TWI473726B - Method for forming modified metal layer - Google Patents

Method for forming modified metal layer Download PDF

Info

Publication number
TWI473726B
TWI473726B TW98123861A TW98123861A TWI473726B TW I473726 B TWI473726 B TW I473726B TW 98123861 A TW98123861 A TW 98123861A TW 98123861 A TW98123861 A TW 98123861A TW I473726 B TWI473726 B TW I473726B
Authority
TW
Taiwan
Prior art keywords
metal
layer
forming
substrate
patterned
Prior art date
Application number
TW98123861A
Other languages
Chinese (zh)
Other versions
TW201102189A (en
Inventor
Sun Zen Chen
Tai Bor Wu
Ching Wen Chang
Wen Feng Kuo
Ruo Ying Wu
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW98123861A priority Critical patent/TWI473726B/en
Priority to US12/585,721 priority patent/US20110011148A1/en
Publication of TW201102189A publication Critical patent/TW201102189A/en
Application granted granted Critical
Publication of TWI473726B publication Critical patent/TWI473726B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/20Applying plastic materials and superficially modelling the surface of these materials

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

形成圖案化金屬改質層之方法Method of forming a patterned metal modified layer

本發明係關於一種形成圖案化金屬改質層之方法,尤指一種結合金屬直接壓印及表面改質而形成圖案化金屬改質層之方法。The invention relates to a method for forming a patterned metal modifying layer, in particular to a method for forming a patterned metal modifying layer by direct imprinting and surface modification of a metal.

為了增加材料之產品應用性,目前已發產出各種的圖案化加工技術,以將材料表面微、奈米結構化。現今能達到奈米尺寸之圖案化加工技術,係如:電子束微影、離子束微影、光微影術、及奈米壓印等技術。其中,由於奈米壓印具有解析度高、速度快、及成本低廉等優點,已可廣泛應用在各種領域中。In order to increase the product applicability of materials, various patterning processing techniques have been developed to struct the surface of the material to be micro and nano. Nowadays, the pattern processing technology of nanometer size can be achieved, such as electron beam lithography, ion beam lithography, photolithography, and nanoimprinting. Among them, nanoimprinting has been widely used in various fields because of its high resolution, high speed, and low cost.

圖1A至圖1E係習知使用奈米壓印形成圖案化金屬層之流程之剖面示意圖。首先,如圖1A所示,提供一基板10、以及一模具11。其中,基板10上覆蓋有一光阻層101,而模具11則具有一具凹槽111及凸緣112之預定圖案。接著,如圖1B所示,將模具11壓印在基板10之光阻層101上;因光阻層101為熔融狀態,故光阻層101可充分填充在模具11之凹槽11中。於移除模具11後,則可將模具11上之預定圖案轉印至光阻層101上,如圖1C所示。經曝光顯影後,以圖案化之光阻層101做為一蝕刻模板,以蝕刻基板10。移除光阻層101後,則可得到一圖案化之基板10,如圖1D所示。最後,沉積一金屬層12,則可得到一圖案化之金屬層12。1A to 1E are schematic cross-sectional views showing a process of forming a patterned metal layer using nanoimprint. First, as shown in FIG. 1A, a substrate 10 and a mold 11 are provided. The substrate 10 is covered with a photoresist layer 101, and the mold 11 has a predetermined pattern of grooves 111 and flanges 112. Next, as shown in FIG. 1B, the mold 11 is imprinted on the photoresist layer 101 of the substrate 10; since the photoresist layer 101 is in a molten state, the photoresist layer 101 can be sufficiently filled in the recess 11 of the mold 11. After the mold 11 is removed, a predetermined pattern on the mold 11 can be transferred onto the photoresist layer 101 as shown in FIG. 1C. After exposure and development, the patterned photoresist layer 101 is used as an etch mask to etch the substrate 10. After the photoresist layer 101 is removed, a patterned substrate 10 is obtained, as shown in FIG. 1D. Finally, a metal layer 12 is deposited to obtain a patterned metal layer 12.

雖然奈米壓印可以便宜且快速的方法製作出具有高解析度之圖案化基板,但若要形成圖案化之金屬層,則須再進行沉積與掀離製程或蝕刻製程,這些製程常會因無法掌控製程參數而造成所得的金屬圖案失真,除造成解析度的下降外更甚地是導致製程的失敗。Although nanoimprint can produce a high-resolution patterned substrate in an inexpensive and fast manner, if a patterned metal layer is to be formed, deposition and separation processes or etching processes must be performed. These processes are often impossible. The control of the parameters of the process causes the resulting metal pattern to be distorted, which in addition to causing a decrease in resolution, is even more likely to cause a failure of the process.

