TWI473207B - Method for filling a physical isolation trench - Google Patents

Method for filling a physical isolation trench Download PDF

Info

Publication number
TWI473207B
TWI473207B TW99145586A TW99145586A TWI473207B TW I473207 B TWI473207 B TW I473207B TW 99145586 A TW99145586 A TW 99145586A TW 99145586 A TW99145586 A TW 99145586A TW I473207 B TWI473207 B TW I473207B
Authority
TW
Taiwan
Prior art keywords
isolation trench
physical isolation
layer
filling
ono
Prior art date
Application number
TW99145586A
Other languages
Chinese (zh)
Other versions
TW201227877A (en
Inventor
Yu Fong Huang
Tzung Ting Han
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW99145586A priority Critical patent/TWI473207B/en
Publication of TW201227877A publication Critical patent/TW201227877A/en
Application granted granted Critical
Publication of TWI473207B publication Critical patent/TWI473207B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

填充一實體隔離溝渠的方法 Method of filling a physical isolation trench

本發明的實施例係關於形成積體電路裝置的製程,特別是關於避免記憶陣列中程式化干擾的方法。 Embodiments of the present invention relate to processes for forming integrated circuit devices, and more particularly to methods for avoiding stylized interference in memory arrays.

在半導體產業中,現今的趨勢是持續不斷地在電子裝置的製程中微縮各方面的元件尺寸。當兩者具有大致相同的功能時,較小的電子裝置會比較大的更受歡迎。因此,為了製造更小的裝置當然也需要將這些裝置中所使用的元件變得更小。然而,將元件尺寸變小同時也代表其間的距離也需變小,這會導致隔離的問題。 In the semiconductor industry, the trend today is to continuously shrink the dimensions of various components in the manufacturing process of electronic devices. When the two have roughly the same function, smaller electronic devices will be larger and more popular. Therefore, in order to manufacture smaller devices, it is of course also necessary to make the components used in these devices smaller. However, the size of the component is reduced and the distance between them is also required to be small, which causes a problem of isolation.

在包含緊密封裝之記憶胞陣列的記憶裝置中,程式化干擾及第二位元效應是一種會對儲存於記憶胞中的位元造成影響的現象。改善隔離機制可以降低這些現象的影響。然而,當具有更小的元件尺寸時,隔離機制也必須跟著調整。 In a memory device that includes a tightly packed memory cell array, stylized interference and a second bit effect are phenomena that affect the bits stored in the memory cell. Improving the isolation mechanism can reduce the impact of these phenomena. However, when having a smaller component size, the isolation mechanism must also be adjusted.

因為裝置整合的複雜程度及單一晶片中的電路數目甚多,互連線通常不再使用單層互連線的方式進行。而是,在至少兩層或是更多層的導體互連方式下進行,每一層中具有導線溝渠的圖案且其彼此間由絕緣層所分隔。溝渠也可以作為隔離之用。然而,在某些溝渠尺寸也變小的情況下,如何填入此小空間內也變得困難。 Because of the complexity of device integration and the large number of circuits in a single wafer, interconnects are typically no longer implemented using a single layer of interconnect. Rather, it is carried out in at least two or more layers of conductor interconnections, each having a pattern of conductor trenches and separated from each other by an insulating layer. Ditch can also be used for isolation. However, in the case where some of the trenches are also small in size, it becomes difficult to fill in this small space.

因此,需要提供一種改善的機制以在例如是記憶陣列之半導體裝置中填入較小的空間。 Accordingly, there is a need to provide an improved mechanism for filling a smaller space in a semiconductor device such as a memory array.

本發明係提供一種方法及裝置,其可以提供相對簡單及省錢的方式以填充一記憶陣列中的小空間。更特別的是,某些範例實施例中,可以用來填充一介於垂直通道記憶陣列的主動結構之間的實體隔離溝渠。 The present invention provides a method and apparatus that provides a relatively simple and cost effective way to fill a small space in a memory array. More particularly, in some example embodiments, it may be used to fill a physical isolation trench between active structures of a vertical channel memory array.

在一範例實施例中,提供一種製造一半導體結構的方法。該方法包含準備一垂直通道記憶結構以填充一定義於其間的實體隔離溝渠,該實體隔離溝渠是定義於相鄰的主動結構之間且於一第一方向上延伸,該主動結構亦定義通道位於鄰接該主動結構相對於該實體隔離溝渠的兩側。該方法也包含施加多層介電層(例如氧化矽-氮化矽-氧化矽(ONO)層)、多晶矽墊層及/或氧化物薄膜以填充該實體隔離溝渠。 In an exemplary embodiment, a method of fabricating a semiconductor structure is provided. The method includes preparing a vertical channel memory structure to fill a physical isolation trench defined therebetween, the physical isolation trench is defined between adjacent active structures and extending in a first direction, the active structure also defining a channel located Adjacent to the active structure isolates the sides of the trench relative to the entity. The method also includes applying a plurality of dielectric layers (e.g., a yttria-tantalum nitride-yttria (ONO) layer), a polysilicon layer, and/or an oxide film to fill the physical isolation trench.

在另一範例實施例中,提供一種垂直通道記憶結構。此垂直通道記憶結構包含至少一組主動結構於一第一方向上延伸,該主動結構彼此鄰接的放置且具有一實體隔離溝渠於其間,該實體隔離溝渠亦於該第一方向上延伸;通道放置鄰接於該主動結構的側邊,其是鄰接該主動結構對於該實體隔離溝渠的兩側。一填充材料填充該實體隔離溝渠內,其可為多層介電材料(例如矽-氮化矽-氧化矽(ONO)層)、多晶矽墊層及/或氧化矽薄膜。 In another exemplary embodiment, a vertical channel memory structure is provided. The vertical channel memory structure includes at least one active structure extending in a first direction, the active structures being placed adjacent to each other and having a physical isolation trench therebetween, the physical isolation trench also extending in the first direction; Adjacent to the side of the active structure, it is adjacent to the active structure to isolate the sides of the trench for the entity. A fill material fills the solid isolation trench, which may be a multilayer dielectric material (eg, a tantalum-niobium nitride-anthracene oxide (ONO) layer), a polysilicon germanium layer, and/or a hafnium oxide film.

本發明之目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述。 The objects, features, and embodiments of the present invention will be described in the accompanying drawings.

本發明之某些實施例,會在下列實施方式的章節中搭配圖式被描述,其中僅顯示某些而並非全部的實施例。然而,本發明不同的實施例可以具有不同的型態且不應視為限制本發 明;而是這些實施例之提供係為使本說明書之揭露滿足專利法之要求。 Certain embodiments of the invention are described in the following description of the embodiments of the invention, in which only some, but not all, embodiments are shown. However, different embodiments of the invention may have different types and should not be considered as limiting the present invention. The embodiments are provided so that the disclosure of this specification satisfies the requirements of the patent law.

本發明係揭露一種垂直通道N位元技術,其允許提供進一步的元件微縮。此微縮可以提供裝置儲存更多的資料,舉例而言,四位元於一記憶胞中,且在可預見的未來可以有進一步的微縮。為了提供改良的程式化干擾,實體隔離溝渠(PIT)被提出以與垂直通道結構搭配使用。此垂直通道結構使用主動堆疊結構沿著形成通道的第一方向對準。字元線沿著大致與通道垂直且具有一部分延伸於通道中。在某些實施例中,儲存記憶胞形成介於字元線與主動結構之間。實體隔離溝渠(PIT)可以牽涉於主動結構內的溝渠隔離。然而,因為實體隔離溝渠(PIT)相對小的尺寸(例如某些情況小於30奈米)填充實體隔離溝渠(PIT)會變得困難。因此,此處所提供之某些範例實施例可以提供低成本及簡易製程以利用介電或半導體材料來填充實體隔離溝渠(PIT)。 The present invention discloses a vertical channel N-bit technology that allows for further component miniaturization. This miniaturization can provide a means for the device to store more data, for example, four bits in a memory cell, and can be further miniaturized for the foreseeable future. In order to provide improved stylized interference, a physical isolation trench (PIT) is proposed for use with vertical channel structures. This vertical channel structure is aligned along the first direction in which the channels are formed using the active stack structure. The word line is generally perpendicular to the channel and has a portion extending into the channel. In some embodiments, the memory cell formation is between the word line and the active structure. A physical isolation trench (PIT) can be involved in trench isolation within the active structure. However, filling a physical isolation trench (PIT) can be difficult because of the relatively small size of the physical isolation trench (PIT), such as in some cases less than 30 nanometers. Accordingly, certain example embodiments provided herein can provide a low cost and simple process to fill a physical isolation trench (PIT) with a dielectric or semiconductor material.

