewalls 230 of the second trench 422 to form a pair of buried word lines 244, each of the buried word lines 244 being formed by a second barrier layer 234a and The two metal strips 236a are formed. After the dry etch process, the first insulator 228 is exposed from the gap between the buried word lines 244. As shown in FIG. 8a, a buried conductor line 244 is formed while a second conductive material 244a is formed in the first trench 412, and embedded in the first direction 410 as shown in FIG. 1 in FIG. 5a. In the cavity 226 shown. As shown in FIGS. 1 and 8a, the two ends of the second conductive material 244a are respectively connected to a pair of buried word lines located on both sides of the channel region (substrate portion) 318. 244, and the second conductive material 244a and the buried bit line 250 below it are isolated from each other by the second insulator 214 and the second insulating pad 212. In an embodiment of the invention, the second conductive material 244a is extended from a pair of sidewalls 230 of the second trench 422 to a portion of the second barrier layer 234b embedded in the cavity 226 as shown in FIG. 5a and A portion of the two metal strips 236b are formed, wherein the second barrier layer 234b of the second conductive material 244a surrounds the second metal strip 236b. Note that the second barrier pads 234a, 234b are different portions of the same second barrier layer, while the second metal strips 236a, 236b are different portions of the same second metal strip. Thereafter, an insulating material 240 is formed integrally, covering the top surface of the third insulating layer 218 and filling the second trench 422. Then, a subsequent process is performed to form the dynamic random access memory 500 according to an embodiment of the present invention as shown in FIG. 1.

本發明一實施例係提供一動態隨機存取記憶體500,兩相鄰DRAM晶胞的位元線接觸物208a被第一絕緣物228截斷而彼此隔開,可使埋藏位元線的位元線接觸物的面積下降,所以可大為降低因習知動態隨機存取記憶體之不同DRAM晶胞共用長條形的埋藏位元線所產生之位元線-位元線寄生電容(BL-BL capacitance)和埋藏位元線接觸漏電(CB leakage)等問題。另外,本發明實施例的動態隨機存取記憶體的製造方法,僅應用製程所需的埋藏字元線光罩製程即可完成截斷不同DRAM晶胞之間的埋藏位元線,因而不需額外的光罩製程。 In one embodiment of the present invention, a dynamic random access memory 500 is provided. The bit line contacts 208a of two adjacent DRAM cells are separated by the first insulator 228 and separated from each other, so that the bit of the buried bit line can be buried. The area of the line contact is reduced, so that the bit line-bit line parasitic capacitance (BL-BL) generated by the common DRAM cell sharing the long burial bit line of the conventional dynamic random access memory can be greatly reduced. Capacitance) and buried bit line contact leakage (CB leakage) and other issues. In addition, in the method for manufacturing a dynamic random access memory according to the embodiment of the present invention, only the buried word line mask process required for the process can be used to complete the truncation of buried bit lines between different DRAM cells, thereby eliminating the need for additional Photomask process.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some modifications and refinements without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application attached.