另一方面,目前已將金屬氧化物廣泛應用在各個領域中。例如,二氧化鈦可應用在電子材料(染料敏化太陽能電池(DSSC))、光觸媒、及各種生醫材料(生醫殖體)等。其中,若能將二氧化鈦層圖案化,勢必可增加DSSC或生醫殖體之使用效率。此外,目前常用之光觸媒多為粉末狀,往往容易對於呼吸系統造成傷害,若能使用具圖案化之二氧化鈦金屬改質層做為光觸媒,除了可提升光觸媒效率外,更可解決粉塵的問題。On the other hand, metal oxides have been widely used in various fields. For example, titanium dioxide can be applied to electronic materials (dye-sensitized solar cells (DSSC)), photocatalysts, and various biomedical materials (medical organisms). Among them, if the titanium dioxide layer can be patterned, it is bound to increase the efficiency of DSSC or biomedical use. In addition, the commonly used photocatalysts are mostly powdery, which tends to cause damage to the respiratory system. If the patterned titanium dioxide metal modified layer can be used as a photocatalyst, in addition to improving the efficiency of the photocatalyst, the problem of dust can be solved.

有鑒於改質金屬層之應用廣泛,且圖案化之改質金屬層更可提升產品之使用效率,因此,若能發展出一種簡易之形成圖案化改質金屬層之方法,則可提升製程效率且降低生產成本。In view of the wide application of the modified metal layer, and the patterned modified metal layer can improve the efficiency of use of the product, if a simple method of forming a patterned metal layer can be developed, the process efficiency can be improved. And reduce production costs.

本發明之主要目的係在提供一種形成圖案化金屬改質層之方法,俾能以簡單的製程形成圖案化金屬改質層,以降低製作成本及降低製程的複雜程度,並同時增加成品的適用性。The main object of the present invention is to provide a method for forming a patterned metal modifying layer, which can form a patterned metal modifying layer in a simple process to reduce the manufacturing cost and reduce the complexity of the process, and at the same time increase the application of the finished product. Sex.

為達成上述目的,本發明之形成圖案化金屬改質層之方法,包括:(A)提供一金屬基材、以及一具有一圖案之模具;(B)將模具壓印在金屬基材上,以將模具之圖案轉印至金屬基材;(C)移除模具;以及(D)改質金屬基材,以形成一圖案化之金屬改質層。In order to achieve the above object, the method for forming a patterned metal modifying layer of the present invention comprises: (A) providing a metal substrate and a mold having a pattern; and (B) imprinting the mold on the metal substrate, Transferring the pattern of the mold to the metal substrate; (C) removing the mold; and (D) modifying the metal substrate to form a patterned metal modified layer.

據此,本發明係直接於金屬基材上進行壓印,故無須進行曝光顯影或蝕刻等製程,即可將模具上之圖案轉印至金屬基材上,而可大幅降低製作成本及降低製程複雜程度。同時,為了使圖案化金屬基材之應用領域更佳廣泛,本發明更將金屬基材進行改質,以形成圖案化之金屬改質層。因此,本發明透過結合金屬直接壓印及改質,可形成能廣泛應用在多種領域之圖案化金屬改質層。Accordingly, the present invention directly imprints on a metal substrate, so that the pattern on the mold can be transferred onto the metal substrate without performing processes such as exposure development or etching, which can greatly reduce the manufacturing cost and reduce the process. Complexity. At the same time, in order to make the application field of the patterned metal substrate more widely, the present invention further reforms the metal substrate to form a patterned metal modified layer. Therefore, the present invention can form a patterned metal modified layer which can be widely applied in various fields by direct imprinting and modification of a combined metal.

於本發明之方法中,金屬基材可為一金屬塊、或一表面具有一金屬層之基板。其中,基板之材質並無特殊限制,較佳為一矽基板、一玻璃基板、或一石英基板。此外,金屬塊及金屬層之材質並無特殊限制,只要是軟性金屬即可。較佳地,金屬塊及金屬層之材質係選自由鋁、鈦、鋅、銅、銀、鎳、金、鉑等所組成之群組。更佳地,金屬塊及金屬層之材質係為鋁、鋅、金或鈦。藉此,本發明之方法,係藉由軟質金屬可彈性變形的特性,而可直接壓印金屬基材以圖案化金屬基材。In the method of the present invention, the metal substrate may be a metal block or a substrate having a metal layer on its surface. The material of the substrate is not particularly limited, and is preferably a substrate, a glass substrate, or a quartz substrate. Further, the material of the metal block and the metal layer is not particularly limited as long as it is a soft metal. Preferably, the material of the metal block and the metal layer is selected from the group consisting of aluminum, titanium, zinc, copper, silver, nickel, gold, platinum, and the like. More preferably, the material of the metal block and the metal layer is aluminum, zinc, gold or titanium. Thereby, the method of the present invention can directly imprint the metal substrate to pattern the metal substrate by the elastic deformation property of the soft metal.