包括第1A~1E圖的第1圖顯示一範例實施例之許多(但並非全部)可以用來填充實體隔離溝渠的操作示意圖。如圖所示,主動結構10形成於一包含N型材料層或P型材料層的基底之上。在一範例實施例中,實體隔離溝渠20可以形成於主動結構10之間以提供其間的隔離。此主動結構10可以線性地延伸進出第1圖之頁面方向,且具有線性地延伸的通道22於兩側。此通道22可以形成於主動結構10的每一側,其是在主動結構10與實體隔離溝渠20的相對側。 Figure 1 including Figures 1A-1E shows a schematic representation of many, but not all, of the exemplary embodiments that can be used to fill a physical isolation trench. As shown, the active structure 10 is formed on a substrate comprising an N-type material layer or a P-type material layer. In an exemplary embodiment, physical isolation trenches 20 may be formed between active structures 10 to provide isolation therebetween. The active structure 10 can extend linearly into and out of the page orientation of Figure 1 with linearly extending channels 22 on either side. This channel 22 can be formed on each side of the active structure 10 on the opposite side of the active structure 10 from the physical isolation trench 20.

第1A圖顯示於用來形成一垂直通道陣列的蝕刻製程後此主動結構10與實體隔離溝渠20的剖面示意圖。如第1A圖所示,一氧化層13最初放置於此主動結構10與實體隔離溝渠20之上,且一高密度電漿(HDP)氧化物18可以沈積於實體隔離溝渠20之上。一清潔製程可以用來除去氧化層13及高密度電漿(HDP)氧化物18, 留下主動結構10沿著實體隔離溝渠20與通道22裸露出,如第1B圖所示。然後可以使用一氧化製程與埋藏擴散(BD)佈植搭配。在剛開始時,氧化材料15可以填入實體隔離溝渠20之內及覆蓋主動區域的裸露區域和底部以保護通道區域22如第1C圖所示。之後,埋藏擴散(BD)佈植材料26可以形成於主動結構的上方及通道22的底部,也如第1C圖所示。之後,可以進行一清潔製程以除去主動結構側壁之氧化物,如第1D圖所示,而保留於主動結構的上方及通道22的底部之埋藏擴散(BD)佈植材料26。第1E圖顯示氧化矽-氮化矽-氧化矽(ONO)沈積於實體隔離溝渠20內及裸露的主動結構及埋藏擴散(BD)佈植材料26上方的完成結構;之後再形成字元線28於主動結構之上及填入通道22之中。所沈積的氧化矽-氮化矽-氧化矽(ONO)大致填充實體隔離溝渠20如第1E圖所示。必須注意的是,字元線28可以是縱向延伸且與縱向延伸的通道22垂直(正交)。在某些實施例中,字元線28可以覆蓋例如是化學氣相沈積或是其他半積體電路製程中金屬化製程(例如與積體電路之接觸墊或是其他部分連接之製程中)所形成的鎢化矽(WSi)。 FIG. 1A shows a cross-sectional view of the active structure 10 and the physical isolation trench 20 after an etching process for forming a vertical channel array. As shown in FIG. 1A, an oxide layer 13 is initially placed over the active structure 10 and the physical isolation trench 20, and a high density plasma (HDP) oxide 18 can be deposited over the physical isolation trench 20. A cleaning process can be used to remove oxide layer 13 and high density plasma (HDP) oxide 18, The active structure 10 is left exposed along the physical isolation trench 20 and the channel 22, as shown in FIG. 1B. An oxidation process can then be used in conjunction with Buried Diffusion (BD). In the beginning, the oxidized material 15 can be filled into the solid isolation trench 20 and cover the exposed areas and bottom of the active area to protect the channel area 22 as shown in FIG. 1C. Thereafter, a buried diffusion (BD) implant material 26 can be formed over the active structure and at the bottom of the channel 22, as also shown in FIG. 1C. Thereafter, a cleaning process can be performed to remove oxides from the sidewalls of the active structure, as shown in FIG. 1D, while remaining in the buried structure (BD) implant material 26 above the active structure and at the bottom of the channel 22. Figure 1E shows the completed structure of yttrium oxide-tantalum nitride-anthracene oxide (ONO) deposited in the physical isolation trench 20 and over the exposed active structure and buried diffusion (BD) implant material 26; Above the active structure and filled into the channel 22. The deposited yttria-tantalum nitride-anthracene oxide (ONO) substantially fills the physical isolation trench 20 as shown in Figure 1E. It must be noted that the word line 28 may be longitudinally extending and perpendicular (orthogonal) to the longitudinally extending channel 22. In some embodiments, the word line 28 can cover, for example, a chemical vapor deposition process or a metallization process in other semi-integral circuit processes (eg, in a process in which a contact pad or other portion of an integrated circuit is connected). Formed tungsten germanium (WSi).

在某些情況下,假如在第1E圖中沈積氧化矽-氮化矽-氧化矽(ONO)未良好地填入實體隔離溝渠20,此實體隔離溝渠20或許沒有完全由如氧化矽-氮化矽-氧化矽(ONO)填充。假如此情況發生的話,會造成實體隔離溝渠20某種程度開口的風險。因此,舉例而言,字元線28中的多晶矽或許會在形成字元線時形成於一部份的實體隔離溝渠20中。此狀況會在字元線圖案化後產生字元線橋接的風險。在此情況下,如第2圖所示,延伸於第一方向上的垂直通道22其上方及主動結構10上方有字元線28。第2圖中也顯示出實體隔離溝渠20,且假如一部分的實體隔離溝渠20並未完全填充,多晶矽或許會填入此區域中而在字元線28之間產生橋接。 In some cases, if the yttrium oxide-tantalum nitride-anthracene oxide (ONO) deposited in FIG. 1E is not well filled into the physical isolation trench 20, the physical isolation trench 20 may not be completely ruthenium-doped by ruthenium.矽-Oxide oxide (ONO) filling. If this happens, there is a risk that the physical isolation trench 20 will open to some extent. Thus, for example, polysilicon in word line 28 may be formed in a portion of physical isolation trench 20 when forming word lines. This condition creates the risk of word line bridging after the word line is patterned. In this case, as shown in FIG. 2, the vertical channel 22 extending in the first direction has a word line 28 above it and above the active structure 10. The solid isolation trenches 20 are also shown in Figure 2, and if a portion of the physical isolation trenches 20 are not completely filled, polycrystalline germanium may fill in this region to create a bridge between the word lines 28.