100‧‧‧第零絕緣墊 100‧‧‧ zeroth insulation mat

110‧‧‧第一絕緣硬遮罩層 110‧‧‧First insulating hard mask layer

200‧‧‧基板 200‧‧‧Substrate

201、211、247‧‧‧頂面 201, 211, 247‧‧‧ top

202‧‧‧第一絕緣墊 202‧‧‧First insulation mat

204‧‧‧第一阻障墊層 204‧‧‧First barrier layer

206‧‧‧第一金屬條狀物 206‧‧‧First metal strip

207‧‧‧第一導電物 207‧‧‧First Conductor

208‧‧‧位元線接觸條狀物 208‧‧‧ bit line contact strip

208a‧‧‧位元線接觸物 208a‧‧‧ bit line contact

209、246、416、423‧‧‧底面 209, 246, 416, 423‧‧‧ bottom

210‧‧‧擴散區 210‧‧‧Diffusion zone

212‧‧‧第二絕緣墊 212‧‧‧Second insulation mat

214‧‧‧第二絕緣物 214‧‧‧second insulation

216‧‧‧介電質 216‧‧‧ dielectric

218‧‧‧第三絕緣層 218‧‧‧ Third insulation layer

220‧‧‧碳硬遮罩層 220‧‧‧Carbon hard mask

220a‧‧‧碳硬遮罩圖案 220a‧‧‧carbon hard mask pattern

222‧‧‧氮化物硬遮罩層 222‧‧‧ nitride hard mask layer

224‧‧‧光阻圖案 224‧‧‧resist pattern

226‧‧‧空穴 226‧‧‧ hole

228‧‧‧第一絕緣物 228‧‧‧First insulation

229、223、230、414a、415a、414b、415b‧‧‧側壁 229, 223, 230, 414a, 415a, 414b, 415b‧‧‧ side walls

232‧‧‧熱氧化層 232‧‧‧ Thermal Oxide

234、234a、234b‧‧‧第二阻障墊層 234, 234a, 234b‧‧‧ second barrier layer

236‧‧‧金屬材料 236‧‧‧Metal materials

236a、236b‧‧‧第二金屬條狀物 236a, 236b‧‧‧ second metal strip

240‧‧‧絕緣材料 240‧‧‧Insulation

244‧‧‧埋藏字元線 244‧‧‧ buried word line

244a‧‧‧第二導電物 244a‧‧‧Second conductor

250‧‧‧埋藏位元線 250‧‧‧buried bit line

312‧‧‧電容 312‧‧‧ Capacitance

314、316、318‧‧‧基板部分 314, 316, 318‧‧‧ substrate part

410‧‧‧第一方向 410‧‧‧First direction

412‧‧‧第一溝槽 412‧‧‧First trench

420‧‧‧第二方向 420‧‧‧second direction

422‧‧‧第二溝槽 422‧‧‧Second trench

500‧‧‧動態隨機存取記憶體 500‧‧‧ Dynamic Random Access Memory

第1圖係顯示本發明一實施例之動態隨機存取記憶體的透視圖。 Fig. 1 is a perspective view showing a dynamic random access memory according to an embodiment of the present invention.

第2a~8a圖為沿第1圖的A-A’切線的剖面圖,其顯示本發明一實施例之動態隨機存取記憶體的製造方法的剖面示意圖。 2a-8a are cross-sectional views taken along line A-A' of Fig. 1 and showing a cross-sectional view showing a method of manufacturing a dynamic random access memory according to an embodiment of the present invention.

第2b~8b圖為沿第1圖的B-B’切線的剖面圖,其顯示本發明一實施例之動態隨機存取記憶體的製造方法的剖面示意圖。 2b-8b is a cross-sectional view taken along line B-B' of Fig. 1 and showing a cross-sectional view showing a method of manufacturing the dynamic random access memory according to an embodiment of the present invention.

200‧‧‧基板 200‧‧‧Substrate

208a‧‧‧位元線接觸物 208a‧‧‧ bit line contact

228‧‧‧第一絕緣物 228‧‧‧First insulation

229、230、414a‧‧‧側壁 229, 230, 414a‧‧‧ side walls

234a、234b‧‧‧第二阻障墊層 234a, 234b‧‧‧ second barrier layer

236a、236b‧‧‧第二金屬條狀物 236a, 236b‧‧‧ second metal strip

244‧‧‧埋藏字元線 244‧‧‧ buried word line

244a‧‧‧第二導電物 244a‧‧‧Second conductor

250‧‧‧埋藏位元線 250‧‧‧buried bit line

312‧‧‧電容 312‧‧‧ Capacitance

314、316、318‧‧‧基板部分 314, 316, 318‧‧‧ substrate part

410‧‧‧第一方向 410‧‧‧First direction

412‧‧‧第一溝槽 412‧‧‧First trench

420‧‧‧第二方向 420‧‧‧second direction

422‧‧‧第二溝槽 422‧‧‧Second trench

500‧‧‧動態隨機存取記憶體 500‧‧‧ Dynamic Random Access Memory

Claims (17)

