TWI478330B - Photoelectric conversion element and method for manufacturing same - Google Patents

Photoelectric conversion element and method for manufacturing same Download PDF

Info

Publication number
TWI478330B
TWI478330B TW100121879A TW100121879A TWI478330B TW I478330 B TWI478330 B TW I478330B TW 100121879 A TW100121879 A TW 100121879A TW 100121879 A TW100121879 A TW 100121879A TW I478330 B TWI478330 B TW I478330B
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
photoelectric conversion
conversion element
type semiconductor
insulating film
Prior art date
Application number
TW100121879A
Other languages
Chinese (zh)
Other versions
TW201208052A (en
Inventor
Yasuhiro Yamada
Tsutomu Tanaka
Makoto Takatoku
Ryoichi Ito
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of TW201208052A publication Critical patent/TW201208052A/en
Application granted granted Critical
Publication of TWI478330B publication Critical patent/TWI478330B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14692Thin film technologies, e.g. amorphous, poly, micro- or nanocrystalline silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Description

光電變換元件及其製造方法Photoelectric conversion element and method of manufacturing same

本揭示內容係關於一種光電變換元件(諸如用於(例如)輻射成像裝置及光學觸控感測器之PIN光電二極體)及一種製造該光電變換元件之方法。The present disclosure is directed to a photoelectric conversion element such as a PIN photodiode for, for example, a radiation imaging device and an optical touch sensor, and a method of fabricating the same.

PIN光電二極體係在輻射成像裝置、光學觸控面板等中用作光電變換元件。此PIN(正-本質-負)光電二極體具有一結構,其中一所謂i型半導體層係插置在一p型半導體層與一n型半導體層之間,且可提取具有取決於入射光量之電荷量之一信號電荷。The PIN photodiode system is used as a photoelectric conversion element in a radiation imaging device, an optical touch panel, or the like. The PIN (positive-essential-negative) photodiode has a structure in which a so-called i-type semiconductor layer is interposed between a p-type semiconductor layer and an n-type semiconductor layer, and extractable has an amount depending on the amount of incident light. One of the charge amounts of the signal charge.

期望此一光電二極體具有進一步提高之光學敏感度且已針對此期望提出各種建議(參考(例如)日本專利公開案第2000-156522號)。此專利文件揭示一種光電變換裝置,其中光電變換器中之一半導體層延伸至電晶體部分且此延伸部分係用作一擋光層以藉此確保一高孔徑比及提高圖案精度以達到經提高之敏感度。It is desired that such a photodiode has further improved optical sensitivity and various proposals have been made in view of such expectations (refer to, for example, Japanese Patent Laid-Open Publication No. 2000-156522). This patent document discloses a photoelectric conversion device in which a semiconductor layer of a photoelectric transducer extends to a portion of a transistor and the extension portion serves as a light blocking layer to thereby ensure a high aperture ratio and improve pattern accuracy for improvement. Sensitivity.

但是,在上述PIN光電二極體中,i型半導體層係如此提供以從層間絕緣膜中製作之一孔之內部延伸至層間絕緣膜之頂部表面。因此,因孔之形狀而施加應力至i型半導體層(側壁部分之階層)並產生一裂紋。特定言之,若增大i型半導體層之膜厚度以提高光學敏感度,則此應力變得更大。此一裂紋具有充當一洩漏路徑及增大暗電流之問題。However, in the above PIN photodiode, the i-type semiconductor layer is provided to extend from the inside of one of the holes formed in the interlayer insulating film to the top surface of the interlayer insulating film. Therefore, stress is applied to the i-type semiconductor layer (hierarchical of the side wall portion) due to the shape of the hole and a crack is generated. In particular, if the film thickness of the i-type semiconductor layer is increased to increase the optical sensitivity, the stress becomes larger. This crack has a problem of acting as a leak path and increasing dark current.

需要一種技術以提供一種能夠抑制歸因於一裂紋之暗電流之增大之光電變換元件及一種製造該光電變換元件之方法。There is a need for a technique to provide a photoelectric conversion element capable of suppressing an increase in dark current due to a crack and a method of manufacturing the same.

根據本揭示內容之一實施例,提供一光電變換元件,其包含:一第一半導體層,其係經組態以展現一第一導電率類型且提供在一基板上方之一選擇區域中;一第二半導體層,其係經組態以展現不同於第一導電率類型之一第二導電率類型且係設置為與第一半導體層相對;及一第三半導體層,其係經組態以提供在第一半導體層與第二半導體層之間且展現實質本質導電率類型。第三半導體層具有不接觸第一半導體層之至少一角隅部分。According to an embodiment of the present disclosure, a photoelectric conversion element is provided, comprising: a first semiconductor layer configured to exhibit a first conductivity type and provided in a selected region above a substrate; a second semiconductor layer configured to exhibit a second conductivity type different from the first conductivity type and disposed opposite the first semiconductor layer; and a third semiconductor layer configured to Provided between the first semiconductor layer and the second semiconductor layer and exhibiting a substantially intrinsic conductivity type. The third semiconductor layer has at least one corner portion that does not contact the first semiconductor layer.

根據本揭示內容之另一實施例,提供一種製造一光電變換元件之方法。該方法包含在一基板上方之一選擇區域中形成展現一第一導電率類型之一第一半導體層及在第一半導體層上形成一第三半導體層。第三半導體層具有不接觸第一半導體層之至少一角隅部分且展現一實質本質導電率類型,該方法進一步包含在第三半導體層上形成展現一第二導電率類型之一第二半導體層。In accordance with another embodiment of the present disclosure, a method of fabricating a photoelectric conversion element is provided. The method includes forming a first semiconductor layer exhibiting a first conductivity type and forming a third semiconductor layer on the first semiconductor layer in a selected region above a substrate. The third semiconductor layer has at least one corner portion that does not contact the first semiconductor layer and exhibits a substantially intrinsic conductivity type, the method further comprising forming a second semiconductor layer exhibiting a second conductivity type on the third semiconductor layer.

根據根據本揭示內容之實施例之光電變換元件及製造光電變換元件之方法,若在第三半導體層中因歸因於(例如)第三半導體層之形狀之應力之影響而產生一裂紋,則由於第三半導體層具有角隅部分,故裂紋趨於如此產生使得其起始點(或終止點)為第三半導體層之角隅部分。由於此一角隅部分不接觸第一半導體層,故抑制所產生之裂紋充當一洩漏路徑。或者,抑制裂紋本身的產生。According to the photoelectric conversion element and the method of manufacturing the photoelectric conversion element according to the embodiment of the present disclosure, if a crack is generated in the third semiconductor layer due to the influence of stress due to, for example, the shape of the third semiconductor layer, Since the third semiconductor layer has a corner portion, the crack tends to be generated such that its starting point (or end point) is the corner portion of the third semiconductor layer. Since the corner portion does not contact the first semiconductor layer, the crack generated is suppressed from acting as a leak path. Or, the generation of the crack itself is suppressed.

根據根據本揭示內容之實施例之光電變換元件及製造光電變換元件之方法,提供在第一半導體層與第二半導體層之間之第三半導體層具有不接觸第一半導體層之角隅部分。因此,舉例而言,當在第三半導體層中產生一裂紋時,可抑制裂紋充當一洩漏路徑。或者,可抑制裂紋本身的發生。此可抑制歸因於裂紋之暗電流之增大。According to the photoelectric conversion element and the method of manufacturing the photoelectric conversion element according to the embodiment of the present disclosure, the third semiconductor layer provided between the first semiconductor layer and the second semiconductor layer has a corner portion that does not contact the first semiconductor layer. Thus, for example, when a crack is generated in the third semiconductor layer, the crack can be suppressed from acting as a leak path. Alternatively, the occurrence of the crack itself can be suppressed. This can suppress an increase in dark current due to cracks.

下文將參考圖式描述執行本揭示內容之模式。描述順序如下。Modes for carrying out the disclosure will be described below with reference to the drawings. The description sequence is as follows.

1.實施例(其中i型半導體層係如此形成以使其範圍為從接觸孔之內部至第一層間絕緣膜之頂部表面之實例)1. Embodiment (wherein the i-type semiconductor layer is formed such that it ranges from the inside of the contact hole to the top surface of the first interlayer insulating film)

2.修飾實例1及2(其中接觸孔係藉由兩步驟蝕刻形成之實例)2. Modifications of Examples 1 and 2 (where the contact holes are formed by two-step etching)

3.修飾實例3及4(其中i型半導體層係在接觸孔中圖案化之實例)3. Modification Examples 3 and 4 (examples in which an i-type semiconductor layer is patterned in a contact hole)

4.應用實例(使用光電變換元件之光電變換裝置及輻射成像裝置之實例)4. Application examples (examples of photoelectric conversion devices and radiation imaging devices using photoelectric conversion elements)

<實施例><Example>

圖1展示根據本揭示內容之一實施例之一光電變換元件10之示意組態。光電變換元件10係藉由將一未摻雜i型半導體層(本質半導體層)插置在一p型半導體層與一n型半導體層之間而獲得之一PIN(正-本質-負)光電二極體。1 shows a schematic configuration of a photoelectric conversion element 10 in accordance with an embodiment of the present disclosure. The photoelectric conversion element 10 obtains one PIN (positive-essential-negative) photoelectric by interposing an undoped i-type semiconductor layer (essential semiconductor layer) between a p-type semiconductor layer and an n-type semiconductor layer. Diode.

[光電變換元件10之完整組態][Complete Configuration of Photoelectric Conversion Element 10]

光電變換元件10在由(例如)玻璃構成之一基板11上方之一選擇區域中具有一p型半導體層14(第一半導體層),(中間物為一絕緣膜13)。在基板11上方(具體言之在絕緣膜13上)提供具有與p型半導體層14相對之一接觸孔150A(通孔)之一第一層間絕緣膜15A。在第一層間絕緣膜15A之接觸孔150A中之p型半導體層14上提供一i型半導體層16(第三半導體層)且在此i型半導體層16上形成一n型半導體層17(第二半導體層)。經由一第二層間絕緣膜15B之一接觸孔150B將一上電極18連接至n型半導體層17。圖2係展示p型半導體層14、接觸孔150A及i型半導體層16(n型半導體層17)之形成區域之一示意平面圖。圖1等效於沿著圖2中之A-A'線之一截面圖。圖3係沿著圖2中之B-B'線之一箭頭截面圖。The photoelectric conversion element 10 has a p-type semiconductor layer 14 (first semiconductor layer) in a selected region above one of the substrates 11 made of, for example, glass, (the intermediate is an insulating film 13). A first interlayer insulating film 15A having one of contact holes 150A (through holes) opposite to the p-type semiconductor layer 14 is provided over the substrate 11 (specifically on the insulating film 13). An i-type semiconductor layer 16 (third semiconductor layer) is provided on the p-type semiconductor layer 14 in the contact hole 150A of the first interlayer insulating film 15A, and an n-type semiconductor layer 17 is formed on the i-type semiconductor layer 16 ( Second semiconductor layer). An upper electrode 18 is connected to the n-type semiconductor layer 17 via a contact hole 150B of a second interlayer insulating film 15B. 2 is a schematic plan view showing a formation region of the p-type semiconductor layer 14, the contact hole 150A, and the i-type semiconductor layer 16 (n-type semiconductor layer 17). Figure 1 is equivalent to a cross-sectional view taken along line A-A' in Figure 2. Figure 3 is an arrow cross-sectional view taken along line BB' of Figure 2.

