TWI480309B - 具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途 - Google Patents

具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途 Download PDF

Info

Publication number
TWI480309B
TWI480309B TW100144912A TW100144912A TWI480309B TW I480309 B TWI480309 B TW I480309B TW 100144912 A TW100144912 A TW 100144912A TW 100144912 A TW100144912 A TW 100144912A TW I480309 B TWI480309 B TW I480309B
Authority
TW
Taiwan
Prior art keywords
crown ether
composite material
light
polymer
pcn6
Prior art date
Application number
TW100144912A
Other languages
English (en)
Other versions
TW201323475A (zh
Inventor
Show An Chen
Hsin Hung Lu
Yun Chung Wu
yun-sheng Ma
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW100144912A priority Critical patent/TWI480309B/zh
Priority to US13/489,695 priority patent/US9105851B2/en
Publication of TW201323475A publication Critical patent/TW201323475A/zh
Application granted granted Critical
Publication of TWI480309B publication Critical patent/TWI480309B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • H10K85/225Carbon nanotubes comprising substituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Description

具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於OLED及有機太陽能電池的用途
本發明提出一種可應用於高分子發光二極體之具水/醇類可溶解性的電子注入/電洞阻擋複合層,其由具有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子以及具有電洞阻擋功能的高分子所組成。此複合層能被用來提升以對水氧具高度穩定性的金屬做為負極之高分子發光二極體的效能。
高分子發光二極體(polymer light-emitting diode,PLED)工業化的重要課題之一是需要具備足夠長的操作壽命。因此,藉由使用對水氧具高度穩定性的高功函數金屬(例如鋁、銅、銀、金等)做為高分子發光二極體之負極已經引起學界與產業界的高度重視。但由於高功函數金屬與發光層間會形成較大的電子注入能障而造成電子難以由金屬負極注入發光層,因此,提升以高功函數金屬做為負極之高分子發光二極體的元件效能成為當今重要的課題。側鏈接枝有氫氧基(hydroxyl)、胺基(amino)以及胺塩(amino salt)的具有水/醇類可溶解性的共軛導電高分子做為高分子發光二極體的電子注入層(electron injection layer)已被提出以克服此問題,這是因為此電子注入層能於發光層與負極間形成界面偶極(interfacial dipole)或是空間電荷(space charge)而降低電子由負極注入到發光層的能障(Huang,F.,et al.,Chem. Mater.,16,708(2004). Wu,H. B.,et al.,Adv. Mater.,16,1826(2004). Wu,H.,et al.,Org. Electron.,6,118(2005). Huang,F.,et al.,Adv. Mater.,19,2010(2007). Huang,F.,et al.,Adv. Mater.,19,2457(2009). Oh,S. H.,et al.,Adv. Mater.,20,1624(2008). Yang,R.,et al.,J. Am. Chem. Soc. 128,14422(2006). Seo,J. H.,et al.,J. Am. Chem. Soc. 130,10042(2008))。現今學術界關於使用共軛高分子以及鋁金屬做為發光層與負極的高分子發光二極體的研究中,藍光、綠光與紅光元件最高外部量子效率(external quantum efficiency)與對應之電流效率(luminous efficiency)分別為1.62%與1.3 cd/A(Wu,H. B.,et al.,Adv. Mater.,16,1826(2004))、7.85%與23.8 cd/A(Wu,H. B.,et al.,Adv. Mater.,16,1826(2004))以及2.94%與2.89 cd/A(Huang,F.,et al.,Adv. Mater.,19,2457(2009)),但是這些元件最高外部量子效率所在之亮度(與操作電壓)分別為380 cd/m2 (9.7 V)、7,923 cd/m2 ,(8.8 V)以及1,040 cd/m2 (9.4 V)。由此可知,這些元件在實際應用上將會有過於耗電的問題發生。因此,還是必須要針對發展更有效的具有水/醇類可溶解性的共軛導電高分子電子注入層進行大量的研究。
除了氫氧基、胺基以及胺塩常被使用來提供共軛高分子系電子注入層在高極性溶劑(如水或醇類)的溶解度。冠醚被預期具有相同的功用,例如接枝有15-冠醚-4的聚茀高分子(PFC)曾被當成電子注入層以提升發光層為聚茀高分子poly(9,9-dihexylfluorene)的元件效能,當使用鈣作為負極時,元件的起動電壓(turn-on voltage)由6.6V(沒有電子注入層)下降至4.1V(有電子注入層),最大亮度與電流效率可以由880 cd/m2 與0.29 cd/A(沒有電子注入層)提升至2,800 cd/m2 與0.53 cd/A(有電子注入層),這是因為導入此電子注入層可以生成界面偶極而提高負極的真空能階(vacuum level)以降低電子注入能障所致(Yu,J. M.,et al.,J. Polym. Sci. Part A: Polym. Chem.,47,2985(2009))。
冠醚為一種特殊的醚類,能夠與鹼金族、鹼土族以及過渡金屬的離子形成穩定的錯合物(Pedersen,C. J.,J. Am. Chem. Soc.,89,2495(1967). Gokel,G. W.,et al.,Chem. Rev.,104,2723(2004). Pedersen,C. J.,Angew. Chem. Int. Ed. Engl.,27,1021(1988)),尤其當金屬離子的直徑與冠醚的腔洞(cavity)直徑接近時能夠形成最為穩定的錯合物(Pedersen,C. J.,Angew. Chem. Int. Ed. Engl.,27,1021(1988)),例如12-冠醚-4(12-crown-4、1.2-1.5)、15-冠醚-5(15-crown-5、1.7-2.2)以及18-冠醚-6(18-crown-6、1.7-2.2)分別能與鋰離子(1.36)、鈉離子(1.94)以及鉀離子(2.66)形成最穩定的錯合物(Pedersen,C. J.,Angew. Chem. Int. Ed. Engl.,27,1021(1988))。由於冠醚與金屬離子的螯合(chelating)具有很高的選擇性,共軛高分子側鏈接枝上冠醚基團被廣泛地用來當成金屬離子的螢光偵測器,例如接枝有15-冠醚-4的超分枝(或線性)茀乙烯寡聚物(oligo(fluorene vinylene))被用於偵測Ru3+ 與Fe3+ 離子(Yu,J. M.,et al.,Macromolecules,42,8052(2009)),以及接枝有苯環取代之18-冠醚-6(benzo-18-crown-6)的聚茀高分子(polyfluorene)被用於偵測Pb2+ 離子(Yu,M.,et al.,Macromol. Rapid Commun.,28,1333(2007))。
至目前為止,用於有機發光二極體的電子注入層種類為無機鹽類或是利用無機鹽類或有機小分子(或同時)摻雜於有機小分子主體這兩類,無機鹽類的例子例如蒸鍍含鋇化合物(如BaF2 )(Cina,S.,U. S. Pat. 7,833,812 B2(2010))或金屬氧化物(如LiCoO2 或LiNiO2 )(Qiu,Y.,et al.,U. S. Pat. 7,501,755 B2(2009)),第二類的例子如於三(triazine)主體內摻雜N,N’-di(naphthalene-1-yl)-N,N’-diphenyl-benzidine與SiO2 (SiOc或Sc)(Aziz,H.,U. S. Pat. 7,111,407 B2(2010))。
本發明揭示一種具水/醇類可溶解性的電子注入/電洞阻擋高分子複合材料。本發明利用冠醚能與金屬離子螯合的特性來設計合成一嶄新的具水/醇類可溶解性共軛高分子,並證明其具有電子注入以及傳遞的功能,再摻混具電洞阻擋功能的高分子,形成具有電子注入/電洞阻擋功能的高分子複合材料,其能有效地提升以高功函數金屬做為負極之高分子發光二極體及有機太陽能電池的元件效率。
在本發明中,我們提出一種具水/醇類可溶解性的電子注入/電洞阻擋複合層,其能大幅地提升利用對水氧具高度穩定性的金屬作為負極之高分子發光二極體的效能,這是因為與共軛高分子側鏈上冠醚螯合的金屬離子具有擬金屬狀態(pseudo-metallic state)而能降低電子注入能障與促進電子傳輸,並且另一高分子能夠提供電洞阻擋的能力所致。本發明中一個具體性的系統為具水/醇類可溶解性的18-冠醚-6(簡稱Cn6)接枝聚茀高分子(簡稱PCn6)與碳酸鉀摻混形成的電子注入層。18-冠醚-6可提供共軛高分子系電子注入層在高極性溶劑(如水或醇類)的溶解度,因此可以避免將其塗佈成膜於發光層上時會有溶解發光層的現象發生。如圖1 所示,18-冠醚-6能與鉀離子進行螯合反應,被18-冠醚-6螯合的鉀離子具有類似鉀金屬的性質(在此稱為擬金屬狀態)而能降低電子注入能障與促進電子傳輸,進而提升利用對水氧具高度穩定性的高功函數金屬(鋁或金)做為以β-相聚茀系高分子(例如含β-相聚(9,9-二-n -辛基茀)(poly(9,9-di-n -octylfluorene)),簡稱β-PFO)為發光層的高分子發光二極體負極之元件效能,在此我們使用β-PFO為發光層材料是因為其經由發明人證明為一同時具有高效能與光色穩定之深藍光共軛高分子(Lu,H. H.,et al.,Adv. Mater.,19,2574(2007))。額外再摻混聚氧化乙烯(polyethyleneoxide,簡稱PEO)於PCn6/碳酸鉀(Cn6:K+ 莫爾比1:3)以提供阻擋電洞的能力,能將元件最大亮度、外部量子效率以及電流效率再提升至分別達到54,800 cd/m2 、5.42%以及6.14 cd/A的水準,此為學術文獻上以共軛高分子當成發光層的深藍光高分子發光二極體的最高效能紀錄,甚至比負極使用對水氧極不穩定的氟化銫(CsF)之元件的效能還高(34,326 cd/m2 、3.33%以及3.85 cd/A)。此電子注入/電洞阻擋層(簡稱EI-HB layer)亦能用於增加以β-PFO為活性層的太陽能電池的功率轉換效率(power conversion efficiency)達3.5倍的水準。圖2 a所示為PCn6、15-冠醚-5(簡稱Cn5)接枝聚茀高分子(簡稱PCn5)、聚茀高分子(簡稱PFO)、PEO、poly(9,9-dioctylfuorene-alt -benzothiadiazole)(簡稱F8BT)以及橘光聚(2-甲氧-5-(2-乙基己基氧)-1,4-伸苯基伸乙烯)(poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene))(簡稱MEH-PPV)的化學結構式。
以下本發明的例子為證實一種可應用於高分子發光二極體之具水/醇類可溶解性電子注入層,其由具有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子所組成。18-冠醚-6可提供共軛高分子系電子注入層在高極性溶劑(如水或醇類)的溶解度,因此可以避免將其塗佈成膜於發光層上時會有溶解發光層的現象發生。此外,18-冠醚-6螯合鉀離子使其具有類似鉀金屬的性質(在此稱為擬金屬狀態)而能降低電子注入能障與促進電子傳輸,進而提升利用對水氧具高度穩定性的高功函數金屬(鋁或金)作為β-PFO元件負極之元件效能(β-PFO經由本實驗室證明為一同時具有高效能與光色穩定之深藍光共軛高分子(Lu,H. H.,et al.,Adv. Mater.,19,2574(2007))。額外再摻混PEO於PCn6/碳酸鉀(Cn6:K+ 莫爾比1:3)以提供阻擋電洞的能力,能將元件最大亮度、外部量子效率以及電流效率再提升至分別達到54,800 cd/m2 、5.42%以及6.14 cd/A,此為學術文獻上以共軛高分子當成發光層的深藍光高分子發光二極體的最高效能紀錄,甚至比負極使用對水氧極不穩定的CsF之元件的效能還高(34,326 cd/m2 、3.33%以及3.85 cd/A)。此外,綠光與橘光高分子發光二極體(其發光層分別為PFO:F8BT(1:0.05重量比)以及MEH-PPV)在引進電子注入/電洞阻擋層後其鍍鋁元件效能也能夠被提升至少一百倍以上。
首先說明此發明例子中所提及的電子注入/電洞阻擋層的代號含意。PCn6:K+ (1:x)層代表由PCn6以及碳酸鉀所組成,括弧中的x(0、1與3)代表鉀離子相對於18-冠醚-6的莫爾比。PCn6:PEO(1:y)層代表由PCn6、碳酸鉀以及PEO所組成,其中鉀離子相對於18-冠醚-6的莫爾比固定為3:1,而括弧中的y(0.75、1、1.5與2)代表PEO相對於PCn6的重量比。PCn6:K+ (1:x)/Al(或PCn6:PEO(1:y)/Al)與PCn6:K+ (1:x)/Au(或PCn6:PEO(1:y)/Au)代表分別以鋁或金做為負極金屬的β-PFO元件。這代號命名也適用於PCn5摻混碳酸鉀的電子注入層。此外,PEO:K+ (6:3)層代表由PEO以及碳酸鉀所組成,其中PEO的重複單元(repeat unit)相對於鉀離子的莫爾比為6:3。
2 b-d為β-PFO元件的電流密度(J)與亮度對電壓以及電流效率與電流密度的特徵曲線(表1所列為元件的特徵效能數值)。PCn6:K+ (1:0)/Al的元件電流密度比沒有加入電子注入層的元件有著明顯的提升,當碳酸鉀以Cn6:K+ 莫爾比為1:1或1:3摻混入PCn6,其元件電流密度又比PCn6:K+ (1:0)/Al的元件更高。例如在6 V時,PCn6:K+ (1:3)/Al的電流密度比PCn6:K+ (1:1)/Al、PCn6:K+ (1:0)/Al以及不含電子注入/電洞阻擋層的元件提高了1.2、74以及1700倍。同樣地,元件亮度提升的趨勢也如同電流密度般,PCn6:K+ (1:3)/Al元件的最大亮度達到26,500 cd/m2 ,遠高於不含電子注入/電洞阻擋層元件的12 cd/m2 。此外,元件起動電壓由不含電子注入/電洞阻擋層元件的10 V降低至PCn6:K+ (1:0)/Al元件的5.6 V以及PCn6:K+ (1:1或1:3)/Al元件的3.6 V。而導入電子注入層也能讓元件的電流效率有大幅的提升,最高可達PCn6:K+ (1:3)/Al元件的2.03 cd/A。由上述結果可知,以鋁做為負極的元件在導入水/醇類可溶解PCn6:K+ 層做為電子注入層後,其元件效能可被大幅地提升。由於這些元件的正極同樣都是ITO/PEDOT,因此提升元件效能的原因是此電子注入層生成的界面偶極降低電子注入能障進而提升電子電流密度所致。
為了證明被螯合的鉀離子在降低電子注入能障上還提供其它的機制,我們繪製相對電流密度(J/Jbare Al )與開環電壓差的關係圖加以釐清。由圖2 e可以看到J/Jbare Al 由只含PCn6的23倍增加到PCn6:K+ (1:1)/Al元件的1,411倍,但是其對應的開環電壓差只由0.83 V增加至1.01 V,很明顯地,加入碳酸鉀造成電流密度額外增加的比例遠高於開環電壓增加的比例,因此可以得知,加入的碳酸鉀在降低電子注入能障的功能上除了幫助生成界面偶極之外,還有其它的功能存在。這額外的功能為與冠醚螯合的鉀離子具有擬金屬狀態(將在下面的X射線光放射圖譜分析加以證實)而能提供一中間能階以幫助電子由負極注入電子注入層。而J/Jbare Al 大幅的增加也發生在由碳酸鉀/PCn5組成的電子注入層,由圖2e可見當Cn5:K+ 莫爾比為1:1時其J/Jbare Al 大幅的增加,這證實上述擬金屬狀態增加電子注入的推論為正確。此外,PCn6:K+ (1:3)/Al元件的J/Jbare Al 達到1,700倍,遠比由文獻報導數據所計算出的數值高(Wu,H. B.,et al.,Adv. Mater.,16,1826(2004). Huang,F.,et al.,Adv. Mater.,19,2010(2007). Oh,S. H.,et al.,Adv. Mater.,20,1624(2008). Yang,R.,et al.,J. Am. Chem. Soc. 128,14422(2006)),代表這擬金屬狀態對增加電子注入具有卓越的功效。
表1. β-PFO元件的效能。元件結構為ITO/PEDOT(25 nm)/β-PFO(120 nm)/[有無EI-HB層(20 nm)]/Al(60 nm).
此外,為了更有效地利用由正極注入的電洞,我們將PEO摻混於電子注入層以提供阻擋電洞的功能。在PCn6:PEO摻混重量比例為1:0.75時,PCn6:K+ (1:3)/Al元件的最大亮度與電流效率(以及外部量子效率)可以分別被提升到54,800 cd/m2 以及6.14 cd/A(5.42%),此為學術文獻中以共軛高分子做為發光層的深藍光高分子發光二極體的最高元件紀錄。然而,把PEO摻混的比例提高會造成元件效能的下降,例如,對PCn6:PEO(1:2)/Al元件而言,其最大亮度與外部量子效率下降至8,900 cd/m2 與1.65 cd/A,這是因為太多的電洞被阻擋所致,這可以由其電流密度比不加PEO的PCn6:K+ (1:3)/Al元件之電流密度低而得知(例如,在電壓為6 V時低了2.1倍)。
藉由對PCn6:K+ (1:1與1:3)薄膜進行XPS量測可以釐清18-冠醚-6與鉀離子間的交互作用情形。如圖3 a所示,碳酸鉀的K 2p3/2 與K 2p1/2 軌域之電子束縛能分別為294.11與296.91 eV,而在18-冠醚-6/鉀離子錯合物中,這兩電子束縛能降低了0.5 eV至分別為293.61與296.41 eV,這代表了鉀離子由18-冠醚-6上的氧原子接受了額外的電子造成這兩電子能階的束縛能往鉀金屬的兩電子能階的束縛能靠近(K 2p3/2 292.60 eV與K 2p1/2 295.50 eV)(Schulze,M.,et al.,Fresenius J. Anal. Chem.,365,178(1999))。對於雙苯環取代之18-冠醚-6(dibenzo-18-crown-6)與鉀離子形成的錯合物而言,這兩電子能階的束縛能不會隨著對應離子(counter ion)的種類而改變(例如氯離子、溴離子或碘離子),這暗示氧原子上的未成對電子(lone-pair electron)提供的電子能有效地穩定錯合物中的鉀離子(Bohman,O.,et al.,Phys. Scripta,16,355(1977))。因此,這新的鉀離子狀態可以被稱為“擬金屬狀態”,並被預期具有改進高功函數鋁金屬與發光層間電子傳遞的功用。
再藉由解析PCn6:K+ (1:1與1:3)薄膜的K 2p3/2 軌域電子束縛能訊號峰可以得知18-冠醚-6與鉀離子螯合分率分別為39.5%與94.7%(如圖3 b與c所示)。PCn6:K+ (1:3)薄膜的螯合分率比PCn6:K+ (1:1)薄膜高了2.4倍,解釋了為何PCn6:K+ (1:3)/Al元件的開環電壓(2.36 V)與電流密度(例如6 V時的3432 A/m2 )比PCn6:K+ (1:1)/Al元件的開環電壓(2.25 V)與電流密度(例如6 V時的2849 A/m2 )高。
被冠醚螯合的鉀離子能形成電子傳輸通道以幫助電子傳輸,而鉀離子與冠醚間的交互作用力越強能夠形成越多的鉀離子通道以增加電子傳輸的能力。由圖4 所示的不同鉀/鉀離子狀態的K 2p3/2 軌域電子束縛能可以知道,18-冠醚-6/鉀離子比起15-冠醚-5/鉀離子或PEO/鉀離子其K 2p軌域電子束縛能更接近鉀金屬的K 2p軌域電子束縛能,代表18-冠醚-6與鉀離子間的交互作用力比15-冠醚-5或PEO與鉀離子的交互作用力強。這也說明了利用18-冠醚-6/鉀離子當成元件電子注入層會比使用15-冠醚-5/鉀離子的元件效能好(圖5 )。
因此,本發明提出此電子注入/電洞阻擋層的工作機制並以圖6 來說明。被螯合的鉀離子由於能生成界面偶極以降低電子注入能障(例如與沒有電子注入層的元件相比,導入PCn6:K+ (1:3)薄膜能降低電子注入能障達1.12 eV),並且這鉀離子的擬金屬狀態能額外提供一中間能階以幫助電子由負極注入電子注入層。再者,被螯合的鉀離子能夠形成電子傳輸通道。因此不論是由負極直接注入被螯合鉀離子的電子,或是原先在PCn6主鏈上但自發地躍遷到被螯合鉀離子的電子(因為PCn6的最低未被佔據分子軌道(the lowest unoccupied molecular orbital,簡稱LUMO)的能階比被螯合鉀離子的能階更接近真空能階),將能夠順著這些通道遷移到電子注入層/β-PFO發光層的界面。接著這些電子將容易地注入發光層因為鉀離子擬金屬狀態的存在。總之,鉀離子擬金屬狀態之存在能夠促進電子由功函數為4.28 eV的鋁負極(Chen,S. A.,et al.,Adv. Polym. Sci.,212,49(2008))注入到LUMO能階為2.86 eV的β-PFO發光層(Lu,H. H.,et al.,Adv. Mater.,19,2574(2007))。此外,PEO能提供阻擋電洞的功能以增加電洞-電子在發光層的再結合機率以提升元件效能。[PEDOT與β-PFO的能階位置是參考我們先前發表的文獻(Lu,H. H.,et al.,Adv. Mater.,19,2574(2007),PCn6的能階位置被視為與β-PFO相同因為它們的主鏈結構相同並且含有18-冠醚-6的烷氧基側鏈對主鏈電子能階結構不會有太大的影響。]
實例一 Poly[9,9'-bis(6'-(((1,4,7,10,13,16)-hexaoxacyclooctadecanyl)methoxy)hexyl)fluorene](PCn6)的製備
PCn6的合成方法途徑如途徑1-4所示。
1. 2,7-dibromofluorene(1 ).
將fluorene(22.75 g,0.136 mol)、iodine(0.392 g,0.0154 mol)以及CH2 Cl2 (150 mL)混合後,在0℃下將bromine(15.8 mL,0.288 mol)與CH2 Cl2 (20 mL)的混合液緩慢滴入其內。於反應12小時後,將sodium bisulfite的水溶液(3.0 g/20 mL)加入反應混合物內並持續攪拌30分鐘使溶液呈現無色。將有機層與水層分開後,用150 mL的水洗滌有機層,用無水硫酸鎂除掉有機層內殘存的水分後,利用旋轉濃縮機把二氟甲烷抽掉,再置於真空中乾燥即得到白色固體產物(41.8 g、產率94.9%,其熔點範圍為156-160℃)。氫譜鑑定(1 H NMR,500 MHz,CDCl3 ) d(ppm)為:7.62(s,2H),7.58(d,2H),7.48(d,2H),3.83(d,2H)。
2. 2,7-dibromo-9,9-bis(6'-bromohexyl)fluorene(2 ).
在氮氣氛圍下,將化合物1 (5.0 g,15.43 mmol)、1,6-dibromohexane(30 mL)、tetrabutylammonium bromide(TBAB)(0.5 g)以及氫氧化鉀水溶液(30 mL,50% w/w)混合後,在70℃下攪拌24小時後,加入二氟甲烷於反應混合物內以稀釋濃度,再分別利用水與食鹽水洗滌有機層。用無水硫酸鎂除掉有機層內殘存的水分後,先利用旋轉濃縮機把二氯甲烷抽掉,再利用減壓蒸餾去除過剩的1,6-dibromohexane,最後利用管柱層析法(管柱填充物為二氧化矽,流動相為己烷/二氯甲烷(體積比95:5))純化即得到白色固體產物2 (5.67 g、產率56.5%、其熔點範圍為68℃)。氫譜鑑定(1 H NMR,500 MHz,CDCl3 ) d(ppm)為:7.51(d,2H,J =8.0 Hz),7.45(d,2H,J =8.0 Hz),7.42(s,2H),3.27(t,4H,J =7 Hz),1.91(t,4H,J =8.5 Hz),1.65(p,4H,J =8 Hz),1.18(p,4H,J =8 Hz),1.06(p,4H,J =7.5 Hz),0.57(m,4H)。
3. 2,7-dibromo-9,9'-bis(6'-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl)-methoxy)hexyl)fluorene(3 ).
在惰性氣體氛圍下,將2-hydroxymethyl-18-crown-6(1.8 mmol,0.530 g)緩慢滴入由化合物2 (0.9 mmol,0.585 g)、tetra-n-butylammonium hydrogen sulfate(TBAHS)(21.6 mg,0.063 mmol)、benzene(5 mL)以及氫氧化鉀水溶液(1.5 mL,50% w/w)所組成的混合液內,在70℃下劇烈攪拌反應混合物24小時後,將其倒入水中,先用乙醚萃取有機物,再利用水洗滌有機層,用無水硫酸鎂除掉有機層內殘存的水分後,最後利用管柱層析法(管柱填充物為三氧化二鋁,流動相為乙酸乙酯)純化即得到無色液體產物3 (0.442 g、產率41%)。氫譜鑑定(1 H NMR,500 MHz,CDCl3 ) d(ppm)為:7.55(s,1H),7.53(s,1H),7.44-7.46(m,4H),3.44-3.68(m,46H),3.25-3.36(m,8H),1.91-1.94(m,4H),1.32-1.34(m,4H),1.05-1.07(m,8H),0.54-0.57(m,4H)。碳譜鑑定(13 C NMR,125 MHz,CD2 Cl2 ) d(ppm)為:152.90,139.52,130.46,126.58,121.76,121.56(C-fluorene ring),78.45,71.78,71.65,71.00,70.90,70.84,70.79,70.72,69.76(-OCH2 -),56.05(C9 -fluorene ring),40.43(-CH2 -),30.03(-CH2 -),29.89(-CH2 -),26.11(-CH2 -),24.03(-CH2 -)。
4. Poly[9,9'-bis(6'-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl)methoxy)-hexyl)fluorene](PCn6 ).
將bis-(1,5-cyclooctadiene) nickel(0)(0.85 g,3.0 mmol)、2,2-bipyridyl(0.35 g,2.2 mmol)、1,5-cyclooctadiene(0.25 g,2.2 mmol)以及5 ml的無水N,N-dimethyformamide(DMF)混合液在80℃下攪拌30分鐘,再將含有化合物3 (0.538 g,0.5 mmol)的5 ml除水過之甲苯倒入此觸媒溶液中,在80℃下反應四天後,再加入1-bromo-4-tert -butylbenzene(8.67 μL,0.05 mmol)並持續攪拌一天。將反應混合物放冷後將其倒入氯仿內並依續用6 M的鹽酸水溶液、去離子水,以及食鹽水洗滌。用無水硫酸鎂除掉有機層內殘存的水分後,先利用旋轉濃縮機抽掉氯仿後加入己烷以沈澱出固體產物,再將此固體產物溶解於氯仿後再加入己烷進行再沈澱以除去寡聚物,最後於真空下乾燥一天即可得到黃色的高分子PCn6 (0.288 g,產率62.8%)。氫譜鑑定(1 H NMR,500 MHz,CDCl3 ) d(ppm)為:7.83(b,2H),7.66(b,4H),3.31-3.75(b,54H),0.82-2.15(b,20H)。由凝膠滲透層析儀配合聚乙烯苯(polystyrene)標準品可量測此聚合物的重量平均分子量以及polydispersity index(PDI)分別為158,000 Daltons以及1.3。
實例二 PCn6與鉀離子的螯合
將含有PCn6(濃度為1 mg/mL)以及18-冠醚-6/鉀離子(莫爾比為1:1或1:3)的去離子水/甲醇溶液(1:19體積比)於65℃下攪拌3小時即可得到PCn6/K+ 錯合物。
實例三 元件製作與元件光電特性的量測 1. 元件製作
對發光層為β-PFO的元件,先將電子注入材料poly(styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene)(簡稱PEDOT)(Baytron P VP.AI 4083,其導電度為2×10-4 -2×10-3 S/cm)用旋轉塗佈(spin-coating)的方式均勻塗佈於經氧氣電漿處理過(條件為氧氣分壓為193 mTorr、功率為50 W以及時間5分鐘)之ITO玻璃上,PEDOT膜厚為25 nm,塗佈後於140℃真空下加熱60分鐘除去殘留水分。將PFO高分子溶液(濃度為7 mg/mL,溶劑為四氫呋喃)用旋轉塗佈的方式均勻塗佈於ITO/PEDOT上,其膜厚為120 nm,再將乙酸乙酯用旋轉塗佈的方式(轉速1500 rpm,時間30秒)均勻塗佈於PFO薄膜上以形成β-PFO,在此我們使用β-PFO為發光層材料是因為其經由本實驗室證明為一同時具有高效能與光色穩定之深藍光共軛高分子(Lu,H. H.,et al.,Adv. Mater.,19,2574(2007))。如果要塗上PCn6:K+ (1:x)層(厚度20 nm),將含有PCn6(濃度為1 mg/mL)以及18-冠醚-6/鉀離子(莫爾比為1:1、1:2或1:3)的去離子水/甲醇溶液(體積比為1:19)以旋轉塗佈的方式均勻塗佈於β-PFO薄膜上。碳酸鉀購自Showa Chemical公司並直接使用而未經過額外的純化。如果要塗上PCn6:PEO(1:y)層(厚度20 nm),將含有PCn6(濃度為0.5 mg/mL)、18-冠醚-6/鉀離子(莫爾比為1:3)以及PCn6/PEO(重量比為1:0.75、1:1、1:1.5或1:2)的去離子水/甲醇溶液(體積比為1:19)以旋轉塗佈的方式均勻塗佈於β-PFO薄膜上。PEO(重量平均分子量為600,000 Daltons)購自Aldrich公司並直接使用而未經過額外的純化。如果要塗上PCn5:K+ (1:3)層(厚度20 nm),將含有PCn5(濃度為1 mg/mL)以及15-冠醚-5/鉀離子(莫爾比為1:3)的去離子水/甲醇溶液(體積比為1:19)以旋轉塗佈的方式均勻塗佈於厚度為100 nm的β-PFO薄膜上。最後,在低於10-6 Torr的真空下蒸鍍鋁或金做為負極(厚度為60 nm),元件的有效發光面積為8-10 mm2 。對發光層為PFO:F8BT的元件,元件製作除了發光層改用PFO:F8BT高分子溶液塗佈外(重量比1:0.05、濃度為6.3 mg/mL以及溶劑為四氫呋喃),其餘步驟皆與β-PFO元件製作步驟相同。對發光層為MEH-PPV的元件,元件製作除了發光層改用MEH-PPV高分子溶液塗佈(濃度為6 mg/mL以及溶劑為甲苯)以及電洞注入層改用低導電度的PEDOT(Baytron P CH 8000,其導電度為10-5 S/cm)之外,其餘步驟皆與β-PFO元件製作步驟相同。高分子薄膜厚度是利用表面輪廓儀(Tencor P-10)來測量。
2. 元件光電特性 (1)電壓-電流-亮度曲線
利用Keithley公司的Source Measure Unit 238做為電源供應器並配合IOTECH公司的IEEE 488介面卡來量測元件的電流-電壓曲線,而元件的亮度是利用輝度計(BM8,TOPCO公司)來量測。
(2)電激發光譜
電激發光譜利用螢光光譜儀(Jobin Yvon公司的FluoroMAX-3)量測,量測時元件保持在真空環境下。
(3)光生伏打量測(Photovoltaic measurements)
由β-PFO元件的ITO面照射模擬AM1.5太陽光的白光(單位面積強度為100 mW/cm2 ,此光源產生器為Oriel Co.公司所生產),並利用Keithley公司的2400 SourceMeter做為電源供應器則可以量測到電壓-光電流(photocurrent)曲線。電壓-光電流密度曲線中,光電流密度出現轉折點所在的電壓即為開環電壓(Wu,H. B.,et al..,Adv. Mater.,129,1826(2004). Yu,L. S.,et al..,Adv. Mater. 16,744(2004))。
(4)X射線光放射光譜量測
在1×10-9 mbar真空度下,利用VG Scientific的MultiLab 2000系統配合Mg(Ka )X射線(能量為1253.6 eV)作為激發光源即可量測各薄膜的XPS光譜。用於量測的PCn6:K+ (1:1與1:3)以及PCn5:K+ (1:3)薄膜是將其高分子溶液以旋轉塗佈的方法均勻塗佈於ITO玻璃上(其高分子溶液組成與用於製作發光元件的溶液相同)。對PEO:K+ (6:3)薄膜,則將含有PEO(濃度為0.58 mg/mL)以及PEO重複單元/鉀離子(莫爾比為6:3)的去離子水/甲醇溶液(體積比為1:19)以旋轉塗佈的方式均勻塗佈於ITO玻璃上。碳酸鉀薄膜則將含有碳酸鉀(濃度為2 mg/mL)的去離子水/甲醇溶液(體積比為1:19)以澆鑄(drop-casting)的方式均勻塗佈於ITO玻璃上。
實例四 於發光層及鋁負極間加入Cn6:K+ (1:x)電子注入層對深藍光高分子發光二極體元件效能的提升
由圖2 b-d的β-PFO元件效能特徵曲線可以瞭解於發光層及鋁負極間加入電子注入層對元件效能提升有極大的助益。首先,當元件的電子注入層不含鉀離子時(PCn6:K+ (1:0)/Al),其電流密度比沒有加入電子注入層的元件有著明顯的提升;當碳酸鉀以相對於Cn6為1:1以及1:3莫爾比分別摻混入PCn6時,其元件電流密度又比PCn6:K+ (1:0)/Al的電流密度更高。例如在6 V時,PCn6:K+ (1:3)/Al的電流密度比PCn6:K+ (1:1)/Al、PCn6:K+ (1:0)/Al以及不含電子注入/電洞阻擋層的元件提高了1.2、74以及1700倍。同樣地,元件亮度提升的趨勢也如同電流密度般,PCn6:K+ (1:3)/Al元件的最大亮度達到26,500 cd/m2 ,遠高於不含電子注入/電洞阻擋層元件、PCn6:K+ (1:0)/Al以及PCn6:K+ (1:1)/Al的12、624以及18,300 cd/m2 。此外,元件起動電壓由不含電子注入/電洞阻擋層元件的10 V降低至PCn6:K+ (1:0)/Al元件的5.6 V以及PCn6:K+ (1:1或1:3)/Al元件的3.6 V。而引進電子注入層也能讓元件的電流效率有大幅的提升,最高為PCn6:K+ (1:3)/Al元件的2.03 cd/A,遠高於不含電子注入/電洞阻擋層元件、PCn6:K+ (1:0)/Al以及PCn6:K+ (1:1)/Al的0.017、0.17以及1.88 cd/A。由上述結果可知,以鋁做為負極的元件在發光層與負極間引進水/醇類可溶解的電子注入層後,其元件效能可被大幅地提升。由於這些元件的正極同樣都是ITO/PEDOT,因此元件效能的提升是來自於額外引進的電子注入層能提升電子電流密度所致。此電子注入層能提升電子電流密度的原因是被18-冠醚-6螯合的鉀離子具有類似鉀金屬的性質而能降低電子注入能障(藉由生成界面偶極以及額外提供一中間能階達成)與促進電子傳輸所致。
實例五 摻混PEO於Cn6:K+ (1:3)電子注入層對高分子發光二極體元件效能的提升
如圖2 b-d所示,我們將PEO摻混進入Cn6:K+ (1:3)電子注入層,發現在PCn6:PEO摻混重量比例為1:0.75時,其元件(PCn6:K+ (1:3)/Al)的最大亮度與電流效率可以分別被提升到54,800 cd/m2 以及6.14 cd/A,遠高於使用沒有摻混PEO的Cn6:K+ (1:3)電子注入層之元件效能(26,500 cd/m2 以及2.03cd/A);而元件效能54,800 cd/m2 以及6.14 cd/A為學術文獻中以共軛高分子做為發光層的深藍光高分子發光二極體的最高元件紀錄。額外摻入PEO於電子注入層能夠提升元件效能的原因是PEO能提供阻擋電洞的功能,進而更有效地利用由正極注入的電洞。
實例六 於發光層及鋁負極間加入Cn6:K+ (1:x)電子注入層以降低電子注入能障
利用光生伏打量測法量測元件的開環電壓,可以得知元件中加入PCn6:K+ (1:x)層造成元件電子電流密度增加的原因是否來自於降低電子注入能障所致。如圖7 所示,開環電壓由不含電子注入/電洞阻擋層元件的1.24 V分別提高至2.07 V(加入PCn6:K+ (1:0)層)、2.25 V(加入PCn6:K+ (1:x)層)以及2.36 V(加入PCn6:K+ (1:x)層)。由於開環電壓能反映元件的內建電位(built-in potential)並且這四種元件的正極都是ITO/PEDOT,因此開環電壓的增加代表電子注入能障的下降(Wu,H. B.,et al.,Adv. Mater.,16,1826(2004). Yu,L. S.,et al.,Adv. Mater.,16,744(2004))。因此,圖1b所示加入PCn6:K+ (1:x)層的元件其電流密度大於沒有此層的元件之電流密度,就是因為加入PCn6:K+ (1:x)層能降低電子注入能障所致。此外,開環電壓隨著PCn6:K+ (1:x)層內鉀離子含量的增加而變大也說明了為何元件電流密度會隨著PCn6:K+ (1:x)層內鉀離子含量的增加而變大。電子注入能障的降低可以歸因於界面偶極的生成會造成元件負極的真空能階相較於發光層的真空能階有所提升(Wu,H. B.,et al.,Adv. Mater.,16,1826(2004). Yu,L. S.,et al.,Adv. Mater.,16,744(2004). Yu,J. M.,et al.,J. Polym. Sci. Part A: Polym. Chem.,47,2985(2009). Huang,F.,et al.,Adv. Mater.,19,2010(2007))。
實例七 Cn6:K+ (1:1)與Cn6:K+ (1:3)薄膜的18-冠醚-6螯合鉀離子的分率計算
3 a所示為PCn6:K+ (1:1)與PCn6:K+ (1:3)薄膜的XPS光譜,經由解析其K 2p軌域電子束縛能訊號峰可以計算出18-冠醚-6螯合鉀離子的分率。K 2p軌域電子束縛能訊號峰可以解析為三個訊號峰,其波峰位置分別在293.29、293.94以及296.45 eV處(如圖3 b與3 c所示),第一個與第二個訊號峰分別代表被螯合與未被螯合的鉀離子之K 2p3/2 軌域電子束縛能,因為它們分別位在鉀金屬(292.60 eV)以及碳酸鉀(294.11 eV)的K 2p3/2 軌域電子束縛能之間;第三個訊號峰為K 2p1/2 軌域電子束縛能。第一與第二根解析峰的面積比可以當成被螯合與未被螯合的鉀離子莫爾比,因此,對PCn6:K+ (1:1)與PCn6:K+ (1:3)薄膜而言其被螯合與未被螯合的鉀離子莫爾比分別為1:1.53與1:2.17。由於PCn6:K+ (1:1)與PCn6:K+ (1:3)薄膜的18-冠醚-6與鉀離子摻混莫爾比分別為1:1與1:3,並且理論上18-冠醚-6與鉀離子的螯合比為1:1(Pedersen,C. J.,Angew. Chem. Int. Ed. Engl.,27,1021(1988)),因此理論上當18-冠醚-6完全螯合鉀離子時其被螯合/未被螯合的鉀離子莫爾比對兩薄膜而言分別為1:0與1:2。因此,藉由比較理論上完全螯合以及實測上的被螯合/未被螯合鉀離子莫爾比可以求得,PCn6:K+ (1:1)與PCn6:K+ (1:3)薄膜的18-冠醚-6實際螯合分率分別為39.5%與94.7%。換句話說,當18-冠醚-6與鉀離子的摻混莫爾比例提高至1:3時,18-冠醚-6幾乎百分之百地用於螯合鉀離子。
實例八 PEO具有電洞阻擋的功能
如圖7所示,摻混PEO於PCn6:K+ (1:3)層(PCn6與PEO的重量比為1:1),其元件的開環電壓經光生伏打法量測法後為2.36 V,此與單純以PCn6:K+ (1:3)層做為電子注入層的元件開環電壓相同,代表PEO的存在不會影響PCn6:K+ (1:3)層降低電子注入能障的能力。因此,圖1 b所示PCn6:PEO(1:1)/Al元件電流密度比PCn6:K+ (1:3)/Al電流密度低的原因就是PEO具有電洞阻擋的功能所致。
實例九 PCn6:PEO(1:0.75)/Al元件的電致激發光譜
圖8所示為PCn6:PEO(1:0.75)/Al元件在操作電壓為6.6 V時的光譜,此光譜中出現β-phase的三個特徵放射峰,分別位在440、467以及498 nm處(Lu,H. H.,et al.,Adv. Mater.,19,2574(2007)),由此光譜可以得知此光色屬於深藍光,其CIE座標為(0.160,0.113)。
實例十 利用金做為負極的元件效能
對於含有PCn6:K+ (1:0與1:3)以及PCn6:PEO(1:1)層的β-PFO元件,我們改用功函數比鋁還高的金做為它們的負極(金與鋁的功函數分別為5.1與4.28 eV)(Chen,S. A.,et al.,Adv. Polym. Sci.,212,49(2008))。如表2所示,未加入電子注入/電洞阻擋層的元件最大亮度(與最高電流效率)能由1.3 cd/m2 (0.0019 cd/A)分別提升至加入PCn6:K+ (1:0)層的13 cd/m2 (0.0066 cd/A)、加入PCn6:K+ (1:3)層的51 cd/m2 (0.04 cd/A)以及加入PCn6:PEO(1:1)層的154 cd/m2 (0.085 cd/A)。換句話說,既使利用金做為元件的負極,這些電子注入/電洞阻擋層依然能夠提升元件的效能。此外,以金做為負極的元件效能增加趨勢與使用鋁做為負極的元件效能增加趨勢相同,代表我們提出的電子注入/電洞阻擋層工作機制是正確的。另外,以金為負極的元件效能相較於以鋁為負極的元件效能低了30-70倍,這是因為金的功函數比鋁大了0.82 eV,造成以金為負極的元件其電子注入能障比以鋁為負極的元件大所致。
表2. β-PFO元件的效能。元件結構為ITO/PEDOT(25 nm)/β-PFO(120 nm)/[有無EI-HB層(20 nm)]/Au(60 nm).
實例十一 引進電子注入/電洞阻擋層對綠光與橘光元件效能的提升
我們分別製作了以鋁為負極的綠光與橘光高分子發光二極體元件,並比較加入電子注入/電洞阻擋層對元件效能的影響。如表3所示,以PFO:F8BT(重量比為1:0.05)為發光層的綠光元件其起動電壓可由未加入PCn6:PEO(1:1)層的14 V大幅地降低至加入PCn6:PEO(1:1)層的4 V。此外,元件最大亮度與最高電流效率能由未加入PCn6:PEO(1:1)層的100 cd/m2 與0.05 cd/A分別提升至加入PCn6:PEO(1:1)層的23,300 cd/m2 與12.2 cd/A。另一方面,以MEH-PPV為發光層的橘光元件其起動電壓可由未加入PCn6:PEO(1:0.75)層的5.2 V大幅地降低至加入PCn6:PEO(1:0.75)層的2.2 V。此外,元件最大亮度與最高電流效率能由未加入PCn6:PEO(1:0.75)層的30 cd/m2 與0.013 cd/A分別提升至加入PCn6:PEO(1:0.75)層的19,400 cd/m2 與1.87 cd/A。明顯地,既使利用PFO與F8BT的摻混系統或是與PFO的主鏈結構不相同的MEH-PPV做為發光層,於元件發光層與鋁負極間加入電子注入/電洞阻擋層都能至少提升其效能達到100倍,這結果再次證明我們針對電子注入/電洞阻擋層提出的工作機制是正確的。
本發明的較佳實施態樣包括(但不限於)下列方案:
1.一種複合材料,包含一具有電洞阻擋功能的高分子;及一共軛高分子,其中該共軛高分子至少包含一第一重覆單元,該第一重覆單元被接枝有一側鏈,該側鏈具有一冠醚,及至少一部份的該冠醚具有一鑲嵌入於其中的金屬離子。
2.如方案第1項所述之複合材料,其中該冠醚具有 -CHCH2 O(CH2 CH2 O)q 的結構,其中q=2-7。
3.如方案第1項所述之複合材料,其中該共軛高分子具有下列結構(I): 其中,x與y為莫爾分率,0≦x≦1、0≦y≦1、並且x+y=1;ArI 與ArII 獨立的選自下列族群的重複單元:單環芳香族基團、雙環芳香族基團、多環芳香族基團、雜環芳香族基團、取代芳香族基團及取代雜環芳香族基團所組成的族群,並且ArI 及ArII 中至少一個為該第一重覆單元。
4.如方案第2項所述之複合材料,其中該第一重覆單元為下列結構(II): 其中m=0-4;n=1-4;o=1-2;R1 、R2 以及R3 獨立的為冠醚-伸甲基-氧-C1 -C22 伸烷基(alkylene)、冠醚-伸甲 基-氧-C1 -C22 伸烷氧基(alkoxylene)、冠醚-伸甲基-氧-伸苯基(phenylene)、冠醚-伸甲基-氧-C7 -C28 伸烷基伸苯基(alkylene phenylene)、冠醚-伸甲基-氧-C7 -C28 伸烷氧基伸苯基(alkoxylene phenylene)、冠醚-伸甲基-氧-伸苯氧基(phenoxylene)、冠醚-伸甲基-氧-C7 -C28 伸烷基伸苯氧基(alkylene phenoxylene)、冠醚-伸甲基-氧-C7 -C28 伸烷氧基伸苯氧基(alkoxylene phenoxylene)、冠醚-伸甲基-氧-伸聯苯基(biphenylene)、冠醚-伸甲基-氧-C13 -C34 伸烷基伸聯苯基(alkylene biphenylene)、冠醚-伸甲基-氧-C13 -C34 伸烷氧基伸聯苯基(alkoxylene biphenylene)、冠醚-伸甲基-氧-聯苯氧基(biphenylene-oxy)、冠醚-伸甲基-氧-C13 -C34 伸烷基伸聯苯氧基(alkylene biphenylene-oxy)或是冠醚-伸甲基-氧-C13 -C34 伸烷氧基伸聯苯氧基(alkoxylene biphenylene-oxy)。
5.如方案第4項所述之複合材料,其中該共軛高分子為無規則共聚物(random copolymer)、嵌段共聚物(block copolymer)或交替共聚物(alternating copolymer)。
6.如方案第4項所述之複合材料,其中該共軛高分子為一均聚物。
7.如方案第5項所述之複合材料,其中該共軛高分子是由茀、對位苯、噻吩或是對位苯基乙烯等所組成之共聚物。
8.如方案第6項所述之複合材料,其中該共軛高分子為聚茀系高分子(polyfluorene)、聚對位苯系高分子(poly(para-phenylene))、聚噻吩系高分子(polythiophene) 或聚對位苯基乙烯系高分子(poly(para-phenylene vinylene))。
9.如方案第8項所述之複合材料,其中該共軛高分子為聚茀系高分子。
10.如方案第1項所述之複合材料,其中該共軛高分子包含1~100莫爾%的該第一重覆單元。
11.如方案第1項所述之複合材料,其中該金屬離子是鹼金族(alkali metal)、鹼土族(alkaline earth metal)以及過渡金屬(transition metal)的離子。
12.如方案第1項所述之複合材料,其中該金屬離子是鹼金族(alkali metal)的離子。
13.如方案第1項所述之複合材料,其中所述冠醚被金屬離子鑲嵌的比例為1-100莫爾%。
14.如方案第1項所述之複合材料,其中所述具有電洞阻擋功能的高分子是具有寬能隙(large band gap)的共軛或非共軛高分子。
15.如方案第14項所述之複合材料,其中所述具有電洞阻擋功能的高分子是聚環氧乙烷(polyethyleneoxide)。
16.如方案第15項所述之複合材料,其中該聚環氧乙烷具有5萬至100萬道耳吞(Daltons)的重量平均分子量。
17.如方案第1項所述之複合材料,其具有水/醇類可溶解性。
18.一種有機發光二極體,包含一形成於一基材上的正極,一形成於該正極上的發光層,及一形成於該發光層上的 負極,其特徵在於該有機發光二極體進一步包含一層形成於該發光層與該負極之間的如方案第1項所述之複合材料。
19.如方案第18項的有機發光二極體,其中該負極為鋁、銅、銀或金。
20.如方案第18項的有機發光二極體,其進一步包含一介於該正極與該發光層之間的電洞注入層。
21.如方案第18項的有機發光二極體,其進一步包含一介於該正極與該發光層之間的電洞傳遞層。
22.如方案第18項的有機發光二極體,其所發出的光為紅光、黃光、綠光、藍光、白光或具有多重放射峰的寬頻光。
23.一種有機太陽能電池,包含一形成於一基材上的正極;形成於該正極上的有機電子材料;及一形成於該有機電子材料上的負極,其特徵在於該有機太陽能電池進一步包含一層形成於該有機電子材料與該負極之間的如方案第1項所述之複合材料。
24.如方案第23項的有機太陽能電池,其中該形成於一基材上的正極為沉積於一玻璃基材的氧化銦及氧化錫混合物(ITO),及該負極為一低功函數金屬。
雖然本發明已由數個具體的特定細節加以描述,但不能代表這些細節就涵蓋並限制本發明的範圍。
圖1. PCn6與鉀離子的螯合反應條件。
圖2. a)PCn6、PCn5、PFO、PEO、F8BT以及MEH-PPV的化學結構式。β-PFO元件的b)電流密度(current density、J)與c)亮度(brightness)對電壓(voltage)的特徵曲線以及d)電流效率與電流密度的特徵曲線。元件結構為ITO/PEDOT(25nm)/β-PFO(120nm)/[有無EI-HB層(20nm)]/Al(60nm).ITO為indium tin oxide的代稱,PEDOT為poly(styrene sulfonic acid)-doped poly(3,4-ethylenedioxythiophene)]的代稱。e)PCn6:K+ (1:x)、PCn5:K+ (1:x)以及由文獻資料計算出的相對電流密度(reduced current density、J/Jbare Al )對開環電壓差(Voc -Voc,bare Al ,Voc 為open-circuit voltage的代稱)的變化(下標“bare Al”代表是純粹只鍍鋁但不含電子注入/電洞阻擋層的元件)。圖中括號的數值代表電流密度所在之電場。文獻資料出處分別為Ref.1:Wu,H.B.,et al.,Adv.Mater.,16,1826(2004);Ref.2:Huang,F.,et al.,Adv.Mater.,19,2010(2007);Ref.3:Oh,S.H.,et al.,Adv.Mater.,20,1624(2008);Ref.4:Yang,R.,et al.,J.Am.Chem.Soc.128,14422(2006)。
圖3. a)碳酸鉀、PCn6:K+ (1:1)以及PCn6:K+ (1:3)薄膜的X射線光放射光譜學(X-ray photoemission spectroscopy、XPS)圖譜(K 2p電子束縛能範圍)。b)PCn6:K+ (1:1)以及c)PCn6:K+ (1:3)薄膜的K 2p電子束縛能訊號解析圖譜。
圖4. a)不同鉀/鉀離子狀態的K 2p3/2 電子束縛能比較。
圖5. β-PFO元件的a)電流密度與b)亮度以及d)電流效率對電場的特徵曲線。元件結構為ITO/PEDOT(25nm)/β-PFO(當電子注入層為PCn6:K+ (1:3)時厚度為120nm,當電子注入層為PCn5:K+ (1:3)時厚度為100nm)/[有無電子注入層(20nm)]/Al(60nm)。PCn6:K+ (1:3)/Al的元件效能由圖2 b-d所得。
圖6. 電子注入/電洞阻擋層的工作機制示意圖。圖中所示數字代表能階位置,其單位為電子伏特(eV)。△代表真空能階的偏移量。
圖7. β-PFO元件的光生伏打(photovoltaic)特徵曲線。元件結構為ITO/PEDOT(25nm)/β-PFO(120nm)/[有無電子注入/電洞阻擋層(20nm)]/Al(60nm)。
圖8. PCn6:PEO(1:0.75)/Al元件在操作電壓為6.6V時的電致激發(electroluminescence、EL)光譜。

Claims (24)

  1. 一種複合材料,包含一具有電洞阻擋功能的高分子;及一共軛高分子,其中該共軛高分子至少包含一第一重覆單元,該第一重覆單元被接枝有一側鏈,該側鏈具有一冠醚,及至少一部份的該冠醚具有一鑲嵌入於其中的金屬離子。
  2. 如申請專利範圍第1項所述之複合材料,其中該冠醚具有-CHCH2 O(CH2 CH2 O)q 的結構,其中q=2-7。
  3. 如申請專利範圍第1項所述之複合材料,其中該共軛高分子具有下列結構(I): 其中,x與y為莫爾分率,0≦x≦1、0≦y≦1、並且x+y=1;ArI 與ArII 獨立的選自下列族群的重複單元:單環芳香族基團、雙環芳香族基團、多環芳香族基團、雜環芳香族基團、取代芳香族基團及取代雜環芳香族基團所組成的族群,並且ArI 及ArII 中至少一個為該第一重覆單元。
  4. 如申請專利範圍第2項所述之複合材料,其中該第一重覆單元為下列結構(II): 其中m=0-4;n=1-4;o=1-2;R1 、R2 以及R3 獨立的為冠醚-伸甲基-氧-C1 -C22 伸烷基(alkylene)、冠醚-伸甲基-氧-C1 -C22 伸烷氧基(alkoxylene)、冠醚-伸甲基-氧-伸苯基(phenylene)、冠醚-伸甲基-氧-C7 -C28 伸烷基伸苯基(alkylene phenylene)、冠醚-伸甲基-氧-C7 -C28 伸烷氧基伸苯基(alkoxylene phenylene)、冠醚-伸甲基-氧-伸苯氧基(phenoxylene)、冠醚-伸甲基-氧-C7 -C28 伸烷基伸苯氧基(alkylene phenoxylene)、冠醚-伸甲基-氧-C7 -C28 伸烷氧基伸苯氧基(alkoxylene phenoxylene)、冠醚-伸甲基-氧-伸聯苯基(biphenylene)、冠醚-伸甲基-氧-C13 -C34 伸烷基伸聯苯基(alkylene biphenylene)、冠醚-伸甲基-氧-C13 -C34 伸烷氧基伸聯苯基(alkoxylene biphenylene)、冠醚-伸甲基-氧-聯苯氧基(biphenylene-oxy)、冠醚-伸甲基-氧-C13 -C34 伸烷基伸聯苯氧基(alkylene biphenylene-oxy)或是冠醚-伸甲基-氧-C13 -C34 伸烷氧基伸聯苯氧基 (alkoxylene biphenylene-oxy)。
  5. 如申請專利範圍第4項所述之複合材料,其中該共軛高分子為無規則共聚物(random copolymer)、嵌段共聚物(block copolymer)或交替共聚物(alternating copolymer)。
  6. 如申請專利範圍第4項所述之複合材料,其中該共軛高分子為一均聚物。
  7. 如申請專利範圍第5項所述之複合材料,其中該共軛高分子是由茀、對位苯、噻吩或是對位苯基乙烯等所組成之共聚物。
  8. 如申請專利範圍第6項所述之複合材料,其中該共軛高分子為聚茀系高分子(polyfluorene)、聚對位苯系高分子(poly(para-phenylene))、聚噻吩系高分子(polythiophene)或聚對位苯基乙烯系高分子(poly(para-phenylene vinylene))。
  9. 如申請專利範圍第8項所述之複合材料,其中該共軛高分子為聚茀系高分子。
  10. 如申請專利範圍第1項所述之複合材料,其中該共軛高 分子包含1~100莫爾%的該第一重覆單元。
  11. 如申請專利範圍第1項所述之複合材料,其中該金屬離子是鹼金族(alkali metal)、鹼土族(alkaline earth metal)以及過渡金屬(transition metal)的離子。
  12. 如申請專利範圍第1項所述之複合材料,其中該金屬離子是鹼金族(alkali metal)的離子。
  13. 如申請專利範圍第1項所述之複合材料,其中所述冠醚被金屬離子鑲嵌的比例為1-100莫爾%。
  14. 如申請專利範圍第1項所述之複合材料,其中所述具有電洞阻擋功能的高分子是具有寬能隙(large band gap)的共軛或非共軛高分子。
  15. 如申請專利範圍第14項所述之複合材料,其中所述具有電洞阻擋功能的高分子是聚環氧乙烷(polyethyleneoxide)。
  16. 如申請專利範圍第15項所述之複合材料,其中該聚環氧乙烷具有5萬至100萬道耳吞(Daltons)的重量平均分子量。
  17. 如申請專利範圍第1項所述之複合材料,其具有水/醇類可溶解性。
  18. 一種有機發光二極體,包含一形成於一基材上的正極,一形成於該正極上的發光層,及一形成於該發光層上的負極,其特徵在於該有機發光二極體進一步包含一層形成於該發光層與該負極之間的如申請專利範圍第1項所述之複合材料。
  19. 如申請專利範圍第18項的有機發光二極體,其中該負極為鋁、銅、銀或金。
  20. 如申請專利範圍第18項的有機發光二極體,其進一步包含一介於該正極與該發光層之間的電洞注入層。
  21. 如申請專利範圍第18項的有機發光二極體,其進一步包含一介於該正極與該發光層之間的電洞傳遞層。
  22. 如申請專利範圍第18項的有機發光二極體,其所發出的光為紅光、黃光、綠光、藍光、白光或具有多重放射峰的寬頻光。
  23. 一種有機太陽能電池,包含一形成於一基材上的正極;形成於該正極上的有機電子材料;及一形成於該有機電 子材料上的負極,其特徵在於該有機太陽能電池進一步包含一層形成於該有機電子材料與該負極之間的如申請專利範圍第1項所述之複合材料。
  24. 如申請專利範圍第23項的有機太陽能電池,其中該形成於一基材上的正極為沉積於一玻璃基材的氧化銦及氧化錫混合物(ITO),及該負極為一低功函數金屬。
TW100144912A 2011-12-06 2011-12-06 具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途 TWI480309B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100144912A TWI480309B (zh) 2011-12-06 2011-12-06 具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途
US13/489,695 US9105851B2 (en) 2011-12-06 2012-06-06 Composite material of hole-blocking polymer and electron-injection/electron-transport conjugated polymer grafted with crown ether into which metal ion is intercalated, and uses thereof in OLED and organic solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100144912A TWI480309B (zh) 2011-12-06 2011-12-06 具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途

Publications (2)

Publication Number Publication Date
TW201323475A TW201323475A (zh) 2013-06-16
TWI480309B true TWI480309B (zh) 2015-04-11

Family

ID=48523352

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100144912A TWI480309B (zh) 2011-12-06 2011-12-06 具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途

Country Status (2)

Country Link
US (1) US9105851B2 (zh)
TW (1) TWI480309B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201245359A (en) * 2011-03-17 2012-11-16 Sumitomo Chemical Co Metal complex composition and its mixture
SG10201706775RA (en) * 2013-02-21 2017-09-28 Heliatek Gmbh Optoelectronic component
DE102013110373A1 (de) * 2013-09-19 2015-03-19 Heliatek Gmbh Optoelektronisches Bauelement
US10439142B2 (en) * 2014-04-30 2019-10-08 Lg Chem, Ltd. Organic solar cell and manufacturing method therefor
EP3567088A1 (en) * 2018-05-11 2019-11-13 Université de Genève Functionalized polyether macrocyclic compounds and use thereof as luminescent markers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200700483A (en) * 2005-05-17 2007-01-01 Sumitomo Chemical Co Polymer composition for organic electroluminescence element
TW200911958A (en) * 2007-09-06 2009-03-16 Show-An Chen Electroluminescent conjugated polymers grafted with charge transporting moieties having graded ionization potential or electrophilic property and their application in light-emitting diodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0811199D0 (en) * 2008-06-18 2008-07-23 Cambridge Entpr Ltd Electro-optic diode devices
DE102009030848A1 (de) * 2009-06-26 2011-02-03 Merck Patent Gmbh Polymere enthaltend Struktureinheiten, die Alkylalkoxygruppen aufweisen, Blends enthaltend diese Polymere sowie optoelektronische Vorrichtungen enthaltend diese Polymere und Blends

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200700483A (en) * 2005-05-17 2007-01-01 Sumitomo Chemical Co Polymer composition for organic electroluminescence element
TW200911958A (en) * 2007-09-06 2009-03-16 Show-An Chen Electroluminescent conjugated polymers grafted with charge transporting moieties having graded ionization potential or electrophilic property and their application in light-emitting diodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yu,M.,et al.,Macromol. Rapid Commun.,28,1333-1338(2007) Liu,H.,et al.,J. Mater. Chem.,11,3063-3067(2001) *

Also Published As

Publication number Publication date
TW201323475A (zh) 2013-06-16
US20130140527A1 (en) 2013-06-06
US9105851B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
EP3211056B1 (en) Compounds for use in opto-electrical devices
TWI530230B (zh) 有機電致發光裝置以及製造方法
WO2013005031A1 (en) Organic light emitting device and method
US8692235B2 (en) Organic photoelectric semiconductor device and method for fabricating the same
US20090153021A1 (en) Large-bandgap host materials for phosphorescent emitters
TWI480309B (zh) 具有電洞阻擋功能的高分子與接枝有電子注入/傳遞功能的金屬離子鑲嵌入冠醚側鏈之共軛高分子之複合材料及其於oled及有機太陽能電池的用途
JP2015508428A (ja) 発光組成物およびデバイス
JP2009501259A5 (zh)
WO2007007117A1 (en) Conductive polymer compositions in opto-electrical devices
Chen et al. Polyfluorenes for device applications
JP2015506403A (ja) ポリマー
US20110180758A1 (en) Light-emitting Material and Device
KR20160145139A (ko) 유기 발광 소자
US20060040136A1 (en) Method of making an optical device
Wu et al. Synthesis and characterization of a new conjugatedpolymer containing cyano substituents for light-emitting diodes
Wu et al. Synthesis and characterization of triple-azacrown ethers containing fluorene-cored derivatives: application as electron injection layer for significantly enhanced performance of PLEDs
Han et al. White polymer light-emitting diode materials with efficient electron injection backbone containing polyfluorene, oxadiazole and quinoxaline derivatives
Peng et al. Effect of alkyl side chain length on the electroluminescent performance of blue light-emitting poly (fluorene-co-dibenzothiophene-S, S-dioxide)
US20110168987A1 (en) Organic Electronic Device
Chen et al. Electroluminescence from a conjugated polymer grafted with CdSe/ZnS: High brightness and improved efficiency
Kim et al. Novel carbazole-acridine-based hole transport polymer for low turn-on voltage of green quantum dot light-emitting diodes
Wu et al. Water/alcohol soluble electron injection material containing azacrown ether groups: synthesis, characterization and application to enhancement of electroluminescence
JP2009535795A (ja) 光電気ポリマー及び装置
KR100835685B1 (ko) 청색 발광 고분자, 그 제조방법 및 이를 채용한 고분자유기 전계 발광 소자
Song et al. Synthesis and characterization of poly (carbazolyl-2, 7-vinylene) derivatives for organic light-emitting diode applications