一種動態隨機存取記憶體,包括:一埋藏位元線,設置於一基板內沿一第一方向延伸的一第一溝槽中,該埋藏位元線包括複數個位元線接觸物,沿該第一方向間隔設置於該第一溝槽的一側壁上;一第一絕緣物,設置於該基板內沿一第二方向延伸的一第二溝槽的一底面上,其中該第一絕緣物的一對側壁分別鄰接不同的該些位元線接觸物;以及一對埋藏字元線,分別設置於該第二溝槽的一對側壁上,且分別覆蓋部分該第一絕緣物。 A dynamic random access memory, comprising: a buried bit line disposed in a first trench extending in a first direction in a substrate, the buried bit line comprising a plurality of bit line contacts, along The first direction is disposed on a sidewall of the first trench; a first insulator is disposed on a bottom surface of the second trench extending in a second direction in the substrate, wherein the first insulation The pair of sidewalls of the object respectively adjoin the different bit line contacts; and a pair of buried word lines are respectively disposed on the pair of sidewalls of the second trench and respectively cover a portion of the first insulator. 如申請專利範圍第1項所述之動態隨機存取記憶體,其中該埋藏位元線包括:一第一絕緣墊層,覆蓋該第一溝槽下部的該側壁和一底面,且鄰接該些位元線接觸物;以及一第一導電物,填充該第一溝槽下部,且覆蓋該第一絕緣墊層和該些位元線接觸物。 The DRAM of claim 1, wherein the buried bit line comprises: a first insulating pad layer covering the sidewall and a bottom surface of the lower portion of the first trench, and adjoining the a bit line contact; and a first conductive material filling the lower portion of the first trench and covering the first insulating pad layer and the bit line contacts. 如申請專利範圍第2項所述之動態隨機存取記憶體,更包括:一第二絕緣墊層,覆蓋該第一溝槽上部的該側壁和該埋藏位元線;一第二絕緣物,填充該第一溝槽上部,且覆蓋該第二絕緣墊層;以及一第二導電物,沿該第一方向內嵌於該第二絕緣物中,其中該第二導電物的兩端分別連接該對埋藏字元線。 The dynamic random access memory according to claim 2, further comprising: a second insulating pad covering the sidewall of the first trench and the buried bit line; a second insulator, Filling the upper portion of the first trench and covering the second insulating pad layer; and a second conductive material embedded in the second insulator along the first direction, wherein the two ends of the second conductive material are respectively connected The pair of buried word lines. 如申請專利範圍第2項所述之動態隨機存取記憶 體,其中該第一導電物更包括:一第一阻障墊層,形成於該第一溝槽中,且覆蓋該第一絕緣墊層和該些位元線接觸物;以及一第一金屬條狀物,填充該第一溝槽,且覆蓋該第一阻障墊層。 Dynamic random access memory as described in claim 2 The first conductive material further includes: a first barrier pad layer formed in the first trench and covering the first insulating pad layer and the bit line contacts; and a first metal a strip filling the first trench and covering the first barrier layer. 如申請專利範圍第3項所述之動態隨機存取記憶體,其中該對埋藏字元線由一熱氧化層、一第二阻障墊層和一第二金屬條狀物構成,其中該熱氧化層覆蓋該第二溝槽的該對側壁,且該第二阻障墊層介於該熱氧化層和該第二金屬條狀物之間。 The dynamic random access memory according to claim 3, wherein the pair of buried word lines are composed of a thermal oxide layer, a second barrier layer and a second metal strip, wherein the heat An oxide layer covers the pair of sidewalls of the second trench, and the second barrier layer is interposed between the thermal oxide layer and the second metal strip. 如申請專利範圍第5項所述之動態隨機存取記憶體,其中該第二導電物由從該第二溝槽的該對側壁延伸內嵌於該第二絕緣物中的部分該第二阻障墊層和部分該第二金屬條狀物構成,其中該第二導電物的該第二阻障墊層包圍該第二金屬條狀物。 The dynamic random access memory according to claim 5, wherein the second conductive material is extended from the pair of sidewalls of the second trench and embedded in the second insulator. The barrier layer and a portion of the second metal strip are formed, wherein the second barrier layer of the second conductive material surrounds the second metal strip. 如申請專利範圍第1項所述之動態隨機存取記憶體,更包括複數個擴散區,位於該基板中,且分別鄰接該些位元線接觸物的側壁。 The dynamic random access memory according to claim 1, further comprising a plurality of diffusion regions located in the substrate and adjacent to sidewalls of the bit line contacts. 如申請專利範圍第1項所述之動態隨機存取記憶體,其中該第一溝槽和該第二溝槽彼此交叉設置,且該第二溝槽的該底面位於該第一溝槽的一底面的上方。 The dynamic random access memory according to claim 1, wherein the first trench and the second trench are disposed to cross each other, and the bottom surface of the second trench is located in the first trench Above the bottom surface. 如申請專利範圍第1項所述之動態隨機存取記憶體,其中該第一絕緣物的一底面不高於該些位元線接觸物的底面,其中該第一絕緣物的一頂面不低於該些位元線接觸物的頂面。 The dynamic random access memory according to claim 1, wherein a bottom surface of the first insulator is not higher than a bottom surface of the bit line contacts, wherein a top surface of the first insulator is not Below the top surface of the bit line contacts. 一種動態隨機存取記憶體的製造方法,包括下列步驟:提供一基板;於該基板中沿一第一方向形成一第一溝槽;於該第一溝槽中形成一埋藏位元線,其包括一位元線接觸條狀物,沿該第一方向設置於該第一溝槽的一側壁上;於該基板中沿一第二方向形成一第二溝槽,其中形成該第二溝槽的期間係截斷該位元線接觸條狀物,以形成複數個該位元線接觸物,分別從該第二溝槽的一對側壁暴露出來;於該第二溝槽的一底面上形成一第一絕緣物,其中該絕緣物的一對側壁分別鄰接不同的該些位元線接觸物;以及於該第二溝槽的一對側壁上形成一對埋藏字元線,分別覆蓋部分該第一絕緣物。 A method for fabricating a dynamic random access memory, comprising the steps of: providing a substrate; forming a first trench in a first direction in the substrate; forming a buried bit line in the first trench, Included in the first direction, a first trench is disposed on a sidewall of the first trench; a second trench is formed in the substrate along a second direction, wherein the second trench is formed Intersecting the bit line contact strips to form a plurality of the bit line contacts, respectively exposing from a pair of sidewalls of the second trench; forming a surface on a bottom surface of the second trench a first insulator, wherein a pair of sidewalls of the insulator respectively adjoin the different bit line contacts; and a pair of buried word lines are formed on a pair of sidewalls of the second trench, respectively covering a portion of the first An insulator. 如申請專利範圍第10項所述之動態隨機存取記憶體的製造方法,其中該第一溝槽和該第二溝槽彼此交叉設置,且該第二溝槽的該底面位於該第一溝槽的一底面的上方。 The method for manufacturing a dynamic random access memory according to claim 10, wherein the first trench and the second trench are disposed to cross each other, and the bottom surface of the second trench is located in the first trench Above a bottom surface of the slot. 如申請專利範圍第11項所述之動態隨機存取記憶體的製造方法,其中該埋藏位元線包括:一第一絕緣墊層,覆蓋該第一溝槽下部的該側壁和一底面,且鄰接該些位元線接觸物;以及一第一導電物,填充該第一溝槽下部,且覆蓋該第 一絕緣墊層和該些位元線接觸物。 The method of manufacturing a dynamic random access memory according to claim 11, wherein the buried bit line includes: a first insulating pad covering the sidewall and a bottom surface of the lower portion of the first trench, and Adjacent to the bit line contacts; and a first conductive material filling the lower portion of the first trench and covering the first An insulating pad and the bit line contacts. 如申請專利範圍第12項所述之動態隨機存取記憶體的製造方法,形成該埋藏位元線之後更包括:順應性形成一第二絕緣墊層,覆蓋該第一溝槽上部的該側壁,該埋藏位元線和該基板的一頂面;形成一第二絕緣物,覆蓋部分該第二絕緣墊層;於該第二絕緣物上形成一介電質;以及全面性形成一第三絕緣層,填充該第一溝槽且覆蓋該基板,其中該第三絕緣層的一頂面實質上為一平坦表面。 The manufacturing method of the dynamic random access memory according to claim 12, after the forming the buried bit line further comprises: conforming to form a second insulating pad layer covering the sidewall of the upper portion of the first trench a buried bit line and a top surface of the substrate; forming a second insulator covering a portion of the second insulating pad; forming a dielectric on the second insulator; and forming a third comprehensively An insulating layer filling the first trench and covering the substrate, wherein a top surface of the third insulating layer is substantially a flat surface. 如申請專利範圍第13項所述之動態隨機存取記憶體的製造方法,其中形成該第二溝槽更包括:於該第三絕緣層上依序形成一碳硬遮罩層和一氮化物硬遮罩層;利用一埋藏字元線光罩,形成沿該第二方向形成複數個光阻圖案;進行一非等向性蝕刻步驟,移除未被該些光阻圖案覆蓋的該氮化物硬遮罩層、該碳硬遮罩層、該第三絕緣層、該基板、該第二絕緣物、該介電質,直到完全移除未被該些光阻圖案覆蓋的該位元線接觸條狀物為止;以及移除該些光阻圖案、該氮化物硬遮罩層和該碳硬遮罩層。 The method for manufacturing a dynamic random access memory according to claim 13, wherein the forming the second trench further comprises sequentially forming a carbon hard mask layer and a nitride on the third insulating layer. a hard mask layer; forming a plurality of photoresist patterns along the second direction by using a buried word line mask; performing an anisotropic etching step to remove the nitride not covered by the photoresist patterns a hard mask layer, the carbon hard mask layer, the third insulating layer, the substrate, the second insulator, the dielectric until the bit line contact not covered by the photoresist patterns is completely removed And the photoresist pattern, the nitride hard mask layer and the carbon hard mask layer are removed. 如申請專利範圍第14項所述之動態隨機存取記憶體的製造方法,其中形成該第一絕緣物之前更包括: 進行一清潔製程,移除該介電質,以形成由該第二絕緣墊層、該第二絕緣物和該第三絕緣層包圍的一空穴。 The method for manufacturing a dynamic random access memory according to claim 14, wherein the forming the first insulator further comprises: A cleaning process is performed to remove the dielectric to form a cavity surrounded by the second insulating pad layer, the second insulating layer, and the third insulating layer. 如申請專利範圍第15項所述之動態隨機存取記憶體的製造方法,其中形成該對埋藏字元線更包括:於該第二溝槽的該對側壁上分別形成一對熱氧化層;順應性形成一第二阻障墊層,從該第三絕緣層的一頂面延伸覆蓋該第二溝槽的該對側壁、該第一絕緣物和該空穴的側壁;全面性形成一金屬材料,覆蓋該第二阻障墊層並填充該第二溝槽和該空穴;以及移除位於該第三絕緣層的該頂面上及部分位於第二溝槽內的該金屬材料和該第二阻障墊層;順應性形成一硬遮罩層;進行一非等向性蝕刻製程,以截斷位於該第二溝槽中的該金屬材料和該第二阻障墊層。 The method for manufacturing a dynamic random access memory according to claim 15, wherein the forming the pair of buried word lines further comprises: forming a pair of thermal oxide layers on the pair of sidewalls of the second trench; Compliance forming a second barrier layer extending from a top surface of the third insulating layer covering the pair of sidewalls of the second trench, the sidewalls of the first insulator and the hole; forming a metal comprehensively a material covering the second barrier layer and filling the second trench and the hole; and removing the metal material on the top surface of the third insulating layer and partially located in the second trench and a second barrier layer; compliance forms a hard mask layer; an anisotropic etching process is performed to intercept the metal material and the second barrier layer in the second trench. 如申請專利範圍第10項所述之動態隨機存取記憶體的製造方法,其中該第一絕緣物的一底面不高於該些位元線接觸物的底面,其中該第一絕緣物的一頂面不低於該些位元線接觸物的頂面。 The method for manufacturing a dynamic random access memory according to claim 10, wherein a bottom surface of the first insulator is not higher than a bottom surface of the bit line contacts, wherein the first insulator The top surface is not lower than the top surface of the bit line contacts.
TW100120494A 2011-06-13 2011-06-13 Dynamic random access memory and method for fabricating the same TWI484596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100120494A TWI484596B (en) 2011-06-13 2011-06-13 Dynamic random access memory and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120494A TWI484596B (en) 2011-06-13 2011-06-13 Dynamic random access memory and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW201250934A TW201250934A (en) 2012-12-16
TWI484596B true TWI484596B (en) 2015-05-11

Family

ID=48139371

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120494A TWI484596B (en) 2011-06-13 2011-06-13 Dynamic random access memory and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI484596B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110073925A1 (en) * 2009-09-30 2011-03-31 Eun-Shil Park Semiconductor device with buried bit lines interconnected to one-side-contact and fabrication method thereof
TW201119000A (en) * 2009-11-17 2011-06-01 Taiwan Memory Corp Buried bit line process and scheme

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110073925A1 (en) * 2009-09-30 2011-03-31 Eun-Shil Park Semiconductor device with buried bit lines interconnected to one-side-contact and fabrication method thereof
TW201119000A (en) * 2009-11-17 2011-06-01 Taiwan Memory Corp Buried bit line process and scheme

Also Published As

Publication number Publication date
TW201250934A (en) 2012-12-16

Similar Documents

Publication Publication Date Title
US9613967B1 (en) Memory device and method of fabricating the same
US10714482B1 (en) Method of fabricating dynamic random access memory
US8120103B2 (en) Semiconductor device with vertical gate and method for fabricating the same
KR101194890B1 (en) Semiconductor device and method for forming the same
TW201727874A (en) Semiconductor memory device having enlarged cell contact area and method of fabricating the same
TW201909387A (en) Dynamic random access memory and method of manufacturing the same
JP2008288597A (en) Semiconductor element, its manufacturing method, and method of manufacturing dram
JP2011129566A (en) Method of manufacturing semiconductor device
JP5583315B2 (en) Semiconductor device and manufacturing method thereof
US11056175B1 (en) Semiconductor device and manufacturing method thereof
WO2014109310A1 (en) Semiconductor device and method for manufacturing same
TW201448177A (en) Semiconductor device and method of manufacturing therefor
JP2011159739A (en) Semiconductor device and method of manufacturing the same
TWI825677B (en) Memory structure and method of forming thereof
US20220384449A1 (en) Semiconductor memory device and method of fabricating the same
KR102110464B1 (en) Semiconductor device and method for manufacturing the same
US20120286357A1 (en) Sense-amp transistor of semiconductor device and method for manufacturing the same
JP2012015345A (en) Semiconductor device
TWI506766B (en) Semiconductor device and manufacturing method therefor
TWI769797B (en) Dynamic random access memory and method of fabricating the same
JP2011129760A (en) Method of manufacturing semiconductor device, and semiconductor device
TWI484596B (en) Dynamic random access memory and method for fabricating the same
TWI441320B (en) Dynamic random access memory and method for fabricating the same
TWI617007B (en) Memory device
TW201445704A (en) Semiconductor device and method of manufacturing therefor