針對本實施例,下文將描述在基板側(下側)提供p型半導體層14及在上側提供n型半導體層17之情況。但是,可採用相反結構,即在下側(基板側)提供n型半導體層及在上側提供p型半導體層之情況。For the present embodiment, a case where the p-type semiconductor layer 14 is provided on the substrate side (lower side) and the n-type semiconductor layer 17 is provided on the upper side will be described below. However, an opposite structure may be employed, that is, a case where an n-type semiconductor layer is provided on the lower side (substrate side) and a p-type semiconductor layer is provided on the upper side.

藉由堆疊絕緣膜(諸如SiNx層13a及SiO2 層13b)獲得絕緣膜13。舉例而言,若在(例如)一成像裝置中之各像素中使用光電變換元件10,則此絕緣膜13可形成為與各種類型之電晶體中之閘極絕緣膜相同之層。SiNx層13a之厚度為(例如)50 nm且SiO2 層13b之厚度為(例如)10 nm至120 nm。The insulating film 13 is obtained by stacking an insulating film such as the SiNx layer 13a and the SiO 2 layer 13b. For example, if the photoelectric conversion element 10 is used in, for example, each pixel in an image forming apparatus, the insulating film 13 can be formed in the same layer as the gate insulating film in various types of transistors. The thickness of the SiNx layer 13a is, for example, 50 nm and the thickness of the SiO 2 layer 13b is, for example, 10 nm to 120 nm.

p型半導體層14為藉由用(例如)硼(B)摻雜(例如)多晶矽(polycrystalline silicon/polysilicon)或微晶矽而製作之一p+區且具有例如40 nm至50 nm之厚度。此p型半導體層14亦用作(例如)用於讀出一信號電荷之一下電極(陽極)且係連接至一下提取互連件16h。The p-type semiconductor layer 14 is made of one p+ region and has a thickness of, for example, 40 nm to 50 nm by doping, for example, boron (B) with, for example, polycrystalline silicon/polysilicon or microcrystalline germanium. This p-type semiconductor layer 14 is also used, for example, as a lower electrode (anode) for reading a signal charge and is connected to the lower extraction interconnect 16h.

藉由堆疊絕緣膜(即,舉例而言,SiO2 層15A1、SiNx層15A2及SiO2 層15A3)獲得第一層間絕緣膜15A。舉例而言,若在(例如)一成像裝置中之各像素中使用光電變換元件10,則此第一層間絕緣膜15A可形成為與各種類型之電晶體中之一層間絕緣膜相同之層。SiO2 層15A1之厚度為(例如)150 nm。SiNx層15A2之厚度為(例如)300 nm。SiO2 層15A3之厚度為(例如)200 nm。The first interlayer insulating film 15A is obtained by stacking insulating films (i.e., SiO 2 layer 15A1, SiNx layer 15A2, and SiO 2 layer 15A3). For example, if the photoelectric conversion element 10 is used in, for example, each pixel in an image forming apparatus, the first interlayer insulating film 15A can be formed in the same layer as one of the interlayer insulating films of various types of transistors. . The thickness of the SiO 2 layer 15A1 is, for example, 150 nm. The thickness of the SiNx layer 15A2 is, for example, 300 nm. The thickness of the SiO 2 layer 15A3 is, for example, 200 nm.

在此一第一層間絕緣膜15A中,藉由蝕刻製作接觸孔150A。在本實施例中,藉由一步驟蝕刻程序形成接觸孔150A。即接觸孔150A之一壁表面15S1之形狀在沿著垂直於基板表面之方向之一截面上為一直線形狀。換言之,壁表面15S1為無角隅(凸部)之一平坦表面。此壁表面15S1可為如圖1所示之一傾斜表面或可為垂直於基板表面之一表面。In this first interlayer insulating film 15A, a contact hole 150A is formed by etching. In the present embodiment, the contact hole 150A is formed by a one-step etching process. That is, the shape of one of the wall surfaces 15S1 of the contact hole 150A is a straight line shape in a section along a direction perpendicular to the surface of the substrate. In other words, the wall surface 15S1 is a flat surface of one of the cornerless ridges (convex portions). This wall surface 15S1 may be one of the inclined surfaces as shown in FIG. 1 or may be perpendicular to one surface of the substrate surface.

i型半導體層為展現實質本質導電率類型之一半導體層,例如,一未摻雜本質半導體層,且係由(例如)非晶矽(non-crystalline silicon/amorphous silicon)構成。i型半導體層16之厚度為(例如)400 nm至1000 nm。當此厚度變大時,光學敏感度可提高至一更大程度。隨後將描述此i型半導體層16之組態之細節。The i-type semiconductor layer is a semiconductor layer exhibiting a substantially intrinsic conductivity type, for example, an undoped intrinsic semiconductor layer, and is composed of, for example, non-crystalline silicon/amorphous silicon. The thickness of the i-type semiconductor layer 16 is, for example, 400 nm to 1000 nm. As this thickness becomes larger, the optical sensitivity can be increased to a greater extent. Details of the configuration of this i-type semiconductor layer 16 will be described later.

n型半導體層17係由(例如)非晶矽(non-crystalline silicon/amorphous silicon)構成並形成一n+區。此n型半導體層17之厚度為(例如)10 nm至50 nm。The n-type semiconductor layer 17 is composed of, for example, non-crystalline silicon/amorphous silicon and forms an n+ region. The thickness of the n-type semiconductor layer 17 is, for example, 10 nm to 50 nm.

上電極18係用於供應光電變換之參考電位之一電極且係由(例如)銦錫氧化物(ITO)之一透明導電膜形成。此上電極18係連接至一電源供應線(未展示)。第二層間絕緣膜15B係由(例如)SiO2 構成且具有(例如)400 nm之厚度。The upper electrode 18 is for supplying one of the reference potentials of the photoelectric conversion and is formed of a transparent conductive film of, for example, indium tin oxide (ITO). This upper electrode 18 is connected to a power supply line (not shown). The second interlayer insulating film 15B is composed of, for example, SiO 2 and has a thickness of, for example, 400 nm.

(i型半導體層16之組態之細節)(Details of configuration of the i-type semiconductor layer 16)

在本實施例中,i型半導體層16係如此提供以從第一層間絕緣膜15A之接觸孔150A之內部延伸至第一層間絕緣膜15A之頂部表面(具體言之至位置p1)。換言之,i型半導體層16之部分與第一層間絕緣膜15A之頂部表面重疊(疊加)。此外,i型半導體層16具有取決於第一層間絕緣膜15A之階層(接觸孔150A之壁表面之高度差)之一階狀結構(16S1)。如下文更詳細所述,由於此階狀結構16S1,應力出現在(應力施加至)i型半導體層16且促進裂紋之產生。In the present embodiment, the i-type semiconductor layer 16 is provided so as to extend from the inside of the contact hole 150A of the first interlayer insulating film 15A to the top surface of the first interlayer insulating film 15A (specifically, to the position p1). In other words, a portion of the i-type semiconductor layer 16 overlaps (superimposes) with the top surface of the first interlayer insulating film 15A. Further, the i-type semiconductor layer 16 has a stepped structure (16S1) depending on the level of the first interlayer insulating film 15A (the difference in height of the wall surface of the contact hole 150A). As described in more detail below, due to this stepped structure 16S1, stress occurs (stress is applied to) the i-type semiconductor layer 16 and promotes the generation of cracks.

此一i型半導體層16係沿著第一層間絕緣膜15A之接觸孔150A之壁表面15S1之形狀提供。即,第一層間絕緣膜15A之側上之i型半導體層16之表面(側表面)具有取決於壁表面15S1之上述形狀之表面形狀且在本實施例中為一平坦表面。This i-type semiconductor layer 16 is provided along the shape of the wall surface 15S1 of the contact hole 150A of the first interlayer insulating film 15A. That is, the surface (side surface) of the i-type semiconductor layer 16 on the side of the first interlayer insulating film 15A has a surface shape depending on the above-described shape of the wall surface 15S1 and is a flat surface in this embodiment.

此外,i型半導體層16具有不接觸基板11之側上之表面(n型半導體層17之相對側上之表面)中之p型半導體層14之一角隅部分16e。此角隅部分16e等同於對應於本實施例中之基板11之側上之末端邊緣之部分,其中i型半導體層16之側表面為一平坦表面。此一結構等效於接觸孔150A之下側開口係如此製作以在沿著基板表面之方向上圍繞p型半導體層14之形成區域之外部之結構。即,p型半導體層14之寬度Da小於接觸孔150A之下側開口之寬度Db。Further, the i-type semiconductor layer 16 has a corner portion 16e of the p-type semiconductor layer 14 in a surface (the surface on the opposite side of the n-type semiconductor layer 17) on the side not contacting the substrate 11. This corner portion 16e is equivalent to a portion corresponding to the end edge on the side of the substrate 11 in the present embodiment, wherein the side surface of the i-type semiconductor layer 16 is a flat surface. This structure is equivalent to the structure in which the lower side opening of the contact hole 150A is formed so as to surround the outside of the formation region of the p-type semiconductor layer 14 in the direction along the substrate surface. That is, the width Da of the p-type semiconductor layer 14 is smaller than the width Db of the opening on the lower side of the contact hole 150A.

[製造光電變換元件10之方法][Method of Manufacturing Photoelectric Conversion Element 10]

舉例而言,可以下列方式製造光電變換元件10。圖4A至圖8B係用於說明一種按階層順序製造光電變換元件10之方法之截面圖。For example, the photoelectric conversion element 10 can be manufactured in the following manner. 4A to 8B are cross-sectional views for explaining a method of manufacturing the photoelectric conversion element 10 in a hierarchical order.

首先,如圖4A所示,藉由用(例如)化學氣相沈積(CVD)將SiNx層13a及SiO2 層13b按該順序沈積而在基板11上形成絕緣膜13。在所形成之絕緣膜13上藉由(例如)CVD沈積一非晶矽(α-Si)層14A。First, as shown in FIG. 4A, an insulating film 13 is formed on the substrate 11 by depositing the SiNx layer 13a and the SiO 2 layer 13b in this order by, for example, chemical vapor deposition (CVD). An amorphous germanium (α-Si) layer 14A is deposited on the formed insulating film 13 by, for example, CVD.

接下來,如圖4B所示,在(例如)400℃至450℃之溫度下執行脫氫退火處理。隨後,如圖4C所示,藉由用(例如)準分子雷射退火(ELA)用(例如)具有308 nm之波長之雷射光L輻射α-Si層14A而使其轉化為多晶矽。藉此,在絕緣膜13上形成一層多晶矽(p-Si)層14B。Next, as shown in FIG. 4B, a dehydrogenation annealing treatment is performed at, for example, a temperature of 400 ° C to 450 ° C. Subsequently, as shown in FIG. 4C, the ?-Si layer 14A is converted into polycrystalline germanium by, for example, excimer laser annealing (ELA) by irradiating the ?-Si layer 14A with, for example, laser light L having a wavelength of 308 nm. Thereby, a polycrystalline germanium (p-Si) layer 14B is formed on the insulating film 13.