於本發明之方法中,金屬基材之待圖案化表面並不限定為一平面,亦可為一曲面(凹面、凸面、或波浪面)。In the method of the present invention, the surface to be patterned of the metal substrate is not limited to a plane, and may be a curved surface (concave surface, convex surface, or wave surface).

於本發明之方法中,步驟(B)係採用熱壓式奈米壓印技術,以將模具上之圖案轉印至金屬基材表面。另外,步驟(D)則可透過熱處理、電漿處理、或快速熱退火處理(RTA or RTP),以改質金屬基材。其中,電漿處理可為氮電漿處理、氧電漿處理或混合電漿(如:氧氬、氮氬電漿…)等等。若使用氮電漿或氮氬電漿處理,則可形成氮化金屬層;若使用氧電漿或氧氬電漿處理,則可形成氧化金屬層。又其中,對熱處理與快速熱退火處理而言,於製程中通入的氣氛可以是單一成份氣體(如:氧、氮、氫、氬…),或是混合成份的氣體(如:氮氬、氧氬、氫氧…),亦可以在真空下進行改質處理。若在含氧的氣氛下進行改質處理,則可形成氧化金屬層;若在含氮的氣氛下進行改質處理,則可形成氮化金屬層;若在鈍氣氣氛(如:氬氣氛)或是真空下進行改質處理,則可改變金屬晶態或微結構。較佳地,本發明所形成之金屬改質層係為氧化鋁(Al2 O3 )層、氮化鋁(AlN)層、二氧化鈦(TiO2 )層、或氮化鈦(TiN)層。In the method of the present invention, step (B) employs a hot press type nanoimprint technique to transfer the pattern on the mold to the surface of the metal substrate. Alternatively, step (D) may be modified by heat treatment, plasma treatment, or rapid thermal annealing (RTA or RTP) to modify the metal substrate. Among them, the plasma treatment may be nitrogen plasma treatment, oxygen plasma treatment or mixed plasma (such as: oxygen argon, nitrogen argon plasma...) and the like. If nitrogen plasma or nitrogen argon plasma treatment is used, a metal nitride layer can be formed; if oxygen plasma or oxygen argon plasma treatment is used, an oxidized metal layer can be formed. In addition, for the heat treatment and rapid thermal annealing treatment, the atmosphere introduced in the process may be a single component gas (such as: oxygen, nitrogen, hydrogen, argon...) or a mixed component gas (such as nitrogen argon, Oxygen argon, hydrogen and oxygen...) can also be modified under vacuum. If the modification treatment is carried out in an oxygen-containing atmosphere, an oxidized metal layer can be formed; if the modification treatment is performed under a nitrogen-containing atmosphere, a metal nitride layer can be formed; if it is in an inert gas atmosphere (eg, an argon atmosphere) The modification or treatment under vacuum can change the crystalline or microstructure of the metal. Preferably, the metal modified layer formed by the present invention is an aluminum oxide (Al 2 O 3 ) layer, an aluminum nitride (AlN) layer, a titanium dioxide (TiO 2 ) layer, or a titanium nitride (TiN) layer.

此外,於本發明之方法中,金屬基材之厚度並無特殊限制。若金屬基材為一金屬塊時,於步驟(D)之改質金屬基材後,可將整個金屬塊改質(全部改質)、或僅將金屬塊之表面改質(部分改質)。若金屬基材為一表面具有一金屬層之基板時,則可將整個金屬層、或部分金屬層進行表面改質。其中,金屬層之厚度並無特殊限制,可依照所應用之領域做選擇,較佳係介於1nm~5μm之間。此外,所形成之金屬改質層亦無特殊限制,可依照所應用之領域而改變金屬改質層之厚度。較佳地,金屬改質層之厚度係介於1nm~5μm之間;更佳係介於2nm~2μm之間。Further, in the method of the present invention, the thickness of the metal substrate is not particularly limited. If the metal substrate is a metal block, after modifying the metal substrate in step (D), the entire metal block may be modified (all modified), or only the surface of the metal block may be modified (partially modified) . If the metal substrate is a substrate having a metal layer on its surface, the entire metal layer or a portion of the metal layer may be surface-modified. The thickness of the metal layer is not particularly limited, and may be selected according to the field to be applied, and is preferably between 1 nm and 5 μm. In addition, the metal upgrading layer formed is not particularly limited, and the thickness of the metal modifying layer may be changed depending on the field to be applied. Preferably, the thickness of the metal modified layer is between 1 nm and 5 μm; more preferably between 2 nm and 2 μm.

再者,於本發明之方法中,圖案化之金屬改質層表面具有凹凸的圖案,即包括凹槽及凸緣。其中,圖案中之凹槽及凸緣的尺寸並無特殊限制,可依照所應用之領域做選擇,而形成奈米級或微米級之圖案。較佳地,凹槽之深度係介於1nm~3μm之間,而寬度係介於3nm~300μm之間。更佳地,凹槽之深度係介於2nm~1μm之間,而寬度係介於3nm~10μm之間。Furthermore, in the method of the present invention, the surface of the patterned metal modifying layer has a pattern of irregularities, that is, a groove and a flange. The size of the grooves and the flanges in the pattern is not particularly limited, and may be selected according to the field of application to form a nano- or micro-scale pattern. Preferably, the depth of the groove is between 1 nm and 3 μm, and the width is between 3 nm and 300 μm. More preferably, the depth of the groove is between 2 nm and 1 μm, and the width is between 3 nm and 10 μm.

經由上述製程所製得一圖案化金屬改質層可應用在電子材料(如染料敏化太陽能電池)、光觸媒、各種生醫材料(生醫殖體)、及各式耐磨器具等。A patterned metal modified layer prepared by the above process can be applied to electronic materials (such as dye-sensitized solar cells), photocatalysts, various biomedical materials (medical implants), and various types of wear-resistant appliances.

當應用在染料敏化電池時,圖案化二氧化鈦層或氧化鋅層可增加電極之反應表面積,以提升DSSC之光電轉換效率。When applied to a dye-sensitized battery, the patterned titanium dioxide layer or the zinc oxide layer can increase the reaction surface area of the electrode to improve the photoelectric conversion efficiency of the DSSC.

此外,習知之二氧化鈦光觸媒,係利用奈米級之二氧化鈦顆粒聚集而成,因此有奈米顆粒是否影響到呼吸系統的疑慮,然而,若使用本發明製作圖案化二氧化鈦層,就無粉塵釋出的疑慮。同時,更因二氧化鈦層之圖案化,可提升反應之表面積,而維持良好之觸酶反應效率。In addition, the conventional titanium dioxide photocatalyst is formed by agglomerating titanium dioxide particles of nanometers, so whether the nanoparticle affects the respiratory system, however, if the patterned titanium dioxide layer is formed by the invention, no dust is released. doubt. At the same time, due to the patterning of the titanium dioxide layer, the surface area of the reaction can be increased while maintaining good catalase reaction efficiency.

再者,若將圖案化二氧化鈦層或圖案化之改質鈦層應用在生醫材料時,由於表面具有奈米圖案,故可增加接觸表面積,因而提升生醫材料之反應效率與適用性。Furthermore, when the patterned titanium dioxide layer or the patterned modified titanium layer is applied to a biomedical material, since the surface has a nano pattern, the contact surface area can be increased, thereby improving the reaction efficiency and applicability of the biomedical material.

另一方面,當使用圖案化氧化鋁層做為反光材料時,可透過氧化鋁層之孔穴狀的圖案,而增加反射率。On the other hand, when a patterned aluminum oxide layer is used as the light-reflecting material, the hole-like pattern of the aluminum oxide layer can be transmitted to increase the reflectance.

此外,因氮化鈦層具有高硬度之特性,故可依照所應用之領域,利用本發明所提出之方法形成圖案化之氮化鈦層,以增加元件表面之耐磨性。In addition, since the titanium nitride layer has high hardness characteristics, the patterned titanium nitride layer can be formed by the method of the present invention in accordance with the field of application to increase the wear resistance of the surface of the element.

以下係藉由特定的具體實施例說明本發明之實施方式,熟習此技藝之人士可由本說明書所揭示之內容輕易地了解本發明之其他優點與功效。本發明亦可藉由其他不同的具體實施例加以施行或應用,本說明書中的各項細節亦可針對不同觀點與應用,在不悖離本創作之精神下進行各種修飾與變更。The embodiments of the present invention are described by way of specific examples, and those skilled in the art can readily appreciate the other advantages and advantages of the present invention. The present invention may be embodied or applied in various other specific embodiments. The details of the present invention can be variously modified and changed without departing from the spirit and scope of the invention.

實施例1Example 1

圖2A至圖2D係本實施例形成圖案化金屬改質層流程之剖面示意圖。2A to 2D are schematic cross-sectional views showing the flow of forming a patterned metal modifying layer in the present embodiment.

首先,如圖2A所示,提供一金屬基材20,其中,此金屬基材20係為一表面具有一金屬層202之基板201。此外,更提供一模具21,其中,此模具21具有一具凹槽211及凸緣212之預定圖案。於本實施例中,基板202係為一矽基板,金屬層202之材質係為鈦,且金屬層202之厚度T係為100nm。First, as shown in FIG. 2A, a metal substrate 20 is provided, wherein the metal substrate 20 is a substrate 201 having a metal layer 202 on its surface. Further, a mold 21 is further provided, wherein the mold 21 has a predetermined pattern of grooves 211 and flanges 212. In the present embodiment, the substrate 202 is a tantalum substrate, the metal layer 202 is made of titanium, and the metal layer 202 has a thickness T of 100 nm.

接著,如圖2B所示,藉由熱壓式奈米壓印技術,將模具21壓印在金屬基材上20。當將模具21移除後,可使模具21上之圖案轉印至金屬基材20之金屬層202上,如圖2C所示。其中,金屬層202之凸緣2021係對應於模具21之凹槽211,而金屬層202之凹槽2022則對應於模具之凸緣212。Next, as shown in FIG. 2B, the mold 21 is imprinted on the metal substrate 20 by a hot press type nanoimprint technique. When the mold 21 is removed, the pattern on the mold 21 can be transferred onto the metal layer 202 of the metal substrate 20 as shown in Fig. 2C. Wherein, the flange 2021 of the metal layer 202 corresponds to the groove 211 of the mold 21, and the groove 2022 of the metal layer 202 corresponds to the flange 212 of the mold.

而後,如圖2D所示,改質金屬基材20之金屬層202,以形成一金屬改質層23。在此,係使用熱處理將整個金屬層202進行改質,而形成氧化金屬層。因本實施例之金屬層202之材料為鈦,故改質後之金屬改質層23則為一二氧化鈦(TiO2 )層。Then, as shown in FIG. 2D, the metal layer 202 of the metal substrate 20 is modified to form a metal modifying layer 23. Here, the entire metal layer 202 is modified using a heat treatment to form an oxidized metal layer. Since the material of the metal layer 202 of the present embodiment is titanium, the modified metal modifying layer 23 is a titanium dioxide (TiO 2 ) layer.

此外,金屬改質層23之圖案係與金屬基材202之金屬層202圖案相同,亦為具凸緣231及凹槽232之圖案。其中,凹槽232之寬度W為10nm,而深度D為50nm。In addition, the pattern of the metal modifying layer 23 is the same as the pattern of the metal layer 202 of the metal substrate 202, and is also a pattern having the flange 231 and the groove 232. The groove 232 has a width W of 10 nm and a depth D of 50 nm.

實施例2Example 2

圖3A至圖3C係本實施例形成圖案化金屬改質層流程之剖面示意圖。於本實施例中,形成圖案化金屬改質層之流程與實施例1相似。3A to 3C are schematic cross-sectional views showing the flow of forming a patterned metal modifying layer in the present embodiment. In the present embodiment, the flow of forming the patterned metal modifying layer is similar to that of Embodiment 1.

首先,提供一金屬基材20、以及一具有一圖案之模具22,如圖3A所示。於本實施例中,金屬基材20係為一金屬塊,且金屬塊之材質為鋁。First, a metal substrate 20, and a mold 22 having a pattern are provided, as shown in Fig. 3A. In the embodiment, the metal substrate 20 is a metal block, and the material of the metal block is aluminum.

而後,將模具22壓印在金屬基材20上,以將模具22之圖案轉印至金屬基材20。將模具移除後,則可得到一圖案化之金屬基材20,如圖3B所示。Then, the mold 22 is imprinted on the metal substrate 20 to transfer the pattern of the mold 22 to the metal substrate 20. After the mold is removed, a patterned metal substrate 20 is obtained, as shown in Figure 3B.

最後,改質金屬基材20,以形成一圖案化之金屬改質層23。在此,係使用氧電漿處理將金屬基材20之表面進行部分改質,而形成一氧化金屬層。因本實施例之金屬基材20之材料為鋁,故改質後之金屬改質層23則為氧化鋁(Al2 O3 )層。Finally, the metal substrate 20 is modified to form a patterned metal modifying layer 23. Here, the surface of the metal substrate 20 is partially modified by an oxygen plasma treatment to form a metal oxide layer. Since the material of the metal substrate 20 of the present embodiment is aluminum, the modified metal modifying layer 23 is an aluminum oxide (Al 2 O 3 ) layer.

於本實施例中,所形成之金屬改質層23之厚度T為100nm。此外,金屬改質層23具有一具凸緣231及凹槽232之圖案。其中,凹槽232之寬度W為100nm,而深度D為20nm,且凹槽232之形狀係為孔穴狀。In the present embodiment, the thickness T of the metal modifying layer 23 formed is 100 nm. Further, the metal modifying layer 23 has a pattern of a flange 231 and a groove 232. Wherein, the width W of the groove 232 is 100 nm, and the depth D is 20 nm, and the shape of the groove 232 is a hole shape.

實施例3Example 3

本實施例之製作流程係與實施例1相同,除了使用氮電漿處理取代熱處理進行改質。因此,本實施例可製得一圖案化之氮化鈦層。The production process of this example was the same as that of Example 1, except that the nitrogen plasma treatment was used instead of the heat treatment for modification. Therefore, this embodiment can produce a patterned titanium nitride layer.

綜上所述,本發明之形成圖案化金屬改質層之方法,係直接於軟質金屬上進行壓印,故無須再透過蝕刻或沉積金屬層之方式,即可形成圖案化金屬層。因此,本發明可以一種比傳統製程更加簡便之方法形成圖案化金屬層,故可減少製作成本及及降低製程的複雜程度,並同時增加成品的適用性。同時,本發明之方法更結合改質技術,以將圖案化金屬層進行改質,而形成可應用在各種不同領域中之圖案化金屬改質層。In summary, the method for forming a patterned metal modifying layer of the present invention is performed by directly imprinting on a soft metal, so that the patterned metal layer can be formed without etching or depositing a metal layer. Therefore, the present invention can form a patterned metal layer in a more convenient manner than the conventional process, thereby reducing the manufacturing cost and reducing the complexity of the process, and at the same time increasing the applicability of the finished product. At the same time, the method of the present invention further incorporates a upgrading technique to modify the patterned metal layer to form a patterned metal modifying layer that can be applied in various fields.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而非僅限於上述實施例。The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims is intended to be limited to the above embodiments.

10‧‧‧基板10‧‧‧Substrate

101‧‧‧光阻層101‧‧‧ photoresist layer

11‧‧‧模具11‧‧‧Mold

111,2022,211,232‧‧‧凹槽111, 2022, 211, 232 ‧ ‧ grooves

112,2021,212,231‧‧‧凸緣112,2021,212,231‧‧‧Flange

12,202‧‧‧金屬層12,202‧‧‧metal layer

20‧‧‧金屬基材20‧‧‧Metal substrate

201‧‧‧基板201‧‧‧Substrate

21‧‧‧模具21‧‧‧Mold

23‧‧‧金屬改質層23‧‧‧Metal upgrading layer

D‧‧‧深度D‧‧‧Deep

W‧‧‧寬度W‧‧‧Width

T‧‧‧厚度T‧‧‧ thickness

圖1A至圖1E係習知使用奈米壓印形成圖案化金屬層之流程之剖面示意圖。1A to 1E are schematic cross-sectional views showing a process of forming a patterned metal layer using nanoimprint.

圖2A至圖2D係實施例1形成圖案化金屬改質層流程之剖面示意圖。2A to 2D are schematic cross-sectional views showing the flow of forming a patterned metal modifying layer in Embodiment 1.

圖3A至圖3C係實施例2形成圖案化金屬改質層流程之剖面示意圖。3A to 3C are schematic cross-sectional views showing the flow of forming a patterned metal modifying layer in Embodiment 2.

20...金屬基材20. . . Metal substrate

201...基板201. . . Substrate

202...金屬層202. . . Metal layer

21...模具twenty one. . . Mold

211,2022,232...凹槽211, 2022, 232. . . Groove

212,2021,231...凸緣212, 2021, 231. . . Flange

23...金屬改質層twenty three. . . Metal modified layer

D...深度D. . . depth

W...寬度W. . . width

Claims (18)

一種形成圖案化金屬改質層之方法,包括:(A)提供一金屬基材、以及一具有一圖案之模具;(B)將該模具壓印在該金屬基材上,以將該模具之該圖案轉印至該金屬基材;(C)移除該模具;以及(D)透過熱處理、電漿處理、或快速熱退火處理改質該金屬基材,以形成一圖案化之金屬改質層,其中該金屬改質層係為一氧化金屬層或一氮化金屬層。 A method of forming a patterned metal modifying layer, comprising: (A) providing a metal substrate, and a mold having a pattern; (B) imprinting the mold on the metal substrate to mold the mold Transferring the pattern to the metal substrate; (C) removing the mold; and (D) modifying the metal substrate by heat treatment, plasma treatment, or rapid thermal annealing to form a patterned metal modification a layer, wherein the metal modifying layer is a metal oxide layer or a metal nitride layer. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中步驟(D)係全部改質或部份改質該金屬基材。 The method for forming a patterned metal modifying layer according to claim 1, wherein the step (D) is to completely modify or partially modify the metal substrate. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中該金屬基材係為一金屬塊、或一表面具有一金屬層之基板。 The method of forming a patterned metal modifying layer according to claim 1, wherein the metal substrate is a metal block or a substrate having a metal layer on the surface. 如申請專利範圍第3項所述之形成圖案化金屬改質層之方法,其中該金屬塊及該金屬層之材質係為一軟性金屬。 The method for forming a patterned metal modifying layer according to claim 3, wherein the metal block and the metal layer are made of a soft metal. 如申請專利範圍第4項所述之形成圖案化金屬改質層之方法,其中該軟性金屬係選自由鋁、鈦、鋅、銅、銀、鎳、金、鉑所組成之群組。 The method of forming a patterned metal modifying layer according to claim 4, wherein the soft metal is selected from the group consisting of aluminum, titanium, zinc, copper, silver, nickel, gold, and platinum. 如申請專利範圍第4項所述之形成圖案化金屬改質層之方法,其中該軟性金屬係為鈦。 The method of forming a patterned metal modifying layer according to claim 4, wherein the soft metal is titanium. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中該金屬改質層係為氧化金屬層。 The method of forming a patterned metal modified layer according to claim 1, wherein the metal modified layer is an oxidized metal layer. 如申請專利範圍第7項所述之形成圖案化金屬改質層之方法,其中該氧化金屬層係為氧化鋁(Al2 O3 )層、或二氧化鈦(TiO2 )層。The method of forming a patterned metal modifying layer according to claim 7, wherein the oxidized metal layer is an aluminum oxide (Al 2 O 3 ) layer or a titanium dioxide (TiO 2 ) layer. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中該金屬改質層係為氮化金屬層。 The method of forming a patterned metal modified layer according to claim 1, wherein the metal modified layer is a metal nitride layer. 如申請專利範圍第9項所述之形成圖案化金屬改質層之方法,其中該氮化金屬層係為氮化鈦(TiN)層。 The method of forming a patterned metal modifying layer according to claim 9, wherein the metal nitride layer is a titanium nitride (TiN) layer. 如申請專利範圍第3項所述之形成圖案化金屬改質層之方法,其中該基板係為一矽基板、一玻璃基板、或一石英基板。 The method for forming a patterned metal modified layer according to claim 3, wherein the substrate is a germanium substrate, a glass substrate, or a quartz substrate. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中該電漿處理係為氧電漿處理、或氮電漿處理。 The method of forming a patterned metal modified layer according to claim 1, wherein the plasma treatment is oxygen plasma treatment or nitrogen plasma treatment. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中該金屬改質層之厚度為1nm~5μm。 The method for forming a patterned metal modified layer according to claim 1, wherein the metal modified layer has a thickness of 1 nm to 5 μm. 如申請專利範圍第4項所述之形成圖案化金屬改質層之方法,其中該金屬層之厚度為1nm~5μm。 The method for forming a patterned metal modified layer according to claim 4, wherein the metal layer has a thickness of 1 nm to 5 μm. 如申請專利範圍第1項所述之形成圖案化金屬改質層之方法,其中該金屬改質層包括一凹槽。 The method of forming a patterned metal modifying layer according to claim 1, wherein the metal modifying layer comprises a groove. 如申請專利範圍第15項所述之形成圖案化金屬改質層之方法,其中該凹槽之深度為1nm~3μm。 The method for forming a patterned metal modifying layer according to claim 15, wherein the groove has a depth of 1 nm to 3 μm. 如申請專利範圍第15項所述之形成圖案化金屬改質層之方法,其中該凹槽之寬度為3nm~300μm。 The method for forming a patterned metal modifying layer according to claim 15, wherein the groove has a width of 3 nm to 300 μm. 如申請專利範圍第15項所述之形成圖案化金屬改質層之方法,其中該金屬基材之表面係為一平面或一曲面。The method for forming a patterned metal modifying layer according to claim 15, wherein the surface of the metal substrate is a plane or a curved surface.
TW98123861A 2009-07-15 2009-07-15 Method for forming modified metal layer TWI473726B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW98123861A TWI473726B (en) 2009-07-15 2009-07-15 Method for forming modified metal layer
US12/585,721 US20110011148A1 (en) 2009-07-15 2009-09-23 Method for forming patterned modified metal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98123861A TWI473726B (en) 2009-07-15 2009-07-15 Method for forming modified metal layer

Publications (2)

Publication Number Publication Date
TW201102189A TW201102189A (en) 2011-01-16
TWI473726B true TWI473726B (en) 2015-02-21

Family

ID=43464317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98123861A TWI473726B (en) 2009-07-15 2009-07-15 Method for forming modified metal layer

Country Status (2)

Country Link
US (1) US20110011148A1 (en)
TW (1) TWI473726B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100974288B1 (en) * 2010-01-13 2010-08-05 한국기계연구원 Patterning method of metal oxide thin film using nanoimprint and manufacturing method of light emitting diode
JP5868952B2 (en) * 2010-04-28 2016-02-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Organic light emitting device
RU2598971C2 (en) 2010-09-22 2016-10-10 Конинклейке Филипс Электроникс Н.В. Multi-view imaging device
JP6002562B2 (en) * 2012-12-05 2016-10-05 横浜ゴム株式会社 Pneumatic tire with hook-and-loop fastener and method for manufacturing the same
WO2015102620A1 (en) * 2013-12-31 2015-07-09 Halliburton Energy Services, Inc. Selective annealing process for perforation guns
US9972504B2 (en) * 2015-08-07 2018-05-15 Lam Research Corporation Atomic layer etching of tungsten for enhanced tungsten deposition fill
US11000975B2 (en) * 2016-10-13 2021-05-11 Purdue Research Foundation Methods of making hydrophobic contoured surfaces and hydrophobic contoured surfaces and devices made therefrom
TWI676710B (en) * 2017-09-28 2019-11-11 日商國際電氣股份有限公司 Semiconductor device manufacturing method, substrate processing device, and recording medium
US20230390823A1 (en) * 2022-06-07 2023-12-07 Rohr, Inc. Press coining systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694163A (en) * 2004-03-26 2005-11-09 富士通株式会社 Nanoholes, magnetic recording media and production thereof, and magnetic recording apparatus and method
TW200603994A (en) * 2004-07-23 2006-02-01 Hon Hai Prec Ind Co Ltd Nano-imprinting stamp and method for making same
TW200923003A (en) * 2007-09-11 2009-06-01 Fujifilm Corp Curable composition for nanoimprint, cured product and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1694163A (en) * 2004-03-26 2005-11-09 富士通株式会社 Nanoholes, magnetic recording media and production thereof, and magnetic recording apparatus and method
TW200603994A (en) * 2004-07-23 2006-02-01 Hon Hai Prec Ind Co Ltd Nano-imprinting stamp and method for making same
TW200923003A (en) * 2007-09-11 2009-06-01 Fujifilm Corp Curable composition for nanoimprint, cured product and production method thereof

Also Published As

Publication number Publication date
US20110011148A1 (en) 2011-01-20
TW201102189A (en) 2011-01-16

Similar Documents

Publication Publication Date Title
TWI473726B (en) Method for forming modified metal layer
He et al. Etching techniques in 2D materials
CN108374153B (en) Method for growing large-area and highly-ordered nanoparticles through magnetron sputtering
KR100455297B1 (en) Manufacturing method of inorganic nano tube
Hernández-Vélez Nanowires and 1D arrays fabrication: An overview
Sulka et al. Anodic porous alumina as a template for nanofabrication
Jung et al. Well-ordered thin-film nanopore arrays formed using a block-copolymer template
TWI384636B (en) Method for preparing patterned metal oxide layer or patterned metal layer by using solution type precursor or sol-gel precursor
KR101219769B1 (en) Carbon nanostructured material pattern and manufacturing method of the same, and carbon nanostructured material thin film transistor and manufacturing method of the same
KR20110086375A (en) Lithography method using tilted evaporation
TWI544528B (en) Method for making metal grating
TWI453162B (en) 3-d nanostructured array
Chen et al. Large‐Area Patterning of Metal Nanostructures by Dip‐Pen Nanodisplacement Lithography for Optical Applications
KR20130002527A (en) Method of manufacturing a nanowire
TWI504556B (en) A method for making 3-d nanostructured array
JP2007531998A (en) Production and use of superlattices
KR20200077646A (en) Method of forming miicrstructure and nanostructure using metal assisted chemical etching
KR101399347B1 (en) Process for preparing nano channel using carbon nano tube and nano structure using the same
KR20180012386A (en) forming method of nanostructure pattern by vacuum deposition and sensor device thereby
KR20100025363A (en) A method for fabricating a nanopattern, a method for fabricating a mask and a nanoimprint lithography method
JP4942131B2 (en) Stamper and nanostructure transfer method using the same
Li et al. Fabrication of highly ordered metallic arrays and silicon pillars with controllable size using nanosphere lithography
TW201605717A (en) Silicon and silica nanostructures and method of making silicon and silica nanostructures
KR20050065955A (en) Metal lift-off process with nano imprint lithography
CN109698125A (en) Orient self assembly template transfer method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees