TWI481200B - Pipelined analog to digital converter and method for correcting voltage offset influence thereof - Google Patents

Pipelined analog to digital converter and method for correcting voltage offset influence thereof Download PDF

Info

Publication number
TWI481200B
TWI481200B TW101121926A TW101121926A TWI481200B TW I481200 B TWI481200 B TW I481200B TW 101121926 A TW101121926 A TW 101121926A TW 101121926 A TW101121926 A TW 101121926A TW I481200 B TWI481200 B TW I481200B
Authority
TW
Taiwan
Prior art keywords
code
class
switch
digital converter
voltage
Prior art date
Application number
TW101121926A
Other languages
Chinese (zh)
Other versions
TW201401787A (en
Inventor
Jinfu Lin
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW101121926A priority Critical patent/TWI481200B/en
Publication of TW201401787A publication Critical patent/TW201401787A/en
Application granted granted Critical
Publication of TWI481200B publication Critical patent/TWI481200B/en

Links

Description

管線架構類比數位轉換器及其偏移電壓影響校正方法Pipeline architecture analog digital converter and its offset voltage influence correction method

本發明是有關於一種類比數位轉換電路,且特別是有關於內含多重數位類比轉換器之類比數位轉換電路。The present invention relates to an analog-to-digital conversion circuit, and more particularly to an analog-to-digital conversion circuit incorporating a multi-digit analog converter.

類比數位轉換器(Analog digital converter;ADC),顧名思義,係將一類比資料信號轉換為一數位代碼,這個轉換的動作就是在對類比信號進行數位化以及量化。類比數位轉換器是混合信號積體電路中的要角。一旦類比信號被轉換至數位領域,那些複雜的信號處理過程就可以較為簡潔的方式來實現,且雜訊的免疫力也會被提升。在一些狀況當中,以深次微米製程來實現類比數位轉換器,將可減少功率消耗。Analog digital converter (ADC), as its name implies, converts a class of data signals into a digit code. The action of this conversion is to digitize and quantize the analog signal. Analog-to-digital converters are the corners of mixed-signal integrated circuits. Once the analog signal is converted to the digital domain, those complex signal processing can be implemented in a more concise manner, and the immunity of the noise is also improved. In some cases, implementing analog-to-digital converters in deep sub-micron processes will reduce power consumption.

類比數位轉換器採用多種功能架構,例如整合、連續漸近(successive approximation)、快閃,以及delta-sigma架構。近來,管線架構的類比數位轉換器已成為類比數位轉換器的主流,可被使用於高速應用當中,例如電荷耦合元件影像處理(CCD imaging)、超音波醫療攝影、數位影像,以及通訊技術,例如覽線數據機(cable modem),以及高速乙太網路。由於具有高準確度、高輸出率,以及低功率損耗的特性,管線架構的類比數位轉換器已廣泛應用於各種電路系統當中。此外,較之其他種類的類比數位轉換器架構,管線架構通常能夠在既定的功率下提供較佳的性能與較小的面積。Analog-to-digital converters employ a variety of functional architectures such as integration, successive approximation, flash, and delta-sigma architecture. Recently, analog-to-digital converters in pipeline architectures have become the mainstream of analog-to-digital converters, and can be used in high-speed applications such as CCD imaging, ultrasonic medical photography, digital imaging, and communication technologies, such as Cable modem, and high-speed Ethernet. Due to its high accuracy, high output rate, and low power loss, the analog digital converter of the pipeline architecture has been widely used in various circuit systems. In addition, pipeline architectures typically provide better performance and smaller area at a given power than other types of analog-to-digital converter architectures.

藉著數位錯誤校正功能,管線架構的類比數位轉換器可容忍較大的比較器電壓偏移量(comparator voltage offset)。然而,由於先進製程當中的供應電壓VDD下降,參考電壓難以達成足夠的操作範圍,導致比較器電壓偏移量的容忍度降低。With the digital error correction function, the pipeline architecture's analog digital converter can tolerate a large comparator voltage offset. However, due to the drop in the supply voltage VDD in the advanced process, it is difficult to achieve a sufficient operating range for the reference voltage, resulting in a decrease in the tolerance of the comparator voltage offset.

第1圖與第2圖係繪示帶有以及省略取樣保持放大器(Sample and hold amplifier)的傳統管線架構類比數位轉換器。傳統的管線架構類比數位轉換器一般會採用階級電路101以及取樣保持放大器(sample and hold amplifier;SHA)113,其中,階級電路101通常內含一類比數位轉換器111與一階級式數位類比轉換器(multiplying digital to analog converter;MDAC)103,此階級式數位類比轉換器103具有取樣保持(sample and hold circuit;S/H)電路105、數位類比轉換器107,以及放大器109。為了提供穩定的同步信號給階級電路101內的階級式數位類比轉換器103以及類比數位轉換器111來進行取樣,因此需要採用取樣保持放大器113。然而,取樣保持放大器113會增加功率消耗以及雜訊干擾,因此,在低功率的管線架構類比數位轉換器當中,通常不會採用取樣保持放大器113,使得第2圖當中省略取樣保持放大器的架構成為主流。Figures 1 and 2 show a conventional pipeline architecture analog-to-digital converter with and without a sample and hold amplifier. Conventional pipeline architecture analog-to-digital converters typically employ a class circuit 101 and a sample and hold amplifier (SHA) 113, wherein the class circuit 101 typically includes an analog-to-digital converter 111 and a one-stage digital analog converter. A multiplying digital to analog converter (MDAC) 103 having a sample and hold circuit (S/H) circuit 105, a digital analog converter 107, and an amplifier 109. In order to provide a stable synchronization signal to the class digital analog converter 103 and the analog digital converter 111 in the class circuit 101 for sampling, it is necessary to employ the sample and hold amplifier 113. However, the sample-and-hold amplifier 113 increases power consumption and noise interference. Therefore, in a low-power pipeline architecture analog-to-digital converter, the sample-and-hold amplifier 113 is usually not used, so that the architecture of the sample-and-hold amplifier is omitted in FIG. Mainstream.

然而,由於取樣的不匹配,取樣保持電路105與數位類比轉換器107之間通常存在著無可避免的時序差異,導致隨著扇入/扇出(fin)增加的與信號相關的偏移量增加。如此一來,可被容忍的比較器偏移量將被減少,類比數位轉換器的輸入信號頻寬也會被限制住。However, due to sampling mismatch, there is often an inevitable timing difference between the sample-and-hold circuit 105 and the digital analog converter 107, resulting in a signal-related offset that increases with fan-in/fan-fin. increase. As a result, the tolerable comparator offset will be reduced and the input signal bandwidth of the analog digital converter will be limited.

第3圖以及第4圖係繪示管線架構類比數位轉換器當中階級電路的輸出電壓波形示意圖。在第3圖以及第4圖當中,點A與點B代表比較器的偏移量超過正常操作範圍的狀況。由於比較器的偏移量會被後續的電路放大,這將會導致錯誤代碼的產生以及其他嚴重錯誤的發生。3 and 4 are schematic diagrams showing the output voltage waveforms of the class circuits among the pipeline architecture analog-to-digital converters. In FIGS. 3 and 4, point A and point B represent conditions in which the offset of the comparator exceeds the normal operating range. Since the offset of the comparator is amplified by subsequent circuits, this will result in the generation of error codes and other serious errors.

因此,本發明之一態樣是在提供一種偏移電壓影響校正方法,可針對比較器偏移電壓所造成的錯誤代碼以及超出範圍的輸出電壓進行校正,避免整體電路的運作發生錯誤。Therefore, an aspect of the present invention provides an offset voltage influence correction method that corrects an error code caused by a comparator offset voltage and an output voltage that is out of range, thereby avoiding an error in the operation of the overall circuit.

依據本發明一實施例,管線架構類比數位轉換器之偏移電壓影響校正方法,係依據一第一輸入電壓,產生一第一階級代碼以及一第一輸出電壓;依據第一輸出電壓產生一第二階級代碼;依據第一輸出電壓產生一確認代碼;參照第一階級代碼以及確認代碼,決定一第一校正代碼;當第一階級代碼相異於第一校正代碼時,以第一校正代碼對第一階級代碼進行校正。According to an embodiment of the present invention, an offset voltage influence correction method of a pipeline architecture analog digital converter generates a first class code and a first output voltage according to a first input voltage; generating a first according to the first output voltage a second class code; generating a confirmation code according to the first output voltage; determining a first correction code by referring to the first class code and the confirmation code; and when the first class code is different from the first correction code, the first correction code is The first class code is corrected.

本發明之另一態樣是在提供一種管線架構類比數位轉換器,可自行校正比較器偏移電壓所造成的錯誤代碼以及超出範圍的輸出電壓,避免整體電路的運作發生錯誤。Another aspect of the present invention provides a pipeline architecture analog-to-digital converter that can correct the error code caused by the comparator offset voltage and the out-of-range output voltage to avoid errors in the operation of the overall circuit.

依據本發明另一實施例,管線架構類比數位轉換器,含有一確認代碼產生器、一代碼校正電路,以及一偏移電壓校正電路。確認代碼產生器依據管線架構類比數位轉換器之一第一階級電路所輸出之一第一輸出電壓,產生一確 認代碼;代碼校正電路接收分別由第一階級電路、一第二階級電路,以及確認代碼產生器所產生之一第一階級代碼、一第二階級代碼,以及確認代碼,代碼校正電路亦參照確認代碼、第一階級代碼,以及第二階級代碼來校正錯誤的第一階級代碼以及第二階級代碼;偏移電壓校正電路依據第二階級代碼與確認代碼,調整第二階級電路之一輸出電壓的大小。In accordance with another embodiment of the present invention, a pipeline architecture analog to digital converter includes a acknowledgment code generator, a code correction circuit, and an offset voltage correction circuit. Confirming that the code generator generates one of the first output voltages according to one of the first-stage circuits of the pipeline architecture analog digital converter a code correction circuit receives a first class code, a second class code, and a confirmation code generated by the first class circuit, a second class circuit, and the confirmation code generator, respectively, and the code correction circuit also refers to the confirmation a code, a first class code, and a second class code to correct the wrong first class code and the second class code; the offset voltage correction circuit adjusts an output voltage of one of the second class circuits according to the second class code and the confirmation code size.

以上實施例之偏移電壓影響校正方法以及管線架構類比數位轉換器,可針對比較器偏移電壓所造成的錯誤代碼以及超出範圍的輸出電壓進行校正,避免整體電路的運作發生錯誤。The offset voltage influence correction method and the pipeline architecture analog digital converter of the above embodiment can correct the error code caused by the comparator offset voltage and the out-of-range output voltage to avoid an error in the operation of the overall circuit.

以下實施例之偏移電壓影響校正方法以及管線架構類比數位轉換器,可針對比較器偏移電壓所造成的錯誤代碼以及超出範圍的輸出電壓進行校正,避免整體電路的運作發生錯誤。The offset voltage influence correction method and the pipeline architecture analog digital converter of the following embodiments can correct the error code caused by the comparator offset voltage and the out-of-range output voltage to avoid an error in the operation of the overall circuit.

請參照第5圖,其係繪示本發明一實施方式的管線架構類比數位轉換器之方塊圖。管線架構類比數位轉換器500含有數個階級電路,也就是第一階級電路503、第二階級電路505、第三階級電路507,一直到第N階級電路。管線架構類比數位轉換器500進一步含有確認代碼產生器511、偏移電壓校正電路513,以及代碼校正電路501,其中,代碼校正電路501具有校正碼產生器521以及內建的解碼邏輯電路519。Please refer to FIG. 5, which is a block diagram of a pipeline architecture analog-to-digital converter according to an embodiment of the present invention. The pipeline architecture analog to digital converter 500 contains a number of class circuits, namely a first stage circuit 503, a second stage circuit 505, and a third stage circuit 507, up to the Nth stage circuit. The pipeline architecture analog to digital converter 500 further includes a confirmation code generator 511, an offset voltage correction circuit 513, and a code correction circuit 501 having a correction code generator 521 and built-in decoding logic circuit 519.

第一階級電路503接收輸入電壓Vin,並依據輸入電壓Vin產生第一階級代碼C11、C12以及第一輸出電壓Vout1;第二階級電路505依據第一輸出電壓Vout1產生第二階級代碼C22、C23。確認代碼產生器511則依據第一輸出電壓Vout1產生確認代碼C21、C24。The first stage circuit 503 receives the input voltage Vin and generates first class codes C11, C12 and a first output voltage Vout1 in accordance with the input voltage Vin; the second stage circuit 505 generates second class codes C22, C23 in accordance with the first output voltage Vout1. The confirmation code generator 511 generates the confirmation codes C21, C24 in accordance with the first output voltage Vout1.

代碼校正電路501接收分別由管線架構類比數位轉換器之第一階級電路503、第二階級電路505,以及確認代碼產生器511所產生之第一階級代碼C11、C12、第二階級代碼C22、C23,以及確認代碼C21、C24。代碼校正電路501參照確認代碼C21、C24以及第一階級代碼C11、C12,來校正錯誤的第一階級代碼C11、C12以及第二階級代碼C22、C23。進一步來說,代碼校正電路501的校正代碼產生電路521會參考第一階級代碼C11、C12、第二階級代碼C22、C23,以及確認代碼C21、C24,來產生校正代碼,然後將校正代碼傳遞給代碼校正電路501的解碼邏輯電路519。最後,代碼校正電路501會據以輸出一數位代碼。The code correction circuit 501 receives the first class circuit 503, the second class circuit 505, and the confirmation code generator 511 generated by the pipeline architecture analog-to-digital converter, respectively, the first class codes C11, C12, the second class codes C22, C23. , and confirm the codes C21, C24. The code correction circuit 501 corrects the erroneous first class codes C11 and C12 and the second class codes C22 and C23 with reference to the confirmation codes C21 and C24 and the first class codes C11 and C12. Further, the correction code generation circuit 521 of the code correction circuit 501 refers to the first class codes C11, C12, the second class codes C22, C23, and the confirmation codes C21, C24 to generate a correction code, and then passes the correction code to The decoding logic circuit 519 of the code correction circuit 501. Finally, the code correction circuit 501 outputs a digital code.

此外,偏移電壓校正電路513依據第二階級代碼C22、C23與確認代碼C21、C24,調整第二階級電路505之輸出電壓Vout2的大小。Further, the offset voltage correction circuit 513 adjusts the magnitude of the output voltage Vout2 of the second-stage circuit 505 in accordance with the second class codes C22, C23 and the confirmation codes C21, C24.

請參照第6圖,其係繪示本發明一實施方式的確認代碼產生器之電路示意圖。如同第6圖所繪示的,第一比較器601以及第二比較器607係設置於確認碼產生器當中,第三比較器603以及第四比較器605則設置於第二階級電路當中。此外,第五比較器609以及第六比較器611則設置於第一階級電路內。Please refer to FIG. 6, which is a circuit diagram of a confirmation code generator according to an embodiment of the present invention. As shown in FIG. 6, the first comparator 601 and the second comparator 607 are disposed in the confirmation code generator, and the third comparator 603 and the fourth comparator 605 are disposed in the second class circuit. Further, the fifth comparator 609 and the sixth comparator 611 are disposed in the first stage circuit.

第一比較器601具有第一輸入端以及第二輸入端,第一輸入端連接輸入埠來接收輸入電壓Vin,第二輸入端則連接至正參考電壓輸入端來接收正參考電壓Vref。第二比較器607具有第三輸入端以及第四輸入端,第三輸入端連接至輸入埠來接收輸入電壓Vin,第四輸入端則連接至負參考電壓端來接收負參考電壓-Vref。The first comparator 601 has a first input terminal connected to the input port to receive the input voltage Vin, and a second input terminal connected to the positive reference voltage input terminal to receive the positive reference voltage Vref. The second comparator 607 has a third input connected to the input port to receive the input voltage Vin, and a fourth input connected to the negative reference voltage terminal to receive the negative reference voltage -Vref.

第一比較器601與第二比較器607比較輸入電壓Vin、正參考電壓Vref以及負參考電壓-Vref,然後據以輸出確認碼C21、C24。The first comparator 601 compares the input voltage Vin, the positive reference voltage Vref, and the negative reference voltage -Vref with the second comparator 607, and then outputs confirmation codes C21, C24.

請參照第7圖,其係繪示本發明一實施方式第一階級電路之電路圖。第一階級電路為階級式數位類比轉換器(MDAC)之一部分,此第一階級電路主要內含運算放大器701、第一開關sw1、第一開關sw2、第三開關sw3、第四開關sw4、第五開關sw5、第一電容cs1與第一電容cs2。運算放大器701具有正輸入端+、負輸入端-,以及一輸出端,其中正輸入端+係連接至一接地端。Please refer to FIG. 7, which is a circuit diagram of a first stage circuit according to an embodiment of the present invention. The first-stage circuit is a part of a class-type digital analog converter (MDAC). The first-stage circuit mainly includes an operational amplifier 701, a first switch sw1, a first switch sw2, a third switch sw3, and a fourth switch sw4. The five switch sw5, the first capacitor cs1 and the first capacitor cs2. The operational amplifier 701 has a positive input terminal +, a negative input terminal -, and an output terminal, wherein the positive input terminal + is connected to a ground terminal.

第一開關sw1連接於負輸入端-與接地端之間;第二開關sw2以及第三開關sw3具有數個第一端點,這些第一端點連接至電壓輸入端來接收輸入電壓Vin。第一電容cs1以及第二電容cs2之一端點係連接至運算放大器701之負輸入端-,第一電容cs1以及第二電容cs2之另一端點則連接至第二開關sw2與第三開關sw3之第二端點;第四開關sw4連接至第二開關sw2之第二端以及運算放大器701之輸出端。第五開關sw5之一端連接至第三開關sw3之第二端,第五開關sw5之另一端則連接至參考電壓輸入端Vdac。The first switch sw1 is connected between the negative input terminal and the ground terminal; the second switch sw2 and the third switch sw3 have a plurality of first terminals, and the first terminals are connected to the voltage input terminal to receive the input voltage Vin. One end of the first capacitor cs1 and the second capacitor cs2 is connected to the negative input terminal of the operational amplifier 701, and the other end of the first capacitor cs1 and the second capacitor cs2 is connected to the second switch sw2 and the third switch sw3. The second terminal; the fourth switch sw4 is coupled to the second terminal of the second switch sw2 and the output of the operational amplifier 701. One end of the fifth switch sw5 is connected to the second end of the third switch sw3, and the other end of the fifth switch sw5 is connected to the reference voltage input terminal Vdac.

第二開關sw2與第三開關sw3係由第一時脈信號ck1所控制,第四開關sw4與第五開關sw5由第三時脈信號ck3所控制,第一開關sw1則由第二時脈信號ck2所控制。第一時脈信號ck1與第二時脈信號ck2之上升緣係對齊一致,第三時脈信號ck3之一下降緣則對齊第一時脈信號ck1以及第二時脈信號ck2之上升緣。進一步來說,第一時脈信號ck1之高準位週期較第二時脈信號ck2之高準位週期為長。The second switch sw2 and the third switch sw3 are controlled by the first clock signal ck1, the fourth switch sw4 and the fifth switch sw5 are controlled by the third clock signal ck3, and the first switch sw1 is controlled by the second clock signal Controlled by ck2. The rising edge of the first clock signal ck1 and the second clock signal ck2 are aligned, and the falling edge of the third clock signal ck3 is aligned with the rising edge of the first clock signal ck1 and the second clock signal ck2. Further, the high-level period of the first clock signal ck1 is longer than the high-level period of the second clock signal ck2.

藉由這樣的架構以及時脈信號時序,當第一階級代碼等於2’b00或2’b11時,自第一階級電路而來的輸出電壓Vout1會直接加減參考電壓。With such an architecture and clock signal timing, when the first class code is equal to 2'b00 or 2'b11, the output voltage Vout1 from the first-stage circuit directly adds or subtracts the reference voltage.

請參照第8圖,其係繪示本發明一實施方式第二階級電路之電路圖。第二階級電路主要內含運算放大器801、第一開關sw1、第一開關sw2、第三開關sw3、第四開關sw4、第五開關sw5、第六開關sw6、第七開關sw7、第一電容cs1、第一電容cs2以及第三電容cs3。運算放大器801具有正輸入端+、負輸入端-,以及一輸出端,其中正輸入端+係連接至一接地端,第三電容cs3則連接於負輸入端-與運算放大器801的輸出端之間。Please refer to FIG. 8, which is a circuit diagram of a second stage circuit according to an embodiment of the present invention. The second-stage circuit mainly includes an operational amplifier 801, a first switch sw1, a first switch sw2, a third switch sw3, a fourth switch sw4, a fifth switch sw5, a sixth switch sw6, a seventh switch sw7, and a first capacitor cs1. The first capacitor cs2 and the third capacitor cs3. The operational amplifier 801 has a positive input terminal +, a negative input terminal -, and an output terminal, wherein the positive input terminal + is connected to a ground terminal, and the third capacitor cs3 is connected to the negative input terminal - and the output terminal of the operational amplifier 801 between.

第一開關sw1連接於負輸入端-與接地端之間;第二開關sw2以及第三開關sw3具有數個第一端點,這些第一端點連接至電壓輸入端來接收輸入電壓Vout1。第一電容cs1以及第二電容cs2之一端點係連接至運算放大器801之負輸入端-,第一電容cs1以及第二電容cs2之另一端點則連接至第二開關sw2與第三開關sw3之第二端點;第四開關 sw4連接至第二開關sw2之第二端以及第一參考電壓端Vdac1。第五開關sw5之一端連接至第三開關sw3之第二端,第五開關sw5之另一端則連接至第二參考電壓輸入端Vdac2。The first switch sw1 is connected between the negative input terminal and the ground terminal; the second switch sw2 and the third switch sw3 have a plurality of first terminals, and the first terminals are connected to the voltage input terminal to receive the input voltage Vout1. One end of the first capacitor cs1 and the second capacitor cs2 is connected to the negative input terminal of the operational amplifier 801, and the other end of the first capacitor cs1 and the second capacitor cs2 is connected to the second switch sw2 and the third switch sw3. Second end point; fourth switch Sw4 is connected to the second end of the second switch sw2 and the first reference voltage terminal Vdac1. One end of the fifth switch sw5 is connected to the second end of the third switch sw3, and the other end of the fifth switch sw5 is connected to the second reference voltage input terminal Vdac2.

第二開關sw2與第三開關sw3係由第一時脈信號ck1所控制,第四開關sw4、第五開關sw5,以及第七開關sw7則由第三時脈信號ck3所控制,第一開關sw1與第六開關則由第一時脈信號ck1所控制。第一時脈信號ck1與第二時脈信號ck2之上升緣係對齊一致,第三時脈信號ck3之下降緣則對齊第一時脈信號ck1以及第二時脈信號ck2之上升緣。進一步來說,第一時脈信號ck1之高準位週期較第二時脈信號ck2之高準位週期為長。The second switch sw2 and the third switch sw3 are controlled by the first clock signal ck1, and the fourth switch sw4, the fifth switch sw5, and the seventh switch sw7 are controlled by the third clock signal ck3, the first switch sw1 The sixth switch is controlled by the first clock signal ck1. The rising edge of the first clock signal ck1 and the second clock signal ck2 are aligned, and the falling edge of the third clock signal ck3 is aligned with the rising edge of the first clock signal ck1 and the second clock signal ck2. Further, the high-level period of the first clock signal ck1 is longer than the high-level period of the second clock signal ck2.

藉由這樣的架構以及時脈信號時序,當第二階級代碼與確認代碼的組合(C21、C22、C23、C24)等於4’b0000、4’b1000、4’b1110,或4’b1111時,自第二階級電路而來的輸出電壓Vout2會直接加減參考電壓。With such an architecture and clock signal timing, when the combination of the second class code and the confirmation code (C21, C22, C23, C24) is equal to 4'b0000, 4'b1000, 4'b1110, or 4'b1111, The output voltage Vout2 from the second-stage circuit directly adds or subtracts the reference voltage.

請參照第9圖,其係繪示本發明一實施方式管線架構類比數位轉換器偏移電壓影響校正方法之流程圖。該方法首先依據第一輸入電壓,產生第一階級代碼以及第一輸出電壓(步驟901),並依據第一輸出電壓產生第二階級代碼(步驟903)。接著,依據第一輸出電壓產生確認代碼(步驟905),並參照第一階級代碼以及確認代碼,決定第一校正代碼(步驟907)。Please refer to FIG. 9 , which is a flowchart of a method for correcting the offset voltage of a pipeline architecture analog-to-digital converter according to an embodiment of the present invention. The method first generates a first class code and a first output voltage based on the first input voltage (step 901) and generates a second class code based on the first output voltage (step 903). Next, a confirmation code is generated based on the first output voltage (step 905), and the first correction code is determined with reference to the first class code and the confirmation code (step 907).

接著,會確認第一階級代碼是否相異於第一校正代碼(步驟909),當第一階級代碼相異於第一校正代碼時,以第 一校正代碼對第一階級代碼進行校正(步驟911),並以正參考電壓(+Vref)或是負參考電壓(-Vref)來調整第二階級電路的第二輸出電壓。舉例來說,如果第二輸出電壓太高,第二輸出電壓就會減去參考電壓,來降低第二輸出電壓。Next, it is confirmed whether the first class code is different from the first correction code (step 909), and when the first class code is different from the first correction code, A correction code corrects the first class code (step 911) and adjusts the second output voltage of the second stage circuit with a positive reference voltage (+Vref) or a negative reference voltage (-Vref). For example, if the second output voltage is too high, the second output voltage is subtracted from the reference voltage to lower the second output voltage.

具體來說,確認代碼的產生,是對第一輸出電壓與正參考電壓(+Vref)以及負參考電壓(-Vref)進行比較,如同第10圖的表格以及第11圖的波形所表示的,當第一輸出電壓低於-Vref而超出操作範圍時(也就是第11圖當中的點A),如果階級代碼與輸出電壓沒有被即時地校正,將會導致錯誤代碼(missing code)的發生。為了避免錯誤代碼的發生,會產生等於2’b00的確認代碼(c21,c24)以及等於2’b00或是2’b01的第一校正代碼(MSB1 LSB1),來取代錯誤的第一階級代碼。Specifically, the generation of the confirmation code is to compare the first output voltage with the positive reference voltage (+Vref) and the negative reference voltage (-Vref), as indicated by the table of FIG. 10 and the waveform of FIG. When the first output voltage is below -Vref and is out of the operating range (ie, point A in Fig. 11), if the class code and the output voltage are not corrected instantaneously, an error code will occur. In order to avoid the occurrence of an error code, an acknowledgment code (c21, c24) equal to 2'b00 and a first correction code (MSB1 LSB1) equal to 2'b00 or 2'b01 are generated instead of the erroneous first class code.

在其他實施例當中,當第一輸出電壓超過+Vref而超出範圍時(第11圖當中的點B),會產生等於2’b11的確認碼(c21 c24)與等於2’b01或是2’b10的第一校正碼(MSB1 LSB1)。In other embodiments, when the first output voltage exceeds +Vref and is out of range (point B in FIG. 11), a confirmation code equal to 2'b11 (c21 c24) and equal to 2'b01 or 2' is generated. The first correction code of b10 (MSB1 LSB1).

第12圖係繪示本發明一實施方式中代表管線架構類比數位轉換器正常與錯誤狀態的真值表,第13圖則繪示本發明一實施方式中階級電路輸出電壓的波形示意圖。在第12圖與第13圖所繪示的實施例當中,進一步考慮輸入電壓在本質上就高於正參考電壓或是低於負參考電壓的狀況,在這些狀況當中,電壓會超出範圍並非起因於比較器的偏移電壓。在第13圖當中,點A、D、E、H之所以會超出範圍,是因為原始的輸入電壓本身就很高,這些點的電 壓並不需要特別修正。Figure 12 is a diagram showing the truth value table representing the normal and error states of the pipeline architecture analog-to-digital converter in an embodiment of the present invention, and Figure 13 is a waveform diagram showing the output voltage of the class circuit in an embodiment of the present invention. In the embodiments illustrated in Figures 12 and 13, further consideration is given to the fact that the input voltage is substantially higher than the positive reference voltage or lower than the negative reference voltage. In these cases, the voltage is out of range and is not the cause. The offset voltage of the comparator. In Figure 13, the reason why points A, D, E, and H are out of range is because the original input voltage itself is very high. The pressure does not require special correction.

因此,當第一階級碼、確認碼,以及第二階級碼的組合等於6’b001111、6’b100000、6’b101111,以及6’b110000時,等於2’b01的第一校正代碼(MSB2 LSB2)會被用來修正第一階級代碼(c11 c12)。Therefore, when the combination of the first class code, the confirmation code, and the second class code is equal to 6'b001111, 6'b100000, 6'b101111, and 6'b110000, the first correction code (MSB2 LSB2) equal to 2'b01. Will be used to correct the first class code (c11 c12).

另一方面,倘若在步驟909當中發現第一階級代碼與第一校正代碼並無二致,那麼第一階級代碼就會維持原狀(步驟913)。進一步來說,還可以參考第一階級代碼、第二階級代碼以及校正代碼來決定第二校正代碼,當第二階級代碼相異於第二校正代碼時,以第二校正代碼來校正第二校正代碼。On the other hand, if it is found in step 909 that the first class code is identical to the first correction code, then the first class code will remain as it is (step 913). Further, the second correction code may also be determined with reference to the first class code, the second class code, and the correction code. When the second class code is different from the second correction code, the second correction is corrected with the second correction code. Code.

根據以上實施例,由於比較器偏移電壓所導致的錯誤階級代碼與超出範圍的輸出電壓可被預先修正,因此可防止錯誤代碼的發生,同時避免輸出電壓超出範圍,降低管線架構的類比數位轉換器操作發生錯誤的機率。According to the above embodiment, the error class code and the out-of-range output voltage due to the comparator offset voltage can be pre-corrected, thereby preventing the occurrence of an error code while avoiding the output voltage out of range and reducing the analog digital conversion of the pipeline architecture. The probability of an error in the operation of the device.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何在本發明所屬技術領域當中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in the above embodiments, and is not intended to limit the present invention. Any one of ordinary skill in the art to which the present invention pertains can be variously modified without departing from the spirit and scope of the invention. The scope of protection of the present invention is therefore defined by the scope of the appended claims.

101‧‧‧階級電路101‧‧‧ class circuit

103‧‧‧階級式數位類比轉換器103‧‧‧Classical digital analog converter

105‧‧‧取樣保持電路105‧‧‧Sampling and holding circuit

107‧‧‧數位類比轉換器107‧‧‧Digital Analog Converter

109‧‧‧放大器109‧‧‧Amplifier

111‧‧‧類比數位轉換器111‧‧‧ Analog Digital Converter

113‧‧‧取樣保持放大器113‧‧‧Sampling and Holding Amplifier

500‧‧‧管線架構類比數位轉 換器500‧‧‧ Pipeline architecture analog to digital conversion Converter

501‧‧‧代碼校正電路501‧‧‧ Code Correction Circuit

503‧‧‧第一階級電路503‧‧‧First class circuit

505‧‧‧第二階級電路505‧‧‧second class circuit

507‧‧‧第三階級電路507‧‧‧ third class circuit

509‧‧‧第N階級電路509‧‧‧Nth class circuit

511‧‧‧確認代碼產生器511‧‧‧Confirm code generator

513‧‧‧偏移電壓校正電路513‧‧‧Offset voltage correction circuit

519‧‧‧解碼邏輯電路519‧‧‧Decoding logic circuit

521‧‧‧校正碼產生器521‧‧‧Calibration Generator

601‧‧‧第一比較器601‧‧‧First comparator

603‧‧‧第三比較器603‧‧‧ third comparator

605‧‧‧第四比較器605‧‧‧fourth comparator

607‧‧‧第二比較器607‧‧‧Second comparator

609‧‧‧第五比較器609‧‧‧ fifth comparator

611‧‧‧第六比較器611‧‧‧ sixth comparator

701‧‧‧運算放大器701‧‧‧Operational Amplifier

801‧‧‧運算放大器801‧‧‧Operational Amplifier

901~913‧‧‧步驟901~913‧‧‧Steps

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖與第2圖係繪示帶有以及省略取樣保持放大器 的傳統管線架構類比數位轉換器。The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The traditional pipeline architecture is analogous to digital converters.

第3圖以及第4圖係繪示管線架構類比數位轉換器當中階級電路的輸出電壓波形示意圖。3 and 4 are schematic diagrams showing the output voltage waveforms of the class circuits among the pipeline architecture analog-to-digital converters.

第5圖係繪示本發明一實施方式的管線架構類比數位轉換器之方塊圖。FIG. 5 is a block diagram showing a pipeline architecture analog-to-digital converter according to an embodiment of the present invention.

第6圖係繪示本發明一實施方式的確認代碼產生器之電路示意圖。Figure 6 is a circuit diagram showing a confirmation code generator according to an embodiment of the present invention.

第7圖係繪示本發明一實施方式第一階級電路之電路圖。Figure 7 is a circuit diagram showing a first-stage circuit of an embodiment of the present invention.

第8圖係繪示本發明一實施方式第二階級電路之電路圖。Figure 8 is a circuit diagram showing a second-stage circuit of an embodiment of the present invention.

第9圖係繪示本發明一實施方式管線架構類比數位轉換器偏移電壓影響校正方法之流程圖。FIG. 9 is a flow chart showing a method for correcting the offset voltage of a pipeline architecture analog-to-digital converter according to an embodiment of the present invention.

第10圖係繪示本發明一實施方式管線架構類比數位轉換器的代碼真值表。FIG. 10 is a diagram showing a code truth table of a pipeline architecture analog-to-digital converter according to an embodiment of the present invention.

第11圖係繪示本發明一實施方式管線架構類比數位轉換器輸入信號與輸出信號的轉換特性曲線。11 is a graph showing conversion characteristics of an input signal and an output signal of a pipeline architecture analog-to-digital converter according to an embodiment of the present invention.

第12圖係繪示本發明一實施方式中代表管線架構類比數位轉換器代碼的真值表。Figure 12 is a diagram showing a truth table representing the pipeline architecture analog-to-digital converter code in an embodiment of the present invention.

第13圖則繪示本發明一實施方式中階級電路輸出電壓的波形示意圖。Fig. 13 is a view showing the waveform of the output voltage of the class circuit in an embodiment of the present invention.

500‧‧‧管線架構類比數位轉換器500‧‧‧Pipeline Analog Analog Digital Converter

501‧‧‧代碼校正電路501‧‧‧ Code Correction Circuit

503‧‧‧第一階級電路503‧‧‧First class circuit

505‧‧‧第二階級電路505‧‧‧second class circuit

507‧‧‧第三階級電路507‧‧‧ third class circuit

509‧‧‧第N階級電路509‧‧‧Nth class circuit

511‧‧‧確認代碼產生器511‧‧‧Confirm code generator

513‧‧‧偏移電壓校正電路513‧‧‧Offset voltage correction circuit

519‧‧‧解碼邏輯電路519‧‧‧Decoding logic circuit

521‧‧‧校正碼產生器521‧‧‧Calibration Generator

Claims (14)

一種管線架構類比數位轉換器之偏移電壓影響校正方法,該方法包含:依據一第一輸入電壓,產生一第一階級代碼以及一第一輸出電壓;依據該第一輸出電壓產生一第二階級代碼;依據該第一輸出電壓產生一確認代碼;參照該第一階級代碼以及該確認代碼,決定一第一校正代碼;以及當該第一階級代碼相異於該第一校正代碼時,以該第一校正代碼對該第一階級代碼進行校正。An offset voltage influence correction method for a pipeline architecture analog to digital converter, the method comprising: generating a first class code and a first output voltage according to a first input voltage; generating a second class according to the first output voltage a code; generating a confirmation code according to the first output voltage; determining a first correction code with reference to the first class code and the confirmation code; and when the first class code is different from the first correction code, The first correction code corrects the first class code. 如請求項1所述之管線架構類比數位轉換器之偏移電壓影響校正方法,更包含:當該第一階級代碼相異於該第一校正代碼時,以一正參考電壓或一負參考電壓,調整一第二階級電路之一第二輸出電壓。The offset voltage affecting correction method of the pipeline architecture analog digital converter according to claim 1, further comprising: when the first class code is different from the first calibration code, a positive reference voltage or a negative reference voltage And adjusting a second output voltage of one of the second class circuits. 如請求項1所述之管線架構類比數位轉換器之偏移電壓影響校正方法,其中係對該第一輸出電壓與一第一正參考電壓以及一第一負參考電壓進行比較,來產生該確認代碼。The offset voltage affecting correction method of the pipeline architecture analog digital converter according to claim 1, wherein the first output voltage is compared with a first positive reference voltage and a first negative reference voltage to generate the acknowledgement Code. 如請求項3所述之管線架構類比數位轉換器之偏 移電壓影響校正方法,其中係參照一查詢表所儲存之該第一階級代碼以及該確認代碼,以決定該第一校正碼。The pipeline architecture analogy of the digital converter as described in claim 3 The shift voltage influence correction method refers to the first class code stored in a lookup table and the confirmation code to determine the first correction code. 如請求項1所述之管線架構類比數位轉換器之偏移電壓影響校正方法,其中當該第一階級代碼以及該確認代碼之組合對應於4’b1000時,以等於2’b00之該第一校正碼校正該第一階級碼。The offset voltage influence correction method of the pipeline architecture analog digital converter according to claim 1, wherein when the combination of the first class code and the confirmation code corresponds to 4'b1000, the first is equal to 2'b00 The correction code corrects the first class code. 如請求項1所述之管線架構類比數位轉換器之偏移電壓影響校正方法,其中當該第一階級代碼以及該確認代碼之組合對應於4’b0011時,以等於2’b01之該第一校正碼校正該第一階級碼。The offset voltage influence correction method of the pipeline architecture analog digital converter according to claim 1, wherein when the combination of the first class code and the confirmation code corresponds to 4'b0011, the first is equal to 2'b01 The correction code corrects the first class code. 如請求項1所述之管線架構類比數位轉換器之偏移電壓影響校正方法,其中當該第一階級代碼以及該確認代碼之組合對應於4’b1011時,以等於2’b10之該第一校正碼校正該第一階級碼。The offset voltage influence correction method of the pipeline architecture analog digital converter according to claim 1, wherein when the combination of the first class code and the confirmation code corresponds to 4'b1011, the first is equal to 2'b10 The correction code corrects the first class code. 如請求項1所述之管線架構類比數位轉換器之偏移電壓影響校正方法,更包含:參照該第一階級代碼、該第二階級代碼,以及該確認代碼,決定一第二校正代碼;以及當該第二階級代碼相異於該第二校正碼時,以該第二校正代碼校正該第二階級代碼。The offset voltage influence correction method of the pipeline architecture analog digital converter according to claim 1, further comprising: determining a second correction code by referring to the first class code, the second class code, and the confirmation code; When the second class code is different from the second correction code, the second class code is corrected with the second correction code. 一種管線架構類比數位轉換器,包含:一確認代碼產生器,以依據該管線架構類比數位轉換器之一第一階級電路所輸出之一第一輸出電壓,產生一確認代碼;一代碼校正電路,以接收分別由該第一階級電路、一第二階級電路,以及該確認代碼產生器所產生之一第一階級代碼、一第二階級代碼,以及該確認代碼,該代碼校正電路亦參照該確認代碼、該第一階級代碼,以及該第二階級代碼來校正錯誤的該第一階級代碼以及該第二階級代碼;以及一偏移電壓校正電路,以依據該第二階級代碼與該確認代碼,調整該第二階級電路之一輸出電壓的大小。A pipeline architecture analog-to-digital converter includes: a confirmation code generator for generating a confirmation code according to a first output voltage output by one of the first-stage circuits of the pipeline architecture analog digital converter; a code correction circuit, Receiving, by the first class circuit, a second class circuit, and the confirmation code generator, a first class code, a second class code, and the confirmation code, the code correction circuit also refers to the confirmation a code, the first class code, and the second class code to correct the wrong first class code and the second class code; and an offset voltage correction circuit to correlate the second class code with the confirmation code, Adjusting the magnitude of the output voltage of one of the second-stage circuits. 如請求項9所述之管線架構類比數位轉換器,其中該確認代碼產生器包含:一第一比較器,具有一第一輸入端以及一第二輸入端,該第一輸入端係連接一輸入埠來接收一輸入電壓,該第二輸入端則連接至一正參考電壓輸入端來接收一正參考電壓;以及一第二比較器,具有一第三輸入端以及一第四輸入端,該第三輸入端連接至該輸入埠來接收該輸入電壓,該第四輸入端則連接至一負參考電壓端來接收一負參考電壓。The pipeline architecture analog digital converter according to claim 9, wherein the confirmation code generator comprises: a first comparator having a first input end and a second input end, wherein the first input end is connected to an input Receiving an input voltage, the second input is connected to a positive reference voltage input to receive a positive reference voltage, and a second comparator having a third input and a fourth input, the first The three input terminal is connected to the input port to receive the input voltage, and the fourth input terminal is connected to a negative reference voltage terminal to receive a negative reference voltage. 如請求項9所述之管線架構類比數位轉換器,其中該第一階級電路包含:一運算放大器,具有一正輸入端、一負輸入端,以及一輸出端,其中該正輸入端係連接至一接地端;一第一開關,連接於該負輸入端與該接地端之間;一第二開關以及一第三開關,具有複數個第一端點,該些第一端點連接至一電壓輸入端來接收一輸入電壓;一第一電容以及一第二電容,該第一電容以及該第二電容之一端點係連接至該運算放大器之該負輸入端,該第一電容以及該第二電容之另一端點則連接至該第二開關與該第三開關之複數個第二端點;一第四開關,連接至該第二開關之該第二端以及該運算放大器之該輸出端;以及一第五開關,該第五開關之一端連接至該第三開關之該第二端,該第五開關之另一端則連接至一參考電壓輸入端。The pipeline architecture analog digital converter of claim 9, wherein the first stage circuit comprises: an operational amplifier having a positive input terminal, a negative input terminal, and an output terminal, wherein the positive input terminal is coupled to a grounding terminal; a first switch connected between the negative input terminal and the grounding terminal; a second switch and a third switch having a plurality of first terminals, the first terminals being connected to a voltage The input terminal receives an input voltage; a first capacitor and a second capacitor, wherein the first capacitor and one end of the second capacitor are connected to the negative input terminal of the operational amplifier, the first capacitor and the second capacitor The other end of the capacitor is connected to the second switch and the second end of the third switch; a fourth switch is connected to the second end of the second switch and the output of the operational amplifier; And a fifth switch, one end of the fifth switch is connected to the second end of the third switch, and the other end of the fifth switch is connected to a reference voltage input end. 如請求項11所述之管線架構類比數位轉換器,其中該第二開關與該第三開關係由一第一時脈信號所控制,該第四開關與該第五開關由一第三時脈信號所控制,該第一開關則由一第二時脈信號所控制。The pipeline architecture analog digital converter according to claim 11, wherein the second switch and the third open relationship are controlled by a first clock signal, and the fourth switch and the fifth switch are controlled by a third clock. Controlled by the signal, the first switch is controlled by a second clock signal. 如請求項12所述之管線架構類比數位轉換器,其中該第一時脈信號與該第二時脈信號之上升緣係對齊一致,該第三時脈信號之一下降緣則對齊該第一時脈信號以 及該第二時脈信號之該些上升緣。The pipeline architecture analog digital converter according to claim 12, wherein the first clock signal and the rising edge of the second clock signal are aligned, and one of the third clock signals is aligned with the first edge. Clock signal And the rising edges of the second clock signal. 如請求項13所述之管線架構類比數位轉換器,其中該第一時脈信號之高準位週期較該第三時脈信號之高準位週期為長。The pipeline architecture analog digital converter according to claim 13, wherein the high level period of the first clock signal is longer than the high level period of the third clock signal.
TW101121926A 2012-06-19 2012-06-19 Pipelined analog to digital converter and method for correcting voltage offset influence thereof TWI481200B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101121926A TWI481200B (en) 2012-06-19 2012-06-19 Pipelined analog to digital converter and method for correcting voltage offset influence thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101121926A TWI481200B (en) 2012-06-19 2012-06-19 Pipelined analog to digital converter and method for correcting voltage offset influence thereof

Publications (2)

Publication Number Publication Date
TW201401787A TW201401787A (en) 2014-01-01
TWI481200B true TWI481200B (en) 2015-04-11

Family

ID=50345236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101121926A TWI481200B (en) 2012-06-19 2012-06-19 Pipelined analog to digital converter and method for correcting voltage offset influence thereof

Country Status (1)

Country Link
TW (1) TWI481200B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748726B (en) * 2020-11-03 2021-12-01 瑞昱半導體股份有限公司 Pipeline analog to digital converter and timing adjustment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606042B2 (en) * 2001-05-23 2003-08-12 Texas Instruments Incorporated True background calibration of pipelined analog digital converters
US6961969B2 (en) * 2003-07-03 2005-11-08 Susan Nichols Absorbent towel with projections
US7592938B2 (en) * 2007-07-23 2009-09-22 Mediatek Inc. Analog-to-digital converter and method of gain error calibration thereof
US7595744B2 (en) * 2007-11-27 2009-09-29 Texas Instruments Incorporated Correcting offset errors associated with a sub-ADC in pipeline analog to digital converters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6606042B2 (en) * 2001-05-23 2003-08-12 Texas Instruments Incorporated True background calibration of pipelined analog digital converters
US6961969B2 (en) * 2003-07-03 2005-11-08 Susan Nichols Absorbent towel with projections
US7592938B2 (en) * 2007-07-23 2009-09-22 Mediatek Inc. Analog-to-digital converter and method of gain error calibration thereof
US7595744B2 (en) * 2007-11-27 2009-09-29 Texas Instruments Incorporated Correcting offset errors associated with a sub-ADC in pipeline analog to digital converters

Also Published As

Publication number Publication date
TW201401787A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
US7280064B2 (en) Pipeline ADC with minimum overhead digital error correction
JP5313008B2 (en) Correction signal generator and A / D converter
US9071265B1 (en) Successive approximation analog-to-digital converter with linearity error correction
US20120287316A1 (en) Ramp and successive approximation register analog to digital conversion methods, systems and apparatus
US9483028B1 (en) Hybrid analog-to-digital converter
US6963300B1 (en) Pipeline analog-to-digital converter
WO1991005409A2 (en) Analog-to-digital converter employing a pipelined multi-stage architecture
JP5657490B2 (en) Successive approximation AD converter and radio receiver
TWI556585B (en) Analog-to-Digital Converting Device and Related Calibration Method and Calibration Module
JP2009200931A (en) Solid-state imaging apparatus, semiconductor integrated circuit device, and signal processing method
US20100283641A1 (en) Analog to digital converter
US8164497B2 (en) Pipeline analog-to-digital converter
Kaur et al. A 12-bit, 2.5-bit/phase column-parallel cyclic ADC
US8502713B1 (en) Pipelined analog to digital converter and method for correcting a voltage offset influence thereof
TWI481200B (en) Pipelined analog to digital converter and method for correcting voltage offset influence thereof
US7002506B1 (en) Providing pipe line ADC with acceptable bit error and power efficiency combination
TWI488444B (en) Multiplying anaglog-to-digital converter and pipeline analog-to-digital converter using the same
Watabe et al. A digitally-calibrated 2-stage cyclic ADC for a 33-Mpixel 120-fps super high-vision CMOS image sensor
US8922403B2 (en) Analog-to-digital conversion circuit, analog-to-digital conversion method, and image sensor
JP2008182333A (en) Self-correction type analog-to-digital converter
CN103546152B (en) Pipeline architecture analog digital converter and offset voltage influence correction method thereof
CN112398472A (en) Error quantization 10-bit monoclinic ADC for image sensor
JP2007201897A (en) A/d converter
JP4121969B2 (en) Analog to digital converter
JP4925192B2 (en) Pipeline type A / D converter and semiconductor integrated circuit incorporating the same