接下來,如圖5A所示,藉由(例如)離子植入用(例如)硼(B)離子摻雜所形成之p-Si層14B。藉此,在絕緣膜13上形成p型半導體層14以用作一p+區。隨後,如圖5B所示,藉由(例如)光微影將p型半導體層14圖案化。Next, as shown in FIG. 5A, the formed p-Si layer 14B is doped with, for example, boron (B) ions by, for example, ion implantation. Thereby, the p-type semiconductor layer 14 is formed on the insulating film 13 to serve as a p+ region. Subsequently, as shown in FIG. 5B, the p-type semiconductor layer 14 is patterned by, for example, photolithography.

接下來,如圖5C所示,藉由(例如)CVD將SiO2 層15A1、SiNx層15A2,及SiO2 層15A3按該順序沈積在基板11之整個表面上方,p型半導體層14係形成在基板11上方。此形成第一層間絕緣膜15A。Next, as shown in FIG. 5C, the SiO 2 layer 15A1, the SiNx layer 15A2, and the SiO 2 layer 15A3 are deposited in this order over the entire surface of the substrate 11 by, for example, CVD, and the p-type semiconductor layer 14 is formed in the Above the substrate 11. This forms the first interlayer insulating film 15A.

接下來,如圖6A所示,藉由(例如)光微影在與p型半導體層14相對之第一層間絕緣膜15A之區域中形成接觸孔150A。在此步驟中,在本實施例中,藉由一次性(一步驟)蝕刻程序(諸如乾蝕刻)移除第一層間絕緣膜15A中之三層,即SiO2 層15A1、SiNx層15A2及SiO2 層15A3。藉此,形成具有平坦壁表面15S1之接觸孔150A。此時,蝕刻係如此執行使得接觸孔150A之下側開口變得大於p型半導體層14(圍繞p型半導體層14之外部)。此使得將在i型半導體層16中製作之上述角隅部分16e可在下一步驟中形成。Next, as shown in FIG. 6A, a contact hole 150A is formed in a region of the first interlayer insulating film 15A opposed to the p-type semiconductor layer 14 by, for example, photolithography. In this step, in the present embodiment, three layers of the first interlayer insulating film 15A, that is, the SiO 2 layer 15A1 and the SiNx layer 15A2, are removed by a one-time (one-step) etching process (such as dry etching). SiO 2 layer 15A3. Thereby, the contact hole 150A having the flat wall surface 15S1 is formed. At this time, the etching is performed such that the lower side opening of the contact hole 150A becomes larger than the p-type semiconductor layer 14 (around the outside of the p-type semiconductor layer 14). This allows the above-described corner portion 16e to be formed in the i-type semiconductor layer 16 to be formed in the next step.

接下來,如圖6B所示,藉由(例如)CVD以填充接觸孔150A之方式將i型半導體層16及n型半導體層17按該順序沈積在第一層間絕緣膜15A上方。藉此,在i型半導體層16中形成取決於接觸孔150A之高度差之階狀結構16S1。根據具有此一階狀結構16S1之i型半導體層16之表面形狀形成n型半導體層17。Next, as shown in FIG. 6B, the i-type semiconductor layer 16 and the n-type semiconductor layer 17 are deposited in this order over the first interlayer insulating film 15A by, for example, CVD filling the contact holes 150A. Thereby, the stepped structure 16S1 depending on the height difference of the contact hole 150A is formed in the i-type semiconductor layer 16. The n-type semiconductor layer 17 is formed in accordance with the surface shape of the i-type semiconductor layer 16 having the first-order structure 16S1.

接下來,如圖7A所示,所形成之i型半導體層16及n型半導體層17係藉由例如光微影圖案化為一預定形狀。此時,i型半導體層16及n型半導體層17係如此圖案化以在至第一層間絕緣膜15A上之預定位置p1之範圍中與第一層間絕緣膜15A重疊。在此圖案化中,第一層間絕緣膜15A之SiO2 層15A3用作一蝕刻停止層。Next, as shown in FIG. 7A, the formed i-type semiconductor layer 16 and n-type semiconductor layer 17 are patterned into a predetermined shape by, for example, photolithography. At this time, the i-type semiconductor layer 16 and the n-type semiconductor layer 17 are patterned in such a manner as to overlap the first interlayer insulating film 15A in a range to a predetermined position p1 on the first interlayer insulating film 15A. In this patterning, the SiO 2 layer 15A3 of the first interlayer insulating film 15A serves as an etch stop layer.

接下來,如圖7B所示,藉由(例如)CVD將第二層間絕緣膜15B沈積在基板11之整個表面上方。Next, as shown in FIG. 7B, a second interlayer insulating film 15B is deposited over the entire surface of the substrate 11 by, for example, CVD.

接下來,如圖8A所示,藉由(例如)光微影在與n型半導體層17相對之第二層間絕緣膜15B之區域中形成接觸孔150B。隨後,如圖8B所示,藉由(例如)濺鍍沈積上電極18且藉此完成圖1所示之光電變換元件10。Next, as shown in FIG. 8A, a contact hole 150B is formed in a region of the second interlayer insulating film 15B opposed to the n-type semiconductor layer 17 by, for example, photolithography. Subsequently, as shown in FIG. 8B, the upper electrode 18 is deposited by, for example, sputtering and thereby the photoelectric conversion element 10 shown in Fig. 1 is completed.

[光電變換元件10之操作及效果][Operation and Effect of Photoelectric Conversion Element 10]

在光電變換元件10中,當經由上電極18從電源供應線(未展示)施加一預定電位時,(例如)從上電極18之側入射之光被變換為具有取決於所接收之光量之電荷量之信號電荷(光電變換)。藉由此光電變換而產生之信號電荷被提取作為來自p型半導體層14之側之光電流。In the photoelectric conversion element 10, when a predetermined potential is applied from a power supply line (not shown) via the upper electrode 18, for example, light incident from the side of the upper electrode 18 is converted into a charge having a quantity depending on the amount of received light. The amount of signal charge (photoelectric conversion). The signal charge generated by this photoelectric conversion is extracted as the photocurrent from the side of the p-type semiconductor layer 14.

如上所述,在此光電變換元件10中,i型半導體層16係如此提供以從接觸孔150A之內部延伸至第一層間絕緣膜15A之頂部表面。因此i型半導體層16具有取決於接觸孔150A之壁表面15S1之高度差之階狀結構16S1。若i型半導體層16具有此一階狀結構16S1,則應力施加至i型半導體層16且在(例如)階狀結構16S1之邊緣部分上易產生一裂紋(縫隙)。如上所述,為了提高光學敏感度,較佳增加i型半導體層16之膜厚度。但是,隨著膜厚度增加,壁表面15S1之高度差變大(階狀結構16S1之高度差變大)且因此更易於產生一裂紋。As described above, in this photoelectric conversion element 10, the i-type semiconductor layer 16 is provided so as to extend from the inside of the contact hole 150A to the top surface of the first interlayer insulating film 15A. Therefore, the i-type semiconductor layer 16 has a stepped structure 16S1 depending on the height difference of the wall surface 15S1 of the contact hole 150A. If the i-type semiconductor layer 16 has this first-order structure 16S1, stress is applied to the i-type semiconductor layer 16 and a crack (slit) is easily generated on, for example, the edge portion of the stepped structure 16S1. As described above, in order to increase the optical sensitivity, the film thickness of the i-type semiconductor layer 16 is preferably increased. However, as the film thickness increases, the height difference of the wall surface 15S1 becomes larger (the height difference of the stepped structure 16S1 becomes larger) and thus a crack is more likely to be generated.

下文將描述根據一比較實例之一光電變換元件(光電變換元件100)中之上述裂紋之影響。圖9係展示光電變換元件100中之一p型半導體層104、一接觸孔109A及一i型半導體層106(n型半導體層107)之形成區域之一示意平面圖。圖10A係沿著圖9中之A-A'線之一截面圖。圖10B係沿著B-B'線之一箭頭截面圖。光電變換元件100在基板101上方之一選擇區域中具有p型半導體層104(中間物為一絕緣膜103),且在p型半導體層104上提供具有與p型半導體層104相對之接觸孔109A之一第一層間絕緣膜105A。在對應於接觸孔109A之區域中提供i型半導體層106及n型半導體層107,且i型半導體層106在其頂部表面上具有一階層106S。The influence of the above crack in the photoelectric conversion element (photoelectric conversion element 100) according to a comparative example will be described below. 9 is a schematic plan view showing a region in which a p-type semiconductor layer 104, a contact hole 109A, and an i-type semiconductor layer 106 (n-type semiconductor layer 107) in the photoelectric conversion element 100 are formed. Figure 10A is a cross-sectional view taken along line A-A' of Figure 9. Figure 10B is an arrow cross-sectional view taken along line BB'. The photoelectric conversion element 100 has a p-type semiconductor layer 104 (the intermediate is an insulating film 103) in a selected region above the substrate 101, and a contact hole 109A having a surface opposite to the p-type semiconductor layer 104 is provided on the p-type semiconductor layer 104. One of the first interlayer insulating films 105A. The i-type semiconductor layer 106 and the n-type semiconductor layer 107 are provided in a region corresponding to the contact hole 109A, and the i-type semiconductor layer 106 has a layer 106S on the top surface thereof.

在上述比較實例之光電變換元件100中,由於歸因於階層106S之應力產生如圖11A所示之一裂紋X。所產生之裂紋X到達p型半導體層104。因此,裂紋X充當一洩漏路徑且產生暗電流。In the photoelectric conversion element 100 of the above comparative example, a crack X as shown in Fig. 11A is generated due to the stress attributed to the layer 106S. The generated crack X reaches the p-type semiconductor layer 104. Therefore, the crack X acts as a leak path and generates a dark current.

相比之下,在本實施例中,如圖11B所示,i型半導體層16具有角隅部分16e。因此,裂紋X係如此產生使得其起始點(終止點)為角隅部分16e。因此,由於角隅部分16e不接觸p型半導體層14,故即使當歸因於階狀結構16S1之裂紋X產生時裂紋X仍被引至與p型半導體層14分開之角隅部分16e,使得抑制裂紋X充當一洩漏路徑。圖12係藉由拍攝實際產生之裂紋X而獲得之圖像。In contrast, in the present embodiment, as shown in FIG. 11B, the i-type semiconductor layer 16 has a corner portion 16e. Therefore, the crack X is generated such that its starting point (end point) is the corner portion 16e. Therefore, since the corner portion 16e does not contact the p-type semiconductor layer 14, even when the crack X due to the step structure 16S1 is generated, the crack X is introduced to the corner portion 16e separated from the p-type semiconductor layer 14, thereby suppressing Crack X acts as a leak path. Fig. 12 is an image obtained by photographing the actually generated crack X.