為了防止如此的字元線28橋接形成,某些實施例可以包括多晶矽(PL)墊層及/或氧化物薄膜於實體隔離溝渠20中以幫助填充此實體隔離溝渠20及減少實體隔離溝渠開路的風險。包括第3A~3E圖的第3圖顯示根據本發明一範例實施例之許多(但並非全部)可以用來填充實體隔離溝渠的操作示意圖,其可以減少實體隔離溝渠開口的風險。第3A圖顯示於用來形成類似於第1A圖之主動結構10與實體隔離溝渠20的剖面示意圖。如第3B圖所示,一個薄氧化層100可以形成於裸露的主動結構10及通道22表面之上且於實體隔離溝渠20之內。一多晶矽層102則隨後形成於薄氧化層100之上並包括完全填充整個實體隔離溝渠20。第3C圖則顯示進行用來除去裸露之多晶矽層102(例如實體隔離溝渠20外的多晶矽層102部分)的化學乾蝕刻回蝕刻製程後的結果,僅保留實體隔離溝渠20內的多晶矽墊層104。如第3C圖所示,在某些情況下,多晶矽墊層104或許不會完全填滿實體隔離溝渠20。然而,在某些情況下,並不需要將多晶矽墊層104完全填滿實體隔離溝渠20。 To prevent such word line 28 from bridging, certain embodiments may include a polysilicon (PL) pad and/or an oxide film in the physical isolation trench 20 to help fill the physical isolation trench 20 and reduce physical isolation trench open circuits. risk. Figure 3, including Figures 3A-3E, shows a number of (but not all) operational schematics that can be used to fill a physical isolation trench in accordance with an exemplary embodiment of the present invention, which can reduce the risk of physically isolating the trench opening. Figure 3A shows a schematic cross-sectional view of the active structure 10 and the physical isolation trench 20 used to form a pattern similar to Figure 1A. As shown in FIG. 3B, a thin oxide layer 100 can be formed over the exposed active structures 10 and channels 22 and within the physical isolation trenches 20. A polysilicon layer 102 is then formed over the thin oxide layer 100 and includes completely filling the entire physical isolation trench 20. Figure 3C shows the results of a chemical dry etchback etch process performed to remove the exposed polysilicon layer 102 (e.g., the portion of the polysilicon layer 102 outside the bulk isolation trench 20), leaving only the polysilicon germanium layer 104 within the physical isolation trench 20. . As shown in FIG. 3C, in some cases, the polysilicon layer 104 may not completely fill the physical isolation trench 20. However, in some cases, it is not necessary to completely fill the physical isolation trenches 20 with the polysilicon germanium layer 104.

之後,進行一氧化製程與埋藏擴散(BD)佈植搭配,埋藏擴散(BD)佈植材料26可以形成於主動結構10的上方及通道22的底部,且多晶矽墊層104仍是填充於實體隔離溝渠20之內及一氧化物層106整個覆蓋於裸露之表面,如第3D圖所示。氧化矽-氮化矽-氧化矽(ONO)層110可以沈積於裸露的表面且因此包覆的實體隔離溝渠20之內的多晶矽墊層104。如此,當字元線28形成在與通道22大致垂直的方向上時,此實體隔離溝渠20也大致被填滿而不會有實體隔離溝渠開口的問題發生,且因此字元線之間產生橋接的機率也減少了。然後可以進行金屬化製程而不必擔心字元線橋接的問題,如第3E圖所示。 Thereafter, an oxidation process and a buried diffusion (BD) implant are performed, and a buried diffusion (BD) implant material 26 can be formed over the active structure 10 and at the bottom of the channel 22, and the polysilicon cushion 104 is still filled with physical isolation. The inside of the trench 20 and the oxide layer 106 entirely cover the exposed surface as shown in Fig. 3D. A yttria-tantalum nitride-yttria (ONO) layer 110 can be deposited on the exposed surface and thus the polycrystalline germanium underlayer 104 within the trenches 20. Thus, when the word line 28 is formed in a direction substantially perpendicular to the channel 22, the physical isolation trench 20 is also substantially filled without the problem of physically isolating the trench opening, and thus bridging between the word lines The chances are also reduced. The metallization process can then be performed without worrying about the problem of word line bridging, as shown in Figure 3E.

使用多晶矽墊層104僅是用來減少字元線橋接機率的機制之一個範例。在某些實施例中(例如第4圖中的範例),是使用氧化物薄膜200而不是多晶矽(PL)墊層104來大致填滿實體隔離溝渠20。舉例而言,最初用來填充實體隔離溝渠20的氧化物薄膜200可以保留,以使用高密度電漿氧化物240來覆蓋實體隔離溝渠20的開口區域以減少字元線橋接或消除實體隔離溝渠開口的問題。包括第4A~4C圖的第4圖顯示根據本發明一範例實施例之許多(但並非全部)可以用來填充實體隔離溝渠的操作示意圖,其可以減少實體隔離溝渠開口的風險。第4A圖顯示於用來形成類似於第1A圖和第3A圖之主動結構10與實體隔離溝渠20的剖面示意圖。此處,頂部埋藏擴散(TBD)佈植材料228是在垂直通道製程之前形成。如第4B圖所示,進行一氧化製程與埋藏擴散(BD)佈植搭配,如此底部埋藏擴散(BBD)佈植材料226可以沈積於通道22的底部。一氧化物層236可以整個覆蓋裸露的表面,如第4B圖所示,包括填充實體隔離溝渠20(利用氧化材料200及覆蓋高密度電漿沈積之氧化物240)。之後,如第4C圖所示,氧化矽-氮化矽-氧化矽(ONO)244沈積於裸露的表面,以包覆整個高密度電漿沈積之氧化物240(例如於一清潔製程之後其並未於第4C圖顯示)。此ONO層244可以具有字元線形成於其上且在與通道24大致垂直的方向上,及此實體隔離溝渠20也大致被填滿而不會有實體隔離溝渠開口的問題發生。因此字元線之間產生橋接的機率也減少了。然後可以進行金屬化製程而不必擔心字元線橋接的問題。 The use of polysilicon layer 104 is only one example of a mechanism for reducing the probability of word line bridging. In some embodiments (eg, the example in FIG. 4), an oxide film 200 is used instead of a polysilicon (PL) pad 104 to substantially fill the physical isolation trench 20. For example, the oxide film 200 originally used to fill the physical isolation trench 20 may be retained to cover the open area of the physical isolation trench 20 using high density plasma oxide 240 to reduce word line bridging or eliminate physical isolation trench openings. The problem. Figure 4, including Figures 4A-4C, shows a schematic of many, but not all, operations that can be used to fill a physical isolation trench in accordance with an exemplary embodiment of the present invention, which can reduce the risk of physically isolating the trench opening. 4A is a cross-sectional view showing the active structure 10 and the physical isolation trench 20 used to form a pattern similar to FIGS. 1A and 3A. Here, the top buried diffusion (TBD) implant material 228 is formed prior to the vertical channel process. As shown in FIG. 4B, an oxidation process and a buried diffusion (BD) implant are performed, such that a bottom buried diffusion (BBD) implant material 226 can be deposited on the bottom of the channel 22. The oxide layer 236 can entirely cover the exposed surface, as shown in FIG. 4B, including filling the physical isolation trench 20 (using an oxidizing material 200 and an oxide 240 that covers the deposition of high density plasma). Thereafter, as shown in FIG. 4C, yttrium oxide-yttria-yttria (ONO) 244 is deposited on the exposed surface to coat the entire high density plasma deposited oxide 240 (eg, after a cleaning process) Not shown in Figure 4C). The ONO layer 244 can have a problem in which the word lines are formed in a direction substantially perpendicular to the channels 24, and the physical isolation trenches 20 are also substantially filled without physical isolation of the trench openings. Therefore, the probability of bridging between word lines is also reduced. The metallization process can then be performed without worrying about the problem of word line bridging.

此處所描述之範例實施例,以及之後其他的範例,可以使得記憶體的製程中填入小區域而以相對便宜及可靠的方式有效地填入如此區域中。例如形成於一垂直通道記憶陣列主動結構中之實體隔離溝渠的小空間,可以利用ONO沈積填充、一多晶矽墊層及/或氧化矽薄膜。在此例示實施例的內容中,ONO沈積可以包括氧 化矽-氮化矽-氧化矽、能隙工程矽-氧化矽-氮化矽-氧化矽-矽(BE-SONOS)、奈米晶體及/或其他可能的儲存媒體等材料。同時,此多晶矽墊層可以使用舉例而言非晶矽、多晶矽及/或單晶矽等材料。此氧化矽薄膜可以使用舉例而言高溫氧化、四乙氧基矽烷(TEOS)、同位蒸氣生成(ISSG)及/或其他具有階梯覆蓋能力之氧化薄膜等材料。 The exemplary embodiments described herein, and other examples that follow, may enable the memory process to be filled with small areas and effectively fill such areas in a relatively inexpensive and reliable manner. For example, a small space of a physical isolation trench formed in an active structure of a vertical channel memory array can be filled with ONO, a polysilicon layer and/or a hafnium oxide film. In the context of this illustrative embodiment, the ONO deposition may include oxygen Materials such as bismuth-tantalum nitride-ytterbium oxide, energy gap engineering 矽-yttria-tantalum nitride-BE-SONOS, nanocrystals and/or other possible storage media. Meanwhile, as the polycrystalline germanium layer, materials such as amorphous germanium, polycrystalline germanium, and/or single crystal germanium may be used. As the ruthenium oxide film, for example, a material such as high temperature oxidation, tetraethoxy decane (TEOS), isotopic vapor generation (ISSG), and/or other oxide film having a step coverage ability can be used.

本發明的某些實施例中可以提供一種改善例如是多階記憶胞(MLC)之記憶陣列中所遭遇的程式化干擾機制。在此狀況下,某些實施例中可以提供一種介於主動結構之間的隔離改善,其可以達成電荷儲存(及其記憶功能)。 Some embodiments of the present invention may provide a stylized interference mechanism that is encountered in memory arrays that are, for example, multi-level memory cells (MLCs). In this case, some embodiments may provide an isolation improvement between the active structures that can achieve charge storage (and its memory function).

第5圖顯示根據一範例實施例形成一半導體結構的一製程操作流程圖。此方法可以包括準備一垂直通道記憶結構以填充實體隔離溝渠。此實體隔離溝渠是形成於主動結構之間以提供其間的隔離,此主動結構可以在一第一方向上延伸且具有通道位於鄰接實體隔離溝渠相對的兩側。此方法更包含利用ONO層來填充實體隔離溝渠。 Figure 5 shows a process flow diagram for forming a semiconductor structure in accordance with an exemplary embodiment. The method can include preparing a vertical channel memory structure to fill the physical isolation trench. The physical isolation trench is formed between the active structures to provide isolation therebetween, the active structure may extend in a first direction and have channels on opposite sides of the adjacent physical isolation trench. This method further includes using the ONO layer to fill the physical isolation trench.

在某些實施例中,某些操作可以被調整及進一步如以下被簡化。此外,在某些實施例中,額外的選擇性操作也可以被包括(一範例顯示這些操作於第5圖中的虛線)。可以理解的是,以下的每一種調整、加強或是額外的選擇性操作可以與之前所描述的操作單獨搭配或是組合使用。在此狀況下,舉例而言,此方法更包含圖案化垂直通道記憶結構的字元線。這些字元線可以在一個與可以在一第一方向垂直之一第二方向上延伸。此字元線可以延伸於主動結構與實體隔離溝渠的上方,且填充進入通道對應的部分。 In some embodiments, certain operations may be adjusted and further simplified as follows. Moreover, in some embodiments, additional selective operations may also be included (an example shows these operations as the dashed lines in Figure 5). It will be appreciated that each of the following adjustments, enhancements, or additional selective operations can be used alone or in combination with the operations previously described. In this case, for example, the method further includes patterning the word lines of the vertical channel memory structure. The word lines may extend in a second direction that is perpendicular to one of the first directions. The word line can extend above the active structure and the physical isolation trench and fill the corresponding portion of the access channel.

在某些實施例中,其中圖案化字元線是在實體隔離溝渠填充之後進行以防止因為實體隔離溝渠開口條件所造成的字元線橋接。 在一範例實施例中,實體隔離溝渠的填充可以包括在形成ONO層時使用ONO填入實體隔離溝渠。在如此的範例中,在形成ONO層時使用ONO填入實體隔離溝渠可以包括進行一清潔製程於再氧化層之前且實行埋藏擴散佈植於主動結構的上方及通道的底部。之後,可以在形成ONO層之前進行一ONO清潔製程。在某些情況下,在形成ONO層時使用ONO填入實體隔離溝渠可以包括利用氧化矽-氮化矽-氧化矽、能隙工程矽-氧化矽-氮化矽-氧化矽-矽(BE-SONOS)或奈米晶體填入實體隔離溝渠內。 In some embodiments, wherein the patterned word lines are performed after the physical isolation trench fills to prevent word line bridging due to physical isolation trench opening conditions. In an exemplary embodiment, the filling of the physical isolation trench may include filling the physical isolation trench with ONO when forming the ONO layer. In such an example, filling the physical isolation trench with ONO during formation of the ONO layer can include performing a cleaning process prior to the reoxidation layer and performing a buried diffusion implant over the active structure and at the bottom of the channel. Thereafter, an ONO cleaning process can be performed prior to forming the ONO layer. In some cases, the use of ONO to fill the physical isolation trench during the formation of the ONO layer may include the use of yttrium oxide-tantalum nitride-yttria, energy gap engineering yttrium-yttria-yttrium nitride-yttrium oxide-yttrium (BE- SONOS) or nanocrystals are filled into the physical isolation trench.

在某些實施例中,實體隔離溝渠的填充可以包括使用氧化物薄膜填入實體隔離溝渠。在如此的範例中,使用氧化物薄膜填入實體隔離溝渠可以包括使用高溫氧化、四乙氧基矽烷(TEOS)或同位蒸氣生成(ISSG)。在某些情況下,使用氧化物薄膜填入實體隔離溝渠可以包括提供氧化物薄膜填入實體隔離溝渠具有高密度電漿沈積之氧化物於主動結構的上方及氧化物薄膜於實體隔離溝渠內。 In some embodiments, the filling of the physical isolation trench can include filling the physical isolation trench with an oxide film. In such an example, the use of an oxide film to fill the physical isolation trench may include the use of high temperature oxidation, tetraethoxy decane (TEOS) or isotopic vapor generation (ISSG). In some cases, the use of an oxide film to fill the physical isolation trench may include providing an oxide film to fill the physical isolation trench with a high density plasma deposited oxide over the active structure and the oxide film in the physical isolation trench.

在某些實施例中,實體隔離溝渠的填充可以包括使用多晶矽墊層填入實體隔離溝渠。在如此的範例中,使用多晶矽墊層填入實體隔離溝渠可以包括使用非晶矽、多晶矽或單晶矽。在一範例實施例中,使用多晶矽墊層填入實體隔離溝渠可以包括提供氧化物薄膜於主動結構及通道的上方,然後再形成一多晶矽墊層於氧化物薄膜之上及填入實體隔離溝渠內,之後再進行化學乾蝕刻製程以將多晶矽墊層在垂直通道記憶結構中除了於實體隔離溝渠內的幾乎所有部份回蝕刻。在某些實施例中,使用多晶矽墊層填入實體隔離溝渠可以更包括進行清潔製程於再氧化層之前且實行埋藏擴散佈植於主動結構的上方及通道的底部,且之後可以在形成ONO層之前進行一ONO清潔製程。 In some embodiments, the filling of the physical isolation trenches can include filling the physical isolation trenches with a polysilicon crucible. In such an example, the use of a polysilicon crucible to fill the physical isolation trench may include the use of amorphous germanium, polycrystalline germanium or single crystal germanium. In an exemplary embodiment, filling the physical isolation trench with the polysilicon layer may include providing an oxide film over the active structure and the via, and then forming a polysilicon layer over the oxide film and filling into the physical isolation trench. A chemical dry etch process is then performed to etch back the polysilicon germanium layer in substantially all of the physical isolation trenches in the vertical channel memory structure. In some embodiments, the filling of the physical isolation trench with the polysilicon layer may further include performing a cleaning process before the reoxidation layer and performing burying diffusion over the active structure and at the bottom of the channel, and then forming an ONO layer. An ONO cleaning process was performed before.

如同之前所描述的,或許會希望在某些情況下將垂直通道陣列與一平面通道週邊整合在一起。在一範例實施例中,垂直 通道陣列部分可以使用化學機械研磨及氮化矽除去製程處理以達成垂直通道定義的反調(reverse tone)。因此,陣列的暗調(dark tone)變成垂直通道。對一平面通道金氧半(MOS)裝置而言,可以使用目前的平面化技術使得在週邊區域的暗調(dark tone)變成主動區域。 As previously described, it may be desirable to integrate a vertical channel array with a planar channel perimeter in some cases. In an exemplary embodiment, vertical The channel array portion can be subjected to chemical mechanical polishing and tantalum nitride removal process processing to achieve a reverse tone defined by the vertical channel. Therefore, the dark tone of the array becomes a vertical channel. For a planar channel metal oxide half (MOS) device, current planarization techniques can be used to make the dark tone in the peripheral region into the active region.

包括第6A~6B圖的第6圖顯示一範例實施例之半導體裝置中介於一垂直通道陣列部分450及一週邊部分460交會處的側視(第6A圖)及上視圖(第6B圖)。在此垂直通道陣列部分450,可以進行光阻微影及佈植操作以提供臨界電壓Vt控制和熱載子產生及擊穿的抑制。之後,進行氮化矽沈積及氧化矽沈積。此硬式幕罩480的執行可以防止氮化矽470於後續間隔物蝕刻製程時受到傷害。 Fig. 6 including Figs. 6A to 6B shows a side view (Fig. 6A) and a top view (Fig. 6B) of an intersection of a vertical channel array portion 450 and a peripheral portion 460 in the semiconductor device of an exemplary embodiment. In this vertical channel array portion 450, photoresist lithography and implantation operations can be performed to provide threshold voltage Vt control and suppression of hot carrier generation and breakdown. Thereafter, tantalum nitride deposition and yttrium oxide deposition are performed. Execution of the hard mask 480 prevents the tantalum nitride 470 from being damaged during subsequent spacer etching processes.

第7圖顯示一範例實施例在進行週邊氧化層沈積及蝕刻操作之後的半導體裝置中介於一垂直通道陣列部分450及一週邊部分460交會處的剖面圖,此步驟係用來打開間隔物的空間以進行定義實體隔離溝渠。包括第8A~8B圖的第8圖顯示一範例實施例同時定義與實體隔離溝渠及週邊溝渠相關的溝渠之側視(第8A圖)及上視圖(第8B圖)。因此,某些實施例提供同時於垂直通道陣列部分450及一週邊部分460形成溝渠結構(如實體隔離溝渠485及週邊溝渠486)。如8A圖所示,於垂直通道陣列部分450中介於暗調區域之間形成的實體隔離溝渠485,其中光阻490會放置在鄰接週邊區域460的陣列一部分區域之上。 Figure 7 is a cross-sectional view showing the intersection of a vertical channel array portion 450 and a peripheral portion 460 in a semiconductor device after performing a peripheral oxide layer deposition and etching operation, which is used to open the space of the spacer. To define a physical isolation trench. Figure 8, including Figures 8A-8B, shows an exemplary embodiment that simultaneously defines a side view (Fig. 8A) and a top view (Fig. 8B) of the trench associated with the physical isolation trench and the surrounding trench. Accordingly, certain embodiments provide for the formation of trench structures (eg, physical isolation trenches 485 and perimeter trenches 486) simultaneously with vertical channel array portion 450 and a peripheral portion 460. As shown in FIG. 8A, a physical isolation trench 485 is formed between the dark-tuned regions in the vertical channel array portion 450, wherein the photoresist 490 is placed over a portion of the array adjacent the peripheral region 460.

如第9圖所示,單層或多層氧化材料498可以用來同時填充任何垂直通道陣列部分450及一週邊部分460中的實體隔離溝渠及/或淺溝渠隔離。可以進行淺溝渠隔離化學機械研磨製程,但是停止於當抵達氮化矽沈積470時以將氮化矽沈積470 裸露出來。如第10圖所示,之後可以除去氮化矽沈積470。包括第11A~11B圖的第11圖顯示垂直通道500形成後之側視(第11A圖)及上視圖(第11B圖),其具有光阻492施加於週邊部分460及鄰接週邊區域460的陣列一部分區域450之上。 As shown in FIG. 9, single or multiple layers of oxidized material 498 can be used to simultaneously fill any vertical channel array portion 450 and a physical isolation trench and/or shallow trench isolation in a peripheral portion 460. A shallow trench isolation CMP process can be performed, but stops when the tantalum nitride deposit 470 is reached to deposit tantalum nitride 470 Bare out. As shown in FIG. 10, the tantalum nitride deposit 470 can then be removed. Fig. 11 including Figs. 11A-11B shows a side view (Fig. 11A) and a top view (Fig. 11B) after the vertical channel 500 is formed, having an array of photoresist 492 applied to the peripheral portion 460 and the adjacent peripheral region 460. A portion of area 450 is above.

之後進行垂直通道清潔和再氧化層以保護垂直通道500的側壁及封住實體隔離溝渠485(例如之前第1~5圖中所描述的)。包括第12A~12B圖的第12圖顯示埋藏擴散(BD)微影及佈植製程後定義出埋藏擴散(BD)區域510之側視(第12A圖)及上視圖(第12B圖)。之後,如第13圖所示(例如之前第1~5圖中關於垂直通道陣列部分450所描述的一般),進行ONO清潔、沈積、緻密化、微影及蝕刻製程以提供ONO層520於垂直通道陣列部分450之上。之後,於週邊區域460進行ONO後蝕刻,進行許多光阻微影、佈植及退火製程用以定義井區及控制金氧半電晶體的臨界電壓。在某些實施例中,也可以進行閘氧化層、多晶矽沈積及鎢化矽沈積操作,之後進行字元線的圖案化及金屬化製程。 A vertical channel cleaning and re-oxidation layer is then applied to protect the sidewalls of the vertical channel 500 and enclose the physical isolation trench 485 (e.g., as previously described in Figures 1-5). Fig. 12, including Figs. 12A-12B, shows the side view (Fig. 12A) and the top view (Fig. 12B) of the buried diffusion (BD) region 510 after the buried diffusion (BD) lithography and the implantation process. Thereafter, as shown in FIG. 13 (e.g., as previously described with respect to vertical channel array portion 450 in FIGS. 1 through 5), ONO cleaning, deposition, densification, lithography, and etching processes are performed to provide ONO layer 520 in a vertical direction. Above the channel array portion 450. Thereafter, an ONO post-etch is performed in the peripheral region 460 to perform a plurality of photoresist lithography, implantation, and annealing processes for defining the well region and controlling the threshold voltage of the MOS transistor. In some embodiments, a gate oxide layer, a polysilicon deposition, and a tungsten germanium deposition operation may also be performed, followed by patterning and metallization of the word lines.

上述的實施例僅是用來顯示某些可以使用的製程範例而非用來限制本發明。因此在某些實施例中,某些額外操作可以被實施。此外,在某些實施例中,某些操作可以被進一步調整或省略。舉例而言,在某些情況下,如第14圖所示並沒有實體隔離溝渠(例如藉由跳過間隔物及實體隔離溝渠蝕刻製程)形成。在某些實施例中,MOS及多晶矽兩者可以用來幫助電流流動。電阻因此則是在一電路裝置中對於MOS及多晶矽的一個通稱。此外,如之前所描述過的,暗調可以作為垂直通道陣列部分的垂直通道之通稱,且作為週邊部分的主動區域之通稱。 The above-described embodiments are merely illustrative of some of the process examples that may be used and are not intended to limit the invention. Thus in some embodiments, certain additional operations may be implemented. Moreover, in some embodiments, certain operations may be further adjusted or omitted. For example, in some cases, as shown in Figure 14, there is no physical isolation trench (eg, by skipping the spacer and the physical isolation trench etch process). In some embodiments, both MOS and polysilicon can be used to help flow current. The resistor is therefore a generic term for MOS and polysilicon in a circuit arrangement. Further, as described earlier, the dark tone can be used as a general term for the vertical channel of the vertical channel array portion, and as a general term for the active portion of the peripheral portion.

第15圖顯示將垂直通道陣列與一平面通道週邊整合在一起的範例方法。此方法包括形成一垂直通道記憶陣列於一半導體裝置的一第一部分,該第一部分具有與即將形成垂直通道區域對應的一暗調。此方法也包括形成一平面週邊於該半導體裝置的一第二部分,該第二部分具有與該平面週邊之一主動結構區域對應的一暗調。在某些實施例中,此方法還包括同時形成溝渠結構於該第一區域及該第二區域中。在一範例實施例中,形成該垂直通道記憶陣列及形成該平面週邊每一個更包括提供氮化矽沈積於該第一部分及該第二部分中,使得該溝渠結構形成介於所沈積之該氮化矽之間。在某些情況下,形成該垂直通道記憶陣列及形成該平面週邊每一個更包括提供氧化矽材料填充於該該溝渠結構中,且除去介於該氧化矽材料所裸露部分之間的該氮化矽。在一範例實施例中,形成該垂直通道記憶陣列包括形成垂直通道於一個與定義該第一部分及該第二部分交點之一邊界大致平行的一第一方向上延伸。在某些實施例中,形成該垂直通道記憶陣列包括形成字元線於一個在與該第一方向上進入及穿出該垂直通道大致垂直的一第二方向上縱向延伸。 Figure 15 shows an example method of integrating a vertical channel array with a planar channel perimeter. The method includes forming a vertical channel memory array in a first portion of a semiconductor device having a dim tone corresponding to a region of the vertical channel to be formed. The method also includes forming a planar perimeter around a second portion of the semiconductor device, the second portion having a dark tint corresponding to one of the active structural regions of the planar perimeter. In some embodiments, the method further includes simultaneously forming a trench structure in the first region and the second region. In an exemplary embodiment, forming the vertical channel memory array and forming the planar perimeter each further includes providing tantalum nitride deposited in the first portion and the second portion such that the trench structure is formed between the deposited nitrogen Between phlegm. In some cases, forming the vertical channel memory array and forming the planar perimeter each further includes providing a yttrium oxide material to fill the trench structure and removing the nitriding between the exposed portions of the yttria material Hey. In an exemplary embodiment, forming the vertical channel memory array includes forming a vertical channel extending in a first direction that is substantially parallel to a boundary defining a boundary between the first portion and the second portion. In some embodiments, forming the vertical channel memory array includes forming a word line extending longitudinally in a second direction that is substantially perpendicular to the first direction and into and out of the vertical channel.

雖然本發明係已參照實施例來加以描述,然本發明創作並未受限於其詳細描述內容。替換方式及修改樣式係已於先前描述中所建議,且其他替換方式及修改樣式將為熟習此項技藝之人士所思及。特別是,所有具有實質上相同於本發明之構件結合而達成與本發明實質上相同結果者,皆不脫離本發明之精神範疇。因此,所有此等同的替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及其均等物所界定的範疇之中。 Although the present invention has been described with reference to the embodiments, the present invention is not limited by the detailed description thereof. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, all combinations of components that are substantially identical to the invention can achieve substantially the same results as the present invention without departing from the spirit of the invention. Therefore, all such equivalents and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents.

10‧‧‧主動結構 10‧‧‧Active structure

13‧‧‧氧化層 13‧‧‧Oxide layer

15、106、236‧‧‧氧化物層 15, 106, 236‧‧ ‧ oxide layer

18、240‧‧‧高密度電漿(HDP)沈積層 18, 240‧‧‧ High Density Plasma (HDP) Sedimentary Layer

20‧‧‧實體隔離溝渠 20‧‧‧Physical isolation trench

22‧‧‧通道 22‧‧‧ channel

26‧‧‧埋藏擴散佈植(BD)區域 26‧‧‧ Buried Diffusion Planting (BD) Area

28‧‧‧字元線 28‧‧‧ character line

30、110、244、520‧‧‧ONO層 30, 110, 244, 520‧‧‧ONO layers

100‧‧‧薄氧化層 100‧‧‧thin oxide layer

102‧‧‧多晶矽層 102‧‧‧Polysilicon layer

104‧‧‧多晶矽墊層 104‧‧‧Polysilicon cushion

200‧‧‧氧化物層 200‧‧‧Oxide layer

226‧‧‧底部埋藏擴散佈植(BBD)區域 226‧‧‧Bottom buried diffusion implant (BBD) area

228‧‧‧頂部埋藏擴散佈植(TBD)區域 228‧‧‧Top Buried Diffusion Planting (TBD) Area

450‧‧‧垂直通道陣列部分 450‧‧‧Vertical channel array section

460‧‧‧週邊部分 460‧‧‧ peripheral parts

470‧‧‧氮化矽層 470‧‧‧ tantalum nitride layer

480‧‧‧硬式幕罩 480‧‧‧hard mask

485‧‧‧實體隔離溝渠 485‧‧‧Physical isolation trench

486‧‧‧週邊溝渠 486‧‧‧ surrounding ditches

490、492‧‧‧光阻層 490, 492‧‧‧ photoresist layer

498‧‧‧氧化材料 498‧‧‧Oxidized materials

500‧‧‧通道 500‧‧‧ channel

510‧‧‧埋藏擴散(BD)區域 510‧‧‧buried diffusion (BD) area

530‧‧‧井區 530‧‧‧ Well Area

本發明係由申請專利範圍所界定。這些和其它目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述,其中: The invention is defined by the scope of the patent application. These and other objects, features, and embodiments are described in the following sections of the accompanying drawings, in which:

第1圖包括第1A~1E圖顯示一範例實施例之可以用來填充實體隔離溝渠的操作示意圖。 Figure 1 includes Figures 1A-1E showing an operational diagram of an exemplary embodiment that can be used to fill a physical isolation trench.

第2圖係顯示根據一範例實施例之垂直通道陣列的上視圖,其會造成相鄰字元線間產生字元線橋接的風險。 Figure 2 is a top view of a vertical channel array in accordance with an exemplary embodiment that creates the risk of word line bridges between adjacent word lines.

第3圖包括第3A~3E圖顯示根據本發明一範例實施例之可以用來填充實體隔離溝渠的操作示意圖,其可以減少實體隔離溝渠開口的風險。 Figure 3, including Figures 3A-3E, shows an operational diagram that can be used to fill a physical isolation trench in accordance with an exemplary embodiment of the present invention, which can reduce the risk of physically isolating the trench opening.

第4圖包括第4A~4C圖顯示根據本發明一範例實施例之可以用來填充實體隔離溝渠的操作示意圖,其可以減少實體隔離溝渠開口的風險。 Figure 4, including Figures 4A-4C, shows an operational diagram that can be used to fill a physical isolation trench in accordance with an exemplary embodiment of the present invention, which can reduce the risk of physically isolating the trench opening.

第5圖顯示根據一範例實施例形成一半導體結構的一製程操作流程圖。 Figure 5 shows a process flow diagram for forming a semiconductor structure in accordance with an exemplary embodiment.

第6圖包括第6A~6B圖顯示一範例實施例之半導體裝置中介於一垂直通道陣列部分及一週邊部分交會處的剖面圖(第6A圖)及上視圖(第6B圖)。 Fig. 6 includes a cross-sectional view (Fig. 6A) and a top view (Fig. 6B) showing a portion of a vertical channel array portion and a peripheral portion in a semiconductor device of an exemplary embodiment, as shown in Figs. 6A to 6B.

第7圖顯示一範例實施例在進行週邊氧化層沈積及蝕刻操作之後的半導體裝置中介於一垂直通道陣列部分及一週邊部分交會處的剖面圖。 Figure 7 is a cross-sectional view showing the intersection of a vertical channel array portion and a peripheral portion in a semiconductor device after performing a peripheral oxide layer deposition and etching operation, in an exemplary embodiment.

第8圖包括第8A~8B圖顯示一範例實施例同時定義與實體隔離溝渠及淺溝渠隔離相關的溝渠之剖面圖(第8A圖)及上視圖(第8B圖)。 Figure 8 includes Figures 8A-8B showing a cross-sectional view (Fig. 8A) and a top view (Fig. 8B) of an exemplary embodiment simultaneously defining trenches associated with physical isolation trenches and shallow trench isolation.

第9圖顯示根據一範例實施例利用氧化物進行實體隔離溝渠及週邊溝渠之剖面圖。 Figure 9 shows a cross-sectional view of a physical isolation trench and surrounding trenches using oxides in accordance with an exemplary embodiment.

第10圖顯示根據一範例實施例移除氮化矽之剖面圖。 Figure 10 shows a cross-sectional view of the removal of tantalum nitride in accordance with an exemplary embodiment.

第11圖包括第11A~11B圖顯示一範例實施例形成垂直通道之剖面圖(第8A圖)及上視圖(第8B圖)。 Figure 11 includes sections 11A-11B showing a cross-sectional view (Fig. 8A) and a top view (Fig. 8B) of a vertical channel formed by an exemplary embodiment.

第12圖包括第12A~12B圖顯示一範例實施例封閉實體隔離溝渠及形成埋藏擴散區域操作後之剖面圖(第12A圖)及上視圖(第12B圖)。 Figure 12 includes sections 12A-12B showing a cross-sectional view (Fig. 12A) and a top view (Fig. 12B) of an exemplary embodiment of the closed solid isolation trench and the formation of the buried diffusion region.

第13圖顯示一範例實施例於進行字元線的圖案化及金屬化製程之前的剖面圖。 Figure 13 is a cross-sectional view showing an exemplary embodiment prior to patterning and metallization of word lines.

第14圖顯示根據一範例實施例的半導體裝置中並沒有實體隔離溝渠之垂直通道陣列部分及週邊部分的剖面圖。 Figure 14 is a cross-sectional view showing a vertical channel array portion and a peripheral portion of a semiconductor device having no physical isolation trenches, according to an exemplary embodiment.

第15圖顯示將垂直通道陣列與一平面通道週邊整合在一起的範例方法。 Figure 15 shows an example method of integrating a vertical channel array with a planar channel perimeter.

10‧‧‧主動結構 10‧‧‧Active structure

20‧‧‧實體隔離溝渠 20‧‧‧Physical isolation trench

26‧‧‧埋藏擴散佈植(BD)區域 26‧‧‧ Buried Diffusion Planting (BD) Area

28‧‧‧字元線 28‧‧‧ character line

30‧‧‧ONO層 30‧‧‧ONO layer

Claims (19)

一種製造一半導體結構的方法,該方法包含:準備一垂直通道記憶結構以填充一定義於其間的實體隔離溝渠,該實體隔離溝渠是定義於相鄰的主動結構之間且於一第一方向上延伸,該主動結構亦定義通道位於鄰接該主動結構相對於該實體隔離溝渠的兩側;施加介電材料以填充該實體隔離溝渠;以及配置一埋藏擴散佈植材料於該主動結構的上方以及該等通道的底部。 A method of fabricating a semiconductor structure, the method comprising: preparing a vertical channel memory structure to fill a physical isolation trench defined therebetween, the physical isolation trench being defined between adjacent active structures and in a first direction Extending, the active structure also defines a channel located adjacent to the active structure on opposite sides of the physical isolation trench; applying a dielectric material to fill the physical isolation trench; and configuring a buried diffusion implant material over the active structure and The bottom of the equal channel. 如申請專利範圍第1項所述之方法,更包含:圖案化字元線於該垂直通道記憶結構之上,該些字元線彼此平行於一與該第一方向大致垂直之第二方向上延伸,該些字元線延伸於該主動結構及該實體隔離溝渠之上且填充對應的通道部分。 The method of claim 1, further comprising: patterning word lines on the vertical channel memory structure, the word lines being parallel to each other in a second direction substantially perpendicular to the first direction Extending, the word lines extend over the active structure and the physical isolation trench and fill corresponding channel portions. 如申請專利範圍第2項所述之方法,其中該圖案化字元線係於填充該實體隔離溝渠之後進行以防止該字元線因為實體隔離溝渠開口條件所造成的字元線橋接。 The method of claim 2, wherein the patterned word line is performed after filling the physical isolation trench to prevent word line bridging of the word line due to physical isolation of the trench opening condition. 如申請專利範圍第1項所述之方法,其中該介電材料是氧化矽-氮化矽-氧化矽(ONO)層。 The method of claim 1, wherein the dielectric material is a yttria-tantalum nitride-anthracene oxide (ONO) layer. 如申請專利範圍第4項所述之方法,其中該填充該實體隔離溝渠包含於該氧化矽-氮化矽-氧化矽(ONO)層形成時以該ONO層填充該實體隔離溝渠。 The method of claim 4, wherein the filling the physical isolation trench comprises filling the physical isolation trench with the ONO layer when the yttria-tantalum nitride-anthracene oxide (ONO) layer is formed. 如申請專利範圍第5項所述之方法,其中於該氧化矽-氮化矽-氧化矽(ONO)層形成時以該ONO層填充該實體隔離溝渠更包含進行一清潔製程於進行再氧化層之前,且實行埋藏擴散佈植於主動結構的上方及通道的底部,且之後,在形成ONO層之前進行一ONO清潔製程。 The method of claim 5, wherein filling the physical isolation trench with the ONO layer when the yttria-tantalum nitride-anthracene oxide (ONO) layer is formed further comprises performing a cleaning process for performing a re-oxidation layer Previously, a buried diffusion was implanted over the active structure and at the bottom of the channel, and then an ONO cleaning process was performed prior to forming the ONO layer. 如申請專利範圍第5項所述之方法,其中於該氧化矽-氮化矽-氧化矽(ONO)層形成時以該ONO層填充該實體隔離溝渠包含以氧化矽-氮化矽-氧化矽、能隙工程矽-氧化矽-氮化矽-氧化矽-矽(BE-SONOS)或奈米晶體之至少一者填入實體隔離溝渠內。 The method of claim 5, wherein the solid isolation trench is filled with the ONO layer when the yttria-tantalum nitride-yttria (ONO) layer is formed to comprise yttrium oxide-yttria-yttrium oxide At least one of the energy gap engineering 矽-矽-矽-矽 矽-矽-矽 (BE-SONOS) or nano crystals is filled into the physical isolation trench. 如申請專利範圍第1項所述之方法,其中填充該實體隔離溝渠包含以氧化矽填充該實體隔離溝渠。 The method of claim 1, wherein filling the physical isolation trench comprises filling the physical isolation trench with yttrium oxide. 如申請專利範圍第8項所述之方法,其中以氧化矽填充該實體隔離溝渠包含以高溫氧化、四乙氧基矽烷(TEOS)或同位蒸氣生成(ISSG)之至少一者填入實體隔離溝渠內。 The method of claim 8, wherein the solid isolation trench filled with yttrium oxide comprises at least one of high temperature oxidation, tetraethoxy decane (TEOS) or isotopic vapor generation (ISSG) filled into the physical isolation trench Inside. 如申請專利範圍第8項所述之方法,其中以氧化矽填充該實體隔離溝渠包含提供氧化矽薄膜填入實體隔離溝渠具有高密度電漿沈積之氧化物於該主動結構的上方及氧化物薄膜於實體隔離溝渠內。 The method of claim 8, wherein the solid isolation trench filled with yttrium oxide comprises a yttrium oxide film filled in the physical isolation trench with high density plasma deposition oxide over the active structure and an oxide film In the physical isolation trench. 如申請專利範圍第1項所述之方法,其中填充該實體隔離溝渠包含以多晶矽墊層填充該實體隔離溝渠。 The method of claim 1, wherein filling the physical isolation trench comprises filling the physical isolation trench with a polysilicon layer. 如申請專利範圍第11項所述之方法,其中以多晶矽墊層填充該實體隔離溝渠包含以非晶矽、多晶矽或單晶矽之至少一者填入實體隔離溝渠內。 The method of claim 11, wherein filling the physical isolation trench with a polysilicon layer comprises filling at least one of an amorphous germanium, a polycrystalline germanium or a single crystal germanium into the physical isolation trench. 如申請專利範圍第11項所述之方法,其中以多晶矽墊層填充該實體隔離溝渠包含:提供氧化矽薄膜於主動結構及通道的上方,然後再形成一多晶矽墊層於該氧化矽薄膜之上及填入該實體隔離溝渠內;進行化學乾蝕刻製程以將該多晶矽墊層在該垂直通道記憶結構中除了於該實體隔離溝渠內的大致所有部份回蝕刻。 The method of claim 11, wherein filling the physical isolation trench with a polysilicon layer comprises: providing a yttrium oxide film over the active structure and the channel, and then forming a polysilicon layer over the yttrium oxide film. And filling the physical isolation trench; performing a chemical dry etching process to etch back the polysilicon germanium layer in substantially all portions of the physical isolation trench in the vertical channel memory structure. 如申請專利範圍第11項所述之方法,其中以多晶矽墊層填充該實體隔離溝渠更包含進行一清潔製程於進行再氧化層之前,且實行埋藏擴散佈植於該主動結構的上方及該通道的底部,且之後,在形成ONO層之前進行一ONO清潔製程。 The method of claim 11, wherein filling the physical isolation trench with a polysilicon layer further comprises performing a cleaning process before performing the reoxidation layer, and performing burying diffusion on the active structure and the channel At the bottom, and thereafter, an ONO cleaning process is performed prior to forming the ONO layer. 一種垂直通道記憶結構,包含:至少一組主動結構於一第一方向上延伸,該主動結構彼此鄰接的放置且具有一實體隔離溝渠於其間,該實體隔離溝渠亦於該第一方向上延伸;通道放置鄰接於該主動結構的側邊,其是位於鄰接該主動結構相對於該實體隔離溝渠的兩側;一填充材料填充該實體隔離溝渠內,其搭配施加多層介電層、多晶矽墊層及/或氧化物薄膜;以及一埋藏擴散佈植材料配置於該主動結構的上方以及該等通道的底部。 A vertical channel memory structure includes: at least one active structure extending in a first direction, the active structures being placed adjacent to each other and having a physical isolation trench therebetween, the physical isolation trench also extending in the first direction; The channel is disposed adjacent to a side of the active structure, and is located adjacent to the active structure on opposite sides of the physical isolation trench; a filling material is filled in the physical isolation trench, and is combined with applying a multilayer dielectric layer, a polysilicon layer and And/or an oxide film; and a buried diffusion implant material disposed above the active structure and at the bottom of the channels. 如申請專利範圍第15項所述之垂直通道記憶結構,更包含: 圖案化字元線,該些字元線彼此平行於一與該第一方向大致垂直之第二方向上延伸,該些字元線延伸於該主動結構及該實體隔離溝渠之上且填充對應的通道部分。 The vertical channel memory structure as described in claim 15 of the patent application further includes: Patterning word lines extending parallel to each other in a second direction substantially perpendicular to the first direction, the word lines extending over the active structure and the physical isolation trench and filling corresponding Channel section. 如申請專利範圍第15項所述之垂直通道記憶結構,其中該填充材料包含氧化矽-氮化矽-氧化矽、能隙工程矽-氧化矽-氮化矽-氧化矽-矽(BE-SONOS)或奈米晶體之至少一者於施加該多層介電層時填入該實體隔離溝渠內。 The vertical channel memory structure according to claim 15, wherein the filling material comprises yttrium oxide-tantalum nitride-yttria, energy gap engineering yttrium-yttria-yttrium nitride-yttrium oxide-yttrium (BE-SONOS) Or at least one of the nanocrystals is filled into the physical isolation trench when the multilayer dielectric layer is applied. 如申請專利範圍第15項所述之垂直通道記憶結構,其中該填充材料包含以高溫氧化、四乙氧基矽烷(TEOS)或同位蒸氣生成(ISSG)之至少一者於施加該多層介電層之前沈積於該實體隔離溝渠內。 The vertical channel memory structure of claim 15, wherein the filler material comprises at least one of high temperature oxidation, tetraethoxy decane (TEOS) or isotopic vapor generation (ISSG) for applying the multilayer dielectric layer. Previously deposited in the physical isolation trench. 如申請專利範圍第15項所述之垂直通道記憶結構,其中該填充材料包含非晶矽、多晶矽或單晶矽於施加該多層介電層之前沈積於該實體隔離溝渠內。 The vertical channel memory structure of claim 15 wherein the filler material comprises amorphous germanium, polycrystalline germanium or single crystal germanium deposited in the physical isolation trench prior to application of the multilayer dielectric layer.
TW99145586A 2010-12-23 2010-12-23 Method for filling a physical isolation trench TWI473207B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99145586A TWI473207B (en) 2010-12-23 2010-12-23 Method for filling a physical isolation trench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99145586A TWI473207B (en) 2010-12-23 2010-12-23 Method for filling a physical isolation trench

Publications (2)

Publication Number Publication Date
TW201227877A TW201227877A (en) 2012-07-01
TWI473207B true TWI473207B (en) 2015-02-11

Family

ID=46933430

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99145586A TWI473207B (en) 2010-12-23 2010-12-23 Method for filling a physical isolation trench

Country Status (1)

Country Link
TW (1) TWI473207B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515031B (en) * 1999-08-09 2002-12-21 Infineon Technologies Ag Method to simultaneously produce memory-capacitors and at least one trough-isolation in a semiconductor-substrate as well as a semiconductor-element
US20070264775A1 (en) * 2006-05-15 2007-11-15 Hynix Semiconductor Inc. Non-volatile memory device and method of manufacturing the same
US20080003742A1 (en) * 2006-06-29 2008-01-03 Hynix Semiconductor Inc. Method of manufacturing flash memory device
US20100297826A1 (en) * 2009-05-21 2010-11-25 Hynix Semiconductor Inc. Method of Manufacturing Nonvolatile Memory Device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515031B (en) * 1999-08-09 2002-12-21 Infineon Technologies Ag Method to simultaneously produce memory-capacitors and at least one trough-isolation in a semiconductor-substrate as well as a semiconductor-element
US20070264775A1 (en) * 2006-05-15 2007-11-15 Hynix Semiconductor Inc. Non-volatile memory device and method of manufacturing the same
US20080003742A1 (en) * 2006-06-29 2008-01-03 Hynix Semiconductor Inc. Method of manufacturing flash memory device
US20100297826A1 (en) * 2009-05-21 2010-11-25 Hynix Semiconductor Inc. Method of Manufacturing Nonvolatile Memory Device

Also Published As

Publication number Publication date
TW201227877A (en) 2012-07-01

Similar Documents

Publication Publication Date Title
CN109417078B (en) 3D memory device and the method for being used to form 3D memory device
TWI482241B (en) Flash memory having multi-level architecture
TWI478291B (en) Double gated flash memory
CN110088906B (en) High-k dielectric layer in three-dimensional memory device and method of forming the same
EP2455967B1 (en) A method for forming a buried dielectric layer underneath a semiconductor fin
JP2008227535A (en) Sonos flash memory device and its manufacturing method
US8164119B2 (en) Semiconductor device including conductive lines with fine line width and method of fabricating the same
US9601588B2 (en) Method for fabricating semiconductor device
US20220077180A1 (en) Three-dimensional memory devices having dummy channel structures and methods for forming the same
KR20130034343A (en) Semiconductor device including metal-containing conductive line and method of manufacturing the same
TWI601270B (en) Semiconductor structure and method for forming the same
TWI582841B (en) Method for fabricating transistor gate and semiconductor device comprising transistor gate
US20120115309A1 (en) Methods of Manufacturing a Vertical Type Semiconductor Device
US7977191B2 (en) Method for fabricating flash memory device
US8623726B2 (en) Method for filling a physical isolation trench and integrating a vertical channel array with a periphery circuit
CN108831890B (en) Preparation method of three-dimensional memory
JP2007134669A (en) Flash memory element and method of manufacturing same
US7776702B2 (en) Method of fabricating high integrated semiconductor apparatus, and semiconductor apparatus fabricated thereby
TWI473207B (en) Method for filling a physical isolation trench
US9761490B2 (en) Method for forming contact holes in a semiconductor device
TWI580086B (en) Memory device and manufacturing method of the same
US9899396B1 (en) Semiconductor device, fabricating method thereof, and fabricating method of memory
US7772068B2 (en) Method of manufacturing non-volatile memory
US20120273876A1 (en) Semiconductor device and method for forming the same
JP2007067362A (en) Method for manufacturing non-volatile semiconductor memory device