如上所述,在本實施例中,在p型半導體層14與n型半導體層17之間具有i型半導體層16之PIN光電二極體結構中,i型半導體層16具有不接觸p型半導體層14之角隅部分16e。由於此特徵,舉例而言,在i型半導體層16具有取決於接觸孔150A之形狀之階狀結構16S1之情況中,即使當由於此階狀結構16S1而產生裂紋時,仍可抑制裂紋充當一洩漏路徑。此可抑制歸因於裂紋之暗電流增大。As described above, in the present embodiment, in the PIN photodiode structure having the i-type semiconductor layer 16 between the p-type semiconductor layer 14 and the n-type semiconductor layer 17, the i-type semiconductor layer 16 has no contact with the p-type semiconductor. The corner portion 16e of the layer 14. Due to this feature, for example, in the case where the i-type semiconductor layer 16 has the stepped structure 16S1 depending on the shape of the contact hole 150A, even when cracks are generated due to the stepped structure 16S1, cracks can be suppressed as one Leak path. This can suppress an increase in dark current due to cracks.

下文將詳細描述上述實施例之光電變換元件之修飾實例(修飾實例1至4)。在下列描述中,與根據上述實施例之光電變換元件10中之組成元件相同之組成元件被賦予相同元件符號且相應地省略其描述。Modified examples of the photoelectric conversion elements of the above embodiments (modification examples 1 to 4) will be described in detail below. In the following description, the same constituent elements as those in the photoelectric conversion element 10 according to the above embodiment are given the same element symbols and the description thereof is omitted accordingly.

<修飾實例1及2><Modification Examples 1 and 2>

圖13展示根據修飾實例1之一光電變換元件之截面組態。圖14展示根據修飾實例2之一光電變換元件之截面組態。修飾實例1及2之此等光電變換元件類似於上述實施例之光電變換元件10在基板11上方具有p型導電層14(中間物為絕緣層13)且在一第一層間絕緣膜15C之一接觸孔150C中提供i型半導體層16。在i型半導體層16上,根據i型半導體層16之表面形狀提供n型半導體層17。在此一組態中,i型半導體層16具有不接觸p型半導體層14之一角隅部分。為簡化起見,省略第二層間絕緣膜15B及上電極18之圖示表示。Fig. 13 shows a sectional configuration of a photoelectric conversion element according to one modification example 1. Fig. 14 shows a sectional configuration of a photoelectric conversion element according to Modification Example 2. The photoelectric conversion elements of the modified examples 1 and 2 are similar to the photoelectric conversion element 10 of the above-described embodiment, having a p-type conductive layer 14 over the substrate 11 (the intermediate is an insulating layer 13) and a first interlayer insulating film 15C. An i-type semiconductor layer 16 is provided in a contact hole 150C. On the i-type semiconductor layer 16, an n-type semiconductor layer 17 is provided in accordance with the surface shape of the i-type semiconductor layer 16. In this configuration, the i-type semiconductor layer 16 has a corner portion that does not contact the p-type semiconductor layer 14. For the sake of simplicity, the pictorial representation of the second interlayer insulating film 15B and the upper electrode 18 is omitted.

在修飾實例1及2中,藉由兩步驟蝕刻程序形成第一層間絕緣膜15C之接觸孔150C。具體言之,接觸孔150C之一壁表面15S2之形狀為在沿著垂直於基板表面之方向之一截面上具有複數個(在此等實例中為兩個)階層之一階梯形狀。換言之,壁表面15S2為具有一角隅(凸部)之一凹凸表面。類似於上述實施例中之第一層間絕緣膜15A藉由堆疊絕緣膜(諸如SiO2 層及一SiNx層)而獲得此一第一層間絕緣膜15C。In the modification examples 1 and 2, the contact hole 150C of the first interlayer insulating film 15C was formed by a two-step etching process. Specifically, one of the wall surfaces 15S2 of the contact hole 150C is shaped to have a step shape of a plurality of (two in these examples) sections in a section along a direction perpendicular to the surface of the substrate. In other words, the wall surface 15S2 is an uneven surface having one corner (convex). This first interlayer insulating film 15C is obtained by stacking an insulating film such as a SiO 2 layer and a SiNx layer, similarly to the first interlayer insulating film 15A in the above embodiment.

類似於上述實施例,i型半導體層16係如此提供以從第一層間絕緣膜15C之接觸孔150C之內部延伸至第一層間絕緣膜15C之頂部表面。此外,i型半導體層16係沿著接觸孔150C之壁表面15S2之形狀提供且因此具有取決於壁表面15S2之形狀之階狀結構(16S2)。Similar to the above embodiment, the i-type semiconductor layer 16 is provided so as to extend from the inside of the contact hole 150C of the first interlayer insulating film 15C to the top surface of the first interlayer insulating film 15C. Further, the i-type semiconductor layer 16 is provided along the shape of the wall surface 15S2 of the contact hole 150C and thus has a stepped structure (16S2) depending on the shape of the wall surface 15S2.

即,在此等修飾實例1及2中,i型半導體層16具有與上述接觸孔150C之壁表面形狀(階梯形狀)相關聯之複數個角隅部分16e1及16e2。角隅部分16e1等同於對應於基板11之側上之末端邊緣之部分且角隅部分16e2係朝向i型半導體層16之側表面中之第一層間絕緣膜15C突出之凸部部分。此外,較佳的是,此階梯形狀中之各自階狀部分之至少一階狀部分大於最靠近基板之階狀部分。在此等實例中,階梯形狀具有從基板側之按階狀部分s1及s2之順序排列之兩個階狀部分s1及s2且階狀部分s2大於階狀部分s1。由於此特徵,裂紋X更易於引至更與p型半導體層14分開之角隅部分16e2。That is, in the modification examples 1 and 2, the i-type semiconductor layer 16 has a plurality of corner portions 16e1 and 16e2 associated with the wall surface shape (step shape) of the contact hole 150C. The corner portion 16e1 is equivalent to a portion corresponding to the end edge on the side of the substrate 11 and the corner portion 16e2 is a convex portion that protrudes toward the first interlayer insulating film 15C of the side surface of the i-type semiconductor layer 16. Further, it is preferable that at least one step portion of each step portion of the step shape is larger than a step portion closest to the substrate. In these examples, the stepped shape has two stepped portions s1 and s2 arranged in the order of the stepped portions s1 and s2 on the substrate side, and the stepped portion s2 is larger than the stepped portion s1. Due to this feature, the crack X is more likely to be led to the corner portion 16e2 which is further separated from the p-type semiconductor layer 14.

如修飾實例1(圖13),上述角隅部分16e1及16e2可如此製作使得僅角隅部分16e2不接觸p型半導體層14且角隅部分16e1接觸p型半導體層14。即p型半導體層14之形成區域大於接觸孔150C之下側開口。As in the modification example 1 (Fig. 13), the above-mentioned corner portions 16e1 and 16e2 can be formed such that only the corner portion 16e2 does not contact the p-type semiconductor layer 14 and the corner portion 16e1 contacts the p-type semiconductor layer 14. That is, the formation region of the p-type semiconductor layer 14 is larger than the lower side opening of the contact hole 150C.

或者,如修飾實例2(圖14),角隅部分16e1與16e2皆不接觸p型半導體層14亦可行。即,p型半導體層14之形成區域可小於接觸孔150C之下側開口。Alternatively, as in the modification example 2 (Fig. 14), the corner portions 16e1 and 16e2 may not be in contact with the p-type semiconductor layer 14. That is, the formation region of the p-type semiconductor layer 14 may be smaller than the lower side opening of the contact hole 150C.

舉例而言,可以下列方式製造上述光電變換元件。在下文描述中,以修飾實例1之結構作為實例。圖15A至圖15C係用於說明製造根據修飾實例1之光電變換元件之方法之截面圖。For example, the above photoelectric conversion element can be manufactured in the following manner. In the following description, the structure of the modification example 1 is taken as an example. 15A to 15C are cross-sectional views for explaining a method of manufacturing the photoelectric conversion element according to Modification Example 1.

首先,類似於上述實施例之光電變換元件在基板11上方之一選擇區域中形成p型半導體層14(中間物為絕緣膜13)。隨後,如圖15A所示,藉由(例如)用CVD將(例如)SiO2 層15C1、SiNx層15C2、及SiO2 層15C3按該順序沈積而在絕緣膜13上形成第一層間絕緣膜15C。舉例而言,此膜沈積係如此執行使得SiNx層15C2與SiO2 層15C3之總膜厚度設定為大於SiO2 層15C1之膜厚度使得階狀部分s2可在隨後步驟中變得大於基板側上之階狀部分s1。在此等層中,SiO2 層15C3在隨後將i型半導體層16及n型半導體層17圖案化之步驟中用作一蝕刻停止層。First, a p-type semiconductor layer 14 (the intermediate is an insulating film 13) is formed in a selected region above the substrate 11 similarly to the photoelectric conversion element of the above embodiment. Subsequently, as shown in FIG. 15A, a first interlayer insulating film is formed on the insulating film 13 by, for example, CVD, for example, SiO 2 layer 15C1, SiNx layer 15C2, and SiO 2 layer 15C3 are deposited in this order. 15C. For example, the film deposition is performed such that the total film thickness of the SiNx layer 15C2 and the SiO 2 layer 15C3 is set larger than the film thickness of the SiO 2 layer 15C1 such that the step portion s2 can become larger than the substrate side in the subsequent step. Stepped portion s1. In these layers, the SiO 2 layer 15C3 serves as an etch stop layer in the subsequent step of patterning the i-type semiconductor layer 16 and the n-type semiconductor layer 17.

接下來,如圖15B所示,所形成之第一層間絕緣膜15C中之上兩個絕緣膜(SiO2 層15C3及SiNx層15C2)經歷乾蝕刻。接下來,如圖15C所示,所形成之第一層間絕緣膜15C(SiO2 層15C1)中之最下層絕緣膜經歷乾蝕刻。藉此,形成接觸孔150C。即,在本修飾實例中,藉由如上所述之兩步驟蝕刻程序形成具有帶上述階梯形狀之壁表面15S2之接觸孔150C。Next, as shown in FIG. 15B, the upper two insulating films (the SiO 2 layer 15C3 and the SiNx layer 15C2) in the formed first interlayer insulating film 15C are subjected to dry etching. Next, as shown in Fig. 15C, the lowermost insulating film of the formed first interlayer insulating film 15C (SiO 2 layer 15C1) is subjected to dry etching. Thereby, the contact hole 150C is formed. That is, in the present modification example, the contact hole 150C having the wall surface 15S2 having the above-described stepped shape is formed by the two-step etching process as described above.

隨後,類似於上述實施例,形成i型半導體層16及n型半導體層17(具體言之亦即第二層間絕緣膜15B及上電極18)以藉此完成圖13所示之光電變換元件。Subsequently, similarly to the above embodiment, the i-type semiconductor layer 16 and the n-type semiconductor layer 17 (specifically, the second interlayer insulating film 15B and the upper electrode 18) are formed to thereby complete the photoelectric conversion element shown in FIG.

i型半導體層16可具有如上述修飾實例1及2之複數個角隅部分16e1及16e2。類似於上述實施例,若其等之至少一角隅部分不接觸p型半導體層14,則即使當在i型半導體層16中產生一裂紋時,此裂紋仍可能被引至與p型半導體層14分開之角隅部分且可抑制洩漏路徑之發生。因此,可達成等效於上述實施例之有利效果。此外,裂紋可引至更與複數個角隅部分中與p型半導體層14分開之角隅部分。此可有效抑制裂紋之影響。The i-type semiconductor layer 16 may have a plurality of corner portions 16e1 and 16e2 of the modified examples 1 and 2 as described above. Similar to the above embodiment, if at least one corner portion thereof does not contact the p-type semiconductor layer 14, even when a crack is generated in the i-type semiconductor layer 16, the crack may be introduced to the p-type semiconductor layer 14 Separate corners and suppress the occurrence of leak paths. Therefore, an advantageous effect equivalent to the above embodiment can be achieved. Further, the crack may be introduced to a corner portion which is separated from the p-type semiconductor layer 14 in a plurality of corner portions. This can effectively suppress the influence of cracks.

<修飾實例3及4><Modification Examples 3 and 4>

圖16展示根據修飾實例3之一光電變換元件之截面組態。圖17展示根據修飾實例4之一光電變換元件之截面組態。類似於上述實施例之光電變換元件10,修飾實例3及4之此等光電變換元件在基板11上方具有p型半導體層14,且在一第一層間絕緣膜15A之接觸孔150A中具有一i型半導體層24且在i型半導體層24上具有一n型半導體層25。此外,接觸孔150A之壁表面15S1為一平坦表面。Fig. 16 shows a sectional configuration of a photoelectric conversion element according to Modification Example 3. Fig. 17 shows a sectional configuration of a photoelectric conversion element according to Modification Example 4. Similarly to the photoelectric conversion element 10 of the above embodiment, the photoelectric conversion elements of the modification examples 3 and 4 have the p-type semiconductor layer 14 above the substrate 11, and have a contact hole 150A in the first interlayer insulating film 15A. The i-type semiconductor layer 24 has an n-type semiconductor layer 25 on the i-type semiconductor layer 24. Further, the wall surface 15S1 of the contact hole 150A is a flat surface.

但是不同於上述實施例(及修飾實例1及2),在修飾實例3及4中,i型半導體層24係如此設置在接觸孔150A中以與其壁表面15S1分開。即,i型半導體層24具有不取決於接觸孔150A之壁表面15S1之形狀之一形狀,即無階狀結構之形狀。根據i型半導體層24之表面形狀在此一i型半導體層24上提供n型半導體層25。此外,由(例如)SiO2 構成之一保護膜26係如此形成以覆蓋此等i型半導體層24及n型半導體層25之側表面。i型半導體層24及n型半導體層25之功能及組成材料與上述i型半導體層16及n型半導體層17之功能及組成材料相同。However, unlike the above-described embodiments (and the modification examples 1 and 2), in the modification examples 3 and 4, the i-type semiconductor layer 24 is disposed in the contact hole 150A so as to be separated from the wall surface 15S1 thereof. That is, the i-type semiconductor layer 24 has a shape that does not depend on the shape of the wall surface 15S1 of the contact hole 150A, that is, the shape of the stepless structure. An n-type semiconductor layer 25 is provided on this i-type semiconductor layer 24 in accordance with the surface shape of the i-type semiconductor layer 24. Further, a protective film 26 composed of, for example, SiO 2 is formed so as to cover the side surfaces of the i-type semiconductor layer 24 and the n-type semiconductor layer 25. The functions and constituent materials of the i-type semiconductor layer 24 and the n-type semiconductor layer 25 are the same as those of the i-type semiconductor layer 16 and the n-type semiconductor layer 17.

在此等修飾實例3及4中,未特別限制p型半導體層14之形成區域。舉例而言,如修飾實例3,p型半導體層14可小於基板表面中之i型半導體24之形成區域(圖16)。在此情況中,i型半導體層24具有不接觸p型半導體層14之一角隅部分24e。In the modification examples 3 and 4, the formation regions of the p-type semiconductor layer 14 are not particularly limited. For example, as in the modification example 3, the p-type semiconductor layer 14 may be smaller than the formation region of the i-type semiconductor 24 in the surface of the substrate (FIG. 16). In this case, the i-type semiconductor layer 24 has a corner portion 24e that does not contact the p-type semiconductor layer 14.

或者,如修飾實例4,p型半導體層14可大於基板表面中之i型半導體24之形成區域(圖17)。在此情況中,i型半導體層24無不接觸p型半導體層14之角隅部分24e。但是,由於未產生裂紋,故不存在問題。Alternatively, as in the modification example 4, the p-type semiconductor layer 14 may be larger than the formation region of the i-type semiconductor 24 in the surface of the substrate (Fig. 17). In this case, the i-type semiconductor layer 24 does not contact the corner portion 24e of the p-type semiconductor layer 14. However, since no crack is generated, there is no problem.

舉例而言,可以下列方式製造上述光電變換元件。在下文描述中,以修飾實例3之結構為實例。圖18A至18C係用於說明製造根據修飾實例3之光電變換元件之方法之截面圖。For example, the above photoelectric conversion element can be manufactured in the following manner. In the following description, the structure of the modification example 3 is taken as an example. 18A to 18C are cross-sectional views for explaining a method of manufacturing the photoelectric conversion element according to Modification Example 3.

首先,類似於上述實施例之光電變換元件,在基板11上方之一選擇區域中形成p型半導體層14(中間物為絕緣膜13),且隨後沈積第一層間絕緣膜15A並形成接觸孔150A。隨後,如圖18A所示,藉由(例如)DVD以填充接觸孔150A之此一方式將i型半導體層24及n型半導體層25按照該順序沈積在第一層間絕緣膜15A上方。接下來,如圖18B所示,藉由(例如)光微影以i型半導體層24係與接觸孔150A之壁表面15S1分開之此一方式將所形成之i型半導體層24及n型半導體層25圖案化。接下來,如圖18C所示,在基板11之整個表面上方形成保護膜26。此保護膜26係如此形成以填充壁表面15S1與i型半導體層24之間之間隙。First, similarly to the photoelectric conversion element of the above embodiment, a p-type semiconductor layer 14 is formed in a selected region above the substrate 11 (the intermediate is an insulating film 13), and then a first interlayer insulating film 15A is deposited and a contact hole is formed. 150A. Subsequently, as shown in FIG. 18A, the i-type semiconductor layer 24 and the n-type semiconductor layer 25 are deposited over the first interlayer insulating film 15A in this order by, for example, a DVD in which the contact holes 150A are filled. Next, as shown in FIG. 18B, the formed i-type semiconductor layer 24 and n-type semiconductor are formed by, for example, photolithography in which the i-type semiconductor layer 24 is separated from the wall surface 15S1 of the contact hole 150A. Layer 25 is patterned. Next, as shown in FIG. 18C, a protective film 26 is formed over the entire surface of the substrate 11. This protective film 26 is formed to fill the gap between the wall surface 15S1 and the i-type semiconductor layer 24.

隨後,在與n型半導體層25相對之保護膜26之區域中形成一接觸孔。最後,類似於上述實施例形成上電極18且藉此完成圖16所示之光電變換元件。Subsequently, a contact hole is formed in a region of the protective film 26 opposed to the n-type semiconductor layer 25. Finally, the upper electrode 18 is formed similarly to the above embodiment and thereby the photoelectric conversion element shown in Fig. 16 is completed.

如上述修飾實例3及4,i型半導體層24可如此提供在接觸孔150A中以與壁表面15S1分開。由於此特徵,i型半導體層24不具有如上所述之一階狀結構且因此可抑制本身發生一裂紋。因此,可抑制一洩漏路徑並可達成幾乎等效於上述實施例之有利效果。As in the modification examples 3 and 4 described above, the i-type semiconductor layer 24 can be provided in the contact hole 150A to be separated from the wall surface 15S1. Due to this feature, the i-type semiconductor layer 24 does not have a stepped structure as described above and thus can suppress a crack from occurring itself. Therefore, a leak path can be suppressed and an advantageous effect almost equivalent to the above embodiment can be achieved.

下文將描述一光電變換裝置2(輻射成像裝置1)作為上述實施例及修飾實例1至4中所描述之光電變換元件之一應用實例。但是,上述光電變換元件之應用實例並不限於此一輻射成像裝置且光電變換元件亦可應用於(例如)一光學觸控感測器(觸控面板)。作為實例,以上述實施例中所描述之光電變換元件10作為上述數個光電變換元件之代表進行下列描述。An application example of a photoelectric conversion device 2 (radiation imaging device 1) as one of the photoelectric conversion elements described in the above embodiment and modification examples 1 to 4 will be described below. However, the application example of the above photoelectric conversion element is not limited to this radiation imaging device and the photoelectric conversion element can also be applied to, for example, an optical touch sensor (touch panel). As an example, the following description will be made with the photoelectric conversion element 10 described in the above embodiment as a representative of the above several photoelectric conversion elements.

[光電變換裝置2之組態][Configuration of photoelectric conversion device 2]

圖19展示根據應用實例之輻射成像裝置1中之光電變換裝置2之系統組態。藉由在此光電變換裝置2上提供一波長變換器40獲得輻射成像裝置1(圖20)。其執行以α射線、β射線、γ射線及X射線為代表之輻射之波長變換並基於輻射讀取資訊。Fig. 19 shows a system configuration of the photoelectric conversion device 2 in the radiation imaging device 1 according to the application example. The radiation imaging apparatus 1 (Fig. 20) is obtained by providing a wavelength converter 40 on the photoelectric conversion device 2. It performs wavelength conversion of radiation represented by α rays, β rays, γ rays, and X rays and reads information based on the radiation.

波長變換器40執行上述輻射之波長變換至光電變換裝置2之敏感度區。波長變換器40係將輻射(諸如X射線)變換為(舉例而言)可見光之一螢光本體(例如閃爍體)。具體而言,其係藉由在一有機平坦化膜或由(例如)旋塗玻璃材料構成之一平坦化膜之一頂部表面上形成(例如)CsI、NaI或CaF2之一螢光膜而獲得之一組件。The wavelength converter 40 performs the wavelength conversion of the above-described radiation to the sensitivity region of the photoelectric conversion device 2. Wavelength converter 40 converts radiation, such as X-rays, into, for example, a fluorescent body (eg, a scintillator) of visible light. Specifically, it is obtained by forming, for example, a fluorescent film of one of CsI, NaI or CaF2 on the top surface of one of the planarizing films formed of an organic planarizing film or, for example, a spin-on glass material. One of the components.

光電變換裝置2具有一基板11上之一像素單元112。圍繞此像素單元112提供由(例如)一列掃描單元(垂直驅動器)113、一水平選擇器114、一行掃描單元(水平驅動器)115及一系統控制器116組成之一周邊電路部分(驅動部分)。The photoelectric conversion device 2 has a pixel unit 112 on a substrate 11. A peripheral circuit portion (driving portion) composed of, for example, a column of scanning units (vertical drivers) 113, a horizontal selector 114, a row of scanning units (horizontal drivers) 115, and a system controller 116 is provided around the pixel unit 112.

在像素單元112中,各具有產生具有取決於入射光量之電荷量之光電荷且在內部積累光電荷之一光電變換器之單位像素20(下文通常簡稱作「像素」)係二維地配置為一矩陣。此單位像素20中所包含之光電變換器等效於上述實施例之光電變換元件10等等。在單位像素20中,針對各像素列提供(例如)兩個互連件(具體而言,列選擇線及重設控制線)作為下文將描述之一像素驅動線117。In the pixel unit 112, a unit pixel 20 (hereinafter, simply referred to as a "pixel") each having a photo-electric transducer that generates photocharges having a charge amount depending on the amount of incident light and internally accumulating photocharges is two-dimensionally configured as a matrix. The photoelectric transducer included in this unit pixel 20 is equivalent to the photoelectric conversion element 10 and the like of the above embodiment. In the unit pixel 20, for example, two interconnections (specifically, a column selection line and a reset control line) are provided for each pixel column as one of the pixel drive lines 117 which will be described later.

在像素單元112中,針對矩陣像素配置,沿著列方向(像素在像素列上的配置方向)為各像素列提供像素驅動線117且沿著行方向(像素在像素行上的配置方向)為各像素行提供一垂直信號線118。像素驅動線117傳輸一驅動信號用於從像素中讀出信號。在圖19中,像素驅動線117係展示為每一列之一互連件。但是,每一列之像素驅動線117之數量並不限於1。像素驅動線117之各者之一末端係連接至對應於列之各自一者之列掃描單元113之輸出終端。In the pixel unit 112, for the matrix pixel arrangement, the pixel driving lines 117 are provided for each pixel column along the column direction (the arrangement direction of the pixels on the pixel columns) and along the row direction (the arrangement direction of the pixels on the pixel rows) is Each pixel row provides a vertical signal line 118. The pixel drive line 117 transmits a drive signal for reading out signals from the pixels. In Figure 19, pixel drive lines 117 are shown as one interconnect per column. However, the number of pixel drive lines 117 of each column is not limited to one. One of the ends of each of the pixel drive lines 117 is connected to an output terminal of the column scanning unit 113 corresponding to one of the columns.

列掃描單元113係組態為具有一移位暫存器、一位址解碼器等等且係(例如)以逐列為基礎驅動像素單元112之各自像素之一像素驅動器。經由各自信垂直信號線118將自藉由列掃描單元113選擇性地掃描之像素列上之各自單位像素輸出之信號供應至水平選擇器114。水平選擇器114係組態為具有針對各垂直信號線118而提供之一放大器、一水平選擇開關等等。Column scan unit 113 is configured to have a shift register, a bit address decoder, etc. and to drive, for example, one of the respective pixels of pixel unit 112 on a column by column basis. The signals output from the respective unit pixels on the pixel columns selectively scanned by the column scanning unit 113 are supplied to the horizontal selector 114 via the respective vertical signal lines 118. The horizontal selector 114 is configured to have one of the amplifiers, a horizontal selection switch, and the like provided for each of the vertical signal lines 118.

行掃描單元115係組態為具有一移位暫存器、一位址解碼器等等且掃描並循序驅動水平選擇器114之各自水平選擇開關。藉由行掃描單元115之此選擇性掃描,經由各自垂直信號線118傳輸之各自像素之信號循序輸出至一水平信號線119並經由此水平信號線119傳輸至基板11之外部。Row scan unit 115 is configured to have a shift register, a bit address decoder, etc. and scan and sequentially drive respective horizontal select switches of horizontal selector 114. By this selective scanning of the row scanning unit 115, the signals of the respective pixels transmitted via the respective vertical signal lines 118 are sequentially outputted to a horizontal signal line 119 and transmitted to the outside of the substrate 11 via the horizontal signal line 119.

藉由使用形成在基板11上之一電路與一外部控制IC之一者或兩者組態由列掃描單元113、水平選擇器114、行掃描單元115及水平信號線119組成之電路部分。或者,此電路部分可形成在藉由一電纜或類似物而連接至基板11之另一基板上。The circuit portion composed of the column scanning unit 113, the horizontal selector 114, the row scanning unit 115, and the horizontal signal line 119 is configured by using one or both of the circuits formed on the substrate 11 and one of the external control ICs. Alternatively, the circuit portion may be formed on another substrate that is connected to the substrate 11 by a cable or the like.

系統控制器116接收從基板11之外部賦予之一時脈、命令操作模式之資料等等並輸出光電變換裝置2之外部資訊之資料等等。此外,系統控制器116具有一時序產生器,該時序產生器產生各種類型之時序信號並基於藉由此時序產生器所產生之各種類型之時序信號控制包含列掃描單元113、水平選擇器114、行掃描單元115等等之周邊電路部分之驅動。The system controller 116 receives a data given from the outside of the substrate 11, a data of a command operation mode, and the like, and outputs information of external information of the photoelectric conversion device 2 and the like. In addition, the system controller 116 has a timing generator that generates various types of timing signals and controls the column-containing scanning unit 113, the horizontal selector 114, based on various types of timing signals generated by the timing generator. The driving of the peripheral circuit portion of the row scanning unit 115 and the like.

(單位像素20之組態)(Configuration of unit pixel 20)

在單位像素20中,連同光電變換元件10提供像素電晶體(諸如重設電晶體、讀出電晶體及列選擇電晶體)。此等像素電晶體各為(例如)N通道場效電晶體且使用基於矽之半導體(諸如微晶矽或多晶矽)。或者,可使用氧化物半導體(諸如銦鎵鋅氧化物(InGaZnO)或氧化鋅(ZnO))。In the unit pixel 20, a pixel transistor such as a reset transistor, a read transistor, and a column selection transistor is provided together with the photoelectric conversion element 10. These pixel transistors are each, for example, an N-channel field effect transistor and use a germanium-based semiconductor such as microcrystalline germanium or polysilicon. Alternatively, an oxide semiconductor such as indium gallium zinc oxide (InGaZnO) or zinc oxide (ZnO) may be used.

圖21展示此單位像素20之截面結構。如圖21所示,在單位像素20中,在相同基板11上方形成作為光電變換元件10之一光電變換器20A及由一讀出電晶體等等組成之一電晶體部分20B。此外,絕緣膜13、第一層間絕緣膜15A及第二層間絕緣膜15B亦各用作由光電變換器20A與電晶體部分20B共用之一共同層。FIG. 21 shows a cross-sectional structure of this unit pixel 20. As shown in FIG. 21, in the unit pixel 20, a photoelectric transducer 20A as one of the photoelectric conversion elements 10 and a transistor portion 20B composed of a readout transistor or the like are formed over the same substrate 11. Further, the insulating film 13, the first interlayer insulating film 15A, and the second interlayer insulating film 15B are also used as a common layer shared by the photoelectric transducer 20A and the transistor portion 20B.

電晶體部分20B具有介於基板11與絕緣膜13(閘極絕緣膜)之間之由(例如)鈦(Ti)、鋁(Al)、鉬(Mo)、鎢(W)或鉻(Cr)構成之一閘極電極12。在絕緣膜13上,形成包含(例如)一p+區、一i區及一n+區之一半導體層19。此外,在半導體層19中提供輕微摻雜汲極(LDD)19a及19b以減小洩漏電流。半導體層19係由(例如)微晶矽或多晶矽構成。此半導體層19係連接至包含用於讀出之一信號線及各種類型之互連件之一互連層21。在與互連層21相同之層中,提供連接至光電變換器20A之上電極18之一提取電極18a。此等互連層21及提取電極18a係由(例如)Ti、Al、Mo、W或Cr構成。The transistor portion 20B has a structure between the substrate 11 and the insulating film 13 (gate insulating film), for example, titanium (Ti), aluminum (Al), molybdenum (Mo), tungsten (W) or chromium (Cr). One of the gate electrodes 12 is formed. On the insulating film 13, a semiconductor layer 19 including, for example, a p+ region, an i region, and an n+ region is formed. Further, lightly doped drain electrodes (LDD) 19a and 19b are provided in the semiconductor layer 19 to reduce leakage current. The semiconductor layer 19 is composed of, for example, microcrystalline germanium or polycrystalline germanium. The semiconductor layer 19 is connected to an interconnect layer 21 comprising one of the interconnects for reading one of the signal lines and various types. In the same layer as the interconnect layer 21, an extraction electrode 18a connected to one of the electrodes 18 above the photoelectric transducer 20A is provided. These interconnect layers 21 and extraction electrodes 18a are composed of, for example, Ti, Al, Mo, W or Cr.

上文已基於實施例及修飾實例描述本揭示內容。但是,本揭示內容並不限於上述實施例等等且可進行各種修飾。舉例而言,在上述實施例等等中,p型半導體層、i型半導體層及n型半導體層係依該順序從基板側堆疊。但是,半導體層可從基板側按n型半導體層、i型半導體層及p型半導體層之順序堆疊。The disclosure has been described above based on the examples and modification examples. However, the present disclosure is not limited to the above embodiments and the like and various modifications can be made. For example, in the above-described embodiment and the like, the p-type semiconductor layer, the i-type semiconductor layer, and the n-type semiconductor layer are stacked from the substrate side in this order. However, the semiconductor layer may be stacked in the order of the n-type semiconductor layer, the i-type semiconductor layer, and the p-type semiconductor layer from the substrate side.

此外,在上述修飾實例1及2中,以其中接觸孔之壁表面具有兩個階狀部分之一結構作為實例。但是,階狀部分之數量可為三個或三個以上。即,可藉由在形成接觸孔時執行三步驟或更多步驟蝕刻形成具有三個或三個以上階層之一階梯形狀。此外,在此情況中,接觸孔係如此形成使得形成大於最靠近基板之階狀部分之至少一階狀部分。Further, in the above modification examples 1 and 2, a structure in which the wall surface of the contact hole has one of two stepped portions is taken as an example. However, the number of step portions may be three or more. That is, one step shape having one or three or more levels can be formed by performing three or more steps of etching while forming the contact holes. Further, in this case, the contact holes are formed such that at least a stepped portion larger than the stepped portion closest to the substrate is formed.

此外,無須包含針對上述實施例等等所述之各自層之所有且相反地可包含另一層。舉例而言,由(例如)SiN構成之一保護膜可進一步形成在上電極18上。Furthermore, it is not necessary to include all of the respective layers described for the above-described embodiments and the like and may instead comprise another layer. For example, a protective film composed of, for example, SiN may be further formed on the upper electrode 18.

本揭示內容含有與在2010年8月10日向日本專利局申請的日本優先權專利申請案JP 2010-179555中所揭示之標的相關之標的,該案之全文以引用的方式併入本文中。The present disclosure contains subject matter related to that disclosed in Japanese Priority Patent Application No. 2010-179555, filed on Jan.

1...輻射成像裝置1. . . Radiation imaging device

2...光電變換裝置2. . . Photoelectric conversion device

10...光電變換元件10. . . Photoelectric conversion element

11...基板11. . . Substrate

12...閘極電極12. . . Gate electrode

13...絕緣膜13. . . Insulating film

13a...SiNx層13a. . . SiNx layer

13b...SiO213b. . . SiO 2 layer

14...p型半導體層14. . . P-type semiconductor layer

14A...非晶矽(α-Si)層14A. . . Amorphous germanium (α-Si) layer

14B...多晶矽(p-Si)層14B. . . Polycrystalline germanium (p-Si) layer

15A...第一層間絕緣膜15A. . . First interlayer insulating film

15A1...SiO215A1. . . SiO 2 layer

15A2...SiNx層15A2. . . SiNx layer

15A3...SiO215A3. . . SiO 2 layer

15B...第二層間絕緣膜15B. . . Second interlayer insulating film

15C...第一層間絕緣膜15C. . . First interlayer insulating film

15C1...SiO215C1. . . SiO 2 layer

15C2...SiNx層15C2. . . SiNx layer

15C3...SiO215C3. . . SiO 2 layer

15S1...壁表面15S1. . . Wall surface

15S2...壁表面15S2. . . Wall surface

16...i型半導體層16. . . I-type semiconductor layer

16e...角隅部分16e. . . Corner section

16e1...角隅部分16e1. . . Corner section

16e2...角隅部分16e2. . . Corner section

16h...下提取互連件16h. . . Lower extraction interconnect

16S1...階狀結構16S1. . . Step structure

16S2...階狀結構16S2. . . Step structure

17...n型半導體層17. . . N-type semiconductor layer

18...上電極18. . . Upper electrode

18a...提取電極18a. . . Extraction electrode

19...半導體層19. . . Semiconductor layer

19a...輕微摻雜汲極(LDD)19a. . . Lightly doped bungee (LDD)

19b...輕微摻雜汲極(LDD)19b. . . Lightly doped bungee (LDD)

20...單位像素20. . . Unit pixel

20A...光電變換器20A. . . Photoelectric converter

20B...電晶體部分20B. . . Part of the transistor

21...互連層twenty one. . . Interconnect layer

24...i型半導體層twenty four. . . I-type semiconductor layer

24e...角隅部分24e. . . Corner section

25...n型半導體層25. . . N-type semiconductor layer

26...保護膜26. . . Protective film

40...波長變換器40. . . Wavelength converter

100...光電變換元件100. . . Photoelectric conversion element

101...基板101. . . Substrate

103...絕緣膜103. . . Insulating film

104...p型半導體層104. . . P-type semiconductor layer

105A...第一層間絕緣膜105A. . . First interlayer insulating film

106...i型半導體層106. . . I-type semiconductor layer

106S...階層106S. . . Class

107...n型半導體層107. . . N-type semiconductor layer

109A...接觸孔109A. . . Contact hole

112...像素單元112. . . Pixel unit

113...列掃描單元113. . . Column scanning unit

114...水平選擇器114. . . Horizontal selector

115...行掃描單元(水平驅動器)115. . . Line scanning unit (horizontal drive)

116...系統控制器116. . . System controller

117...像素驅動線117. . . Pixel drive line

118...垂直信號線118. . . Vertical signal line

119...水平信號線119. . . Horizontal signal line

150A...接觸孔150A. . . Contact hole

150B...接觸孔150B. . . Contact hole

150C...接觸孔150C. . . Contact hole

A-A'...線A-A'. . . line

B-B'...線B-B'. . . line

Da...寬度Da. . . width

Db...寬度Db. . . width

L...雷射光L. . . laser

P1...預定位置P1. . . Predetermined location

S1...階狀部分S1. . . Stepped part

S2...階狀部分S2. . . Stepped part

X...裂紋X. . . crack

圖1係展示根據本揭示內容之一實施例之一光電變換元件之組態之一截面圖;1 is a cross-sectional view showing a configuration of a photoelectric conversion element according to an embodiment of the present disclosure;

圖2係展示圖1所示之光電變換元件之一p型半導體層、一i型半導體層(n型半導體層)及一孔部分之平面組態之一示意圖;2 is a schematic view showing a planar configuration of a p-type semiconductor layer, an i-type semiconductor layer (n-type semiconductor layer), and a hole portion of the photoelectric conversion element shown in FIG. 1;

圖3係展示沿著圖2所示之B-B'線之光電變換元件之組態之一截面圖;Figure 3 is a cross-sectional view showing the configuration of the photoelectric conversion element along the line BB' shown in Figure 2;

圖4A至圖4C係用於說明製造圖1所示之光電變換元件之方法之截面圖;4A to 4C are cross-sectional views for explaining a method of manufacturing the photoelectric conversion element shown in Fig. 1;

圖5A至圖5C係展示圖4A至圖4C之後續步驟之截面圖;5A to 5C are cross-sectional views showing subsequent steps of FIGS. 4A to 4C;

圖6A至圖6B係展示圖5A至圖5C之後續步驟之截面圖;6A to 6B are cross-sectional views showing subsequent steps of Figs. 5A to 5C;

圖7A至圖7B係展示圖6A及圖6B之後續步驟之截面圖;7A-7B are cross-sectional views showing subsequent steps of FIGS. 6A and 6B;

圖8A至圖8B係展示圖7A及圖7B之後續步驟之截面圖;8A to 8B are cross-sectional views showing subsequent steps of Figs. 7A and 7B;

圖9係展示根據一比較實例之一p型半導體層、一i型半導體層(n型半導體層)及一孔部分之平面組態之一示意圖;9 is a schematic view showing a planar configuration of a p-type semiconductor layer, an i-type semiconductor layer (n-type semiconductor layer), and a hole portion according to a comparative example;

圖10A及圖10B展示圖9所示之光電變換元件之截面組態:圖10A係沿著A-A'線之一截面圖且圖10B係沿著B-B'線之一截面圖;10A and 10B show a cross-sectional configuration of the photoelectric conversion element shown in FIG. 9: FIG. 10A is a cross-sectional view taken along line AA' and FIG. 10B is a cross-sectional view taken along line BB';

圖11A及圖11B係用於說明i型半導體層中所產生之一裂紋之示意圖:圖11A展示比較實例且圖11B展示實施例;11A and 11B are schematic views for explaining one of the cracks generated in the i-type semiconductor layer: FIG. 11A shows a comparative example and FIG. 11B shows an embodiment;

圖12係i型半導體層中所產生之一裂紋之一照片;Figure 12 is a photograph of one of the cracks generated in the i-type semiconductor layer;

圖13係展示根據修飾實例1之一光電變換元件之組態之一截面圖;Figure 13 is a cross-sectional view showing the configuration of a photoelectric conversion element according to Modification Example 1;

圖14係展示根據修飾實例2之一光電變換元件之組態之一截面圖;Figure 14 is a cross-sectional view showing a configuration of a photoelectric conversion element according to Modification Example 2;

圖15A至圖15C係用於說明製造圖13所示之光電變換元件之方法之截面圖;15A to 15C are cross-sectional views for explaining a method of manufacturing the photoelectric conversion element shown in Fig. 13;

圖16係展示根據修飾實例3之一光電變換元件之組態之一截面圖;Figure 16 is a cross-sectional view showing the configuration of a photoelectric conversion element according to Modification Example 3;

圖17係展示根據修飾實例4之一光電變換元件之組態之一截面圖;Figure 17 is a cross-sectional view showing the configuration of a photoelectric conversion element according to Modification Example 4;

圖18A至圖18C係用於說明製造圖16所示之光電變換元件之方法之截面圖;18A to 18C are cross-sectional views for explaining a method of manufacturing the photoelectric conversion element shown in Fig. 16;

圖19係根據一應用實例之一光電變換裝置之一系統組態圖;Figure 19 is a system configuration diagram of a photoelectric conversion device according to an application example;

圖20係展示藉由組合光電變換裝置與一波長變換器而製作之一輻射成像裝置之一示意圖;及20 is a schematic view showing one of radiation imaging devices fabricated by combining a photoelectric conversion device and a wavelength converter; and

圖21係展示連同一電晶體之一單位像素之一組態之一截面圖。Figure 21 is a cross-sectional view showing one of the configuration of one unit pixel of the same transistor.

10...光電變換元件10. . . Photoelectric conversion element

11...基板11. . . Substrate

13...絕緣膜13. . . Insulating film

13a...SiNx層13a. . . SiNx layer

13b...SiO213b. . . SiO 2 layer

14...p型半導體層14. . . P-type semiconductor layer

15A...第一層間絕緣膜15A. . . First interlayer insulating film

15A1...SiO215A1. . . SiO 2 layer

15A2...SiNx層15A2. . . SiNx layer

15A3...SiO215A3. . . SiO 2 layer

15B...第二層間絕緣膜15B. . . Second interlayer insulating film

15S1...壁表面15S1. . . Wall surface

16...i型半導體層16. . . I-type semiconductor layer

16e...角隅部分16e. . . Corner section

16S1...階狀結構16S1. . . Step structure

17...n型半導體層17. . . N-type semiconductor layer

18...上電極18. . . Upper electrode

150A...接觸孔150A. . . Contact hole

Da...寬度Da. . . width

Db...寬度Db. . . width

P1...預定位置P1. . . Predetermined location

Claims (15)

一種光電變換元件,其包括:一第一半導體層,其係(i)經組態以展現一第一導電率類型、(ii)設置在一基板上方、及(iii)經組態以作為一電極,而可操作以讀取一信號電荷;一第二半導體層,其係(i)經組態以展現一第二導電率類型、且(ii)係設置為與該第一半導體層相對;及一第三半導體層,其係(i)設置在該第一半導體層與該第二半導體層之間、(ii)經組態以展現一實質上本質導電率類型、及(iii)具有不接觸該第一半導體層之至少一角隅部分,其中該第一半導體層係內嵌於該第三半導體層中,使得背向(facing away from)該第二半導體層之該第一半導體層之一最低表面與亦背向該第二半導體層之該第三半導體層之一最低表面為共平面。 A photoelectric conversion element comprising: a first semiconductor layer (i) configured to exhibit a first conductivity type, (ii) disposed above a substrate, and (iii) configured to function as a An electrode operable to read a signal charge; a second semiconductor layer (i) configured to exhibit a second conductivity type and (ii) disposed opposite the first semiconductor layer; And a third semiconductor layer (i) disposed between the first semiconductor layer and the second semiconductor layer, (ii) configured to exhibit a substantially intrinsic conductivity type, and (iii) having no Contacting at least one corner portion of the first semiconductor layer, wherein the first semiconductor layer is embedded in the third semiconductor layer such that one of the first semiconductor layers facing away from the second semiconductor layer The lowest surface is coplanar with the lowest surface of one of the third semiconductor layers that also faces away from the second semiconductor layer. 如請求項1之光電變換元件,其進一步包括:一層間絕緣膜,其係經組態以具有與該第一半導體層相對之一通孔且係提供在該基板上方,其中:該第三半導體層係從該通孔之一內部延伸至該層間絕緣膜之一頂部表面且具有取決於該通孔之一壁表面之形狀之一階狀結構。 The photoelectric conversion element of claim 1, further comprising: an interlayer insulating film configured to have a via hole opposite to the first semiconductor layer and provided over the substrate, wherein: the third semiconductor layer Extending from one of the through holes to a top surface of one of the interlayer insulating films and having a stepped structure depending on the shape of one of the wall surfaces of the through hole. 如請求項2之光電變換元件,其中:該層間絕緣膜之一側上之該第三半導體層之一表面係 平坦,且該角隅部分為該基板之一側上之該第三半導體層之一末端邊緣部分。 The photoelectric conversion element of claim 2, wherein: a surface of the third semiconductor layer on one side of the interlayer insulating film Flat, and the corner portion is one end edge portion of the third semiconductor layer on one side of the substrate. 如請求項2之光電變換元件,其中:該基板之一側上之該通孔之一開口係提供以在沿著一基板表面之一方向上圍繞該第一半導體層之一形成區域。 The photoelectric conversion element of claim 2, wherein: one of the openings on one side of the substrate is provided to form a region around one of the first semiconductor layers in a direction along a surface of a substrate. 如請求項2之光電變換元件,其中:該層間絕緣膜之一側上之該第三半導體層之一表面形狀在沿著垂直於一基板表面之一方向之一截面上為一階梯形狀,且該角隅部分為該基板之一側上之該第三半導體層之一末端邊緣部分或朝向該層間絕緣膜之側突出之一突出部分。 The photoelectric conversion element of claim 2, wherein: a surface shape of one of the third semiconductor layers on one side of the interlayer insulating film is a stepped shape in a section along a direction perpendicular to a surface of a substrate, and The corner portion is one end edge portion of the third semiconductor layer on one side of the substrate or a protruding portion protruding toward the side of the interlayer insulating film. 如請求項5之光電變換元件,其中:該階梯形狀中之複數個階狀部分之至少一階狀部分係大於最靠近該基板之一階狀部分。 The photoelectric conversion element of claim 5, wherein: at least a stepped portion of the plurality of stepped portions of the stepped shape is larger than a stepped portion closest to the substrate. 如請求項1之光電變換元件,其進一步包括:一層間絕緣膜,其係經組態以具有與該第一半導體層相對之一通孔且係提供在該基板上方,其中:該第三半導體層係提供在該通孔中以與該通孔之一壁表面分開。 The photoelectric conversion element of claim 1, further comprising: an interlayer insulating film configured to have a via hole opposite to the first semiconductor layer and provided over the substrate, wherein: the third semiconductor layer A hole is provided in the through hole to be separated from a wall surface of the through hole. 如請求項1之光電變換元件,其中: 該光電變換元件係一正-本質-負光電二極體。 The photoelectric conversion element of claim 1, wherein: The photoelectric conversion element is a positive-essential-negative photodiode. 一種用於製造一光電變換元件之方法,該方法包括:在一基板上方之一選擇區域中形成展現一第一導電率類型之一第一半導體層;在該第一半導體層上形成一第三半導體層,該第三半導體層具有不接觸該第一半導體層之至少一角隅部分且展現一實質上本質導電率類型;及在該第三半導體層上形成展現一第二導電率類型之一第二半導體層,其中該第一半導體層係內嵌於該第三半導體層中,使得背向該第二半導體層之該第一半導體層之一最低表面與亦背向該第二半導體層之該第三半導體層之一最低表面為共平面。 A method for fabricating a photoelectric conversion element, the method comprising: forming a first semiconductor layer exhibiting a first conductivity type in a selected region above a substrate; forming a third on the first semiconductor layer a semiconductor layer having a contact with at least one corner portion of the first semiconductor layer and exhibiting a substantially intrinsic conductivity type; and forming a second conductivity type on the third semiconductor layer a second semiconductor layer, wherein the first semiconductor layer is embedded in the third semiconductor layer such that a lower surface of the first semiconductor layer facing away from the second semiconductor layer and the back side of the second semiconductor layer The lowest surface of one of the third semiconductor layers is coplanar. 如請求項9之用於製造一光電變換元件之方法,該方法進一步包括:在該第一半導體層形成之後及在該第三半導體層形成之前,在該基板上方形成具有與該第一半導體層相對之一通孔之一層間絕緣膜,其中:在形成一第三半導體層時,該第三半導體層係如此形成以從該通孔之一內部延伸至該層間絕緣膜之一頂部表面。 A method for manufacturing a photoelectric conversion element according to claim 9, the method further comprising: forming a first semiconductor layer over the substrate after the first semiconductor layer is formed and before the third semiconductor layer is formed An interlayer insulating film of one of the via holes, wherein: when a third semiconductor layer is formed, the third semiconductor layer is formed to extend from inside one of the via holes to a top surface of the interlayer insulating film. 如請求項10之用於製造一光電變換元件之方法,其中:在形成一層間絕緣膜時,該通孔係藉由一個步驟蝕刻 程序形成使得該通孔之一壁表面為一平坦表面。 A method for manufacturing a photoelectric conversion element according to claim 10, wherein: when an interlayer insulating film is formed, the via hole is etched by one step The program is formed such that one of the wall surfaces of the through hole is a flat surface. 如請求項10之用於製造一光電變換元件之方法,其中:該通孔係如此形成使得該基板之一側上之該通孔之一開口在沿著一基板表面之一方向上圍繞該第一半導體層之一形成區域之一外部。 A method for manufacturing a photoelectric conversion element according to claim 10, wherein: the through hole is formed such that one of the through holes on one side of the substrate surrounds the first one in a direction along a surface of a substrate One of the semiconductor layers is formed outside of one of the regions. 如請求項10之用於製造一光電變換元件之方法,其中:在形成一層間絕緣膜時,該通孔係藉由一個兩步驟或多步驟蝕刻程序形成使得該通孔之一壁表面之形狀為一階梯形狀。 A method for manufacturing a photoelectric conversion element according to claim 10, wherein: in forming an interlayer insulating film, the via hole is formed by a two-step or multi-step etching process such that a shape of a wall surface of the one via hole It is a step shape. 如請求項13之用於製造一光電變換元件之方法,其中:該通孔係如此形成使得該階梯形狀中之複數個階狀部分之至少一階狀部分大於最靠近該基板之一階狀部分。 A method for manufacturing a photoelectric conversion element according to claim 13, wherein: the through hole is formed such that at least a stepped portion of the plurality of stepped portions in the stepped shape is larger than a stepped portion closest to the substrate . 如請求項9之用於製造一光電變換元件之方法,該方法進一步包括:在該第一半導體層形成之後及在該第三半導體層形成之前,在該基板上方形成具有與該第一半導體層相對之一通孔之一層間絕緣膜,其中:在形成一第三半導體層時,該第三半導體層係如此形成在該層間絕緣膜之該通孔中以與該通孔之一壁表面分開。 A method for manufacturing a photoelectric conversion element according to claim 9, the method further comprising: forming a first semiconductor layer over the substrate after the first semiconductor layer is formed and before the third semiconductor layer is formed An interlayer insulating film of one of the through holes, wherein: when a third semiconductor layer is formed, the third semiconductor layer is formed in the through hole of the interlayer insulating film to be separated from a wall surface of the through hole.
TW100121879A 2010-08-10 2011-06-22 Photoelectric conversion element and method for manufacturing same TWI478330B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010179555A JP2012039004A (en) 2010-08-10 2010-08-10 Photoelectric conversion element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201208052A TW201208052A (en) 2012-02-16
TWI478330B true TWI478330B (en) 2015-03-21

Family

ID=45564215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121879A TWI478330B (en) 2010-08-10 2011-06-22 Photoelectric conversion element and method for manufacturing same

Country Status (5)

Country Link
US (2) US8952477B2 (en)
JP (1) JP2012039004A (en)
KR (1) KR101903784B1 (en)
CN (1) CN102376814B (en)
TW (1) TWI478330B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439984B2 (en) * 2009-07-03 2014-03-12 ソニー株式会社 Photoelectric conversion device and radiation imaging device
JP6232914B2 (en) * 2013-10-16 2017-11-22 セイコーエプソン株式会社 Semiconductor device and manufacturing method thereof
JP2015177155A (en) * 2014-03-18 2015-10-05 セイコーエプソン株式会社 Photoelectric conversion device and electronic apparatus
JP6541313B2 (en) * 2014-07-31 2019-07-10 キヤノン株式会社 Photoelectric conversion device and imaging system
JP2017022175A (en) * 2015-07-07 2017-01-26 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of the same
JP6775977B2 (en) * 2016-03-22 2020-10-28 キヤノン株式会社 Photoelectric conversion device and imaging system
US10217878B2 (en) 2016-04-01 2019-02-26 Sunpower Corporation Tri-layer semiconductor stacks for patterning features on solar cells
JP6785057B2 (en) * 2016-05-02 2020-11-18 ルネサスエレクトロニクス株式会社 Semiconductor devices and their manufacturing methods
JP6428900B1 (en) * 2017-11-29 2018-11-28 富士電機株式会社 Diode element and method for manufacturing diode element
JP2019165250A (en) * 2019-06-10 2019-09-26 キヤノン株式会社 Photoelectric conversion device
WO2021039161A1 (en) * 2019-08-30 2021-03-04 株式会社ジャパンディスプレイ Detection device
JP2023168677A (en) 2022-05-16 2023-11-29 株式会社ジャパンディスプレイ detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427387A (en) * 2004-07-01 2009-05-06 瓦润医药系统公司 Integrated MIS photosensitive device using continuous films

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159772A (en) * 1988-12-14 1990-06-19 Sony Corp Pin vertical type photosensor
JP2000156522A (en) 1998-11-19 2000-06-06 Canon Inc Photoelectric converter
US6288435B1 (en) 1999-12-28 2001-09-11 Xerox Corporation Continuous amorphous silicon layer sensors using doped poly-silicon back contact
EP1420453B1 (en) * 2002-11-13 2011-03-09 Canon Kabushiki Kaisha Image pickup apparatus, radiation image pickup apparatus and radiation image pickup system
KR100949108B1 (en) * 2005-06-09 2010-03-22 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Semiconductor device and method for fabricating same
US8338218B2 (en) * 2008-06-26 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device module and manufacturing method of the photoelectric conversion device module
TWI464887B (en) 2008-12-25 2014-12-11 Au Optronics Corp Photo-voltaic cell device and display panel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101427387A (en) * 2004-07-01 2009-05-06 瓦润医药系统公司 Integrated MIS photosensitive device using continuous films

Also Published As

Publication number Publication date
JP2012039004A (en) 2012-02-23
KR20120014871A (en) 2012-02-20
TW201208052A (en) 2012-02-16
US20120038018A1 (en) 2012-02-16
CN102376814A (en) 2012-03-14
US8952477B2 (en) 2015-02-10
US20130149809A1 (en) 2013-06-13
CN102376814B (en) 2016-08-03
KR101903784B1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
TWI478330B (en) Photoelectric conversion element and method for manufacturing same
JP6028233B2 (en) Photoelectric conversion element and photoelectric conversion device
CN101964352B (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP4130211B2 (en) Imaging device
JP2008171871A (en) Highly sensitive photo-sensor element and photo-sensor device using the same
JP5874201B2 (en) Radiation imaging apparatus and radiation imaging display system
JP2008306080A (en) Optical sensor element, and optical sensor apparatus and image display apparatus using the same
JP6125017B2 (en) X-ray image sensor substrate
CN109427836B (en) Array substrate, X-ray detector, and method for manufacturing the same
CN107946324B (en) Light sensing device
CN103887316A (en) Image sensor
US20170357011A1 (en) Imaging panel and x-ray imaging device
CN110021615B (en) Array substrate, digital X-ray detector including the same, and method of manufacturing the same
JP2012009652A (en) Solid-state imaging device and method of manufacturing the same
US20170207267A1 (en) Image sensor and method of manufacturing the same
TW201537738A (en) CMOS image sensor and method of manufacturing the same
US20200127014A1 (en) Thin film transistor array substrate for high-resolution digital x-ray detector and high-resolution digital x-ray detector including the same
WO2011101935A1 (en) Solid-state image pickup element and method for manufacturing same
JP5402211B2 (en) Method for manufacturing photoelectric conversion device
US20080048221A1 (en) Image sensor and manufacturing method thereof
US11784208B2 (en) Photoelectric conversion device and X-ray imaging device
JP2022167161A (en) X-ray imaging panel and method for fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees